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ABSTRACT

This paper presents a novel approach combining convolutional layers (CLs) and large–

margin metric learning for training supervised models on small datasets for texture clas-

sification. The core of such an approach is a loss function that computes the distances

between instances of interest and support vectors. The objective is to update the weights

of CLs iteratively to learn a representation with a large margin between classes. Each it-

eration results in a large-margin discriminant model represented by support vectors based

on such a representation. The advantage of the proposed approach w.r.t. convolutional

neural networks (CNNs) is two-fold. First, it allows representation learning with a small

amount of data due to the reduced number of parameters compared to an equivalent CNN.

Second, it has a low training cost since the backpropagation considers only support vec-

tors. The experimental results on texture and histopathologic image datasets have shown

that the proposed approach achieves competitive accuracy with lower computational cost

and faster convergence when compared to equivalent CNNs.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Convolutional neural networks (CNNs) have been estab-

lished as the state-of-the-art approach to computer vision.

CNNs achieve high accuracy due to how the convolutional lay-

ers filter images, the number of parameters available to learn

representations [1][2], and the large datasets [3] used in their

training. They usually present high accuracy in object recogni-

tion problems, e.g., cars, people, animals, numbers. Networks

pretrained with large datasets of objects can be reused in other

contexts. There are two ways of transferring networks between

contexts, fine-tuning or using them as feature extractors. The

fine-tuning procedure allows fast training with fewer data be-

cause pre-trained filters are already able to identify some pat-

terns. Although it reduces training effort, data may be insuffi-

cient even for fine-tuning in small datasets. Furthermore, when
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working with datasets where textural information prevails to the

detriment of shape and spatial characteristics, the first layers of

pretrained CNNs may not respond well to new patterns. There

are two additional problems: (i) deeper layers also have more

problem-specific knowledge; (ii) there is the need for image

size adaptation, which can slow the training [4]. Using CNNs

as feature extractors, there is no filter update. Instead, the acti-

vation maps of a specific layer are used as a feature vector for

images of a new context, and an alternative classifier is trained

on them. They work similarly to a handcrafted feature extrac-

tor and neither adapt to the new patterns nor generate features

targeted to facilitate the classification task. Small and simple

models like these are more suitable for classifying non-object

and small datasets since they do not require data for represen-

tation learning but only for training a discriminant.

This paper proposes a novel large-margin representation

learning that overcomes most of the problems mentioned above

related to CNNs and handcrafted feature extractors. For this

purpose, it addresses the following questions: a) is it possible

to learn representations and discriminants on small-size texture

datasets? b) is it possible to speed up the training convergence

http://arxiv.org/abs/2206.08537v1
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while achieving high accuracy? The proposed approach uses a

short sequence of convolutional layers (CLs) to learn represen-

tation for texture classification. The CLs feed a large-margin

discriminant that, in turn, provides information to update the

CLs’ weights and increase the decision margin. A novel loss

function calculates the distance between instances in the deci-

sion frontier and anchors. The backpropagation algorithm min-

imizes the loss function while enlarging the margin between

classes. The novelty of our approach is that it employs only

instances that violate the decision margin to train the CLs and

produce latent representations. That speeds up the convergence

of the backpropagation algorithm to suitable latent represen-

tation and discriminant. In addition, it uses fewer parameters

than a conventional CNN, allowing training in small datasets,

and it performs well on non-object context recognition. Oth-

erwise, the CNNs would still be more effective. The proposed

approach was evaluated on a synthetic dataset based on Gaus-

sian distributions, texture datasets, and three histopathological

image (HI) datasets.

The main contributions of this paper are: (i) an approach that

trains CLs from scratch with little data; (ii) A representation

learning method that adapts itself to the characteristics of dif-

ferent texture datasets; (iii) a computational efficient training

technique that uses only support vectors (SVs) in each iteration

instead of all training instances; (iv) A fast convergence method

compared to methods used for training conventional CNNs; (v)

resilience to imbalanced data; (vi) A detailed comparison of

the performance achieved by the proposed approach with ap-

proaches using handcrafted features and CNNs.

This paper is organized as follows. Section 2 presents some

fundamental concepts. Section 3 describes the proposed ap-

proach and the experiment setup. In Section 4 , we present some

experimental results and discuss the advantages of our method.

The conclusions and the main contributions of our approach are

presented in the last section.

2. Related Works

The first CLs of CNNs are suitable to identify general and

straightforward patterns such as textures. Their training help to

make them adaptable to motifs of each context, so it is worth-

while to train these first CLs and use only them in more simple

image contexts. One may find different contributions in the lit-

erature to adapt pre-trained CNN models to a new domain.

