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ABSTRACT

Partitional clustering is one of the most relevant unsupervised learning and pattern
recognition techniques. Unfortunately, one of the main drawbacks of these method-
ologies refer to the fact that the number of clusters is generally assumed to be
known beforehand and automating its selection is not straightforward. On the same
token, internal validity measures, such as the Silhouette index, Davies-Bouldin and
Caliński-Harabasz measures have emerged as the standard techniques to be used
when comparing the goodness of clustering results obtained via different clustering
methods. These measures take into consideration both the inter and intra-cluster
simmilarities and can be adapted to different metrics. Unfortunately, their used has
been hindered due to their large computational complexities, which are commonly
quadratic with respect to the number of instances of the data set. In this work,
we show that the time complexity of computing the most popular internal validity
measures can be utterly reduced by making used of the within-cluster errors and
different properties of the Bregman divergences. This contribution ultimately
allows us to massively speed-up the selection of an adequate number of clusters
for a given data set as verified with extensive empirical comparisons.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Clustering is an unsupervised machine learning technique
used to divide unlabeled data into groups that contain data
points that are similar to each other and dissimilar from
those in other clusters (Jain et al., 1999). This is, the
partition is done in such a way that intra-cluster similarity
is high and the inter-cluster similarity is low. Ultimately,
this data analysis technique tries to unveil the inherent
structure of a given set of point as well as it allows pattern
identification. Clustering is widely used in many fields,
such as text mining, image analysis, and bioinformatics
(Liu et al., 2010; Capo et al., 2020; Jain et al., 1999).

∗∗mcapo@bcamath.com (Marco Capo), aperez@bcamath.com
(Aritz Pérez), ja.lozano@ehu.eus (Jose A.Lozano).

In an unsupervised learning scenario, one commonly does
not possess any prior knowledge of the number of clusters.
For this reason, throughout the years multiple validation
measures (VM) for clustering results has been designed
(Caliński and Harabasz, 1974; Davies and Bouldin, 1979;
Hämäläinen et al., 2017). The aim of a VM is to measure
the quality of a given clustering based on the compactness
and separation of the clusters. A comprehensive review of
clustering validation techniques is provided in Hämäläinen
et al. (2017). Even though such clustering goodness metrics
can be used for the different types of clustering techniques,
e.g., partitional, hierarchical, density-based, probabilistic,
grid-based, spectral and fuzzy clustering (Aggarwal and
Clustering, 2014; Jain et al., 1999; Xie and Beni, 1991). In
this work, we focus our analysis on partitional clustering
methodologies.
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1.1. Partitional Clustering

Partitional clustering algorithms group the data into
K, commonly non-overlapping, clusters, each of which
is represented by a certain prototype. This prototype
is commonly selected as the centroid or medoid of the
cluster. Given a set of n data points (instances) X =
{x1, . . . ,xn} in Rd, an integer K, a dissimilarity measure,
s : Rd × Rd → R+ and a set of points D ⊆ Rd, partitional
clustering commonly attempts to determine a set of points
P = {p1, . . . ,pK} ⊆ D, so as to minimize the following
error function:

EX(P ) =
∑
x∈X

s(x,px), with px = arg minp∈P s(x,p) (1)

The obtained clustering, P = {P1, . . . , PK}, is then given
by Pk = {x ∈ X : k = arg mini∈{1,...,K} s(x,pi)}, for all
k ∈ {1, . . . ,K}. Unfortunately, finding the solution to
this kind of problem is commonly NP-Hard (Aloise et al.,
2009; Mahajan et al., 2009). For this reason, partitional
clustering is mainly constituted by iterative refinement-
based heuristics that approximate their solution (Kaufman
and Rousseeuw, 1987).
Depending on the selection of the set D ⊆ Rd and the

dissimilarity s(·, ·), we have fairly different problems and
algorithms to approximate their solution. In particular,
for D = Rd and s(·, ·) any Bregman divergence, we have
which is probably the most popular partitional clustering
techinique, the K-means algorithm (Banerjee et al., 2005;
Lloyd, 1982). This heuristic converges to a local minima of
Eq.1. In order to do so, this approach iteratively relocates
the data points between clusters until a locally optimal
partition is attained. The main advantage of the K-means
algorithm refers to its low computational complexity, which
is O(n ·K). Besides the easiness of its implementation, this
method also reduces monotonically the K-means error, i.e.,
every step of the algorithm generates a more competitive
solution to the K-means problem.
If we instead consider D = X in Eq.1, we have the

