Available online at www.sciencedirect.com

SCIENCE DIRECT?® pERFORMAN‘E
@ EVALUATION

58

ELSEVIER Performance Evaluation 59 (2005) 1-18

www.elsevier.com/locate/peva

Stochastic fluid models for cache clusters

Florence Clévend Philippe Nairf*, Keith W. Ros®

2INRIA, BP 93, 06902 Sophia Antipolis, France
b Polytechnic University, Six MetroTech Center, Brooklyn, NY 11201, USA

Received 2 May 2003; received in revised form 18 March 2004
Available online 28 August 2004

Abstract

Clusters of Web caches are extensively used by different types of organizations, including companies, universities, ISPs,
and CDNs. To model Web caches, we must account for two types of stochastic events: objects being pulled into/out of
the cache cluster at random times, and caches going up and down at random times. Detailed stochastic models of such
complex systems quickly become intractable. In this paper we propose a stochastic fluid model which captures the salient
characteristics of a cache cluster. The stochastic fluid model replaces the object arrivals to the cluster and departures (object
modification/expiration) with a fluid flow, but maintains the up/down dynamics of the original system. The model can be
applied to a variety of cluster routing policies, and provides a simple means to estimate the hit rate. We compare the results
of the stochastic fluid model with that of a simulation of the real system. We find the fluid model to not only be a close
approximation, but also to exhibit the key qualitative properties of the original system. We conclude that stochastic fluid
models show great potential in modeling a variety of content distribution systems.
© 2004 Elsevier B.V. All rights reserved.

Keywords:Web caching; Fluid models; Stochastic processes; Palm calculus

1. Introduction

Beginning with the seminal work of Anick et al. in 198P], stochastic fluid models have been suc-
cessfully applied to a variety of packet-switching systems over the past 20 years (e|@~4geln
these papers, detailed models of system behavior, which involve random arrivals of packets of discrete
size to network nodes, are replaced by macroscopic models that substitute fluid flows for packet streams.
The rates of the fluid flows are typically modulated by a stochastic process (such as a Markov process),
thereby resulting in a “stochastic fluid model”. Although the resulting stochastic fluid models ignore
the detailed, packet-level interactions, often they are mathematically tractable and accurate, providing
significant insight into the qualitative properties of the original system.

* Corresponding author.
E-mail addressedlorence.clevenot@sophia.inria.fr (F.88enot), philippe.nain@sophia.inria.fr (P. Nain), ross@poly.edu
(K.W. Ross).

0166-5316/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.peva.2004.05.006

2 F. Clévenot et al./ Performance Evaluation 59 (2005) 1-18

We believe that stochastic fluid models are promising tools for modeling content distribution systems. In
this paper we illustrate the approach by focusing on clusters of Web caches. Instead of replacing packe
streams with fluid (as is done in the packet network modeling literature), we are proposing replacing
content — such as images, MP3s, text files, video clips — with fluid. The motivation for this approach is
that caches up/down dynamics introduce high complexity to the discrete model. Hence, classical tools
such as Markovian analysis and simulation appear to be untractable for the dynamic system. The mode
that we discuss in this paper is also appropriate for P2P cooperative caches, for which objects are cache
cooperatively in a community of up/down pe¢8s.

Previous studies on cache cluster modeling and analysis mainly focus on static cluster population,
i.e., the number of caches in the cluster is consfgyii0]. Ref.[11] provides an analytical model for
comparing ICP and hash-based cache clusters. The model includes nodes dynamics to compare tw
hashing schemes but only at join/leave instants, and the expected hit probability is chosen as a paramete
and not as a metric. In this paper, we compute the expected hit rate in the presence of cache dynamics.

In Section 2we provide an overview of hash-based cache clusters. We descB8keetion 3 reference
detailed model, then we introduce a general stochastic fluid model which can model a wide variety
of content distribution systems. A specialized version of the model is appropriate for modeling cache
clusters.Section 4provides the principal contributions of the paper. We describe the fluid evolution and
show that the hit rate can be easily obtained, from a tridiagonal linear system of diméhsio@renN is
the number of caches in the cluster. We provide explicit, closed-form expressigvisfd in Section 5
which provide insight into performance issues of cache clusters. Our analysis shows that two key systems
parameters largely determine the performance of the system. We also use the results of the stochastic flui
model to compare two natural direction policies, namely, “partitioning” and “winningSdntion Bwe
compare the theoretical results from our fluid model with a simulation of the detailed model introduced
in Section 3.1We find that the fluid model is largely accurate and has the same qualitative behavior as
the detailed model.

