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Abstract

Finding a configuration of a distributed system satisfying performance goals is a complex search problem that involves many
design parameters, like hardware selection, job distribution and process configuration. Performance models are a powerful
tool to analyze potential system configurations, however, their evaluation is expensive, such that only a limited number of
possible configurations can be evaluated. In this paper we present a systematic method to find a satisfactory configuration
with feasible effort, based on a two-step approach. First, performing a queuing network analysis a hardware configuration is
determined and then a software configuration is incrementally optimized by simulating Layered Queuing Network models.
We applied this method to the design of performant EDI converter systems in the financial domain, where increasing message
volumes need to be handled due to the growing importance of B2B interaction.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Electronic data interchange is an important aspect in the implementation of business processes. The
exchange of data between heterogeneous systems requires support for different data formats (EDIFACT,
XML, etc.). Enterprises use different proprietary in-house formats. So the incoming and outgoing mes-
sages must be converted from the inbound format to the in-house format, as well as from the in-house
format to the outbound format. The volume of data each enterprise delivers and receives will grow rapidly
in the next years. This leads to growing demands on the performance of EDI converter systems.

This was the motivation to investigate within the POEM (Parallel Processing of Voluminous EDI-
FACT Documents) project the question of how performant parallel converter systems can be built, based
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on the typical infrastructures currently available in large enterprises, such as shared memory process-
ing architectures (SMP). Also distributed architectures involving different machine types have been
considered.

A critical step in the implementation of a distributed system, such as a performant parallel message
converter system, is to identify a hardware and software configuration for it, given performance require-
ments and system constraints derived from the business requirements. For this problem we could not
identify any existing systematic approach.

Though at a first glance it appears that this problem can be tackled using standard search or constraint
problem solving techniques once the problem has been modeled, we have to take account of the fact
that there exists a combinatorial search space of possible configurations and obtaining information on
the performance of specific configurations for bounding the search space is extremely expensive. Eval-
uating the performance of a system configuration during search can in principle be performed in two
ways:

(1) Testing the real system: this is (economically) expensive and can be done only in very limited ways.
Selected measurements of single system components in order to obtain basic information for building
realistic models of composite systems are feasible.

(2) Evaluating a system model: Based on information obtained from system measurements of compo-
nents, performance models for composite system configurations can be built. The analytical solution
of such models is usually only possible for relatively simple and homogeneous models. In general, we
have to rely on the simulation of performance models as soon as we model real systems at some level
of detail. Simulations of performance models on the other hand are computationally intensive. This is
not problematic in the case of modeling and analyzing a single existing system, which is the standard
application of performance models. However, when exploring a space of possible configurations the
use of simulations needs to be strictly limited.

Thus, given the limited possibilities of testing system configurations the straightforward application
of standard search or constraint problem solving techniques would be prohibitively expensive. Also the
behavior of system configurations is in many cases highly non-linear, i.e. small changes in the configura-
tions can imply large changes in performance. Information obtained from testing specific configurations
does not in all cases easily extrapolate to similar configurations.

For predicting the system performance we use a performance model based onLayered Queuing Network
(LQN) simulation. Such a model allows predicting the performance of one specific system configuration.
Simulating all possible configurations would be prohibitively expensive, considering their large number
and the high cost of a single LQN simulation. For example, the configuration of a system such as
described inSection 5.3would require about 107 simulations to test all possible configurations. Also
applying branch-and-bound techniques would still require approximately 100 simulations.

We focus on exploiting existing knowledge on the problem structure in order to reduce the search space.
The remaining search problems can then be solved applying straightforward optimization methods and
reduce the effort for performance evaluation. For example, in case of the system fromSection 5.3we
would require only 5–10 simulations.

In this paper we give a complete overview of the solution we developed for configuration of a dis-
tributed system for parallel processing of different job classes on a heterogeneous, distributed architecture
with given throughput and response time goals. The solution matches the requirements set out before.
It consists of
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(1) A method to search suitable configurations that minimizes the use of expensive methods for perfor-
mance evaluation to the largest degree. The critical design parameters are the selection of hardware,
the distribution of the different jobs to different hosts, and the configuration of processes on the hosts.
This method had been first presented in[1] and is refined in this paper.

(2) Software tools that have been developed in order to automate the application of our method to a given
configuration problem.

(3) An evaluation of the method based on a real-world application and system, namely of EDI converters.
Since our method comprises a strong heuristic component we consider this evaluation as particularly
important in order to reassure that the method we propose produces useful and relevant results in
practice.

With respect to the search of a configuration (1) we pursue the following strategy:

(1) Hardware configuration: We approximate single host performance by a coarse model that requires few
key parameters which are relatively inexpensive to obtain from single host testing. This approximate
model can be solved analytically. Based on it we perform hardware selection and determine the
workload distribution for the selected host configuration, such that the required performance can be
achieved according to the model.

(2) Software configuration: Based on the workload distribution and hardware configuration determined
in hardware configuration an LQN model of the complete system is built. It is used to determine a
software configuration that actually achieves the performance that has been predicted in the hard-
ware configuration. Since simulations of the complete model are rather expensive, we use a greedy
heuristic, which tries to minimize the number of simulations required for finding the optimal software
configuration.

Our heuristic approach to system design does not necessarily result in “the” optimal configuration.
However, since the business requirements (such as expected message load) are only approximate, we
need to find a reasonable configuration that covers the processing requirements approximately at ac-
ceptable cost. The configuration method avoids obvious design flaws, like gross over- or undersiz-
ing of the system or bottlenecks. Business requirements, like available hardware or hardware cost,
often influence the decisions on the hardware configuration substantially and can be taken into
account.

A software tool to apply the proposed method has been implemented in Java. It integrates tools for
symbolic computation (Mathematica[2]) and an LQN solver[3]. The implementation allows us to auto-
matically determine a complete configuration based on the problem specification.

For evaluation we configured a real message converter system applying our method and conducted
performance measurements of the real systems. These tests confirmed that our method finds a hard-
ware configuration that matches business requirements and a software configuration that is optimal for
the given hardware configuration. Thus we confirmed the utility of our approach. The system tests also
provided interesting insights on the role of scheduling for the system performance. In particular, we
could show that our modified bin-stretching approach[4], which uses processing time estimation and
was used in the implementation, produced the best results. A sensitivity analysis was performed in or-
der to determine the dependency of system performance on deviations from the expected workload.
This analysis shows that variations in the message distribution often have only slight impact on the
system performance, thus accurate workload prediction by users are not required to provide adequate
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performance under changing workload. In summary, these evaluations confirmed that our method pro-
vides a useful tool in order to efficiently and accurately determine system configurations matching business
requirements.

1.1. Related work

A large body of related work exists in the area of performance prediction and capacity planning for
parallel and distributed systems. The prediction methods can classified into stochastic models and deter-
ministic models. Stochastic models take into account the variance of execution times. But as shown in
[5] stochastic models have never been evaluated with respect to their accuracy when modeling real-world
applications because they require complex solution techniques. In deterministic models the variance
of the execution time is assumed to be negligible. In[5,6] the authors show the practical usability of
deterministic models. Some prediction methods require a special architectural environment, e.g. predic-
tions in the NOW computing model[7] are based on program execution graphs. Most of the methods
are using queuing networks. In[5,8,9] queuing networks are used to model parallel or distributed sys-
tems and communication networks. Also database systems have been evaluated in[10] using queuing
networks.

Fontenot describes the general problem of software congestion[11]. He points out that software
bottlenecks could be avoided by using multiple parallel software instances. But no method has been
given for determining the necessary number of software instances to achieve a specific performance
goal.

Capacity planning is another area, where performance predictions of distributed systems are made.
In [9] the authors developed a method for capacity planning of client–server systems by investigating
several workload parameters and applying them to a queuing network model of the system. A similar
approach is used in[12,13]to predict the performance of a large-scale data-intensive information system.
If the configuration does not meet the performance goals the authors propose a manual refinement of the
system.