K-medoids problem. This problem is originally defined
for any dissimilarity measure, s(·, ·), and so, K-medoids
clustering has emerged as a standard approach in those sce-
narios where theK-means algorithm can not be applied (Ng
and Han, 2002; Schubert and Rousseeuw, 2019). Besides
this, for K-medoids clustering, one selects instances from
the data set as representatives for each cluster, which are
known to be more robust to outliers than other commonly
used choices (Han and Kamber, 2011). The Partition-
ing Around Medoids algorithm (Kaufman and Rousseeuw,
1987), or just PAM, is probably the most commonly used
heuristic for the K-medoids problem. PAM recursively
performs swaps between each pair medoid-non-medoid and
then the swap that leads to the largest error decrease is
performed until no error reduction can be achieved. The
recursive stage of PAM has a O(K · (n−K)2) time cost.
In order to deal with such a large computational demand,
different speed-ups to PAM have been proposed that trade

optimality for runtime, out of which both CLARA and
CLARANS stand out as the most popular (Kaufman,
1986; Ng and Han, 2002; Schubert and Rousseeuw, 2019).

CLARA (Kaufman, 1986; Kaufman and Rousseeuw,
2008) applies PAM on multiple subsamples, keeping the
best clustering. Commonly the size of the subsample se-
lected is n′ = 40 + 2 ·K (Schubert and Rousseeuw, 2019).
In general, if n′ ∈ O(K), then the algorithm is O(K3).
On the other hand, CLARANS (Ng and Han, 2002) works
on the entire data set, but only explores a subset of all
the possible swaps between medoids and non-medoids. In
particular, CLARANS interprets the search space as a high-
dimensional hypergraph, where each edge corresponds to
the considered swap between a medoid and a non-medoid.
Making use of this graph, CLARANS performs a random-
nized greedy exploration, where the first edge that reduces
the error function is followed until no edge can be found
after a predefined number of attempts. Unfortunately,
its time complexity is still O(n2) (Zhang and Couloigner,
2005), which makes it unsuitable for massive data applica-
tions.

1.2. Number of Clusters Selection

As commented in Section 1.1, for partitional clustering
algorithms the number of clusters, K, is usually assumed
to be known in advanced. Unfortunately, selecting an ade-
quate number of clusters for a given data set is not a simple
task. Throughout the years different alternatives have been
proposed to approach this issue. In particular, Pelleg et al.
(2000) proposed technique, for the K-means problem, that
determines a number of clusters by performing recursive
bisections of a given set of clusters as long as the obtained
Bayesian Information Criterion (BIC) is improved. On the
other hand, Hamerly and Elkan (2004) suggested a method
to learn K, for the K-means problem as well, based on
a statistical test for determining whether instances are a
random sample from a Gaussian distribution with arbitrary
dimension and covariance matrix. The previous method-
ologies make assumptions on the underlying distribution
of instances belonging to the same cluster and are not
commonly used in practice (Hämäläinen et al., 2017).
Among other popular approaches, one can mention the

Elbow rule, which consists on evaluating and plotting the
error function, Eq.1, which decreases monotonically w.r.t.
K, for different values of K and picking the knee of the
obtained curve as the number of clusters to use. More
importantly, a last family of measures that has gained a
lot of popularity, for both selecting the most adequate
clustering algorithm for a given data set, as well as for
tunning its parameters, are the clustering validation mea-
sures (Hämäläinen et al., 2017). In the following section,
we describe in detail these metrics and their features.

1.2.1. Clustering Validation Measures
Clustering validation measures evaluate the goodness of

clustering results (Maulik and Bandyopadhyay, 2002) and
so, they can be used to compare the quality of the results
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obtained for different methods, as well as for identifying the
optimal values for the clustering parameters, such as the
number of clusters, K (Maulik and Bandyopadhyay, 2002;
Van Craenendonck and Blockeel, 2015). These measures
are divided into two categories: external clustering vali-
dation indexes and internal clustering validation indexes.
The main difference is whether or not external information
is used for clustering validation, as for instance labels. An
example of external validation measure is entropy, which
evaluates the purity of clusters based on a given class la-
bels (Liu et al., 2010). Unfortunately, in practice, external
information such as class labels is often not available in
many application scenarios. Therefore, in the situation
where there is no external information available, internal
validation measures are the only option for cluster valida-
tion (Hämäläinen et al., 2017; Liu et al., 2010; Maulik and
Bandyopadhyay, 2002).