2. Overview of cache clusters

A cache cluster consists df nodes (that is, caches). The nodes hold objects. Each of the caches may go
down at random times. There are three event types in the cache cluster: node going up, node going dowr
and request for an object. When a client in the organization makes a request for an object, the request i
sent to one of the up caches. If the up cache receiving the request has the object, it immediately sends
copy to the client. Otherwise, the cache retrieves a copy of the object from the origin server, puts a copy
in its storage, and sends a copy to the client. Because caches are going up and down at relatively slov
time scales compared to requests, we assume throughout that each client always knows which caches a
up, that is, each client tracks the set of active caches. (This is typically done by configuring each browser
to retrieve gproxy automatic configuration (PAC) fikach time the browser is launched. The PAC file
indicates which caches are currently up, and also implements the direction policy as discussed later in
this section.)

It remains to specify how a client, requesting a particular object, determines to which cache it should
direct its request. This is specified by tbiection policy Ideally, to avoid object duplication across
caches, we want requests from different clients for the same object to be directed to the same cache i
the cluster. This ensures that at most one copy of any object resides in the cache cluster. Also, we woulc

F. Cléevenot et al./ Performance Evaluation 59 (2005) 1-18 3

like the request load to be evenly balanced among the caches in the cluster. These two goals are often
achieved by using a common mapping at all the clients. When a client wants an object, it maps the object
name (typically a URL) to a specific cache in the cluster, and directs its request to the resulting cache.
This mapping can be created with a hash function as follows: L.gbe a hash function that maps object
names to the set [@). Leti be the number of up caches. PartitionI®into i intervals of equal length,

¥, = [0,1/0), ¥, = [1/i,2/0),...,¥ = [1 — 1/i,1). Associate one up cache with each of these
intervals. Then when a client makes a request for okjeiticalculated: (o) and determines the interval

¥; for which (o) € ¥;. It then directs its request for objecto the jth cache. We refer to this direction

policy aspartition hashing If the hash function has good dispersion properties, partition hashing should
balance the load among the caches in a more-or-less equitable manner.

Partition hashing has a serious flaw, however. When a new cache is added or goes down, approximately
50% of all the cached objects are cached in the wrong cddfiésThis implies that after an up/down
event, approximately 50% of the requests will be directed to the wrong up cache, causing “misses” even
when the object is present in the cluster. Furthermore, partition hashing will create significant duplication
of objects after an up/down event. (Because the caches employ cache replacement policiedeasth as
recently used (LRU}his duplication will eventually be purged from the system.)

To resolve this problem, independent teams of researchers have proposed refined hashing techniques
including CARP and consistent hashing, which route requests to their correct caches with high proba-
bility even after a failure/installation evefit2,13] Such robust hashing techniques have been used in
Microsoft and Netscape caching products, and also appear to have been implemented in the Akamai
content distribution network. We now briefly describe CARP; consistent hashing is similar. CARP uses a
hash functior (o, j) that is both a function of the object namend the cache name When the client
wants to obtain objeat, it calculates the hash functidi(o, j) for eachj, and finds the cachg that
maximizesh (o, j). We henceforth refer to this techniquewaning hashing The principal feature of
winning hashing is that relatively few objects in the cluster become misplaced after an up/down event
[11]. Specifically, when the number of active caches increases fitonji+ 1, only the fraction 1(j + 1)
of the currently correctly placed objects become incorrectly placed; furthermore, when the number of up
nodes decreases froft 1 to j, none of the currently correctly placed objects become misplaced.

The model that we describe in the subsequent section is also appropriate for when a community of users
(for example, employees in a large corporate campus) pool their peer computers to create a cooperative
cachd8]. The resulting large storage capacity is highly desirable for caching large audio and video files.
In such a P2P cache, the individual nodes go down when peers disconnect.