Cimpoi et al. [5] proposed the Fisher vector CNN (FV-CNN),

which pools the last CL of a pretrained network, using it as a

feature vector. The pooling allows using input images without

resizing them to fit a fully connected CNN (FC-CNN). They

used the FV-CNN features as input to an SVM and compared

the FC-CNN and SIFT features. The FV-CNN showed to be

a good texture descriptor, performing well on several bench-

marks. The texture CNN (TCNN)[4] uses a similar approach

to the FV-CNN, but with the classification accomplished by a

sequence of FC layers. Its difference to a traditional FC-CNN

is the energy layer, a global average pooling (GAP) at the last

CL whose outputs go to the FC layers. The SVM replacement

by the FC layers as a classifier, in contrast to FV-CNN, permits

training the CLs in conjunction with the classifier. This last ap-

proach does not require a pretrained CNN as it can train it with

the FC layers, but it can explore transfer learning on low data

scenarios, such as some types of medical images acquired by

MRI, CT, radiography, or microscopy that have textural charac-

teristics [6]. Microscopy images allows the observation of tis-

sues, their cells, and their nuclei, with a more texture oriented

appearance. They are a challenging classification problem due

to differences on staining process and small number of samples.

Therefore, instead of using large CNNs, one can use only their

first layers that are more texture-aware as an FCN, intercept-

ing the output and treating it as a feature vector. This latent

representation can be used with a simpler classifier with fewer

parameters than FC layers of a CNN.

One can also use the deep metric learning (DML) concepts

to train the FCNs to produce better filters and a representation

more suitable to the new classifier.

Metric learning is an alternative to classification methods in

situations where the number of classes is high, in the order of

thousands, or the number of samples of each category is low [7].

Two examples of this situation are face recognition and signa-

ture verification. The idea of the dissimilarity metric learning

is to learn a representation to identify two samples’ similarities,

usually employing a distance metric, e.g., Euclidean distance.

DML approaches allow metric and representation learning si-

multaneously. Learning representation is possible with deep

learning due to the training of parameters used in its layers,

mostly the convolutional ones. Chopra et al. [7] presented a

method that uses siamese convolutional neural networks and the

energy-based model. It consists of using raw energy values in-

stead of probabilistic normalized ones. Their concept of energy

is analogous to the one of Andrearczyk and Whelan [4]. The

advantage of using CNNs is that they provide end-to-end train-

ing that learns low and high-level features and results in shift-

invariant detectors. Their method aggregates the energy output

of each siamese network into one neural network trained with

contrastive loss. The loss allows training the system together

(siamese networks and the single neural network), improving

the sample representation on the energy layer for texture classi-

fication.

DML algorithms can be split into pair-based or proxy-based.

The former, like contrastive loss, aims to minimize intra-class

distance and maximize inter-class distance. However, this ap-

proach has prohibitive computational complexity and pairs that

do not contribute to the training. Therefore, several works have

addressed these issues [8]. The ranked list loss method [9] relies

on a threshold margin that gives more attention, using weight-

ing, to the samples that maximize the margins between opposite

classes. The margin determines the negative points that are too

close to the query and violates most of the margin. These are

the negative selected points. On the other hand, proxy-based

methods [10] [11] create an instance representing a set of in-

stances of the same class. It reduces the number of training

instances and avoids noise and outliers.

3. Large-Margin Fully Convolutional Network (LMFCN)

The proposed approach is pair-based, and it selects the most

effective instances for the training procedure, reducing the

training complexity and discarding irrelevant instances. It also
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selects specific examples as anchors to calculate a novel loss

function, which speeds up training. Although the proposed ap-

proach shares ideas of DML, our application context is differ-

ent, with more instances per class and fewer classes than the

usual DML context.

The proposed method has three components: a fully convo-

lutional network (FCN) with a global average pooling (GAP),

a large-margin classifier, and a novel loss function, made up of

three terms. The LMFCN1 uses a sequence of CL acting as

a filter bank to learn representation from data used as input to

a large-margin classifier. It acts as an end-to-end image clas-

sifier, like a CNN but requires less training data to learn high

discriminant representations. Its advantage is to enable filter

training and make the latent representation more suitable for

the classifier. In addition, the backpropagation algorithm trains

the filters with a particular loss function that uses the distance

between instances of interest and their anchors provided by the

large margin classifier to improve representation learning.

(a) Type 1 anchor (b) Type 2 anchor (c) Type 3 anchor

Fig. 1: A two-class latent space with decision boundary computed by an RBF

SVM. Circles are samples of class 0 and crosses, class 1. Bigger symbols mean

the SVs for each class. In blue is the region of class 0, and in yellow is class

1. Dashed straight black lines link the instances to their anchors. In red are the

anchors for three different situations on the calculations. (a) Reference anchors

to the SVs; (b) Anchors used to move the misclassified instances; (c) Anchors

used to increase the separation of instances from opposite classes.