Internal validation measures are often based on the follow-
ing two criteria: i) Compactness : Its commonly a variance-
based metric that quantifies how closely related objects in
a cluster are, e.g., maximum/average pairwise distance or
center-based distance (Liu et al., 2010), ii) Separation: It
evaluates how well-separated a cluster is from other clus-
ters, e.g., the pairwise distances between cluster centers or
the pairwise minimum distances between objects in differ-
ent clusters. Internal validation measures are larger when
either compactness and/or separation are maximized.
A complete overview and analysis of internal validity

measures can be found in (Arbelaitz et al., 2013; Milli-
gan and Cooper, 1985; Van Craenendonck and Blockeel,
2015; Vendramin et al., 2010). In particular, the most
popular measures in the literature are the Silhoutte index
(Rousseeuw, 1987), the Davies-Bouldin measure (Davies
and Bouldin, 1979) and the Caliński-Harabasz measure
(Caliński and Harabasz, 1974):

Definition 1. The Silhoutte index for an instance x ∈
Pk ⊆ X, is defined as sh({x}) = b(x)−a(x)

max{a(x),b(x)} , where
a(x) = 1

|Pk|−1 ·
∑

y∈Pk,y 6=x
s(y,x) and b(x) = min

i 6=k

1
|Pi| ·∑

y∈Pi

s(y,x).

It should be noted that sh({x}) ∈ [−1, 1]. Further-
more, observe that b(x) accounts for the cluster sepa-
rability and a(x) for the cluster compactness. There-
fore, ideally b(x) � a(x) for all x ∈ X, i.e., sh({x})
should be close to 1. The Silhouette value of a parti-
tion, P = {P1, . . . , PK}, is the average of these values over

all instances: sh(P) = 1
n ·

K∑
k=1

∑
x∈Pk

sh({x}) and, in general,

its computational complexity is O(n2) (Van Craenendonck
and Blockeel, 2015).

Definition 2. The Davies-Bouldin measure, for a parti-

tion P, is defined as db(P) = 1
K ·

K∑
k=1

Dk, where Dk =

maxl 6=k Rkl, Rkl = Sk+Sl

Mkl
, Mkl = s(ck, cl), Sk = dk ·∑

x∈Pk

s(x, ck), ck = Pk and dk a positive constant.

The Davies-Bouldin measure was originally defined tak-
ing the dissimilarity function, s(·, ·), to be a lp-norm and
dk = ( 1

|Pk| )
1
p , for p ∈ N (Davies and Bouldin, 1979). In

general, observe that the time complexity of computing the
Davies-Bouldin measure is O(n ·K) and, since its numera-
tor measures the compactness of the generated clusters and
its denominator considers the separability between them,
this measure should be minimized.

Definition 3. The Caliński-Harabasz measure is defined

as ch(P) =
(n−K)·

K∑
k=1

|Pk|·s(ck,X)

(K−1)·EX(C)
, where C = {c1, . . . , cK}

and ck = Pk.

Note that the time complexity of evaluating the Caliński-
Harabasz measure is O(n · K) and, since the numerator
contains the separability information and the denominator
measures the compacity, this index should be maximized.

1.3. Contribution
In this work, we assume the dissimilarity s(·, ·) to belong

to the Bregman divergence family of metrics and make
use of its properties to utterly reduce the running times
required to compute the most commmonly used internal
clustering validation measures, see Section 1.2.1. This will
for instance allow us to easily automate the selection of an
appropriate number of clusters without exceeding the actual
time complexity of the predefined partitional algorithm,
which is a problem of high interest in the unsupervised
learning community (Hamerly and Elkan, 2004; Pelleg et al.,
2000).

At this point it must be highlighted that the Bregman
divergences are a broad class of dissimilarity measures
indexed by strictly convex functions that are useful in a
wide range of areas, among which are statistical learning
and data mining, computational geometry, natural sciences,
speech processing and information theory (Banerjee et al.,
2005; Gray et al., 1980). A Bregman divergence is formally
defined as follows:

Definition 4 (Bregman divergence (Bregman, 1967)). Let
φ : Ω 7→ R be a strictly convex function defined on a convex
set Ω ⊆ Rd, such that φ is differentiable on ri(Ω)1, assumed
to be non-empty. The Bregman divergence s : Ω× ri(Ω) 7→
R+ is defined as

s(x,y) = φ(x)− φ(y)− < x− y,∇φ(y) >, (2)

In Table 1, we show a few of the well-known dissimilarity
measures that belong to this family of metrics:

Table 1: Examples of Bregman divergences.