In [14] the authors propose an LQNS-based automated method to optimize the response time of a
pre-configured system. The optimization is performed by adapting the task priorities, the task allocations
to processors and the splitting of task.

To summarize, most of the existing work is focusing on predicting or evaluating the performance of a
given, specific system. Devising an automatic method using performance models in order to search for
a hardware and software configuration of a system within given constraints such that performance goals
regarding throughput and response time are achieved is to our knowledge new.

1.2. Overview of the paper

In Section 2we provide an overview of our approach including application background and system
architecture. InSection 3we give background on LQN models and describe the LQN model that has been
built for our message converter application.Section 4introduces our configuration method. InSection
5 we describe its application to our business case. InSection 6we present the results from our real
system measurements, which we performed to verify the validity of our method. FinallySection 7gives
a conclusion and an outlook on possible continuations of our work.
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Fig. 1. Sequential processing of messages.

2. Overview of the approach

2.1. Application background: message processing

In the banking sector large EDI messages containing transaction information need to be converted
from an inbound format to formats of in-house systems while keeping strict deadlines. The processing of
messages requires a sequence of different steps that are applied to each message, as shown inFig. 1.

The ‘Input Pre-Processor’ regularly checks for the arrival of new messages. Afterwards it analyzes the
messages regarding the syntax format (e.g. EDIFACT[15]), message structure and size. The information
about message structure and size is used for the distribution of messages among the available hosts
performing the conversion. The ‘Converter’ task transforms the message to an intermediate format,
which is finally converted to the target format by the ‘Packer’ task. From requirements analysis we
obtain information on the expected message volumes, the message size distribution and the requirements
on response time. Qualitative requirements are scalability, availability, and constraints on the type of
available hardware.

2.2. System architecture

To satisfy requirements on availability, reliability, scalability and high throughput, a parallel architecture
is used. The system can be built from different host types, allowing the use of existing hardware and the
incremental extension of the system with new hardware. The generic architecture of the system is shown
in Fig. 2. The global scheduler distributes incoming messages to the individual hosts. The distribution
strategy it uses will be based on the configuration determined by our system design method. The local
scheduler controls the execution of tasks and the distribution of the tasks to the processors on the different
hosts. The local scheduler is tightly coupled with the operating system. A more detailed description of
the architecture and the processing steps can be found in[16].

2.3. System configuration approach

In Fig. 3 we provide an overview of the system configuration process. In a first step the available
hardware is determined from the business constraints. For the available hardware, hardware measurements
are performed for obtaining basic performance data that can be fed into the subsequent configuration
process. Furthermore software constraints, e.g. the maximum number of process instances for a processing
step, are determined. These constraints are used in the software configuration step to avoid the selection
of unrealizable software configurations. Once the hardware and software properties are determined the
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processing goals in terms of throughput and response time for the different kind of tasks are specified.
The first main step in our method is then hardware configuration. A system configuration selecting from
the available hardware is determined, which has the capacity to achieve the processing goals. This step
is based on approximate, analytical performance models that abstract from the properties of specific
software configurations. They can be evaluated without using simulations.

Based on the selected hardware configuration a performance model based on Layered Queueing Net-
works (LQN) is constructed, that considers also the software’s process structure. Using simulations of
the performance model and modifying the model by a greedy search method an optimized process con-
figuration is identified, satisfying the processing goals achievable by the selected hardware configuration.
A final simulation of the complete system is then performed in order to verify that the processing goals
have been reached. This verification may fail when no software configuration can be found that satisfies
the performance predicted in the hardware configuration step.

In such a case a new iteration of the hardware configuration step is performed. Other hardware con-
figurations may be identified since hardware configuration is performed in a non-deterministic manner
taking into account business requirements, such as available hardware and hardware cost. If no suitable
hardware configuration can be found it is possible to adapt the processing goals. If this also does not
result in a suitable configuration, as a last resort, alternative hardware needs to be considered. In general
adaptations of processing goals and available hardware can be expected to occur rather rarely since on
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the one hand the processing goals and hardware selection are mostly business-driven decisions, on the
other hand the system designers have at least a very rough understanding of the necessary hardware
performance required to satisfy the processing goals. Finding within those constraints a solution making
optimal use of resources is where we provide support through our configuration method.

2.4. Using exhaustive search

An alternative to our system configuration method would be to use exhaustive search. This requires to
model each possible hardware and software configuration, determine the throughput and response time
values for each model by simulation and select finally the best configuration. For a system as described
in Section 5.3with two hosts, two different host types, three processing steps and up to four instances per
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processing step, the total number of possible models would be 12 288. Their simulation requires more
than 30 h using the existing simulation tools.

However, in addition determining each of the models is non-trivial in itself. For the system model it
is necessary to know the average message distribution among the hosts, which depends in turn on the
configuration of software and hardware. The message distribution among the hosts can only be determined
by an additional simulation of the scheduling or load balancing mechanism, which considers the software
configuration. A naive distribution scheme, e.g. proportional to the host processing capacities, will lead
to inaccurate results.

In our method the result of the hardware configuration step provides on optimized distribution of the
messages among the hosts. Hence an additional scheduling simulation is not necessary as long as the
scheduler used in the system guarantees the determined distribution.

3. Performance modeling

Response time and throughput are key factors for defining the quality of a system[17]. Hence to achieve
the performance requirements it is necessary to understand the effect of various configuration decisions at
an early stage. As the systems are normally not available during the design phase, a model is required to
analyze the system behavior. Such a model must be able to represent different types of tasks and resources
with synchronous and asynchronous execution of tasks. Also the simulation of the distribution of tasks
among several processor and hosts must be possible.

A common approach to performance modeling is based on Queuing Networks (QN)[18–20]. The
standard model of queuing networks is restricted to the modeling of hardware servers.

The queueing network model was extended by Woodside et al.[21,22] with Stochastic Rendezvous
Networks (SRVN) to model both hardware and software servers. SRVNs differ from the classical QNs
in two ways. First, each node in the model can act both as client and as server. Second, servers in SRVNs
can have two (or more) phases of execution. The first phase models the blocking of a client by a server
during a request (rendezvous). Subsequent execution phases of the server occur after the server replies to
the request; the client and server can then execute in parallel.

Several approaches exist for solving the model. The exact method by translating the model via Petri
Nets into Markov Chains can be used for small models. For large models the state explosion makes this
solution impractical for most real systems[7,23]. Other approaches approximate the solution by adapting
theMean Value Analysis(MVA) of Queuing Networks to SRVNs[23]. TheMethod of Layersintroduced
by Riola[24] divides the complete model into several submodels (layers), which are solved by the MVA.
The model in the method of layers differs from the SRVN in that it distinguishes between software and
hardware servers. Woodside et al. combined the SRVN and the method of layers toLayered Queuing
Networks[17]. Further enhancements and generalizations can be found in[8].

3.1. Layered queuing networks

The LQN model consists of several components. The core of LQN models consists of directed acyclic
graphs whose nodes are tasks with service entries. A task processes calls to its entries in FIFO order using
a waiting queue. It consists of one or more processors. This technique is also known as single respectively
multiple servers. Hence the number of entries executed in parallel depends on the number of assigned
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processors. We distinguish three types requests, respectively arcs, in the model:

• synchronous requestswith a reply.
• asynchronous requestswithout a reply.
• forwarded requests: The reply to a synchronous request is directed to another server, not back to the

client (with some probabilityP). This can nest to any level.

The execution of entries is divided into twophases. The first phase is the service phase. Within this
phase the calling client is blocked till the first phase of the server is terminated. The second phase is
executed in parallel to the client. Several calling conventions, like RPC or ADA rendezvous, can be
modeled with the concept of execution phases.

3.2. Transformation rules

3.2.1. Transformation of cycles
Cycles occur in software systems frequently, e.g. a controlling process calls asynchronously a subpro-

cess. This subprocess notifies the control process by calling it again. Hence this forms a simple cycle.
Cycles cannot be directly modeled within an LQN. A cyclic relation in a system can be transformed to
an acyclic model by the use of semaphores. In[25] the following transformation rule has been derived to
transform a system model with cycles and open arrivals into a valid LQN model.

