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Abstract

The Meta Video Dataset (MetaVD) provides annotated relations between action classes in major datasets for human
action recognition in videos. Although these annotated relations enable dataset augmentation, it is only applicable to
those covered by MetaVD. For an external dataset to enjoy the same benefit, the relations between its action classes and
those in MetaVD need to be determined. To address this issue, we consider two new machine learning tasks: action
class relation detection and classification. We propose a unified model to predict relations between action classes,
using language and visual information associated with classes. Experimental results show that (i) pre-trained recent
neural network models for texts and videos contribute to high predictive performance, (ii) the relation prediction based
on action label texts is more accurate than based on videos, and (iii) a blending approach that combines predictions by
both modalities can further improve the predictive performance in some cases.

Keywords: Relation prediction, MetaVD, Human action recognition, Multi-modal classification

1. Introduction

Human action recognition (HAR) in videos has a wide
variety of applications, such as content-based video sum-
marization [1], video retrieval [2], and video surveil-
lance [3]. It is an active research topic in computer vision
(CV), and many practical HAR datasets have been made
publicly available [4] by the research community. How-
ever, as these datasets were developed for specific pur-
poses and needs of individual researchers, each dataset
often consists of videos from a limited domain. When a
model is trained with such a limited dataset with insuffi-
cient diversity, it often fails to correctly recognize videos
from different domains than used for training.

To help improve the robustness of HAR models over di-
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verse domains, Yoshikawa et al. [5] constructed the Meta
Video Dataset (MetaVD), a meta-dataset of six existing
HAR datasets: UCF101 [6], HMDB51 [7], ActivityNet
(v.1.3) [8], STAIR Actions (v.1.1) [9], Charades [10],
and Kinetics-700 [11]. As each dataset defines differ-
ent classes of actions, MetaVD provides a curated list of
related action classes across datasets. Specifically, three
types of relations can be associated with pairs of actions:
equal, similar, and is-a.

The relation labels in MetaVD naturally enable dataset
augmentation among the datasets. For example, suppose
that action class i in a dataset (“target dataset”) is labeled
as equal to action class j in the other datasets (“source
datasets”). Then, to train an HAR model for the target
dataset, we can use the videos associated with class j in
the source datasets as augmented training data for class i.
The resulting model is expected to be more accurate and
robust, as it is trained with data not only larger in size but
also more diverse. Indeed, Yoshikawa et al. [5] report that
in terms of test accuracy on the expanded target dataset,
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Figure 1: Illustration of action class relation detection and classification.

the HAR models trained on the expanded target dataset
have substantially higher recognition accuracy than those
trained on the original target dataset alone. Moreover,
augmentation did not degrade the accuracy on the orig-
inal target data, thus making the learned model robust to
more diverse data without adverse side effects.

Despite its effectiveness, dataset augmentation using
MetaVD has an obvious limitation: It can only be ap-
plied to the six datasets in MetaVD. To augment an ex-
ternal dataset in the same manner (i.e., using the external
dataset as the target dataset and the entire MetaVD as the
source dataset), one first needs to determine the relation-
ship between the action classes in the dataset and those in
MetaVD. Automating this process is highly desirable, as
manual annotation of relations over all possible pairs of
actions is time-consuming and expensive.

In this paper, we consider two supervised machine
learning tasks that are relevant to this automation: action
class relation detection and action class relation classi-
fication. Fig. 1 illustrates these tasks. Action class rela-
tion detection consists of predicting whether a pair of ac-
tion classes (or actions for short) are related or not, while
action class relation classification consists of predicting
the relation type of two actions that are known to be re-
lated. The observed data in these tasks are a collection
of videos with action labels and a collection of relation
labels defined in MetaVD. They also have the aspect of
multi-modal learning, because the action classes are char-
acterized by visual information in the videos and the lan-
guage information in the action labels.

We propose a unified model for these tasks. The in-

put to the model is a pair of actions, represented either
by their text labels or by sets of videos showing the ac-
tions. The input actions are then individually transformed
into embedding vectors by a suitable encoder for the input
modality (text or video). After concatenating the embed-
ding vectors for the two actions, the model outputs a pre-
diction of the relation for the pair through a task-specific
head. Furthermore, we explore simultaneously using both
modalities using a blending approach, which outputs the
weighted sum of the predictions from the text label of ac-
tions and the video sets.

Through the empirical evaluation of the proposed
model, we answer the following questions.