3. A model for cache clusters
3.1. Dynamic microscopic model

Let O = {01, 05, ... , 0.} be the collection of all objects. We assume that each cache has a capacity of
B objects. LetO; be the set of all objects currently in nogleLet U be the set of nodes ifi, ... , N}
that are currently up. We assume that nodes go up and down independently of each other, the time until
a given up (resp. down) node goes down (resp. up) is exponentially distributed with (r&tep.1). The
resulting procesd/(r) = |U| € {0, 1, ..., N} is a particular birth—death process, known in the literature
as theEhrenfesmodel. LetN*° denote the stationary number of caches which are up. Setting. /i,

4 F. Clévenot et al./ Performance Evaluation 59 (2005) 1-18

we have14, p. 17]

. N o'
PIN®=D=|", | ——. 1
() < ! > 1+ pV)
In particular, the expected number of caches which are up in steady-state is
N,
E[N®] = —F_)
1+p
Requests for objects arrive at random times< a, < ---. We assume that this random point process

(e.g. a Poisson process) has an intensityloreover, different objects are requested according to a given
probability distribution (typically a Zipf distributiofiL5]). Last, we assume that each cached document
has a time-to-live (TTL) associated with it (s8ection 3.Zor details).

The description of the dynamic model is completed by defining a direction policys@e@n 3 and
specifying an associated hash function. The resulting detailed model, although accurately reflecting the
real-world system, is unwieldy for traditional microscopic (including Markovian) analysis. Discrete-event
simulation of this complex system can also be very slow.

3.2. Stochastic fluid model

We now propose a broad class of fluid models which capture many of the salient characteristics of
content distribution systems. The basic observation is that requests for objects occur at a much faster time
scale than the nodes up/down events. We are therefore motivated to replace the arrivals of new objects t
the up nodes — which occur at discrete times in reality — with a fluid flow. Specifically; t#note the
number of objects currently stored in nogle U. In between up/down events we suppose ihajrows
at a continuous rate. This growth corresponds to a request directed tg aodenot being immediately
satisfied; nodg then retrieves the object from the origin server and stores a copy, caysmmncrease.

This growth is slowed down by object expirations, which can also be modeled as a fluid flow going out
of the system.

We further simplify the fluid model by supposing that the direction policy balances the load across
all of the up nodes in the cluster. With this simplified description, the state becGmgswherei,
i=0,1,...,N,isthe number of up nodes ard0 < x < ¢, is the total amount of fluid in the system.

Also, ¢ denotes the total amount of fluid in the universe.

We now define the dynamics of our fluid model. Similarly to the detailed model descriBediion 3.1
when there aréup nodes, nodes go down at rgteand nodes go up at rat& —i)A. In between up/down
events, requests occur at ratand each cached object expires at tate

Let us denotep(i, x) as the steady-state probability of a hit when the sta{g i9. (We shall indicate
how p(i, x) is modeled shortly.) The contentincreases whenever there is a miss event. Therefore, a natura
model for the rate at which the fluid increases in the system between up/down evedts-ip (i, x)].
However, the content decreases at the constarit cate to object expirations. Therefore, the fluid increase
rate in statdi, x) is actuallyo[1 — p(i, x)] — Ox.

Now consider how the fluid level changes at an up/down event. In the general model, we allow for an
instantaneous change in the fluid level after an up/down event. Specifically, when i statend a
node goes down, a fraction of the current fluid is instantaneously removed from the content distribution

F. Cléevenot et al./ Performance Evaluation 59 (2005) 1-18 5

system. The remaining amount of fluidAs;(i)x. Similarly, when in statéi, x) and a node goes up, the
fraction A, (i) of the current fluid remains in the system.

Our general stochastic fluid model is now defined. The parameters in the modglare u, o, 6, B,

p(i, x), A, (i) andA,(i). The general stochastic fluid model can model a variety of content distribution
systems, including server farms, cache clusters, and P2P file-sharing systems.

We now specialize this model to cache clusters. Recalktigthe total number of objects. A natural
model for the hit probability is thereforg(n, x) = x/c. Thus, fori > 1, the rate at which the fluid
increases between up/down events is giveady— x/c] — 6x. An alternative model fop(n, x), which
is not studied in the current paper, is to yge, x) = f(x), wheref(x) is an increasing concave function.
Such a “concave” model would capture the fact that the cached objects tend to be the more popular objects.

It remains to define\, (i) and A, (i). As discussed irsection 2 for partition hashing it is natural to
defineA,() = 1/2fori=1,..., NandA,({) =1/2fori =0,..., N — 1. For winning hashing, itis
natural to define\;(i) = (i — 1)/i wheni > 0 andA,(i) =i/(i + 1) fori < N.

In the next section we will determine the hit rate for genexa(i) and A,(i), and use the result to
compare partition hashing with winning hashing.