A taskA participating in a cyclic relation is split into three tasksA in, A outandExec. Hence the entry
of taskA is distributed among tasksA in resp.A outwith zero service time for their entries. The service
time of the entry ofA is moved to taskExec. TaskA in entryA in calls taskB. TaskB calls taskA out.
The entriesA in andA out have to make requests to taskExecin order to execute on the CPU. This is
depicted inFig. 4.

3.2.2. Transformation of open arrivals
Two types of Queueing Networks are distinguished: closed networks and open networks. Closed net-

works are used for determining an equilibrium state of the network model. Closed networks do not have
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a specific arrival rate at the starting point of the network, which can be determined from outside, but
consider the highest possible arrival rate of the network. Open networks process an arrival rate parameter,
for investigating the behavior of the model while the system load is increased. Because we are interested
in determining maximum throughput, we only need closed network models. Hence in[25] the following
rule is given to transform an open network to a closed network.

In networks with open arrivals a node receives messages from outside at a rateλ. Any LQN model
with open arrivals can be turned into a closed model by replacing the open arrival with a “fixed” number
of pure clients with low service times. This transformation ensures a saturation of the system without
overflowing the task queues[25]. In addition, asynchronous calls have to be substituted by forwarding
calls. The forwarding call assures that a new job is accepted only when the system has free capacities.
The synchronous and forwarding calls are not affected by this transformation. This is depicted inFig. 5.

3.3. Modeling of a converter system

Within the LQN model of the converter system a process instance is modeled as a task. Multiple
instances of a process are modeled by using multiple processors for a task. The processors of a task
within the LQN model are not used to model the system CPU or other resources because a task uses
several resources and has different execution demands on each resource. Hence resources like CPU, file
I/O and DB are also modeled as tasks.

The construction of the LQN model is based on the data flow within the system.Fig. 6shows the data
flow within the converter system. The system has an open arrival I/O element; therefore the model is an
open network model. The model also contains cyclic asynchronous connections, e.g. between the local
scheduler and the unpacker. Thus, the model has to be transformed by the rules described inSection
3.2. The resulting model for the reference host with one message type is depicted inFig. 7. To build the
complete model for two message types with different processing characteristics all processing steps have
to be duplicated. The model does not include cycles and has been transformed into a closed network model.
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3.4. Simulation tools

As already mentioned several approaches exist for solving an LQN model.
LQN’s can be solved using analytic methods or simulation. The analytic method is impractical for most

real systems due to the state explosion after translating them into Petri Nets or Markov Chains[7,23].
Simulation of LQN models gave accurate results (order of 10–30% compared to live system), but are
nevertheless computationally expensive.

The ‘TimeBench’ tool[3] helps to construct and simulate LQN models and to generate code for
different target environments. The LQNS tool (Layered Queuing Network Solver)[3] is used for solving
LQN models but it includes a ‘Multi Point Solver’ (MultiSRVN) for examining the effect of parameter
variations. Hence it can be used to analyze different system configurations or for sensitivity analysis. All
solvers are able to use different methods for solving LQN models, e.g. ‘Mean Value Analysis’[23] or
‘Method of Layers’[24]. The LQNS tool is used for our simulations inSection 5.

Even if the solvers compute approximate solutions, the cost of simulations can vary substantially. The
simulation of a single host can be done within a few minutes. The simulation of a complete model with e.g.
only three hosts as presented in[10] required already approximately 40 h. So it is necessary to minimize
the number of simulation runs. For that reason we have developed a new system design method.

3.5. Model parameters

The model parameters we rely on are the service times of each entry within a task. In the model
described inSection 3.3the service time represents the total time a processing step makes use of some
resource during its execution. In order to determine the parameters we were using timestamps that were
integrated into the program code of the real system. These measurements have been performed for each
message and host type.

3.6. Evaluation of the LQN model

We have compared the performance predicted by the LQN model with the behavior of the real system.
That is discussed in more detail inSection 5. We conducted the analysis by comparing response times at
different arrival rates and determining system saturation, i.e. the highest arrival rate at which the response
time does not increase. It turned out that the performance model is sufficiently precise and the deviations
are within the range of measurement precision.

4. System design method

The goal of our system design method is to configure the software and hardware of a distributed sys-
tem, such as a message converter system, in a systematic and efficient way. The problem is a complex
optimization problem with many design dimensions. Expensive system simulations have to reduced to
a minimum. A direct and naive application of standard search methods such as branch-and-bound[26],
simulated annealing[27] or genetic algorithms[28] forbids itself. For example the direct application
of a branch-and-bound search for a very simple case, such as the one we will study inSection 5.2,
would require approximately 100 simulations, whereas we can reduce these with our method to about



T. Risse et al. / Performance Evaluation 58 (2004) 43–80 55

5–10. In addition, the simulation times are not uniformly distributed. With our strategy we specifically
avoid very expensive simulation runs. This reduces the simulation time needed by orders of magni-
tudes, e.g. from days to minutes. We accomplish this by exploiting knowledge on the problem struc-
ture and using heuristics to reduce the size of the search space. In particular we partition the search
problem into several subproblems which can be solved separately, some of them completely analyt-
ically. For each of the subproblems different search methods can be applied. Our main focus is on
the problem decomposition, whereas the application of refined search methods leaves room for further
development.

4.1. Goal parameters

The goal parameters are derived from the business requirements. They need to be satisfied by the
selected system configuration. Specifically they are:

Expected message distribution: The messages are clustered into classes with similar processing char-
acteristics. In the following we assume that the processing of messages is only sensitive to the message
size. Thus the message distribution can be given as a setMT such that form ∈ MT we have (sm, fm),
wheresm is the average size of the message in bytes andfm is the frequency of messages of typem
measured, e.g., in terms of messages/hour. Hence the required throughput, measured in messages/hour,
is T m

req = fm, m ∈ MT.
Hardware constraints: The hardware configuration is a multi-setH with elements from the set of

possible host typesHT. Certain machine configurations can be excluded in response to business re-
quirements. For example, we will use a minimal minh and maximal maxh number of hosts that are
allowed (minh ≤ |H | ≤ maxh). Or, certain hosts have to occur in the configuration (e.g. existing
hardware).

Expected response timeRm
req: The response time is the sum of waiting time and processing time. The

expected maximal response time is specified for each message typem ∈ MT.

4.2. Overall approach

The configuration method is based on the LQN model that has been introduced inSection 3, and which
is based on model parameters that are derived from the real system. In order to limit the number of
simulations of the complete converter system during the system configuration process, we proceed as
follows.

From the simulations of the LQN models we created for each combination of host typeh ∈ HT
and message typem ∈ MT, we determine approximate values for the minimal response time and the
maximal throughput. We determine minimal response time by running a simulation with an extremely
low utilization and maximal response time by a simulation with extremely high utilization. These values
can be obtained efficiently as only single hosts are simulated. We use these two values to compute two
approximate response-time-throughput models for the behavior of each host for each message type.
These models provide lower and upper bounds which we then interpolate. Based on this interpolated
response-time-throughput model we select the hardware configuration and obtain a distribution of the
workload on the different hosts. Using this hardware configuration we then iteratively modify and simulate
the software configuration on the hosts until we achieve the response-time-throughput behavior that has
been predicted by using the response-time-throughput model.
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4.3. Response-time-throughput model

The purpose of the response-time-throughput model is to estimate the system response time for a single
message type without complex simulations. As this cannot be done exactly, a lower and upper bound of
the response time is established in a first step. These bounds are based on measurements at low and high
system utilizations. Afterwards an approximation function of the response time will be derived from the
lower and upper bounds. We will use this function as our response-time-throughput model.