• Can we build practical models for relation prediction
using existing pre-trained neural network models for
CV and natural language processing (NLP)?
• Which modality of language and vision is better suited

to relation prediction?
• Can we improve prediction performance by using both

modalities simultaneously rather than using only one?

We evaluate whether the model accurately predicts
the relations between the target dataset and the source
datasets in the two tasks, using five of the six datasets
in MetaVD as source datasets and the remaining one as
the target dataset. The experimental results reveal that
the action label texts are consistently more useful than the
videos in the two tasks. We also found that the perfor-
mance of the blending approach is better than using only
one modality in some cases. However, when the perfor-
mance in the video modality is low, the blending approach
tends to perform worse than using only the text modality.

2. Related Work

Relation prediction appears in various research fields.
A typical example is knowledge base completion (KBC),
which is the task of finding unknown relations between
entities in a knowledge base. For KBC, numerous stud-
ies take the approach that represents entities and relations
as embedding vectors or matrices [12], which are learned
from a lot of triplets ⟨head, relation, tail⟩ in training data,
where head and tail denote entities in the knowledge base.
To obtain good representations of the embedding vectors
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and matrices, several studies enriched them by exploit-
ing auxiliary information of the entities, such as textual
description [13] and images [14]. By representing each
action as an entity, our tasks can be regarded as the KBC
that embodies the entity with an action label text and a set
of videos. Unlike the standard KBC, our tasks require pre-
dicting a relation between the entity appearing in training
data and that appearing only in test data. Such a prob-
lem is called out-of-knowledge base entity problem in the
KBC literature [15].

Another relation prediction task in CV and vision-
and-language is visual relation detection (VRD), which
is the task of recognizing relations or interactions be-
tween objects in an image [16]. For example, in
VRD, the relations are represented in the form of
⟨object1, predicate, object2⟩, and the goal is to predict the
predicate from the visual information, e.g., the visual rep-
resentation of the objects, and the linguistic information,
e.g., the class names of the objects. For example, a visual
translation embedding network [17] models the relations
such that the sum of the low-dimensional representations
of object1 and the predicate is equal to that of object2.
Also, VRD studies that specialize in human-object inter-
action in which the predicate always represents actions
have been conducted [18]. Furthermore, beyond images,
several studies have focused on video visual relation de-
tection (VVRD) [19]. Here, the visual features of an ob-
ject in VVRD are obtained by spatio-temporally tracking
the object in a video. However, our relation prediction
tasks differ from VRD and VVRD, as our study aims to
predict the relationships between actions rather than ob-
jects.

3. Action Class Relation Detection and Classification

3.1. Meta Video Dataset (MetaVD)
As introduced in Section 1, MetaVD annotates related

actions across six major HAR datasets [5]. The follow-
ing three types of relations are defined from the linguistic
perspective on the text labels of action classes:

equal Action labels A and B have the same mean-
ing; e.g., “drink” and “drinking,” and “smile” and
“laugh.”

similar Action labels A and B have similar meanings;
e.g., “stroking animal” and “grooming dog/horse.”

is-a Action label A is a subordinate concept of ac-
tion label B; e.g., “smoking hookah” and “smoking.”
Note that label A (hyponym) in this example corre-
sponds to to_action_name in MetaVD, and label B
(hypernym) corresponds to from_action_name.

The number of unique action classes in MetaVD, i.e., the
union of sets of action classes in the six HAR datasets,
is 1,309. There are 56,015 unique pairs of action classes
across different datasets. Of these pairs, 320, 1,470, and
1,010 are labeled as equal, similar, and is-a, respec-
tively. The remaining 565,214 are implicitly deemed un-
related.

As described in Section 1, MetaVD can be used for
dataset augmentation to improve the accuracy of HAR
in wider domains. However, currently, only the datasets
within MetaVD can take advantage of this benefit. To
allow datasets outside of MetaVD to benefit as well, we
address two new tasks presented in the next subsection.

3.2. Two New Tasks Towards Automatic Relation Annota-
tion

To augment an external dataset with MetaVD, the rela-
tionship must be identified between actions in the dataset
and MetaVD. To address this need, we consider two ma-
chine learning tasks, which we refer to as action class re-
lation detection and action class relation classification.
Fig. 1 illustrates these tasks. Action class relation de-
tection is the task of predicting whether or not a pair
of actions is related, i.e., has any of equal, similar,
and is-a in the original MetaVD relation types. Ac-
tion class relation classification aims to predict which re-
lation type holds for a pair of actions that are known to
be related. It is a task of multi-class classification into
four relation types: equal, similar, subclass-of, and
superclass-of. Here, the original is-a relation defined
in [5] is split into subclass-of and superclass-of,
because we want to tell which of the action pair is a sub-
ordinate to the other.