4. Hitrateanalysis

In this section we compute the hit rate associated with the fluid model introduced at the end of the
previous section. We now define more precisely the fluid model under consideratioxi(d.et [0, c]
be the total amount of correctly cached fluid at tiremdN(¢) € {0, 1, ..., N} be the number of caches
which are up attime. Let0< T, < T» < - - - be the successive jump times of the prodeés), : > 0}.
We will assume that the sample-paths{®f(¢), > 0} and{X(¢),t > 0} are left continuous. Hence,
N, := N(T,+) andX, := X(T,+) are the number of up caches and the amount of correctly cached fluid,
respectively, jusafterthenth jump. Letr; = lim,1[P[N, = i] be the steady-state probability that there
arei active caches just after a jump. We showAjppendix Athat

1
. — 3
0= 24+ ot (3)
i+ p(N—D) (N-1\ . .
Fi—m(i_]_)p , 1<i<N. 4)

4.1. Infinite storage capacity

Througout this section we assume that each cache can store an unlimited number of objects. (Cur-
rently, disk storage capacity is abundant for most caching systems, and capacity misses are very rare
as compared to freshness misses. Nevertheless, in the next section we take explicitly into account finite
storage capacity.) The fluid arrival process is defined as follows§T,inT;,, 1) the fluid arrival rate is
o(l—X@®/c)—6X@®if N, € {1,2,...,N}andis equal to 0 itv, = 0. Thus, the rate at which the
fluid increases in the cache cluster is

3 X(t) o
X =0 (1 - T) —0X(f) =0 — <E + 9) X (5)

forT, <t <T,,andN, € {1,2,...,N}.

6 F. Clévenot et al./ Performance Evaluation 59 (2005) 1-18

The following new parameters will play a role in understanding the system beHavior

Oc o
o=— and y:=—. (6)
o ne
For sake of convenience we also introduce
C

= . 7

" 1+« 0
Integrating(5) gives

X(@) =n+ (X, —me (8)

for T, < t < T,.1 provided thatv,, € {1,2,... ,N}.If N, = O0thenX(®) = 0forT, <t < T, 1.
At time T,, a jump occurs in the proce$X (¢),r > 0} as described isection 3.2 Note that from(8),
0< X@® <nforallt > 0aslong as O< Xo < n. From now on we will assume without loss of
generality thatVg = 0 andXo = 0 a.s. Under the aforementioned assumpti@ngr), X (1)), ¢t > 0} is
an irreducible Markov process on the $@t0} U {{1, 2, ..., N} x [0, n)}. Denote byX the stationary
regime ofX (¢).
Our objective in this section is to compute the hit r&tedefined as
H = E[X]. 9)

C

Proposition 4.1. Assume that
0<A,MOA;(+D <1 fori=01,..., N—-1 (20)

The hit rate H is given by

1 l .
"= (1+a)<1+p>N;(]iv>pl”"’ ()
where the vectov = (v1, ..., vy)" is the unique solution of the linear equation
Av=D (12)
withb = (b1, ..., by)" a vector whose components are giverbpy= y(1 + «) fori=1,2,..,N, and

A =[a; j]1<i j<v @ N x N tridiagonal matrix whose non-zero elements are

aiij=yl+a)+i+p(N—i), 1<i<N, a,1=-iA(i—-1), 2<i<N,
aiiv1=—p(N —i)As(+1), 1<i<N-1

Proof. LetY, be the amount of correctly cached fluid just beforehe- 1)st event (i.eY, = X7, ,-).
We first computéE[Y,|N, = i] for 1 <i < N. With (8) we have

! The system is defined in terms of six parametafse, p, u, 6, o; definitions in(6) will allow us to express the hit rate only
in terms of four parameters, namel, p, « andy, as shown irProposition 4.1

F. Cléevenot et al./ Performance Evaluation 59 (2005) 1-18 7

]E[Yn|Nn = l] = E[ﬂ + (X —m) e_(T”H_Tn)G/n|Nn = l]
YL+) + (o(N — i) + i) *E[X,|N, = i]