Divergence Ω φ(x)

Kullback-Leibler d-simplex2 x · logx
squared Euclidean Rd ‖x‖2

Itakura-Saito Rd
++

3 − logx

1ri(Ω) stands for the relative interior of the convex set Ω.
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The rest of the article is organized as follows: In Section
2, we elaborate on the theoretical aspects of our proposal
and extend on the computation of internal validity mea-
sures, as well as of the proposed algorithm for selecting
the number of clusters. Afterwards, in Section 3, we com-
pare the proposed methodology empirically with respect to
the standard approach in terms of quality of the obtained
solution and computational load.

2. Efficient Number of Cluster Selection via Inter-
nal Validity Measures

In general, when performing partitional clustering, we
assume the number of clusters to be predefined (Jain et al.,
1999; Jain, 2010). On the other hand, since one of the
main features of validity measures, such as the Silhouette
index, is that they do not get neccesarily improved by
increasing the number of clusters, as it happens when
using the error function Eq.1 in the Elbow rule, they are
commonly used to automate the selection of the number of
clusters (Hämäläinen et al., 2017). Unfortunately, one of
the factors that hinders the use of these indexes to perform
such a task is related to the added computational load of
computing them (Lensen et al., 2017). As discussed in
Section 1.2.1, for instance computing the Silhoutte index
from scratch is O(n2), which is more time consuming than
running a typical partitional clustering algorithms such as
the K-means algorithm, which is O(n ·K).
In this section, we will exploit different properties of

Bregman divergences that have been previously deduced
in papers such as Banerjee et al. (2005). These properties
have been applied on the clustering context, in particular
considering the typical ouput and of partitional clustering
algorithms (within-cluster errors for each cluster) to fas-
ten the computation of the most commonly used internal
validity measures, i.e., Silhouette index, Davies-Bouldin
measure and Caliński-Harabasz measure, in such a way
that we can efficiently select an appropriate number of clus-
ters, without increasing the complexity of the clustering
method.

It is important to highlight that this sort of approaches
can be easily extended to other validity measures and
dissimilarities within the Bregman divergences. In this
work, we restrict our analysis to the most popular clustering
validity measures.

2.1. Efficient Computation of the Silhouette Index, Davies-
Bouldin and Caliński-Harabasz Measures

As previously commented in Section 1.1, partitional clus-
tering algorithms usually minimizes error functions of the
form of Eq.1. In order to calculate EX(P ), which is needed

2d-simplex={x = (x1, . . . , xd) ∈ [0, 1]d : x1 + . . . + xd = 1}.
3Rd

++ = {x = (x1, . . . , xd) ∈ Rd : xi > 0 ∀i} and Rd
+ = {x =

(x1, . . . , xd) ∈ Rd : xi ≥ 0 ∀i}

to evaluate the stopping criteria of the algorithm, the se-
lected partitional clustering method computes the pairwise-
distance matrix between the instances in X and the set
of prototypes P and uses this information to evaluate

EX(P ) =
K∑

k=1

EPk({pk}), where EPk({pk}) is the within-

cluster error for the kth cluster, for all k ∈ {1, . . . ,K}.
In the upcoming result, we re-write the internal validity
measures presented in Section 1.2.1 in terms of the within-
cluster errors for all Bregman divergences:

Theorem 1. Given a clustering P = {P1, . . . , PK}
and let ck be the centroid of Pk, i.e., ck = Pk,
for all k ∈ {1, . . . ,K}, and s(·, ·) a Bregman diver-
gence, then i) sh({x}) = b(x)−a(x)

max{a(x),b(x)} , for x ∈ Pk,
where a(x) = 1

|Pk|−1 · [EPk({ck}) + |Pk| · s(ck,x)] and
b(x) = min

i 6=k

1
|Pi| · [E

Pi({ci}) + |Pi| · s(ci,x)], ii) db(P) =

1
K ·

K∑
k=1

max
l 6=k

dk·EPk ({ck})+dl·EPl ({cl})
s(ck,cl)

and iii) ch(P) =

(n−K)·[EX({X})−EX(C)]
(K−1)·EX(C)

, where C = {c1, . . . , cK}.