We divide the six datasets in MetaVD into the source
set that consists of five datasets, and the target set that
consists of the remaining one dataset. The intention is to
simulate a scenario in which the target set is the external
dataset that we want to augment, and the source set is the
internal datasets in (reduced) MetaVD. Thus, the goal is
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to predict the relation between the actions in the source
set and those in the target set.

We now give a formal definition of the tasks in this sim-
ulated setting. Each action i has a text label x(label)

i and a
collection x(video)

i of K videos. Let Csrc and Ctar be the
disjoint sets of actions that occur in the source and target
datasets, respectively. Denote the set of text labels for the
source set by D(label)

src = {x(label)
i | i ∈ Csrc} and its set of

video collections byD(video)
src = {x(video)

i | i ∈ Csrc}. The set
D

(label)
tar andD(video)

tar are defined likewise for the target set.

In both relation detection and classification, the models
receive a pair of action classes, but their output is differ-
ent.

In action class relation detection, the model must pre-
dict the presence or absence of a relationship between the
input pair of actions. To be precise, when a pair of ac-
tions i, j has any of the relations equal, similar, and
is-a in the sense of the original MetaVD relation types,
the desired output is y(det)

i j = 1 (positive), and y(det)
i j = 0

(negative) otherwise. Thus, the positive action pairs in the
source set is R(det) = {(i, j) | i, j ∈ Csrc, i , j, y(det)

i j = 1}. To

train a model, R(det) is divided into the training set R(det)
train

and the validation set R(det)
val such that R(det) = R

(det)
train∪R

(det)
val .

After training, the model is used to predict whether any
relationship exists between an action in the source set and
one in the target set, i.e., each of the action pairs in the
test set R(det)

test = {(i, j) | i ∈ Csrc, j ∈ Ctar}.

In the action class relation classification task, the model
must output one of the relation types among equal,
similar, subclass-of, and superclass-of. Specif-
ically, to train a model, we are given examples in the
source set, i.e., R(cls) = {(i, j, y(cls)

i j ) | i, j ∈ Csrc, i ,

j, y(det)
i j = 1}, where y(cls)

i j ∈ {0, 1}4 is the one-hot ground-
truth relation class vector. For example, when there is
a similar relation between actions i, j, we set y(cls)

i j =

[0, 1, 0, 0]⊤. Similarly to the relation detection task, the
set R(cls) is divided into the training set R(cls)

train and the
validation set R(cls)

val , and used for training a prediction
model. The trained model is applied to the test set given
by R(cls)

test = {(i, j) | i ∈ Csrc, j ∈ Ctar, y
(det)
i j = 1}.

4. A Unified Relation Prediction Model

4.1. Model Overview
We introduce a unified model for the two tasks de-

scribed in Section 3, namely, action class relation de-
tection and classification. An overview of the model is
shown in Fig. 2. The model receives as input either the
action label text x(label) or the video set x(video) for two ac-
tions i, j ∈ Csrc ∪ Ctar. We denote the input in modality
m ∈ {label, video} for action i by x(m)

i . The inputs x(m)
i and

x(m)
j are fed into the encoder module f (m)

Θ
of modality m to

obtain embedding vectors h(m)
i , h

(m)
j ∈ R

demb as follows:

h(m)
i = f (m)

Θ

(
x(m)

i

)
, h(m)

j = f (m)
Θ

(
x(m)

j

)
, (1)

where Θ is a set of parameters for the encoder modules
of both modalities. Then, to eliminate a bias in the input
order of the actions, the embedding vectors are concate-
nated in two ways by swapping their order as follows:

c(m)
i j = concat

(
h(m)

i , h
(m)
j

)
, c(m)

ji = concat
(
h(m)

j , h
(m)
i

)
,

(2)
where concat(·, ·) concatenates two input vectors. Next,
c(m)

i j and c(m)
ji are fed into the detection head g(det)

Φ
or

the classification head g(cls)
Φ

, depending on the task to be
solved, where Φ is a set of parameters included in the
heads. We formalize the detection head as a probabilis-
tic binary classifier, that is,

g(det)
Φ

(
c(m)

i j , c
(m)
ji

)
= σ(det)

(
µ(m,det)

(
c(m)

i j

)
+ µ(m,det)

(
c(m)

ji

))
,

(3)
where µ(m,det)(·) is a function that maps the input into a
scalar value, which is, for example, defined as a multi-
layer perceptron (MLP) and a linear function, and σdet(·)
is the sigmoid function.