Our system model consists of single server service centers as well as multiple server service centers.
A multiple server service center consists of a single message queue and several processors, which can
process as many messages in parallel as processors are available. Furthermore we assume a random arrival
of messages with an exponentially distributed density, which is a Poisson distribution. The correctness of
this assumption has been verified by analyzing the arrivals at a real bank. We also assume an exponential
distribution of the response time at each node, with an increasing rate of processing requests. For the
model description we use the following notations from[19,20]:

C Set of all tasks
S Set of all single server tasks withS ⊆ C

M Set of all multiple server tasks withM ⊆ C

Rk(t) Residence time of taskk ∈ C with throughputt
Uk(t) Utilization of taskk ∈ C with throughputt
Dk Service time of taskk ∈ C

Dmax Service time of the slowest task withDk ≤ Dmax for k ∈ C

Tk Throughput of taskk ∈ C

Ak(t) Average number of messages in queue of taskk ∈ M

Furthermore we will make use of the following fundamental law regarding the utilization of a service
center withs ≥ 1 processors:

U = D · T

s
. (1)

The throughput of a service center withs ≥ 1 processors satisfiesT ≤ s/D. In the saturation state of a
service center the throughputTmax is (see[20])

Tmax = s

D
. (2)

Complex systems consist of several service centers with different properties. They cannot be modeled
by one node as otherwise the estimations differ a lot from the real system. From[20] it is known that
the system response timeR(t) of a complex system is calculated as the sum of the residence times at all
service centers:

R(t) =
∑
k∈C

Rk(t). (3)

The residence timeRk(t) is the total time spent by a request at service centerk on average. For a single
service center the residence time is given in[19,20]as
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Rk(t) = Dk

1 − Uk(t)
= Dk

1 − Dk · t
. (4)

The calculation of the residence time for a multiple server service center has to distinguish between the
queueing and non-queueing state. Hence if more processors are available than jobs (Ak = 0), then the
residence time is equal to its service time. Otherwise (Ak > 0) the jobs have to be queued. The residence
time for a multiple server service center has been approximated in[29] as

Rk(t) = Dk · (1 + Ak(t))

min(1 + Ak(t) · s)
. (5)

The average number of messages in a queue is equal to the time averaged queue length[20]:

Ak(t) = t · Rk(t). (6)

So (5) can be transformed to

Rk(t) =




Dk, 1 + t · Rk(t) < s,

Dk

s − t · Dk

, 1 + t · Rk(t) ≥ s.
(7)

In the first case the number of processors is larger than the number of messages. Hence no queueing
occurs. In the second case the residence time increases because arriving messages are queued.

4.3.1. Derivation of an upper bound for response time
For deriving the upper bound we use the response time of the system at low utilizationR0 ≈ R(0) and

the maximal throughputTmax. R0 we obtain by simulating the system with throughputT ≈ 0. Tmax we
obtain by simulating the a saturated system and measuring the throughput. At high utilization we know
that there exists a service center withsmax processors andDmax service time such that

Tmax = smax

Dmax
(8)

and for all other service centersk we have
Dk

sk

≤ Dmax

smax
. (9)

Distinguishing the different types of service centers we obtain from (3) and (7) for the response time

R(t) =
∑
k∈S

Dk

1 − t · Dk

+
∑

k∈M∧1+t·Dk≥sk

Dk

sk − t · Dk

+
∑

k∈M∧1+t·Dk<sk

Dk. (10)

Using (8) and (9) we obtain

R(t) ≤ 1

1 − t · Dmax/smax

∑
k∈S

Dk + 1

sk

1

1 − t · Dmax/smax

∑
k∈M∧1+t·Dk≥sk

Dk

= 1

1 − t/Tmax

∑
k∈S

Dk + 1

sk

1

1 − t/Tmax

∑
k∈M∧1+t·Dk≥sk

Dk +
∑

k∈M∧1+t·Dk<sk

Dk

≤ 1

1 − t/Tmax

∑
k∈C

Dk ≤ 1

1 − t/Tmax
R0 = Rup(t).
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This bound has the property that for

t → 0 : Rup(t) → R(t). (11)

4.3.2. Derivation of a lower bound for response time
For deriving the lower bound we base our estimation on the measurement ofTmax by simulating the

system at utilizationU ≈ 1 and assume again there exists a service center with maximal throughput using
smax processors and having service timeDmax as determined byEq. (8). For the case this service center
is a single processor center we have

R(t) ≥ Dmax

1 − t · Dmax
= 1

Tmax
· 1

1 − t/Tmax
. (12)

For the case this is a multiple processor center witht such that 1+ t · Dmax ≥ smax we have

R(t) ≥ Dmax

smax − t · Dmax
= 1

Tmax
· 1

1 − t/Tmax
. (13)

For the case this is a multiple processor center witht such that 1+ t · Dmax < smax we have

R(t) ≥ Dmax = smax

Tmax
. (14)

The condition 1+ t · Dmax < smax can be transformed to

t <
smax − 1

smax
Tmax. (15)

And thus we get (for an unknown valuesmax)

Rlow(t) =




smax

Tmax
if t <

smax − 1

smax
Tmax,

1

Tmax
· 1

1 − t/Tmax
= R̃low(t) otherwise.

(16)

This bound has the property that for

t → Tmax : Rlow(t) → ∞. (17)

4.3.3. Derivation of an approximation function
It can be seen from (11) thatRup(t) converges to the measured valueR0 for low throughput values

resp. utilization. Vice versa, from (17) we see thatRlow(t) converges to∞ as t → Tmax just asR(t)
does. Thus the actual response time is a function that starts at low utilization with values close toRup(t)
and arrives for high utilization at values close toRlow(t). SinceRup(t) andRlow(t) differ considerably, we
propose to approximateR(t) by linearly interpolating the two bounds by a functionRapprox(t) that matches
Rup(t) at low utilization andRlow(t) at high utilization:

Rapprox(t) ≈ t

Tmax
· R̃low(t) +

(
1 − t

Tmax

)
· Rup(t) = R0 + t

T 2
max

· 1

1 − t/Tmax
. (18)

By this constructionRapprox(t) has the property thatRapprox(t) → R(t), both fort → 0 andt → Tmax, and
R̃low(t) ≤ Rapprox(t) ≤ Rup(t). UsingRlow(t) instead ofRlow(t) can be justified as for small values oft,
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Rup(t) is dominating inRapprox(t). As a result we can eliminate the unknown quantitysmax. However, we
have to check that the propertyRlow(t) ≤ Rapprox(t) still holds (which would have been trivial if we used
Rlow(t) in the definition ofRapprox(t)). This can be easily verified:

R0 + t

T 2
max

· 1

1 − t/Tmax
≥ smax

Tmax
= Dmax, (19)

sinceR0 ≥ Dmax.
Fig. 8shows the functionsRup(t), R̃low(t) andRapprox(t). It can be seen that the approximation function

Rapprox(t) starts atRup(t) but converges with higher throughput values toR̃low(t). Furthermore the maximum
service time as defined in (2), which is always lower thanRapprox(t) is shown. This is obvious as the response
time always includes additionally the queuing time of the service center.

4.4. Configuration algorithm

4.4.1. Configuration of a single host
For each host of typeh ∈ H and for each message typem ∈ MT that is processed on this host we

have to determine the desired throughput and response time values. First we measure for each message
type the values ofR0 andTmax separately. Thus we obtain the approximation functionRapprox for the
response-time function. Then the throughputTh,m corresponding to the required response timeRm

req is
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determined as

Rapprox(T
h,m) = Rm

req. (20)

Usually a hosth will not devote its whole capacity to a single message typem, but only a fractionph,m.
The sum of these values cannot exceed the total processing capacity of the host, thus for a hosth

∑
m∈MT

ph,m ≤ 1. (21)

4.4.2. Configuration of a distributed system
Now we give an algorithm that determines a host configurationHs that satisfies the response time and

throughput goals for all message types. The response time goals are already taken into account by the
choice of the valuesTh,m. Thus in the configuration algorithm we have to select the hosts, such that they
provide for each message typem the necessary throughput.