Proof. First of all observe that, for ck = Pk and k ∈
{1, . . . ,K} and x ∈ Rd, using Proposition 1 in Banerjee
et al. (2005), we have∑

y∈Pk

s(y,x) =
∑
y∈Pk

s(y, ck) + |Pk| · [φ(ck)− φ(x)−

− < ck − x,∇φ(x) >]

=
∑
y∈Pk

s(y, ck) + |Pk| · s(ck,x) (3)

Using Eq.3, we can re-write a(x) and b(x), for any x ∈ Rd:

a(x) =
1

|Pk| − 1
·

∑
y∈Pk,y 6=x

s(y,x) =
1

|Pk| − 1
·
∑
y∈Pk

s(y,x)

=
1

|Pk| − 1
· EPk({x}) =

1

|Pk| − 1
· [EPk({ck}) +

+|Pk| · s(ck,x)] (4)

and

b(x) = min
i 6=k

1

|Pi|
·
∑
y∈Pi

s(y,x) = min
i 6=k

1

|Pi|
· EPi({x})

= min
i 6=k

1

|Pi|
· [EPi({ci}) + |Pi| · s(ci,x)] (5)

From Eqs.4-5, we have the result for the Silhoutte index.
Furthermore, for the Davies-Bouldin measure, we have
that Sk = dk · EPk({ck}) and Mkl = s(ck, cl). In words,
Rkl = dk·EPk ({ck})+dl·EPl ({cl})

s(ck,cl)
and, therefore,

db(P) =
1

K
·

K∑
k=1

Dk =
1

K
·

K∑
k=1

max
l 6=k

Rkl

=
1

K
·

K∑
k=1

max
l 6=k

dk · EPk({ck}) + dl · EPl({cl})
s(ck, cl)

(6)
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Finally, for the Caliński-Harabasz measure, we observe
that, using Eq.3, the following equality holds

EX({X}) =

K∑
k=1

∑
x∈Pk

s(x, X) =

K∑
k=1

[EPk({ck}) +

+|Pk| · s(ck, X)]

= EX(C) +

K∑
k=1

|Pk| · s(ck, X) (7)

and so, ch(P) = (n−K)·[EX({X})−EX(C)]
(K−1)·EX(C)

Theorem 1 shows that, if the dissimilarity considered is
a Bregman divergence, we can express the Silhoutte index,
Davies-Bouldin and Caliński-Harabasz measures in terms
of the within-cluster errors obtained for the given clustering
and the pairwise-distance between the cluster centroids (for
the Davies-Bouldin measure). Hence, the computational
cost required to compute this internal validation measures
can be utterly reduced by taking advantage information
that can be extracted from the output of the most common
partitional clustering algorithms:

Proposition 1. Given a clustering P, i) sh(P) can be
computed in O(n ·K) time, ii) db(P) can be computed in
O(K2) time if the clustering algorithm is centroid-based for
Eq.1, otherwise, if it is medoid-based, in O(max{n,K2})
time, and iii) ch(P) can be evaluated in O(n) time, for all
Bregman divergences.

Proof. First of all, we assume the partitional algorithm
to be centroid-based for Eq.1. Observe that computing
sh({x}) = b(x)−a(x)

max{a(x),b(x)} , for x ∈ Pk, where a(x) = 1
|Pk|−1 ·

[EPk({ck})+|Pk|·s(ck,x)] and b(x) = min
i 6=k

1
|Pi| ·[E

Pi({ci})+

|Pi|·s(ci,x)], is O(K). Hence, sh(P) = 1
n ·

∑
x∈X

sh({x}) can

be calculated in O(n ·K). On the same token, evaluating

db(P) = 1
K ·

K∑
k=1

max
l 6=k

dk·EPk ({ck})+dl·EPl ({cl})
s(ck,cl)

is just O(K2)

due to the pairwise distance computations between cen-
troids. On the other hand, ch(P) = (n−K)·[EX({X})−EX(C)]

(K−1)·EX(C)

is O(n) due to the computation of EX({X}).
If the clustering algorithm is medoid-based, then the

within-cluster errors provided by the algorithm are of the
form EPk({mk}), for somemk ∈ Pk, for all k ∈ {1, . . . ,K}.
Since s(·, ·) is assumed to be a Bregman divergence, then
EPk({ck}) = EPk({mk})−|Pk|·s(ck,mk) by Eq.3. For this
reason, the added cost of computing the internal validation
measure is due to the computation of ck = Pk, for all
k ∈ {1, . . . ,K}, which is O(n), and evaluating s(ck,mk),
for all k ∈ {1, . . . ,K}, which is O(K). Therefore, the
additional cost is O(n) for the medoid-based case and so,
evaluating db(P), in this setting, is O(max{n,K2}).