The classification head is formalized as a four-class
probabilistic classifier, that is,

g(cls)
Φ

(
c(m)

i j , c
(m)
ji

)
= σ(cls)

(
µ(m,cls)

(
c(m)

i j

)
+ π
(
µ(m,cls)

(
c(m)

ji

)))
,

(4)
where µ(m,cls)(·) is a function that maps the input into
a four-dimensional vector, σ(cls)(·) is the softmax func-
tion, and π(·) is a permutation function that exchanges
only the dimensions corresponding to subclass-of and
superclass-of. This serves to eliminate the effect of
the input order of the actions. Finally, through the head,
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Figure 2: Overview of our unified relation prediction model.

Figure 3: Architectures of the label encoder (top) and the video set en-
coder (bottom).

the model outputs a prediction of the relation between ac-
tions i, j for modality m in task t ∈ {det, cls}, denoted by
ỹ(m,t)

i j . In particular, the prediction of the detection task

is ỹ(m,det)
i j ∈ [0, 1], while that of the classification task is

ỹ(m,cls)
i j ∈ [0, 1]4 such that the sum of ỹ(m,cls)

i j is equal to
one.

4.2. Label and Video Set Encoders

The critical parts of the model are the label encoder and
the video set encoder shown in Fig. 3. The label encoder
f (label)
Θ

(·) is a deep neural network that outputs the em-
bedding vector h(label)

∈ Rdemb from the action label text
x(label). It first obtains a text representation vector by ap-
plying a text backbone network to the input action label
text. It then transforms the hidden vector using an MLP
and outputs the embedding vector h(label). The video set
encoder f (video)

Θ
(·) is a deep neural network that outputs the

embedding vector h(video)
∈ Rdemb from a set of K videos

x(video). First, the K videos in x(video) are individually fed

into a video backbone network, and K corresponding hid-
den vectors are obtained. After the K hidden vectors are
individually transformed by an MLP, they are aggregated
into a single embedding vector using a pooling module
Λp described in Section 4.3.

As the text and video backbone networks, we can
choose state-of-the-art pre-trained models for texts and
videos, respectively. An example of the text backbone
network is Bidirectional Encoder Representations from
Transformers (BERT) [20], which is a masked language
model, while an example of the video backbone network
is the SlowFast network for video recognition [21].

4.3. Pooling Modules

In the video set encoder, the pooling module Λp is used
to aggregate K hidden vectors into a single vector, where
p is the name of the pooling module. The pooling mod-
ule must satisfy the permutation invariant property [22],
so that the prediction over the video set encoder does not
depend on the input order of the videos in x(video). In ad-
dition, it is desirable that the number of hidden vectors K
can change dynamically between training, validation, and
test phases to cope with computational limitations and a
lack of datasets. In our study, we consider three types of
pooling modules that satisfy the above properties.

Suppose that we are given a set of K vectors {ek}
K
k=1,

where ek is a demb-dimensional real-valued vector. The
first and second pooling modules are max pooling Λmax(·)
and mean pooling Λmean(·), which output the maximum
value and the mean value for each dimension over the
set of vectors, respectively. The third one is attention-
based pooling, which calculates the weighted sum of
the input vectors, where the weight for the kth vector,
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ak ∈ [0, 1], is determined based on a self-attention mecha-
nism. This was originally proposed for multiple-instance
learning [23]. Specifically, it is formalized as

Λatt

(
{ek}

K
k=1

)
=

K∑
k=1

akek, ak =
exp
(
Utanh(Ve⊤k )

)
∑K

k′=1 exp
(
Utanh(Ve⊤k′ )

) ,
(5)

where U ∈ R1×datt and V ∈ Rdatt×demb are parameters to
estimate, and tanh(·) is the hyperbolic tangent function. It
is expected that the more critical the vectors, the larger the
weight.