pr— (13)
p(N =i +i+yl+a)
To derive(13) we have used the fact that, givéfh = i, the random variableX, and7,,, — T, are
independent, and, .1 — T,, is exponentially distributed with paramet@y — i)A + ui.
Let us evaluat&[X, |N,, = i].
Definev; := n~1im,;E[Y,| N, = i]. Conditioning onN,_; we have
|iTm E[X,|N, =i] = IiTm E[X,|N, =i, Ny_.1 =i — 1]P(N,_y = i — 1IN, = i)
+ IiTm E[X,|N, =i, Ny_1 =i + 1]P(N,—1 = i + 1[N, =)1
. i N—i+1
= A — Dlim LY, y|N,_y =i — 17t PV =D
ntoo T p(N—i+1D)+i—-1
. . . i+l i + 1
A Dilim E[Y,_1|N,—1 = 1 15
+Aq(i + Dlim (Yo 1Ny =i +1] 7 PN —i—1) 7410
A, —Dv_1i + A0+ D N —i
. (i —Dviqi + d(-l + _)v +10(i) (14)
Oo(N —i)+i
by using(4) and the definition of;. Finally, introducing(14)into (13)yields
(o(N=D+i+yQ+a)v, =YL+ o) +iA, i —Dvi_1+ p(N —)Ay;(+ vy (15)
fori =1,2,..., N, or equivalently(12) in matrix form withv = (v4, ... , vy). The uniqueness of the

solution of(12)is shown inAppendix B

The vectorv in (12) gives the conditional stationary expected amount of fluid correctly cached just
before jump epochs (up to a multiplicative constant). However, the hitiate(9) is defined in terms
of the stationary expected amount of fluid correctly cachedlgtrary epochs. The latter metric can be
deduced from the former one by using Palm calculus, through the identity (s¢Ese fgormula (4.3.2)])

Ty
E[X] = AE® [/ X(f) dt:| (16)
0

whereE? denotes the expectation with respect to the Palm distribyjtigndenotes the time of the first
jump after 0, and wherd denotes the global rate of the Engset model, i.e.

1

From now on we assume that the system is in steady-state at time 0. Under the Palm distribution we
denote byN_; andY_; the number of up caches and the amount of correctly cached fluid respectively,
just before time O (i.e. just before the jump to occur at time 0).

2 j.e. assuming that a jump occurs at time 0 and that the system is in steady-state at time 0.

8 F. Clévenot et al./ Performance Evaluation 59 (2005) 1-18

We first compute 1A. We have
N

TT; _1+/0
_er, Ty Ng =i] = = Zp(N 5T 2Nom (18)

by using(3) and (4)
Let us now determin&[X]. From (8), (16) and (18e find

N Ty
E[X]=A ZﬂiEo [/ (n+ (Xo —) €/ dt|N, = i]

= An [Z mEO[Ta|No = i] + = ZmEO[(Xo —m(L—e "7M)|Ng = z]}

i=1

= An |:E0[T1] — oE°[To|No = 0]

N
2 > m(E[XolNo = il — (L — E%[e™"*/"|No = i])} : (19)
o i=1

1 1Y IR Xo|No = i] — 1
E[X] = An| = - _ —Zm” XolNo = 1)
A 2Npp(1+ p) — PN-D+i+y(l+a)

¢ [1_ 1 2sz ‘1IE°[XO|N0_i]—1:| (20)

T 1ta A" 11 p =" o(N—D+itylta

By definition, E°[Xo| No = i] = lim,.+oo E[X, |N,, = i], which has been computed (h4). By combining
(14) and (15)we obtain
(o(N =) +i+yl+a)v; —y(1+a)

p(N —i)+i '

Plugging this value dE°[Xo| Ng = i] into the RHS 0{20), and using4), yields after some straightforward
algebra

c 1 N-1
E = 1 - ._1
X1 1+a|: 1+ pV (1+p)NZ<) o)}

C
(1+Ol)(1+,0)NZ<) v (21)

According to(9) it remains to divide both sides ¢21) by ¢ to get(11). This concludes the proof. O

E%[Xo|No = i] =17

Conditions(10) in Proposition 4.lensure that the syste(®2) has a unique solution (see Appendix
A). They are satisfied for both winning hashing (sinsg(i) A4 + 1) = (i/(i + 1))?> for i < N) and

F. Cléevenot et al./ Performance Evaluation 59 (2005) 1-18 9

for partition hashing (sinca&, (i) A4 + 1) = 1/4 for alli < N) schemes — see discussion at the end of
Section 3

Remark. SinceA is a tridiagonal matrix(12)can be solved in onl§p(N) operations, once the mappings
A, andA, are specified.

4.2. Finite storage capacity

We assume in this section that the amount of fluid in each cache cannot exceed a given @&nstant
More specifically, we assume th&tr) < BN(z) for all + > 0. In this setting the time-evolution & ()
between two consecutive jump times of the prod@&s), : > 0} is given by

X (1) = min(BN,, n + (X,, — n) e ¢=To/n) (22)

for T, <t < T,,1. WhenB = oo then we retrievé8).