3.1. Training Procedure and Loss Function

The learning algorithm uses the concept of anchors to guide

the training. Anchors are instances from the training set used

as references by the loss function to calculate the distance to in-

stances of interest. The backpropagation algorithm minimizes

such distances during training. Fig. 1 presents a latent space

split into two regions by an RBF SVM classifier and the three

types of anchors.

Type 1 anchors (red circles and crosses) are the correctly

classified instances closest to the support vectors (SVs). The

LMFCN attempts to maximize the margin by pushing the SVs

in the direction of such anchors. The learning algorithm mini-

mizes the distance between them and the SVs. In Fig. 1a, the

dotted straight lines linking SVs identify the three anchors of

each SV and help visualize the effect of the distance minimiza-

tion.

Type 2 anchors (Fig. 1b) are the SVs closest to misclassified

examples used to move such instances in direction to the right

side of the decision boundary.

Type 3 anchors are the closest correctly classified instances

of the opposite class, as shown in Fig. 1c. Type 3 anchors help

1https://github.com/jonathandematos/lmfcn

to maximize the distance between samples of different classes.

The number of anchors, regardless of their type, is a hyperpa-

rameter.

Fig. 2: An overview of the training scheme of the LMFCN.

The training procedure starts with a dataset of size n denoted

asX = {Xt, ot}n
t=1

, where t indexes images Xt of width w, height

h and c channels in X, and ot ∈ N : [0, 1] is its expected out-

put. All images from X are fed to CLs denoted as ffcn(.) and

produces a matrix Tn×φ, with φ being the size of the latent rep-

resentation (step 1 at Fig. 2). The algorithm uses matrix T to

calculate matrix P (Eq. (1)), which in turn is used to calcu-

late matrices Kn×n and Dn×n using Eqs. (2) and (3), respectively

(step 2 at Fig. 2). K is a RBF kernel matrix used to train a large

margin classifier fsv(.), which produces the output yt for each el-

ement t ofX, and also provides the set of support vectors (SVs)

indexes S = {su}vu=1, where su ⊂ N : [0, n[ and v is the number

of SVs (step 3 at Fig. 2). D is essential to the rest of the algo-

rithm as it contains the pairwise distance of all instances and is

used to create the anchor matrices.

pi j =

φ
∑

b=0

(Tib − T jb)2 (1)

ki j = exp(−γpi j) (2)

di j =
√

pi j (3)

Type 1 anchors (step 4 at Fig. 2) are obtained from ma-

trix D, the set S, the expected output ot, and the output from

fsv(ffcn(Xt)), as shown in Eq. (4):

eij =















τ if i = j or j ∈ S or oi
, o j or o j

, fsv( ffcn(X j))

dij otherwise
(4)

where eij is either the distance between SVs and their anchors

(di j) or a large constant τ that indicates that there is no SV-

anchor relation (uninteresting instances), ffcn(Xt) denotes the la-

tent representation generated by the FCN for an input Xt, fsv(.)

is the output predicted by the large-margin classifier.

Furthermore, we also define a sorting function fargsort(.) that

takes a vector as input and returns a vector of indices sorted in

increasing order. So, the anchor matrix As×n is calculated using

Eq. (5).

au = fargsort(esu) with su ∈ S and u ∈ [0, |S|[ (5)

Likewise A, we calculate with the Eqs. (7) and (9) the matri-

ces Mm×n and Gg×n for type 2 and 3 anchors, respectively (step

4 at Fig. 2). We define a set of indexes to the misclassified
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and correct classified instances from X as Q = {q | q ⊂ N :

[0, n[∧fsv(ffcn(Xq)) , oq}, and R = {r | r ⊂ N : [0, n[∧r <

S ∪Q}, respectively.

zij =















dij if i ∈ Q and j ∈ S and i , j

τ otherwise
(6)

mi = fargsort(zqi ) with qi ∈ Q and i ∈ [0, |Q|[ (7)

hij =















dij if i ∈ R and j ∈ R and oi
, oj

τ otherwise
(8)

gi = fargsort(hri ) with ri ∈ R and i ∈ [0, |R|[ (9)

where zij and hij in Eqs. (6) and (8) are the distance between

misclassified instances and the SVs (di j) and the distance be-

tween correct classified instances from opposite classes (di j),

respectively. Again, τ is a large constant that indicates uninter-

esting instances.

Step 5 of the algorithm is the backpropagation of images

fromXS,XQ andXR through the FCN to calculate the gradients

and use them with the loss functions to update the CL weights.

Steps 1 to 5 define one epoch. After step 5, the process restarts

from step 1, so the latent representation is computed again, as

though the matrices P, K and D and the large-margin discrim-

inant is retrained on such a updated latent representation, pro-

ducing another set of SVs allowing recalculation of matrices

A, M and G. Therefore, the elements of matrix T are different

from the previous epoch because of the updated FCN weights.