4.4. Training

In training, we try to find optimal parameters Θ and Φ
by minimizing a task-specific loss. For the detection task,
we use a cross-entropy loss that consists of a term for pos-
itive samples and a term for negative samples. The term
for positive samples, i.e., pairs of actions with a positive
relation, is calculated as follows:

E
R

(det)
train

[
− log ỹ(m,det)

i j

]
= −

1∣∣∣∣R(det)
train

∣∣∣∣
∑

(i, j)∈R(det)
train

log ỹ(m,det)
i j . (6)

Alternatively, the term for negative samples, i.e., pairs of
unrelated actions, is calculated as follows:

E
U

(det)
train

[
− log(1 − ỹ(m,det)

i j )
]

= − 1∣∣∣∣U(det)
train

∣∣∣∣
∑

(i, j)∈U(det)
train

log
(
1 − ỹ(m,det)

i j

)
, (7)

whereU(det)
train = {(i, j) | i, j ∈ Csrc, (i, j) < R(det)

train} is the pairs
of unrelated actions. In total, the loss for the detection
task is calculated as

L(det)(D(m)
src ,R

(det)
train ;Θ,Φ) (8)

= E
R

(det)
train

[
− log ỹ(m,det)

i j

]
+ E

U
(det)
train

[
− log(1 − ỹ(m,det)

i j )
]
.

Note that the size ofU(det)
train is significantly greater than the

size of R(det)
train , and is close to |Csrc|

2. Therefore, using all
the samples inU(det)

train to compute the loss is computation-
ally expensive. In practice, we approximate the loss (7)
by drawing nneg samples fromU(det)

train uniformly at random,
where nneg is the number of negative samples to be deter-
mined in advance.

For the classification task, we use the cross-entropy loss
between ground-truth relation label y(m,cls)

i j and the pre-

dicted one ỹ(m,cls)
i j for actions i, j in modality m, which is

defined as follows:

L(cls)(D(m)
src ,R

(cls)
train;Θ,Φ) (9)

= −
1∣∣∣∣R(cls)
train

∣∣∣∣
∑

(i, j,y(m,cls)
i j )∈R(cls)

train

4∑
l=1

y(m,cls)
i jℓ log ỹ(m,cls)

i jℓ ,

where y(m,cls)
i jℓ and ỹ(m,cls)

i jℓ indicate the values of the ℓth ele-

ments of y(m,cls)
i j and ỹ(m,cls)

i j , respectively.
Minimizing each loss is performed by a stochastic gra-

dient descent (SGD)-based optimization method. We de-
scribe the detailed implementation for training in Sec-
tion 5.2.

4.5. Blending Predictions from Action Label and Video
Set

Thus far, we have considered the model that takes only
one modality as input, either action label texts or a set
of videos. We now use both modalities simultaneously
to make more accurate predictions. A simple but effective
approach in this context is blending, which combines mul-
tiple predictions from different models [24]. The blending
approach is a two-step process. First, we train a model
for each of the two modalities individually, as described
in Section 4.4. Then, we obtain the predictions in each
modality on a validation set, and combine the predictions
of the two modalities based on a logistic regression as fol-
lows:

ỹ(blend,t)
i j = σ(t)

(
B(t)concat

(
ỹ(label,t)

i j , ỹ(video,t)
i j

)
+ b(t)

)
,

(10)
where, B(t) is a blending parameter matrix such as B(det) ∈

R1×2 and B(cls) ∈ R4×2·4, and b(t) is a bias parameter such
as b(det)

∈ R and b(cls)
∈ R4. The parameters are trained

on the validation set using the losses defined in (8) and (9)
withD(m)

val and R(t)
val instead ofD(m)

train and R(t)
train.

5. Experiments

We conduct experiments to answer the three questions
posed in Section 1 for the two tasks.
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Table 1: Evaluation scores of action class relation detection on each target dataset. ‘Label-only’ and ‘Video-only’ denote our models that receive
action labels and videos as input, respectively. ‘Blending’ denotes the blending approach described in Section 4.5, and ‘Random’ denotes the
random guess approach. The bold typeface indicates the highest score on each target dataset.

UCF101 HMDB51 ActivityNet STAIR Actions Charades Kinetics-700

F1 AP F1 AP F1 AP F1 AP F1 AP F1 AP

Label-only 0.650 0.711 0.587 0.530 0.628 0.635 0.595 0.558 0.406 0.293 0.578 0.570
Video-only 0.513 0.442 0.260 0.178 0.266 0.173 0.385 0.331 0.121 0.044 0.364 0.319

Blending 0.684 0.746 0.593 0.515 0.637 0.640 0.597 0.588 0.393 0.288 0.558 0.541
Random 0.013 0.006 0.013 0.006 0.012 0.006 0.012 0.006 0.004 0.002 0.009 0.005

Table 2: Accuracy of action class relation classification on each target
dataset. The notation in this table is the same as Table 1.