In Proposition 1, we verify that by re-using the within-
cluster errors, we can reduce the computational com-
plexity of the Silhoutte index from O(n2) to O(n · K),
the Davies-Bouldin measure decreases from O(n · K) to

O(max{n,K2}), in the worst case, and the Caliński-
Harabasz measure from O(n ·K) to O(n). In words, we can
evaluate the most commonly used internal validity mea-
sures (Van Craenendonck and Blockeel, 2015) in, at most,
O(n ·K) time. This is, we can quantify the goodness of
the obtained clusterings without exceeding the linear com-
plexity of some of the most popular clustering approach,
such as the K-means algorithm.

More importantly, observe that Proposition 1 also eases
the use of such measures to determine an adequate number
of clusters for a given dataset and clustering algorithm:
Given partitional clustering algorithm, clustering, e.g., the
K-means algorithm, we can recursively applied it for an in-
creasing/decreasing number of clusters. Afterwards, using
the obtained clustering, an internal validity measure, qual-
ity, e.g., the Silhouette index, Davies-Bouldin or Caliński-
Harabasz measure, can be evaluated4. This process can
be repeated until a certain stopping criterion is satisfied:
For instance, i) we can run this approach until reaching
a predefined maximum/minimum number of clusters and
keep the number of clusters that leads to the best quality
index, ii) we can run the algorithm as long as the quality
is improved or until after a certain amount of iterations
the quality index is no longer improved. Regardless of the
stopping criterion selected, the complexity of each itera-
tion of this approach is dominated by the complexity of
clustering.
3. Experiments
In this section, we analyze the performance of the

methodology proposed in Section 2, using the time-
complexity reduction of the most relevant validity measures,
to select a number of clusters for a certain data set and clus-
tering algorithm. In particular, given a clustering algorithm
(Cl), and a validity measure (VM), we consider as baseline
running Cl for K ∈ {2, . . . , 50} and keeping the number
of clusters that leads to the best VM5(Baseline_Cl). In
addition, we consider running Cl for an increasing num-
ber of clusters K, starting with K = 2, and stopping
if, after s modifications of the number of clusters, where
s ∈ {1, 2, 5, 10}, the validity measure, computed via Theo-
rem 1, is not improved (Cl_s). Lastly, we also run Cl, for
all K ∈ {2, . . . , 50} and compute VM, as in the previous
case, via Theorem 1 (Cl_all). In terms of the partitional
methods considered, in this section we use: i) K-means al-
gorithm (KM), ii) Partitioning Around Medoids algorithm
(PAM) and iii) Clustering Large Applications method
(CLARA). In terms of the validity measures, we consider
i) the Silhouette index (SH) and ii) the Davies-Bouldin
(DB) and iii) Caliński-Harabasz (CH) measures, and ad-
ditionally we compute running times (RT). The Bregman

4Alternatively, one could evaluate different validity measures for
the clustering obtained, for each value K, and select the optimal
number of clusters from the corresponding Pareto optimal front.
However, as we will see in Section3, the optimal number of clusters
tends to be similar among different validity measures.

5In this case, VM is evaluated using the Scikit-Learn versions
of the given index.
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divergence used in this section is the squared Euclidean met-
ric, in https://github.com/MarcoVCapo/VM results using
other dissimilarities can be found.

So as to facilitate the comparison between all consid-
ered methodologies, DB, CH and RT are normalized as
follows for a given repetition of the experimental setting:

i) relative DB(M) =
max

M′∈M
DB(M ′)

DB(M) , ii) relative CH(M) =
CH(M)

min
M′∈M

CH(M ′) and iii) relative RT(M) = RT(M)
min

M′∈M
RT(M ′) ,

where M is an algorithm included in the set of consid-
ered methodsM. Moreover, SH is not normalized since,
regardless of the experimental setting, the index always
satisfies −1 ≤ SH(M) ≤ 1. In this sense, observe that
SH, relative CH and relative DB must be maximized and
relative RT should be minimized. We have analyzed the
performance of the different methods on a wide variety
of real data sets obtained from the UCI repository, see
Table 26. Given the random nature of the algorithms each
experiment has been repeated five times.