The proposed loss function relies on the similarity between

examples, and it has three terms, as shown in Eq. (10). It aims at

finding a latent representation that maximizes the margin (Lsv)

while pushing misclassified examples towards the right side of

the decision boundary (Lmc) and moving well-classified exam-

ples farther away from the decision boundary (Lcc).

L = Lsv +Lmc +Lcc (10)

Lsv calculates the sum of distances between SVs and its

anchors using matrix A, as shown in Eq. (11). As a conse-

quence, the gradients are affected only by the instances which

are SVs, not by the type 1 anchors, as they were already gener-

ated and stored in T. The backpropagation procedure updates

the weights in a way that the latent representation generated by

ffcn(.) has the smallest possible distance to the fixed values of

type 1 anchors at the current epoch. Therefore, the weights are

updated to move the SVs and not the anchors.

Lsv =

|S|
∑

i=0

svclose
∑

j=1

[ffcn(Xsi

) − tai j
]2

|S| (11)

where svclose is the number of anchors to use for each SV, ffcn(.)

is the FCN updated by the backpropagation, Xsi

is the matrix

that represents the si image fromX, aij is an index pointing to an

anchor instance in the input setX, tai j
is the latent representation

of an image Xai j , and |S| is the number of SVs.

The training algorithm computes the loss over the entire set

of SVs as a single batch. It is also possible to use mini-batches,

but considering small-size datasets and an FCN with compact

architecture that yields a low-dimensional latent representation,

this is unnecessary. In the next epoch, the updated weights will

affect the generation of the latent representation of the entire

dataset. Therefore, the latent representation of anchors also

changes, and the training algorithm builds a new set of anchors.

Lmc calculates the summation of distances between misclas-

sified instances and their anchors using matrix M, as shown in

Eq. (12). We also use all misclassified instances as a single

batch, although there is no limitation to performing it in mini-

batches. The influence of Lmc in the training algorithm is the

weight updating that minimizes the distance between the mis-

classified instances and their closest SVs. Consequently, the

misclassified instances are pushed towards the right side of the

decision boundary.

Lmc =

|Q|
∑

i=0

wrclose
∑

j=0

[ffcn(Xqi

) − tmij
]2

|Q| (12)

where wrclose is the number of anchors for each misclassified

instance, ffcn(.) is the FCN updated by the backpropagation, Xqi

is the matrix that represents the qi image fromX, mij is an index

pointing to an anchor instance in the input set X, tmi j
is the

latent representation of an image Xmi j , and |Q| is the number

of misclassified instances.

When looking at only a single misclassified instance, the

weight updating may not be enough to move such an instance to

the right side of the decision boundary because its anchors are

SVs right at the margin of the decision boundary. Despite that,

the misclassified example can become an SV in the following

training epoch.

Lcc represents the distance between well-classified instances

and their anchors. Since we want to maximize such a distance,

Eq. (13) calculates the inverse of such a distance and incorpo-

rates it in the loss function, which is minimized during training.

Lcc =
|R|

|R|
∑

i=0

shclose
∑

j=0

[ffcn(Xri

) − tgij
]2

(13)

where shclose is the number of anchors for each correctly classi-

fied instance, ffcn(.) is the FCN updated by the backpropagation,

Xri

is the matrix that represents the ri image from X, gij is an

index pointing to an anchor instance in the input set X, tgi j
is

the latent representation of an image Xgi j , and |R| is the number

of correct classified instances.

The number of anchors used for each training instance is con-

trolled by svclose, wrclose, and shclose in Eqs. (11) (12), and (13),

respectively. Usually, complex classification problems require

a higher number of anchors. Furthermore, using all three terms

of the proposed loss function in the training process may not

always be necessary. Lsv alone already leads to good repre-

sentations as such a loss is directly related to SVs and margin

maximization. The computational cost for computing this term

of the loss function is not high and decreases as the number

of instances used by the backpropagation algorithm reduces at

each training epoch. Computing Lmc is not also expensive be-

cause the number of incorrect classified examples tends to de-

crease over the training epochs. On the other hand, computing
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Lcc can become very expensive because the number of well-

classified instances tends to increase over the training epochs.

Therefore, the term Lcc should be used wisely, preferably only

on challenging problems where just the other two terms of the

proposed loss function may not lead to a low training error.

3.2. FCN Architecture

The FCN is a sequence of CLs similar to ones used in CNNs,

used as filter banks to learn representation related to textures,

as presented in Table 1. Pooling layers follow these layers

to reduce the input size progressively. The deeper the layers,

the narrower is the latent representation, but with an increasing

number of channels, which allows more filters combination, in-

creasing the complexity of the representation. At the end of

the CLs, a GAP layer builds a latent representation where each

element represents the response of a filter combination to a tex-

ture, measuring how much it happened and not its position on

the image. The GAP layer also makes the output dimension

independent of the input size, and the latent representation will

always have the same number of channels at the end of the FCN.