The proposed algorithm is related to the well known bin-packing problem[30,31]. In our case we have
to distribute items (=message classes) among a minimum number of bins (=hosts). Both, the capacity
of hosts (=size of bins) and the number of hosts are variable. The variable bin packing algorithm as
proposed in[32–34]is handling different bin sizes, but the size is fixed after the selection of the bin. The
extensible bin-packing algorithm, which allows a stretching of the bin[35,36] is not applicable as the
maximum number of bins is fixed. Another difference to standard bin-packing approaches is the necessity
to preempt message classes as the capacity of a single host is often too small. Preemption is often used for
scheduling algorithms[37,38], but the goal of these algorithms is to distribute items among a fixed set of
resources. Our algorithm is based on aFirst Fit bin packingapproach with regular recomputation of the
host capacities and preemption of the items. The capacity for processing message typem is determined as

capacity(m) =
∑
h∈H

T h,m · ph,m ≥ T m
req. (22)

The algorithm is given as follows:

Hs=∅
For allm∈ MT

Distribute the workload form on hosts with free capacity such that∑
m∈MT ph,m < 1 and recomputecapacity(m)

While capacity(m) < T m
req

Add a hostha to Hs that can satisfy the response time requirement
Setph,m = min(1, (T m

req − capacity(m))/T ha,m)

Recomputecapacity(m)

Hs holds the host configuration and is returned as a result.ph,m provides a message distribution that
guarantees the throughput and response time goals according to the approximate model of the system
behavior. The resulting distribution can be unbalanced since the host selected in the last step can have a
very low load.
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4.4.3. Balancing the load distribution
In a final step we adapt the distributionsph,m and assign spare capacitiesp

h,m
free such that hosts of the

same type are assigned the same capacities and spare capacities are evenly distributed among the different
message types. Thus for all hostsh1 andh2 and messagesm ∈ MT.

ph1,m = ph2,m and p
h2,m
free if type(h1) = type(h2). (23)

We distribute the spare capacities such that the relative increase in throughputincrease

increase=
∑
h∈H

p
h,m
free, for all m ∈ MT (24)

is equal for all message types and maximized. This leads to a linear optimization problem with the
additional constraints∑

h∈H

ph,m + p
h,m
free ≤ 1, for eachh ∈ H, (25)

capacity(m) ≥ T m
req, for eachm ∈ MT (26)

and optimization of the value ofincrease. An alternative approach would be to optimize the response
time by decreasing the throughput requirements. However, this requires the simultaneous optimization
of the distribution and throughput values and thus would lead to a non-linear optimization problem.

4.4.4. Handling of constraints on software configuration
In order to determine the response-time-throughput model it is necessary to determine the maximum

throughput of the system at full utilization. In principle, maximum throughput could be obtained from real
system measurements. However, in a real system there exist constraints on the software configuration.
For example, only one converter instance can be executed on a host. The measurement of such a system
will indicate saturation, without having the resources of the system, e.g. CPUs, fully utilized. Thus a
software bottleneck exists[11,39]. For correct configuration it is necessary to obtain system throughput
with saturated resources. Hence, the software constraints have to be eliminated, which is only possible
by simulation of the LQN model.

4.5. Software configuration

In the software configuration phase the number of process instances that are executed at each host in
parallel for each task is determined. This step pursues two goals.

The first goal is to avoid suboptimal configurations, where both the response time and the throughput
do not achieve the values predicted byRapprox(t). This can occur when a process instance is busy while
hardware resources are still available. Asaturatedsoftware instance is not necessarily executing on a
processor. It may be waiting for the processor, other hardware devices or for the response of another
software instance. Hence such a software instance can be thebottleneckof the system if it acts as a server
for other software components. If the load is increased beyond the saturation point, no additional useful
work is performed[11].

To avoid software bottlenecks the number of process instances executed at each host in parallel
must be increased. This strategy increases the throughput but also the response time because more in-
stances share the same resources. Thus, the second goal is to match for each host and message type the
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Fig. 9. Throughput and response time for all configurations.

response-time-throughput behavior that has been predicted during the hardware configuration as pre-
cisely as possible. For software configuration, the message load distribution on the hosts, that have been
determined during hardware configuration, are incorporated into the LQN model. In this way a complete,
distributed converter system is modeled.

A simple, but costly, approach to find a system configuration is exhaustive search by simulating all
possible software configurations. Though this approach is not practical, for illustration purposes we con-
ducted such an analysis once. The result is shown inFig. 9. The resulting values for throughput and
response time are ordered by throughput. A step corresponds to an increase of the number of software
instances at a bottleneck. One can observe the tradeoff between the throughput increase and the corre-
sponding response time increase. It is interesting to note that there exist, in the sense of Pareto optimality,
suboptimal configurations.

4.6. A software configuration algorithm

A complete search through all possible configurations is not practical if many systems have to be
configured since simulations are too time-consuming. Hence a more efficient approach is required, in
order to reduce the number of simulations substantially. The proposed method is an improved version of
the algorithm presented in[1].
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We start with a minimal software configuration and increase the number of processing instances of
saturated components until the performance goals are achieved. This still would require many simulations
of the complete model. Since hosts of the same type have the same workloadph,m for each messagem(see
also constraint (23) inSection 4.4) hosts of the same type must have the same software configuration.
Thus we configure each host type first individually, and then simulate the complete model to check
whether the performance goals have been reached. The benefit of this approach, as compared to[1], is
that predominantly single hosts are simulated and the number of simulations of the complete model is
strongly reduced.

The throughput goalsT m
req and response time goalsRm

req are the same as for hardware configuration.
The throughput goal for a single hosth ∈ H and a messagem ∈ MT is thenT m

req · ph,m. The number of
instances of a processing stepp on hosth ∈ H is denoted asSh,p. The algorithm works as follows:

For all host typesh ∈ H

Set allSh,p to 1 and simulate the model
While not (capacity(m) ≥ T h,m

req · ph,m andRk,m < Rm
req) andSh,p < Smax

Increase eachSh,p that has a higher utilization
than a certain threshold by one.
Update the model description according toSh,p

and simulate the model.
Apply the configuration to all hosts ofH belonging
to the same host type.

Simulate the complete model

The algorithm may not succeed. In such a case the different design parameters need to be reviewed, as
discussed inSection 2.3.

4.7. Implementation

In our configuration method we employ different algorithms, including queuing network simulation
and linear optimization. We implemented the hardware and software configuration algorithms in Java,
integrating Mathematica[2] and the LQNS solver[3].

The software consists of two components for hardware and software configuration, which are controlled
by theConfiguration Workflow Manager. Thus software configuration can be done independently of the
hardware configuration, e.g. in order to reconfigure an existing system if the message distribution is
changing.

The architecture including the major data flows is shown inFig. 10. The whole configuration process
is controlled by theConfiguration Workflow Manager. Its task is to start and monitor the different con-
figuration steps and validate the input files. Monitoring is important since external applications are used
that might terminate without notice or turn non-responsive. The process monitoring component is also
regularly producing a status file which can be viewed using a WWW browser.

The configuration program uses three XML based parameter files: Hard- and software parameters with
configurations goals, an LQN model template and the program configuration. The hard- and software
parameters and configuration goals are those described inSection 4.1. The LQN model template file
contains an LQN model of a single machine formulated in XML syntax. This template is used later
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to generate a complete model of the system. Finally the program configuration contains some general
information for the program execution like the working directory, log file location or stylesheets.

An example of part of a parameter configuration file is given inFig. 11. In this example a message of
type ‘small’ is specified by providing the throughput and response time goals (elements<throughput
goal> and<response time goal>). The hardware parameters are given in the<hardware
parameters> elements and specify for each host type and message type the maximum throughput and
minimum response time. The<host> element is used to provide descriptive names for the hosts.