Unfortunately, whenB is finite the computation oE[Y,|N, = i] introduces a non-linearity due
to the minimum operator i§22). Therefore, unlike in the case wheéh = oo, it is not possible to
find a closed-form expression for the hit raie An alternative approach to compuie is to use an
hybrid equation-based/discrete-event simulator that (#8sThis can be done as follows: First, run a
discrete-event driven simulation of the procégs,, 7,), n > 1}. Then, usd(N,, T,), n > 1} in (22)to
evaluatéE[X]. We expect this solution to be much more time-efficient than a classical discrete-event driven
simulation of the entire system since the hybrid approach will only have to simulate events (up/down
events) on a slow time scale. This method is discuss&ation 6.2

5. Performance of the caching system

In this section we usBroposition 4.10 analyze cache clusters. First, we show how the result provides
qualitative insight for the hit rate. We then use the result to compare the hit rates of partition hashing and
winning hashing.

5.1. Qualitative behavior

For smallN, we can compute the hit rate in closed form. We do this now for winning hashing.
For N = 2 we have

o, P 2y + pyo + 2y + py + p?> + 4+ 3p
B y(1+p)22y2+4y2a+6y+2y2a2+6yoz+4+2,0y+2,oyoz+3,0'

We observe that the hit rate only depends on the parametgrsefined inSection 4seg(6)), andp. This
result actually holds for any value &f since a glance @roposition 4.Indicates that the components
of A andb depend on the model parameters only throagh andy. Interestingly enough, the fact that
the hit rate for a given rate of change depends on the paraneeterdc only through the ratio/c was
observed if10] in a slightly different context. This is an indication that our fluid model is able to capture
some of the main features of the caching system.

10 F. Clévenot et al./ Performance Evaluation 59 (2005) 1-18

impact of y (p=1,0:=0) impact of p (y=1,0:=0) impact of o (p=1,y=1,log scale)
1 1 0.5
P tutialvsiotaty TTN=2 Na
08} , - - 0.8 - N=3 0.4 e
;’ L o . o - = N=4 " — =4
206 206 203 h
g | 5 g A\
= } = = \\
<04 S04t o] €02
N=2 f’ A\
0.2 = N=3 0.2§ 0.1 \
— — N=4 \
0 0 0
0 50 100 0 10 20 10°
Y p o

Fig. 1. Impact ofp, y anda on the hit rate for small clusters.

Fig. 1shows how the hit rate dependsjam anda for small clusters (i.e. wheN is small). The concave
shapes ofrig. 1(a) shows that increasing(througho, for instance) can offer a large performance gain in
the smaller range, in this case wher< 20. This can be related to empirical observationdih17,18]
for small client population sizes, the authors found that the hit rate increases in a fofadikeon of the
population size. Moreover, Duska et al. showed that request rate is a better metric of performance thar
client population size, and that the hit rate also increases with requeldi9ht®ur model exhibits similar
shapes, although the hit rate is a rational functiop cdther than a logarithmic function ¢t Moreover,
it explains analytically these properties, and also includes the caches dynamic behavior thiotigh
y definition.

Parametep is fairly new in cache cluster analysis. It typically represents one aspect of the dynamic
behavior of the system, as apparenflihand (2)

Fig. 1(b) represents the hit rate as an increasing functign obnverging rapidly to its maximum value
(~ 40% inFig. 1(b)). The curves flatten to become almost constant for high valuestioé largerN the
quicker the curve flattens. Therefore, except for very small values, in which case the hit rate drops very
quickly, o has very little influence on the hit rate. This can be easily explained. Indeed, we se@d.from
that with the probability 1(1 4 p)V all caches are down. Therefore, all caches are down with very high
probability whenp is small, yielding very low hit rates, as shownkig. 1(b). On the other hand, when
p is large there is always at least one cache up with a high probability which prevents the hit rate from
dropping to zero. Under these circumstances, the limiting factor for the hit rate will be the removal of
documents in caches, modeled by parametdes described above) and

Fig. 1(c) shows howx impacts the hit rate fop = 1 (which is large enough to avoid long periods of
total unavailability since in this case 50% of the caches are up on the average as st@yvaridy = 1.
The curve is obviously decreasing sincé proportional to the rate of change (or expiration) of cached
documents. The highest hit rate is therefore obtained with 0. Also observe that the hit rate drops
significantly asy increases.