Such a latent representation feeds a large-margin discriminant

to learn classification tasks. We compared our approach with

two CNNs with identical architecture (Table 1), but with a se-

quence of fully connected (FC) layers as discriminant after the

GAP layer. We employed binary cross-entropy (BCE) loss and

Hinge loss for binary problems and cross-entropy loss in multi-

class.

Table 1: FCN used on the LMFCN and in the CNN comparison. (w: width, h:

height, c: number of channels, φ: dimension of the latent representation.)

Layer Input Output

Convolutional Layer w × h × c w × h × 64

Max Pooling w × h × 64 w/2 × h/2 × 64

Convolutional Layer w/2 × h/2 × 64 w/2 × h/2 × 128

Max Pooling w/2 × h/2 × 128 w/4 × h/4 × 128

Convolutional Layer w/4 × h/4 × 128 w/4 × h/4 × φ
Global Average Pooling w/4 × h/4 × φ 1 × 1 × φ
Batch Normalization and ReLU after each CL.

The large margin classifier of the LMFCN is a support vector

machine (SVM) with an RBF kernel, which Gram matrix K is

obtained by Eq. (2) calculated jointly with the distance matrix

D. Part of the classifier calculation is reused and performed in

GPU. We chose the precomputed RBF kernel due to its ease

of computation using the GPU resources and space separation

capacity. Although a linear kernel has reduced computational

cost, it would require more training of the FCN weights to pro-

vide features with more class separation. In the preliminary

studies, we compared the two kernel approaches and verified

the advantage of the RBF.

A large-margin discriminant is inherently binary, and to deal

with multiclass problems, we adopted the one-vs-all (OVA) ap-

proach, which reduces multiclass problems into multiple binary

classification problems. In the training stage, one provides all

instances to all nc pairs of LMFCNs. After training all the

nc LMFCNs, we discard the discriminants, keeping only the

FCNs. Then, we train a new multiclass SVM. The new classi-

fier is trained using a latent representation with φ× nc, which is

the concatenation of all FCN latent representations. At the end

of the training process, the full model comprises nc FCNs with

an φ-dimensional output and a multiclass SVM with a latent

representation of φ×nc dimensions. The multiclass SVM holds

internally multiple binary SVMs with RBF kernel on OVA con-

figuration. Although this approach seems similar to using mul-

tiple SVMs trained with the FCNs, the new classifiers have ac-

cess to a latent representation that is better fitted for them.

The computational cost for training the LMFCN and equiv-

alent CNNs up to the GAP layer is proportional to the number

and resolution of input images (n × w × h × c) and the number

weights (αfcn). The LMFCN replaces the FC layers (compu-

tational cost of αfcn × n), by an SVM, which requires kernel

calculation (n2), and sequential minimal optimization (SMO),

which requires n3 in the worst case. Assuming a small training

set, the SMO cost is lower than n × αfcn. However, for large

datasets, where n2 is greater than αfcn, the problem becomes

more suitable for conventional CNN architectures.

The main advantage of the LMFCN is using only the SVs in

the backpropagation, which reduces its computational cost from

n to |S|. The CLs used on both LMFCN and conventional CNNs

have several trainable parameters. Therefore, having only SVs

as training instances reduces the number of training instances

and speeds up the training, making the loss function converge

faster within a few epochs.

4. Experimental Results and Discussion

The evaluation of the proposed LMFCN is carried out on

images with texture characteristics and low training data avail-

ability. We used a synthetic dataset of images generated from

two Gaussian distributions with striped patterns, misc and fab-

ric categories of the Salzburg Texture Image Database [12],

BreaKHis [13], BACH [14] and CRC [15] datasets, which com-

prise histopathological images (HIs).

Fig. 3 shows a training graph of the Gaussian images dataset

over 20 epochs with the LMFCN. The best-balanced accuracy

values for train, validation, and test correspond to the peak vali-

dation accuracy. It is possible to observe that the value of losses

and the number of SVs goes down over the epochs, and the ac-

curacy rises. That shows that the SVs are getting closer to their

instances due to the loss reduction. In addition, the decrease in

the number of SVs indicates that a better separability is being

achieved.

Table 2 compares the results achieved by the LMFCN with

other CNN architectures on five datasets. Two CNNs have an

architecture similar to the LMFCN, but they use the Hinge loss

(CNN-H) and the binary cross-entropy loss (CNN-CE). These

two CNNs are equivalent to TCNNs [4] since they use a short

sequence of CLs and a GAP to produce energy values. We also

used pretrained ResNet18 and InceptionV3 as feature extrac-

tors. We limited the number of training epochs to 100 and 15

epochs for the CNNs and LMFCN. The discriminant layers of

the ResNet18 and the InceptionV3 have the same parameters as

the LMFCN. Furthermore, we used PCA to reduce the feature

vectors generated by these two CNNs from 512 and 2048 to 16,

the same size used by the other architectures. Overall, the LM-

FCN converges to a latent representation that generalizes well

much faster (less than ten epochs for all datasets) than different

CNN architectures. Furthermore, in 3 out of 5 datasets, the ac-

curacy achieved by the LMFCN on the test sets is higher than

that achieved by other CNNs. For the two other datasets, the

difference in accuracy is almost negligible.
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Fig. 3: Training of the LMFCN using synthetic Gaussian images with a 2-dimensional latent representation. Parameters: svclose=5, wrclose=1, and shclose=0.