UCF
101

HMDB
51

Activity
Net

STAIR
Actions Charades

Kinetics
-700

Label-only 0.785 0.481 0.781 0.688 0.573 0.733
Video-only 0.715 0.367 0.591 0.560 0.373 0.621

Blending 0.794 0.398 0.690 0.686 0.598 0.738
Random 0.522 0.114 0.463 0.341 0.313 0.388

5.1. Evaluation Setting

To evaluate the performance of the proposed model, we
split the six datasets in MetaVD into five source datasets
and one target dataset, train our model described in Sec-
tion 4 on the source datasets, and evaluate the perfor-
mance in terms of the relation detection and classification
between the source datasets and the target datasets. To
investigate the performance changes due to the change in
the target dataset, we create six variations of source and
target datasets to assign each of the six datasets to the tar-
get dataset.

We evaluate our model for the detection task with F1
and average precision (AP) scores, which are commonly
used in information retrieval [25]. For the classification
task, we evaluate the model with a standard accuracy
score. Higher F1, AP and accuracy scores are better.

5.2. Implementation Details

For the text backbone network, we use Sentence
Transformers [26] with a publicly available pre-trained
model called all-mpnet-base-v2, which outputs a 768-
dimensional continuous embedding vector for a text. The
texts of the action labels are written in different writ-
ing styles, such as PascalCase, e.g., “BabyCrawling,” and
snake_case, e.g., “Getting_a_haircut.” To get a good rep-
resentation of the action labels, we convert the texts into

normal phrases, such as “baby crawling” and “getting a
haircut” before applying the text backbone network.

For the video backbone network, we use a pre-trained
ResNet-101 SlowFast model [21] trained on Kinetics-
400. By extracting the output of the penultimate layer
of the ResNet-101 SlowFast model, we obtain a 2,304-
dimensional continuous embedding vector. Before apply-
ing the video set encoder, we extract a 32-frame video
clip at a sampling rate of two by clipping the temporal
middle of the video. We transform the RGB values of
each video clip into continuous values from 0 to 1, and
then, we standardize the values with a mean of 0.45 and
a standard deviation of 0.225. We then resize the clip so
that the size of its short side is 256. In the training phase,
we apply spatially random cropping to 256×256 and hor-
izontally random flipping to the clip. In the validation and
test phases, we only center crop the clip to 256×256. The
video set that is input to the video set encoder is selected
uniformly and randomly from all the videos associated
with an action. The size of the set, K, is 10 for training
and validation, and 30 for testing.

In both encoders, the MLP has multiple hidden lay-
ers and an output layer with batch normalization and
ReLU activation, with all layers having demb units in com-
mon. Therefore, the outputs of both encoders, h(label) and
h(video), are demb-dimensional vectors. In our experiments,
we consistently set demb to 768. In the detection and clas-
sification heads, we use linear functions as µ(m,t)(·) for
modality m and task t1.

In training, we optimize the parameters Θ and Φ by
minimizing a task-specific loss. To approximate the

1In our preliminary experiment, we tried to use MLPs as µ(m,t)(·), but
the performance did not improve.
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Figure 4: Accuracy comparison among pooling modules in action class
relation classification. The accuracy of each pooling module is calcu-
lated by averaging test accuracies over different hyperparameters, and
the error bar indicates the standard deviation.

loss (7), we set the number of negative samples nneg to
five times the number of positive samples R(det)

train . We use
an Adam optimizer with an initial learning rate of 5e-4
and a batch size of 64. After five epochs, we change the
learning rate to 5e-5. We terminate learning at 20 epochs.
Note that we retain the original pre-trained parameters of
the text and video backbone networks owing to the effi-
ciency of the training.

The hyperparameters are the choice of the pooling
modules described in Section 4.3 and the number of hid-
den layers in the MLP, which ranges from one to four.
We choose the optimal hyperparameters that minimize the
loss in the validation set.

5.3. Results

Tables 1 and 2 show the evaluation scores in action
class relation detection and classification on each target
dataset, respectively. To illustrate the difficulty of the
tasks, we also show in these tables the scores of the ran-
dom guess approach, which randomly predicts relation la-
bels by following the label prior distribution in the train-
ing set.

The first question is: Can we build practical models
for relation prediction using existing pre-trained neural
network models for CV and natural language processing
(NLP)? Compared to the random guess approach, all our

approaches are much better at both detection and classi-
fication. The results indicate that the label and video set
encoders can extract useful features from the action label
texts and videos.