The first step of the configuration workflow is theHardware Configuration. When executing this step
a linear optimization problem has to be solved (Section 4.4). We use Mathematica[2] as our solver and
generate Mathematica code automatically. The result of this step is an XML file providing the hardware
configuration. This file is one of three input files to the software configuration step. The others contain
the optimization goals and model parameters and the LQN template of a single host. In the LQN model
instantiation step this information is used to automatically instantiate an LQN model of the whole system.
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Fig. 11. XML hardware configuration file.

For solving the LQN model the LQN simulator described in[3] is used. If after this step the goals are
not reached a new iteration with an updated LQN model will be started (s.a.Section 4.5) till a complete
hardware and software configuration is determined.

All intermediary and final results are written to XML files, which can be transformed by using XSLT to
any other format. So it is possible to use the results in other programs, e.g. Microsoft Excel, for analysis
or for system internal configuration files. A transformation of the result files to HTML for configuration
status tracking is also part of the implementation.

5. Application of the configuration method

In this section we study in detail the design of two sample message converter systems as described
in Section 2. The first example illustrates our configuration method for a complex system setting. The
second example will be used for comparison with a less complex real system that was available for the
measurements and will be presented inSection 5.3.

Both systems are based on the same basic hardware components for which system performance mea-
surements have been performed. We consider a simplified message model consisting of two types of
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Table 1
LQN model calibration test results

Task Resource Processing times (s) (large case) Processing times (s) (small case)

Bluenun Concorde Bluenun Concorde

IPP CPU 2.69 2.67 1.85 1.84
File 0.10 0.08 0.11 0.09
Sum 2.79 2.75 1.69 1.92

Converter CPU 272.82 270.36 1.40 1.39
DB 85.82 104.79 0.46 0.56
File 14.56 11.61 0.29 0.23
Sum 373.19 386.76 2.15 2.18

Packer CPU 27.81 27.56 0.23 0.22
DB 154.81 189.03 0.82 1.00
File 14.99 11.95 0.09 0.07
Sum 197.60 228.55 1.14 1.30

Total 573.59 618.05 5.25 5.40

messages: very large and small messages. This is a scenario that is, though simple, fairly realistic for
banking applications, where either messages for low-volume transactions, e.g. daily money transfers of
a company, or messages for aggregate transactions, e.g. salary transfers for all employees of a company,
are occurring. For setting the performance goals we assume that the percentage of very large messages is
small, namely 5% of the total number of messages, and the percentage of small messages is large, namely
95% of the total number of messages. A small message consists of 50 financial transactions, while a large
message consists of 10 000 financial transactions. In addition it is assumed, that the customer requires a
minimum of two machines for ensuring availability. Two different machine types are available for setting
up the configuration.

5.1. System model

In order to construct the LQN model we need to determine the performance parameters for all system
components. The hardware consisted of two types of machines, two non-equivalent IBM F50 workstations,
one with four processors (Type 1, called Bluenun) and one with two processors (Type 2, called Concorde).
The relevant hardware components are the CPU, the file system and the database. The relevant software
components are the Input Pre-Processor (IPP), the Converter and the Packer. The parameters are obtained
by measuring the real system. Each combination of host and message type is measured separately. The
results of the measurements are shown inTable 1.

5.2. Example 1

This example is the complex system setting for which we demonstrate the results of the configuration
method without comparison to a real-world implementation. In this example the customer expects a
throughput of 1 million transactions per hour, independent of message type. The response time should be
on average 720 s for a large message and 8 s for a small message.
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Table 2
Hardware parameters

Host type Response time at low utilization (s) Maximum throughput (messages/s)

Small message Large message Small message Large message

Type 1 5.2508 573.6731 1.1721 0.0085
Type 2 5.4018 618.1078 0.5900 0.0067

Table 3
Performance requirements

Small message Large message

Throughput 0.4819 (messages/s)= 1735 (messages/h) 0.0254 (messages/s)= 91 (messages/h)
Response time (s) 8 720

5.2.1. Hardware configuration
As a first step, as described inSection 4.2the response time for each message type at low system

utilization and the maximum system throughput are obtained for both host types. The results are inTable
2.

The throughput goal of 1 million transactions per hour, with a distribution of 95% small and 5%
large messages, is translated into message-based throughput goals as shown inTable 3. Based on these
parameters the first phase of the hardware configuration algorithm leads to an unbalanced distribution of
the workloads.Table 4shows the required hosts, their type, and the workload generated by each message
type on each host.

We see that 7 out of 8 hosts are fully utilized. These hosts are only processing large messages. Only
host 8 is processing small messages and has spare capacity. In the next step the workloads are balanced.
The result of this step is shown inTable 5. The balancing step assigns to all slow hosts (Type 1) some
spare capacity of about 15%. Also the message distribution on hosts of the same type is now uniform.

5.2.2. Software configuration
For software configuration we have to build an LQN model for each host type, as well as for the

complete system based on the hardware configuration from the previous step. For that purpose we have
to specify the calling probabilities for each task (pre-processor, converter, packer) for each message
type. The calling probabilities are derived from the workload distribution on the hosts determined in the

Table 4
Unbalanced workload results

Number of hosts Host type Workload per message type

Small (%) Large (%)

Hosts 1–3 3 Type 1 0 100
Hosts 4–7 4 Type 2 0 100
Host 8 1 Type 1 53.88 9.46
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Table 5
Balanced workload results

Number of hosts Host type Workload per message type Throughput (messages/s)

Small (%) Large (%) Small Large

Hosts 1–4 4 Type 1 13.47 85.69 0.1347 0.00402
Hosts 5–8 4 Type 2 0 85.59 0 0.00232
Sum 0.5388 0.02536

hardware configuration. The resulting calling probabilities, which correspond to the message distribution
among the hosts, are shown inFig. 12. The graph corresponds to the processing model fromFig. 6.
The ‘Input Scanner’ has to process 5% large and 95% small messages. The results are collected by the
global scheduler, which distributes them to specific hosts according to the throughput values determined
in the hardware configuration. For example, host 1 has to process 24.54% of all messages. This number is
determined as the quotient of the total throughput of host 1 and the total system throughput. Furthermore
3.23% of the assigned messages are large, which is the quotient of the throughput of large messages on
host 1 and the total throughput of host 1. Hence 96.77% of the assigned messages are small. The calling
probabilities for the other host are calculated accordingly.

There exist two software constraints, which influence the configuration result and the performance.
The first and more important constraint relates to the fact that the packer process, which collects the
results from the converter (seeSection 2.2), can only run once per host, since it collects the converter
results in a single file. The second constraint relates to the fact that the developers prefer to have a single
Input Pre-Processor (IPP) process in the system in order to avoid synchronization problems. The second
constraint will be only considered for the complete system configuration in the final step of the software
configuration process. When addressing the configuration of individual hosts, it is assumed that each host
has its own IPP process.

From the first configuration phase we obtain a single host configuration with two converter processes and
a single packer process on each host. Applying this configuration to the complete system, and additionally
taking into account the two software constraints previously mentioned, the simulation of the complete
system reveals that the single IPP process is the bottleneck. Therefore we simulated a system, where
one IPP process runs on each host. Unfortunately the simulation tool could not find a solution for that

Message stream IO Engine

Input Scanner large msg. 5,00% 95,00% small msg.

Global Scheduling GS

24,54% ... ... 0,46%

Local Scheduling LS LS

Converter/Packer 3,23% 96,77% 100,00% 0,00%
large msg. small msg. large msg. small msg.

Host 1 (4 Proc.) ... Host 8 (2 Proc.)