Table 2: Balanced accuracy for the LMFCN and equivalent CNN architectures.

Epoch refers to training epoch where the best validation accuracy was achieved.

NA: Not Applicable, for models that are trained in one single epoch

Dataset Architecture Training Validation Test Epoch

B
A

C
H

LMFCN 0.8811 ± 0.0426 0.7857 ± 0.0221 0.8056 ± 0.0203 6

CNN-CE 0.8926 ± 0.0135 0.8200 ± 0.0291 0.7864 ± 0.0212 88

CNN-H 0.8534 ± 0.0410 0.8038 ± 0.0261 0.7838 ± 0.0242 68

ResNet18 0.9981 ± 0.0026 0.7596 ± 0.0122 0.7584 ± 0.0270 NA

InceptionV3 0.6295 ± 0.0746 0.5924 ± 0.0625 0.6049 ± 0.0630 NA

B
re

aK
H

is

LMFCN 0.9882 ± 0.0064 0.9442 ± 0.0137 0.8942 ± 0.0372 5

CNN-CE 0.8926 ± 0.0092 0.9122 ± 0.0226 0.8926 ± 0.0140 91

CNN-H 0.8560 ± 0.0041 0.8856 ± 0.0166 0.8638 ± 0.0042 91

ResNet18 0.9777 ± 0.0062 0.8034 ± 0.0120 0.8262 ± 0.0122 NA

InceptionV3 0.6058 ± 0.0207 0.6064 ± 0.0209 0.5949 ± 0.0207 NA

C
R

C

LMFCN 0.9924 ± 0.0046 0.9914 ± 0.0024 0.9914 ± 0.0060 6

CNN-CE 0.9828 ± 0.0070 0.9934 ± 0.0025 0.9880 ± 0.0111 31

CNN-H 0.9928 ± 0.0038 0.9924 ± 0.0027 0.9928 ± 0.0070 30

ResNet18 0.9991 ± 0.0013 0.9683 ± 0.0081 0.9680 ± 0.0150 NA

InceptionV3 0.7718 ± 0.0352 0.7670 ± 0.0375 0.7842 ± 0.0355 NA

S
al

zb
u
rg

LMFCN 0.9842 ± 0.0049 0.9446 ± 0.0083 0.9230 ± 0.0081 8

CNN-CE 0.8966 ± 0.0103 0.8762 ± 0.0100 0.8602 ± 0.0115 91

CNN-H 0.8258 ± 0.0257 0.8292 ± 0.0277 0.8046 ± 0.0314 84

ResNet18 0.9946 ± 0.0033 0.9046 ± 0.0221 0.8932 ± 0.0088 NA

InceptionV3 0.6680 ± 0.0332 0.6607 ± 0.0323 0.6644 ± 0.0473 NA

G
au

ss
ia

n

LMFCN 1.0000 ± 0.0000 1.0000 ± 0.0000 0.9990 ± 0.0022 2

CNN-CE 0.9950 ± 0.0061 1.0000 ± 0.0000 1.0000 ± 0.0000 72

CNN-H 1.0000 ± 0.0000 1.0000 ± 0.0000 1.0000 ± 0.0000 56

ResNet18 0.9740 ± 0.0109 0.6126 ± 0.0198 0.6176 ± 0.0257 NA

InceptionV3 0.5102 ± 0.0235 0.5311 ± 0.0185 0.5021 ± 0.0258 NA

Table 3 shows average results of balanced accuracy of five

repetitions comparing the results achieved by the LMFCN with

shallow approaches that employ an SVM and three handcrafted

feature extractors: Local Binary Pattern (LBP), Gray Level Co-

occurrence Matrix (GLCM), and Parameter Free Threshold Ad-

jacency Statistics (PFTAS) [13].

For a fair comparison, the LMFCN uses a 59-dimensional la-

tent representation, the same dimension of the smallest feature

vector, obtained with the LBP with uniform patterns. PFTAS

and GLCM produce 162- and 169-dimensional feature vec-

tors, respectively. PFTAS achieved the best accuracy among

the handcrafted feature extractors on three datasets (BACH,

BreaKHis, and CRC). LBP achieved the best accuracy on

Salzburg and GLCM on the Gaussian dataset. However, the

LMFCN with a 59-dimensional latent representation achieves

an accuracy higher than all shallow methods on all datasets, in-

dicating its adaptability to different problems and datasets.