The second question is: Which modality of language
and vision is better suited to predict the relations? We
found that the label-only approach is consistently better
than the video-only approach. We can hypothesize two
reasons for this result. The first reason is that the relation
label annotations in MetaVD were made from a linguistic
perspective of the action label texts, rather than by view-
ing videos associated with the actions. The second rea-
son is that the feature extraction is more difficult with the
video set encoder than with the label encoder, as we will
explain in Section 6.

The third question is: Can we improve prediction per-
formance by using both modalities simultaneously rather
than using only one? We found that the blending ap-
proach performs better than the label-only and video-only
approaches in some cases, but becomes worse than the
label-only approach in others. The blending approach op-
timizes its own parameters on a validation set constructed
from the source datasets. Therefore, when the distribu-
tion of the validation set differs from that of the test set
constructed from the target dataset, the blending approach
would result in low scores.

Finally, in Fig. 4 we show the accuracy of each pooling
module for action class relation classification. We found
that the pooling module that achieves the highest accu-
racy varies depending on the target datasets. Furthermore,
we found that the attention pooling tends to be unstable
compared to the mean and max pooling because although
it outperformed the others on ActivityNet and Kinetics-
700, it proved to be the worst accuracy on the other target
datasets. This result suggests that, although it is difficult
to choose the best pooling module before training, from
the perspective of stability, we should choose either the
mean pooling or the max pooling.

5.4. Choice of Backbone Networks

In Section 5.3, we have shown the experiment results
using Sentence Transformer with all-mpnet-base-v2
and ResNet-101 SlowFast as text and video backbone net-
works, respectively. In this subsection, we investigate
how the predictive performances of the proposed model
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change when different types of backbone networks are
used.

Table 3 shows the predictive performances of the label-
only and video-only approaches when different text and
video backbone networks are used. As text backbone
networks, we additionally use Sentence Transformer of
sentence-t5-base [27] and LaBSE [28] models. The
three text backbone networks have different network ar-
chitectures and are trained with different datasets. We
found that all-mpnet-base-v2 outperforms the others
except in the classification accuracy for UCF-101. This
result is identical to the benchmark results obtained by as-
sessing the performances of various text embedding meth-
ods over 56 benchmark datasets [29]. As video backbone
networks, we additionally use X3D-XS [30] and I3D [31]
trained on Kinetics-400. We found that the predictive per-
formances are better for ResNet-101 SlowFast, I3D, and
X3D-XS in that order. The order is also identical to that
of the predictive accuracy on the Kinetics-400 validation
set2. These results suggest that employing the models
with higher benchmark scores as text and video backbone
networks leads to better performances in action class re-
lation detection and classification.

5.5. Analysis of Prediction Errors

We investigated the action class pairs that the proposed
model incorrectly predicted. We found four major error
types shown in Table 4. Error type (A) is caused by the
miss-annotation of MetaVD. This indicates that the pro-
posed model can find the miss-annotation of MetaVD,
resulting in fixing the miss-annotation efficiently. Er-
ror type (B) contains action class pairs that can be in-
terpreted as both related and unrelated. This error may
be caused by the inconsistent annotations of similar re-
lations in MetaVD. Error type (C) contains action class
pairs that the model incorrectly judged unrelated even
though their labels are similar. This error can be solved
by exploiting string similarity between the action label
texts. Error type (D) includes difficult cases to predict
only from action label texts. This error can be improved
by the blending approach. Indeed, the blending approach
produced the predicted probabilities of 0.261 and 0.137

2https://pytorchvideo.readthedocs.io/en/latest/
model_zoo.html

Table 3: The predictive performances with different text and video back-
bone networks, with (a) UCF101 and (b) Kinetics-700 as target datasets.
The bold typeface indicates the highest score on each evaluation mea-
sure for label-only and video-only models, respectively.

(a) UCF101 Detection Classification

Backbone F1 AP Accuracy

Label-
only

all-mpnet-base-v2 0.650 0.711 0.785
sentence-t5-base 0.622 0.662 0.801

LaBSE 0.601 0.650 0.780

Video-
only

ResNet-101 SlowFast 0.513 0.442 0.715
I3D 0.404 0.311 0.598

X3D-XS 0.234 0.117 0.543

(b) Kinetics-700 Detection Classification

Backbone F1 AP Accuracy

Label-
only

all-mpnet-base-v2 0.578 0.570 0.733
sentence-t5-base 0.472 0.431 0.677

LaBSE 0.489 0.481 0.719

Video-
only

ResNet-101 SlowFast 0.364 0.319 0.621
I3D 0.324 0.240 0.598

X3D-XS 0.074 0.027 0.543

for the pair “Typing” and “using_computer” and the pair
“walk” and “BandMarching”, respectively, which are sig-
nificantly higher than the predicted probabilities produced
by the label-only approach.