FromFig. 1we infer that the key parameters of the systemaendw, which almost determine the
hit rate as long ap is not too close to zero. This can be explained by the fact that for high valygs of
y anda capture the main interactions between object population, request rate, document rate of change
and cache dynamics — which correspond to document losses and misplacements in the cluster.

3 The hit rate is either a logarithm or a small power of the population size.

F. Cléevenot et al./ Performance Evaluation 59 (2005) 1-18 11

Hit rate for N=4 and p=1

Hit rate

Fig. 2. H as a function ofs and« for p = 1.

Sincey anda are the two only limiting factors for realistic systems (Wh&@,, = 0) ~ 0), we may
want to compare their influence on the systent-ilm 2we observe that the domain where the hit rate is
high (above 40%) is very smalk(< 1, y > 10). In fact,y has a real impact on the hit rate whenr< 1.
The concave shape observedHig. 1(a) fora = 0 is still present for positive values afbut it is less
and less pronounced asncreases. This can be explained analytically from the factXhat » for all
t > 0 (provided thatXy < n) as already observed Bection 4.1which implies that is bounded from
above by ¥(1+ o).

5.2. Comparison of partition hashing and winning hashing

Fig. 3compares the hit rate for partition hashing with that of winning hashing wher0, i.e. when
documents do not expire. The performance difference is striking, especially forisiaadlp > 1: for
any set of parameters, winning hashing always exhibits much higher hit rates than does partition hashing
scheme. For instance, at= 50 andy = 1 (seeFig. 3b)), the hit rate for winning hashing is 36%, which
is 50% higher than that for partition hashing, i.e., 24%.

6. Numerical results

In this section, we compare quantitatively our macroscopic fluid model with a discrete-event driven
simulation of the microscopic model describedSection 3.1for N = 10 caches. Throughout this
section we use winning hashing: the CARP hashing fundti@his implemented in the simulator while
the corresponding values of, and A, are used in the fluid model. Experimental results are given with
99% confidence intervals.

12 F. Clévenot et al./ Performance Evaluation 59 (2005) 1-18

a. Winning vs Partition hashing with N=4 and p=10 b. Winning vs Partition hashing with N=4 andy=1
100 100

— Winning hashing
— — Partition hashing

80 80

60 60

Hit rate (%)
Hit rate (%)

40 40

(\)
20 — Winning hashing 20

— — Partition hashing

0 10 20 30 40 50 0 5 10 15 20
Y p

Fig. 3. Comparison of winning hashing and partition hashing\fes 4 anda = 0.

6.1. Unlimited capacity

In this section, the fluid model estimation is computed ufirgposition 4.1We begin with a validation
of parametey. Table 1shows results for various values of te ., ¢) triple with a constant ratig = 2
andp = 1. Of course, the fluid model provides identical values, i.e., 50.9%, for all experiments (see
Section 5. We observe that the discrete-event simulation is almost insensitive to the variations of the
number of documents, request arrival rate or failure rate whenconstant: even when they vary by
several orders of magnitude, the hit rate remains between 50 and 52%, which is close to the fluid model
value. We conclude that our analytical evidence that the system is characterized by pararaetérs
y is confirmed here by simulation results. Of course, whdrecomes of the same order of magnitude
asu, which is highly unlikely to happen in real systems, discrete-event simulation does not see enough
requests to create reliable statistics.

We now consider the impact gfon the hit rateFig. 4displays the hit rate as a functionjpfvith p = 1,
for two different values of.. We observe that the fluid model curves closely follow the same shapes as
the discrete-event simulations and therefore mimics the discrete system behaviour very accurately. An
important feature appearing &ég. 4 is the range off whena = 0 andp not too small:H increases
with ¢ from zero to almost 100%. Although this observation is not true for very small valud's a$
shown inFig. 1, the upper bound seems to increase with N and is already very close to 108%-fd0.
Therefore, for small values efandp > 1, itis possible to reach almost any desired hit rate by increasing

Table 1

Hit rate (%) fory =2 andp =1

c 2000 2000 2000 20,000 20,000 20,000
o 0.2 2 20 0.2 2 20

I 5x107° 5x1074 5x 1078 5x 1076 5x107° 5x 1074
Simulation 500+ 1.5 508+ 1.9 518+ 1.7 510+ 1.2 503+ 24 504+ 1.9