The multiclass experiments were carried out on three HI

datasets. Our experiments also included comparisons against

Table 3: Balanced accuracy for LMFCN, GLCM, LBP and PFTAS. The best

results on each subset are underlined.
Dataset Method Training Validation Test

B
A

C
H

LMFCN-59 0.9664 ± 0.0751 0.7888 ± 0.0577 0.7684 ± 0.0435

LMFCN-162 1.0000 ± 0.000 0.8068 ± 0.0600 0.7934 ± 0.0536

GLCM 0.7346 ± 0.0199 0.6309 ± 0.0346 0.6618 ± 0.0711

LBP 0.9146 ± 0.0154 0.7455 ± 0.0442 0.7005 ± 0.0228

PFTAS 0.9899 ± 0.0037 0.7372 ± 0.0634 0.7608 ± 0.0361

B
re

aK
H

is

LMFCN-59 1.0000 ± 0.0000 0.9639 ± 0.0247 0.9476 ± 0.0075

LMFCN-162 1.0000 ± 0.0000 0.9666 ± 0.0183 0.9595 ± 0.0050

GLCM 0.8128 ± 0.0086 0.8117 ± 0.0375 0.8076 ± 0.0071

LBP 0.9292 ± 0.0059 0.7998 ± 0.0099 0.7925 ± 0.0098

PFTAS 0.9801 ± 0.0034 0.9237 ± 0.0236 0.9145 ± 0.0168

C
R

C
LMFCN-59 0.9977 ± 0.0022 0.9937 ± 0.0023 0.9883 ± 0.0084

GLCM 0.9864 ± 0.0036 0.9828 ± 0.0055 0.9853 ± 0.0101

LBP 0.9974 ± 0.0012 0.9431 ± 0.0099 0.9479 ± 0.0061

PFTAS 1.0000 ± 0.0000 0.9852 ± 0.0025 0.9872 ± 0.0097

S
al

zb
u
rg

LMFCN-59 0.9994 ± 0.0006 0.9672 ± 0.0112 0.9500 ± 0.0180

GLCM 0.7706 ± 0.0163 0.7257 ± 0.0186 0.7338 ± 0.0142

LBP 0.9987 ± 0.0012 0.9282 ± 0.0209 0.9116 ± 0.0208

PFTAS 0.9650 ± 0.0051 0.9096 ± 0.0124 0.8973 ± 0.0137

G
au

ss
ia

n LMFCN-59 1.0000 ± 0.0000 0.9354 ± 0.1254 0.9880 ± 0.0121

GLCM 0.9583 ± 0.0028 0.9327 ± 0.0110 0.9527 ± 0.0191

LBP 0.6303 ± 0.0091 0.6710 ± 0.0131 0.6109 ± 0.0075

PFTAS 0.5578 ± 0.0080 0.5953 ± 0.0077 0.5608 ± 0.0076

handcrafted feature extractors GLCM, LBP, and PFTAS as

though as ResNet18 and InceptionV3 as feature extractors. We

also used a CNN with cross-entropy loss (CE) and similar ar-

chitecture to the LMFCN but using more filters. The number

of filters is proportional to the total number of parameters sum-

ming all OVA models of the LMFCN, providing a fair compar-

ison.

Table 4 shows the average balanced accuracy for all evalu-

ated methods. It is noticeable the superior performance of the

LMFCN over all others. In the case of the CNN experiments,

we allowed the training procedure to extend over 400 epochs.

Although the LMFCN uses multiple models, we let each one

only train for ten epochs. The metric used, balanced accuracy,

helps identify problems on imbalanced datasets. Our approach

presented a promising performance on BreaKHis, which has a

significant difference between some classes, e.g., Ductal Carci-

noma and Phyllodes Tumor. This result shows that the LMFCN

performed well in imbalanced scenarios. We also noticed that

the LMFCN performed well on the imbalanced OVA subprob-

lems.

The experimental results have shown that the LMFCN out-

performs all other methods in a scenario composed of textural

images and small-size datasets. Besides achieving higher accu-

racy, the proposed method has several advantages over the shal-

low and deep related methods. The LMFCN approach requires
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Table 4: Average balanced accuracy and standard deviation for seven methods