6. Discussion

We have confirmed that our model achieves high per-
formance in predicting relations in many cases. How-
ever, in the experiments, the following three difficulties
were encountered, which should be addressed to further
improve performance.

The first problem is the class prior shift between the
source and target datasets, which occurs in the clas-
sification task and leads to a degradation of accuracy
on the target dataset. For example, when the tar-
get dataset is Kinetics-700, its class prior distribution
is [0.107, 0.605, 0.143, 0.143], while that of the source
datasets is [0.129, 0.336, 0.267, 0.267]. This problem can
be mitigated by introducing prior shift adaptation [32].
Along with the class prior shift, the domain shift, in which
the distributions of inputs differ between the source and
target datasets, can also occur because the target dataset,
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Table 4: Four types of errors made by the label-only relation detection model. Examples of types (A) and (B) are unrelated action class pairs,
whereas those for (C) and (D) are related according to the MetaVD annotations.

Error
type Action class in source dataset Action class in target dataset Related?

Predicted
prob.

(A) Wakeboarding (Kinetics-700) Surfing (UCF101) No 0.998
sewing (STAIR Actions) Knitting (UCF101) No 0.998

(B) longboarding (Kinetics-700) SkateBoarding (UCF101) No 0.995
scuba_diving (Kinetics-700) SkyDiving (UCF101) No 0.992

(C) Using_parallel_bars (ActivityNet) ParallelBars (UCF101) Yes < 0.001
making_pizza (Kinetics-700) PizzaTossing (UCF101) Yes < 0.001

(D) using_computer (STAIR Actions) Typing (UCF101) Yes 0.008
walk (HMDB51) BandMarching (UCF101) Yes 0.002

i.e., the external dataset to be augmented with MetaVD,
is freely constructed by users. For this problem, unsuper-
vised domain adaptation techniques [33] can be effective.

The second problem is to extract good features from
the videos that represent an action. Although the videos
in ActivityNet and Charades are relatively long, we used
video clips of approximately 2 seconds by extracting the
temporal middle of the videos according to the specifi-
cation of the video backbone network we used. It is ex-
pected that by extracting the features from longer video
clips, we can use richer information about the action for
the predictions. For the same reason, it is also important
to increase the size of the video sets, K.

The third problem is to improve the prediction per-
formance by multi-modal fusion, i.e., learning a model
with both action labels and videos as input in an end-
to-end manner. In our preliminary experiment, we have
attempted an intermediate fusion strategy [34]. However,
its performance was worse than that of the label-only ap-
proach. The result seems to be due to the negative effects
of the difficulties mentioned above. Therefore, we believe
that the performances can be improved by developing a
multi-modal fusion model that is robust to these problems.

Through the error analysis in Section 5.5, we found that
inconsistent annotations in MetaVD for the similar re-
lations worsen the predictive performance of our relation
prediction models. As stated in Section 1, we aim at ex-
ploiting our relation prediction models to augment users’
own datasets using MetaVD. For this aim, we should con-
sider treating similar relations as “unrelated” to avoid
noisy dataset augmentation.

7. Conclusion

To augment an HAR dataset with MetaVD, the rela-
tionship between actions in the dataset and MetaVD needs
to be inferred. We introduced a model that exploits two
modalities, action label texts and video sets, to predict
the relationship. With simulated experiments using one
of the datasets in MetaVD as an imitated external dataset
and inferring action relationship with the other datasets
in MetaVD, we confirmed that: 1) the recent pre-trained
neural networks in NLP and CV are effective; 2) the ac-
tion label texts are more useful for predicting relations
than the video sets; and 3) a blending approach that com-
bines the predictions from both the modalities is superior
to using only one of the modalities in some cases.

In our experiment, the result was evaluated by the ac-
curacy of relation prediction, but the final goal is to train
an HAR model on a real external dataset augmented by
MetaVD with the relation prediction model. In future
work, we will investigate the performance of the HAR
model and how it is affected by the relation prediction ac-
curacy.
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