Table 2: Information of the data sets.

Data Set n d

KEGG 53.413 23
HTRU 17.898 9
Hour 17.379 19
Avila 10.436 11

Gas Turbine 7.384 11

Data Set n d

Anuran 7.195 22
Turkiye 5.820 33

Waveform 5.000 41
Gesture 1.444 32

Tripadvisor 980 10

In Figs.1-4, we present the obtained results in terms of
SH, relative DB, relative CH and relative RT obtained
when maximizing VM following the previosuly mentioned
methodologies. We must also point out that, for PAM, we
were only able to obtain results for the two smallest data
sets (Tripadvisor and Gesture, see Table 2) for the limit
running time of 24 hours for a repetition of the experiment.
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Figure 1: Silhouette index for all data sets and clustering techniques.

6Original data sets were normalized via MinMaxScaler function
of Scikit-Learn
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Figure 2: Relative Davies-Bouldin measure for all data sets and
clustering techniques.
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Figure 3: Relative Caliński-Harabasz measure for all data sets and
clustering techniques.
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Figure 4: Relative running times for all data sets and clustering
techniques.

At first glance, we observe that regardless of the VM
index being maximized, the clustering obtained by all tech-
niques considered have similar SH, DB and CH values. In
any case, if we focus on the SH values obtained across the
different methods, the variability of the obtained results is
smaller when VM is SH. Furthermore, as expected, the SH
index of Baseline_Cl is of the same order of that of Cl_all
for all experimental settings. More importantly, for all
settings, Cl_1 already achieved a fairly similar and, some-
times better, SH in comparison to Baseline_Cl, e.g., for
KM, the average SH value of Baseline_Cl is 0.55, while, for
Cl_1, this value actually increases to 0.56. What’s more,
if we increase the number of iterations allowed without

https://github.com/MarcoVCapo/VM
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improvement, this value increases rapidly, e.g., for Cl_10,
we have an average SH value of 0.58.

The results obtained for both relative DB and relative
CH follow the same behavior as those obtained and, pre-
viously described, for SH. The most interesting variation
occurs when Cl is PAM where the most variability on the in-
dex values is observed. In any case, the performance of the
proposed methodology was still competitve in this setting.
For instance, the relative DB obtained by Baseline_Cl is
1.48 for PAM (with VM=DB), while Cl_1 reached and
average DB of 1.50. In the case of PAM we do not necce-
sarily observe an improvement as the number of clusters
modifications is increased, which must be linked to the
dependence of PAM to the initial set of medoids provided
(in this case selected uniformly at random from the data
set).

Finally, in terms of the relative RT, we observe the main
benefit of our proposal. In particular for both KM and
CLARA, we verify a staggering reduction of running time
with respect to the baseline. An example of this can be
seen in the case of KM and the validity measure SH, where
the average relative RT of Baseline_Cl ascends to 3207.86,
while, for Cl_1, it is just 1.05, i.e., Baseline_Cl is 3055.10
times slower than Cl_1 and reaches the same clustering.
For PAM, such a reduction is less significant due to the
computational complexity of the clustering algorithm itself,
which is O(K · (n−K)2). Still, in this case, Cl_1 was, on
average, 5.62 times faster than Baseline_Cl.

Conclusions

In this work, we provide a tool for efficiently selecting the
number of clusters for all partitional clustering algorithms.
In particular, we demostrate that, for all Bregman diver-
gences, the Silhouette index and the Davies-Bouldin and
the Caliński-Harabasz measures can be computed in, at
most, O(n ·K) time using the within-cluster errors. Even-
though, empirically we have restricted our analysis to the
K-means and K-medoids problem, the use of these results
can be easily extended to all partitional clustering tech-
niques, e.g., OPTICS and DBSCAN. This contribution is
relevant since it drastically fastens the computation of such
validity measures to select an adequate number of clusters.
For instance, for the K-means algorithm reductions of up
to 3 orders of magnitude in average can be observe with
respect to the common brute-force selection of number of
clusters. This sort of computations can be further extended
to other family of metrics and validity measures.
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