Fig. 12. Message distribution for example 1.
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Table 6
Resulting system configuration

Host type IPP Converter Packer

Hosts 1 and 2 Type 1 1 2 1
Hosts 3 and 4 Type 1 0 2 1
Hosts 5–8 Type 2 0 2 1

Table 7
Performance after the software configuration

Host Response time (s) Maximum throughput (messages/s) per host

Small message Large message Small message Large message

Hosts 1–4 10.33 578.67 0.10831 0.00362
Hosts 5–8 N/A 619.85 0 0.00209
Sum 0.43324 0.02284

case. The reason is that the algorithm of the LQNS solver does not converge in the rare case that two or
more servers of the model saturate at approximately the same rate. As mentioned in[40] further research
is necessary to identify the cause of this problem. As an alternative we simulated a system with two
IPP processes on two hosts. The simulation results for this system show, that the additional IPP process
increases the performance, but the new bottleneck is the packer process. Since having only one packer
process on each host is a hard system constraint the performance cannot be increased further.

The resulting system configuration is given inTable 6. The number of converters and packers are the
same on each host. Two hosts are configured to have an input scanner.Table 7gives an overview of the
system performance. Note that hosts 5–8 do not process small messages.

5.3. Example 2

In this example we describe the design of a real-world financial message converter system, as it was
developed in the POEM project. The throughput goal is 250 000 transactions per hour, as compared to
1 million transactions in the previous example. For this system setting we also performed a sensitivity
analysis, i.e. we determined to which degree the system tolerates deviations from the message distribution
assumed in the configuration process. The results of the performance analysis will be compared to real
system measurements inSection 6using the two IBM AIX machines that were available for the real system
tests. The test data was synthetically generated based on confidential statistical information provided by
the banks.

5.3.1. Hardware configuration
The hardware parameters are the same as inSection 5.2.1,Table 2. The throughput goal of 250 000 trans-

actions per hour with a distribution of 95% small and 5% large messages translates into the message-based
throughput goals inTable 8. The first phase of the hardware configuration algorithm results in the unbal-
anced distribution of the workloads inTable 9.

After load balancing the workload is distributed as shown inTable 10.
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Table 8
Performance requirements

Small message Large message

Throughput 0.12049 (messages/s)= 433 (messages/h) 0.00634 (messages/s)= 23 (messages/h)
Response time (s) 8 720

Table 9
Unbalanced workload results

Host type Workload per message type

Small (%) Large (%)

Host 1 Type 2 33.74 59.97
Host 2 Type 1 0 100

Table 10
Balanced workload results

Host type Workload per message type Throughput (messages/s)

Small (%) Large (%) Small Large

Host 1 Type 2 0 100 0 0.00272
Host 2 Type 1 13.47 79.91 0.1205 0.00362
Sum 0.1205 0.00634

5.3.2. Software configuration
The calling probabilities required for the LQN model are given inFig. 13.
The software constraints for the system are the same as in example 1. The software configuration gives

the system configuration inTable 11and the predicted performance is given inTable 12.
The results show that the packer process is, as in the previous example, the bottleneck of the system. As

only a single packer process can run on a host, it is fully utilized within this configuration. Hence a further

Message stream IO-Engine

Input Scanner large msg. 5,00% 95,00% small msg.

Global Scheduling GS

2,14% 97,86%

Local Scheduling LS LS

Converter/Packer 100,00% 0,00% 2,92% 97,08%
large msg. small msg. large msg. small msg.

Host 1 (2 Proc.)
Concorde

Host 2 (4 Proc.)
Bluenun

Fig. 13. Message distribution for example 2.
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Table 11
Resulting system configuration

IPP Converter Packer

Host 1 0 2 1
Host 2 1 3 1

Table 12
Performance after software configuration

Host Response time (s) Maximum throughput (messages/s)

Small message Large message Small message Large message

Host 1 N/A 658.41 0 0.00269
Host 2 10.36 578.71 0.11891 0.00358
Sum 0.11891 0.00627

increase of the number of process instances of the other components would result in lower response times,
but not in higher throughput values.

5.3.3. Sensitivity analysis of the model
An important factor for the system configuration is the assumed message distribution, i.e. 95% small

and 5% large messages. This distribution is not static in a real-world application and can vary over
time. Thus we analyzed the impact of variations in the message distribution on the configured system.
The fraction of small messages was varied from 0 to 100% and, correspondingly, the fraction of large
messages was decreased, in order to keep the total number of transactions constant. Note that increasing
the fraction of transactions processed in small messages while keeping the total number of transactions
constant, will increase the total workload. We were interested in analyzing of how this impacts the system
performance.

In the ideal case of a static message distribution, i.e. 95% small and 5% large messages, the global
scheduler could distribute the messages statically. For example, all small messages are then distributed to
host 1 (‘Concorde’). In order to handle variations in the message distribution, the real system implemen-
tation uses an online scheduling algorithm for message distribution. The scheduler decides at message
arrival on which host the message will be processed. We were using the modified bin-stretching schedul-
ing algorithm introduced in[4,16]. This algorithm optimizes the distribution without requiring knowledge
on future message arrivals. For conducting the sensitivity analysis using our LQN model we had thus to
include into the simulation an additional step for modeling the effects of the scheduling algorithm. In this
way it was possible to obtain realistic workloads for the hosts under changing message distributions.

The results of the simulation are summarized inFigs. 14 and 15.Fig. 14shows the sustainable throughput
for the individual hosts and the total throughput. The response times are shown inFig. 15. The figure uses
a logarithmic scale, because the response times for each message type are very different. FromFig. 14we
see that the throughput values change only slightly, except for the case with 100% small messages. In this
case the number of individual messages that need to be processed increases substantially as compared to
the number of transactions. Hence the processing overhead for each message increases on average, which
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Fig. 14. Performance of the system in processed transactions per hour.

results in a lower total throughput. The corresponding phenomenon can be observed for the response
times. The response times for the large messages stay at the same level for all cases on both hosts. The
response times for the small messages decrease as the number of small messages increases, since the
total load of the system decreases with the lower number of large messages. Hence the waiting times
are reduced. But due to the high processing overhead for the small messages and the low number of
converters and IPP processes the total throughput decreases for the case of 100% small messages. So
if in a real system the message distribution would change to 100% small messages a reconfiguration
of the system would be necessary. Such a reconfigured system would have two IPPs on each host. The
simulation results are also shown inFigs. 14 and 15with the label “100% (Reconf.)”. It can be seen that
the performance increase is still rather low. The reason is the constraint of having only a single packer
instance, which is the bottleneck of the system. For all other message distribution from 0 to 95% small
messages only slightly differences exist. Therefore no reconfiguration is needed there.

5.3.4. Discussion of results
The hardware configuration algorithm has found for example 2 a configuration of one fast host and one

slow host, that can satisfy the performance goals. The actual choice of hosts in the configuration algorithm
is done non-deterministically. We assume that it is usually strongly driven by business constraints. Policies
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for choosing among possible hardware configurations leave room for further optimizations and are feasible
to implement since the hardware configuration algorithm is very efficient.

For hardware configuration we neglected the fact that a global scheduler is required, that has to run
on one specific host. This leads to the slight inaccuracy of the performance determined for the fast host.
However, this does not critically influence the results, since the resource requirements are extremely low
for the global scheduler.

It can be seen that the business goals are not achieved accurately. The average response time for small
messages is 25% above the goal for small messages and the response time for large messages lies 19%
below the goal for large messages. The other values are extremely close to the goal values. As stated
in [20] up to 30% estimation error for the response time and 10% for the throughput are reasonable
expectations for the validation of queuing network models results on real systems. Hence we consider
this as an acceptable and good result, since also all of the assumptions on the system are approximations
of the reality and our goal was to find a reasonable configuration avoiding major flaws.

The sensitivity analysis shows that variations in the message distribution have only slight impact on
the performance of the system for our example application since large messages dominate. Hence for
variations in the message distributions, which occur in practice, most likely no reconfiguration will be
necessary. The only case where problems can occur was the case of 100% small messages. In this special
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case the processing overhead has a large impact on the performance of the system and a reconfiguration
would be necessary. But the software constraints, e.g. the limited number of packers, also limit the possible
software configurations. Hence only a slight performance increase was possible for that case.

6. Real system measurements

The predictions were tested using experimental measurements on the “Bluenun+ Concorde” system.
Tests were carried out to study the following aspects of the system:

• What are the loads on each of the system resources (CPU, Database and File System) represented in
the LQN model?