considering a multiclass scenario.
Dataset Method Training Validation Test

B
A

C
H

LMFCN 0.9690 ± 0.0348 0.7170 ± 0.0210 0.6854 ± 0.0278

CNN 0.8390 ± 0.0184 0.6788 ± 0.0406 0.6444 ± 0.0187

GLCM 0.4081 ± 0.0183 0.4003 ± 0.0753 0.3637 ± 0.0303

LBP 0.4643 ± 0.0334 0.4871 ± 0.0729 0.3951 ± 0.0896

PFTAS 0.6229 ± 0.0146 0.5690 ± 0.0464 0.6043 ± 0.0235

ResNet18 1.0000 ± 0.0000 0.6056 ± 0.0578 0.5671 ± 0.0300

InceptionV3 0.4628 ± 0.0807 0.4269 ± 0.0904 0.4057 ± 0.0261

B
re

aK
H

is

LMFCN 0.9688 ± 0.0285 0.8125 ± 0.0321 0.7895 ± 0.0162

CNN 0.8032 ± 0.0319 0.7347 ± 0.0238 0.7040 ± 0.0307

GLCM 0.4697 ± 0.0111 0.4218 ± 0.0212 0.4091 ± 0.0050

LBP 0.9235 ± 0.0084 0.5373 ± 0.0174 0.5218 ± 0.0147

PFTAS 0.9537 ± 0.0086 0.6643 ± 0.0109 0.6768 ± 0.0147

ResNet18 1.0000 ± 0.0000 0.5933 ± 0.0341 0.5834 ± 0.0213

InceptionV3 0.1848 ± 0.0182 0.1745 ± 0.0194 0.1767 ± 0.0123

C
R

C

LMFCN 0.9834 ± 0.0127 0.9379 ± 0.0065 0.9338 ± 0.0073

CNN 0.7209 ± 0.2614 0.3946 ± 0.0453 0.3901 ± 0.0402

GLCM 0.6062 ± 0.0057 0.5960 ± 0.0069 0.6049 ± 0.0084

LBP 0.6148 ± 0.0045 0.6086 ± 0.0270 0.6144 ± 0.0123

PFTAS 0.8359 ± 0.0058 0.8271 ± 0.0152 0.8297 ± 0.0097

ResNet18 0.9506 ± 0.0033 0.5070 ± 0.0141 0.5066 ± 0.0138

InceptionV3 0.1509 ± 0.0036 0.1546 ± 0.0075 0.1477 ± 0.0082

few data to train a sequence of CLs and a large-margin dis-

criminant properly. In the experiments comparing the LMFCN

with equivalent CNNs, using a 16-dimensional latent represen-

tation, the LMFCN achieved training stability and high accu-

racy within 20 training epochs. The CNNs needed 100 epochs

to achieve comparable performance.

The latent representation learned by the LMFCN, con-

strained to a dimensionality similar to shallow methods (59- and

162-dimensional), is more discriminant than LBP, PFTAS, and

GLCM. As a result, the LMFCN achieved higher balanced ac-

curacy than the compared methods. Furthermore, the LMFCN

obtained a competitive accuracy even with a 16-dimensional la-

tent representation. Moreover, the improvement achieved by

increasing the latent representation to 59 dimensions is mean-

ingful, with a slight gain when increasing it up to 169.

The LMFCN reduces the number of SVs over the training

epochs. Fewer SVs imply that the computational effort reduces,

as the main term of the loss function depends on the number of

SVs. Compared to equivalent CNNs, the LMFCN has an extra

cost related to the computation of kernel K, distance matrice D,

and the quadratic optimization problem solved by the SMO al-

gorithm, which have computational complexities O(n2), O(n2),

and O(n3), respectively. CNNs have a training complexity pro-

portional to the number of instances and weights. They have

more parameters, use more instances in the backpropagation,

and take more epochs to converge than the LMFCN.

Data imbalance is burdensome for training machine learning

algorithms. However, the LMFCN deals well with imbalanced

classes in two-class and multi-class scenarios, achieving com-

petitive performance even on highly imbalanced OVA subprob-

lems. Furthermore, the computational effort is not extremely

high, given the reduced number of epochs to train the model at

each subproblem.

5. Conclusion

This paper proposed a large-margin representation learning

approach that is made up of convolutional layers and a large-

margin discriminant. As a result, the LMFCN achieved com-

petitive accuracy compared to CNNs with similar architecture

while reducing the computational cost. Furthermore, the LM-

FCN achieved training stability in a few epochs thanks to using

only the SVs in the backpropagation algorithm. These achieve-

ments were possible using a large-margin discriminant, which

replaces the fully connected and softmax layers of conventional

CNNs. As a result, an SVM with an RBF kernel can produce

complex margins, avoiding expensive refinement of the latent

representation. This way, the FCNs do not need to suffer dras-

tic updates. Unlike the handcrafted features extractors, the LM-

FCN has more adaptability given its consistent results in differ-

ent datasets. The most problematic scenario for the LMFCN is

the multiclass classification task, but it showed promising re-

sults despite the overhead caused by the OVA approach. We

used a few epochs per subproblem to alleviate the computa-

tional cost of using several models, keeping the cost of our ap-

proach similar to the CNNs. In conclusion, the LMFCN has ad-

vantages in computational cost and classification performance

over the compared methods for small datasets of textural im-

ages.
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