• Is the theoretically best software configuration (including scheduling algorithm and process configu-
ration) actually the best option?

• Where are the bottlenecks in the real experimental system?

The results of these tests are discussed in the following.

6.1. LQN model calibration

The LQN models were calibrated on a distributed workstation system using an instrumented version of
the POEM software. The distributed system consisted of the two non-equivalent IBM F50 workstations,
one with four processors (Bluenun) and one with two processors (Concorde).

Unfortunately, it was not possible to get direct measurements of the time spent in each process, because
the machines were multi-processor systems, so that much of the work was done in parallel. To solve this
problem, the software was also run on an old IBM SP2 system comprising single-processor RS/6000
nodes. By comparing the results between these different systems, it was possible to extract machine
independent measures of the work done by the POEM software using each primitive resource in each
process, and also the speed of that resource on each target machine. These were then combined to
get effective times spent using each resource for each of the three processes of the message converter
system. The results have been summarized inTable 1. These results were used as parameters for the LQN
performance models.

6.2. Scheduler and configuration tests

Experiments were conducted to check that the optimal software configuration predicted by the perfor-
mance models were actually the best. The software configuration includes both the scheduling method
to be used and the process configuration, i.e. the number of IPP and converter processes to be used. The
test results for 95% small and 5% large messages are summarized inTable 13.

The scheduling algorithms used are simple strategies like Round Robin, First Come First Serve (FCFS)
and a random distribution. Furthermore our modified bin-stretching approach[4] which uses processing
time estimation, is also included in the analyses. The initial results from these tests suggested that the
FCFS scheduler was the most efficient, which contradicted predictions that the bin-stretching method
would be better. However, the bin-stretching algorithm uses an estimate of the runtime of each job on
each machine, which is combined with load data to decide which machine should be used for that job.
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Table 13
Scheduler test results

Scheduler Number of converter Transactions per hour Speedup

Bluenun
(four CPUs)

Bluenun (four CPUs)+
Concorde (two CPUs)

N/A 3 173595 N/A 1.00
Round Robin 3 N/A 207707 1.20
First-come, first-served 3 N/A 242989 1.40
Bin-stretching 3 N/A 219700 1.27
Random 3 N/A 239020 1.38
Bin-stretching (modif. load estimates) 3 N/A 267972 1.54

Table 14
Software configuration test results

Bin-stretching scheduler Transactions per hour

Small messages (%) Number of converter Bluenun (four CPUs) Bluenun (four CPUs)+
Concorde (two CPUs)

0 3 193133 272315
50 3 192885 265891
95 3 173595 267972

100 3 57000 73813
0 4 – 252545

50 4 – 252503
95 4 – 225962

100 4 – 72254

The load estimates initially assumed that the four-CPU Bluenun would complete all jobs twice as quickly
as the two-CPU Concorde, but this was too crude because it failed to account for non-CPU loads. The
run-time estimates were then re-weighted to take account of the non-CPU loads and the bin-stretching
algorithm outperformed the other methods as predicted.

Next, tests were made using 3 or 4 converter processes:
The results inTable 14show that using three converters is optimal, as suggested by the LQN models.

This result is counter-intuitive, since the converter process is the most computationally intensive, and one
might expect that four such processes would have made better use of the four CPUs on Bluenun. This
result show that a naive adaption of the configuration does not deliver the best result.

6.3. Bottleneck analysis

Next, a simple analysis of system bottlenecks was made, using the results fromTable 1to calculate
saturation load conditions. This suggested that the main bottleneck for both Bluenun and Concorde was
database access time—with four or even two CPUs, the computational load was not the rate-determining
step. The LQN analysis suggests that this effect is most significant in the Packer process, due to the fact
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that the POEM system can only support a single Packer process on each machine, and so cannot overlap
other work with the database access time.

6.4. Discussion of experimental results

Overall, the experimental results support the main conclusions of the LQN analysis. The best soft-
ware configuration is to have only three converter processes, and the bottleneck is the single Packer
process on each machine. The overall throughput as measured is also generally consistent with the LQN
results—except for the case where we have 100% small messages, when the LQN model seems to
over-predict the throughput.

The experiments were conducted under saturation load conditions with excess input messages. This
condition was not covered directly in the LQN model, but represents an asymptotic limit of the LQN
model. Large messages are able to saturate the system individually, so we might expect the LQN model
to be more accurate when large messages are present, since the behavior then modeled does approach
saturation conditions for part of the time. When there are no large messages, the LQN model represents
a situation where the system is never saturated, so it is not surprising that the predictions are less good in
this situation.

The positive verification of the LQN model results belongs also to the sensitivity analysis. As known
from the sensitivity analysis inSection 5.3.3of the model only slight performance changes exists for all
message distributions except for exclusively processing small messages. This can also been seen from
the measurements of the real distributed system. Interestingly, for software configurations different from
the optimal one the performance depends more sensitively on the message distribution. In the 95% small
and 5% large message case the performance of the single Bluenun system as well as for the distributed
system with four converter instances is about 10% lower than with a high number of large messages. The
reason for this phenomenon for the distributed system is found in the scheduler, which tries to balance
the load of the hosts. To this end the scheduler predicts the processing time of a message. This prediction
seems to match best with the real processing time in case of an optimal system configuration. For other
configurations the predictions differ from the real processing time more widely. Hence the message
distribution is less optimal.

The POEM system is intended for use in businesses, where transactions received by a certain deadline
are processed by some later deadline. In practice, most customers tend to submit messages just before the
deadline for receipt of messages, and the system operates under saturation conditions until these messages
are cleared—hopefully before the deadline for processing. The measurements on the real systems show,
that, ideally, the LQN models should be extended to provide better estimates for processing small messages
for heavily loaded systems, as this will be of interest to operators of message converter systems.

7. Conclusion and outlook

This paper describes a method for the configuration of distributed systems that need to satisfy business-
driven performance requirements. Our method allows to dramatically reduce the time needed to find
configurations satisfying performance requirements. For example, it was possible to reduce the time
needed for configuration of specific problem from 30 h to within minutes, if compared to exhaustive
search. Though the method has been introduced in the context of distributed message converter systems
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we believe it is of more general applicability. The method is organized into a hardware and a software
configuration step. For each of both configuration steps algorithms have been developed. These are
based on queuing network models to predict the system performance. We have used the method to
configure a large distributed system in order to demonstrate the scalability of the method. For a smaller
system configuration we compared the predicted results with real system measurements. Furthermore a
sensitivity analysis has been done. The verification on the real system shows that the method could be
applied successfully to configure a distributed system to reach the maximum performance. Furthermore
the performance predictions of the method are confirmed, except for a special case where the workload
changes qualitatively (only small messages). So most likely for an optimal configured system a software
reconfiguration should not be necessary for most message distributions. Further investigations on the
effect of qualitative changes of workload are required. Progress on this question is also an economical
issue as experiments in this field are very expensive.

It is obvious—and also shown in the examples—that software constraints can hinder a system to attain
the maximum performance. The examples also indicate that an intuitively good configuration, e.g. running
four converter processes on a four processor machine, will not necessarily result in the best performance.
Hence a configuration method, like the proposed one, can help to select appropriate hardware and software
configurations to reach the performance goals.

Nevertheless there are several questions that need to be addressed in the future in order to further
develop and refine the method. We have not given any specific strategy of how new hosts are to be added.
Here, for example, cost considerations could guide the selection strategy. Alternative methods for load
balancing could be considered for optimizing the response time in case of abundant resources. However,
if the performance of a system should turn out to be insufficient, incremental changes to existing system
configuration can be naturally treated by the method. This could also lead to an automatic software
reconfiguration to dynamically react on changes of the message distribution.

The proposed system configuration method appears to be generic enough to be also applied to other
types of distributed systems. Thus investigating the wider applicability of our method is a subject for
further research.
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