Fluid model 50.9 50.9 50.9 50.9 50.9 50.9

F. Cléevenot et al./ Performance Evaluation 59 (2005) 1-18 13

90

80

70

60

50t i o e L

P

hit rate (in %)

40

30F

201 * simulation =0 H
fluid model 0=0
+ simulation a=1 [

fluid model a=1

Fig. 4. Fluid model vs. simulation: impact gf(with N = 10 andp = 1).

y accordingly. This validates our finding thatletermines the hit rate of the system whea 0. Also, the
curves comparing our fluid model to discrete-event simulation whenl clearly shows how this second
parameter limits the hit rate even for large valueg oivhich is rather intuitive: indeed, represents the
time needed for the system to cache all existing documents (filling time) divided by the time-to-live of
the cached documents, whileis the ratio of the average lifetime of a cache and this filling time. It is
clear that if the document modification rate is high with regard to the filling time, fewer documents will
become misplaced upon failure events.

Finally, we examine the influence pfon the hit rateFig. 5shows that both the fluid model and the
simulation exhibit a steep slope for small valuesp@nd an almost flat shape fpr> 1. This validates
the fact thafo has very little influence on the hit rate except when it is close to zero.

We conclude that the fluid model provides an accurate approximation for the actual hit rate of the
discrete system and more importantly, highlights the key parameters and properties of the system.

6.2. Validation for finite storage

Fig. 6 compares the results obtained with the equation-based simulator thgasesth that of a
discrete-event driven simulator as a function of the average storage capagjty for y = p = 1 and
a = 0, whereNmoy = Np/(1+ p) is the mean number of active caches (&g

The flat shape after a threshold aroundcMhena = 0, indicates that increasing capacity beyond a
certain value does not improve the cache performance, limited by other factors such as cache dynamics.
This phenomenon is even more obvious wher 0, because object expirations happen faster than cache
filling, and justifies the infinite capacity assumptiorSaction 4.1

Fig. 6 shows that the equation-based simulator results not only exhibits the same shape as the discrete
system hit rate, but also provides an accurate numerical approximation. This strengthens the conclusion
that the fluid model is able to capture the main features of the discrete system.

14 F. Clévenot et al./ Performance Evaluation 59 (2005) 1-18

impact of p on the hit rate (N=10,y=10)
100 T e ; T

hit rate (in %)

-% simulation =0
fluid model a=0
-+ simulation a.=1
‘| == fluid model a=1

o i o 150
10° 10 10° 10’ 10° 10°

p

Fig. 5. Fluid model vs. simulation: impact pf(with N = 10 andy = 10).

Moreover, the equation-based simulator is a much faster tool than the discrete-event driven simulation
of the system, especially for large values of request rates. In addition to an obvious efficiency gain, it
provides higher accuracy by allowing the simulation of a much larger number of up/down events, thereby
approaching more closely the stationary state. Also, the equation-based simulation method can easily b
extended to other equations th@2), for instance to take into account document popularity as discussed
in Section 3.2

100

—— discrete-event simulation
90 - — equation-based simulation
B=c

80

70

60

50

Hit rate (in %)

Fig. 6. Impact ofB on the hit rate.

F. Cléevenot et al./ Performance Evaluation 59 (2005) 1-18 15

7. Concluding remarks

In this paper we have considered a complex system consisting of multiple nodes that randomly go
up and down and which store new objects arriving randomly from origin servers. The system exhibits
randomness on two time scales: object arrivals on a fast time scale, and cache up/down events on a slowel
time scale. To analyze this complex system, we have approximated the system with a stochastic fluid
model, which although non-trivial, turns out to be mathematically tractable. Comparison with simulation
results has shown that the hit rate provided by the solution to the model is a good approximation of the
actual hit rate. Also, the solution highlights the key characteristics of the actual system.

Our stochastic fluid model i8ection 3s quite general and can be used to model a variety of content
distribution systems. Many open problems remain. For example, it is of interest to extend the theory to
cover object popularity (e.g., Zipf distribution). It is also of interest to extend the theory to model content
dynamics in P2P file sharing and in CDNs.

Appendix A. Stationary distribution of the Engset model at jump times

In this section we compute the limiting distribution of the Markov chgiy,n > 1}. Let P =
[pi jlo<i j<y be its transition probability matrix. We hayg ;1 = p(N — i)/(p(N — i) + i) fori =
0,1,...,N=1,piia=i/(p(N—i)+i)fori=1,2 ..., Nandp;; =0 otherwise.

Since this Markov chaihhas a finite-state space and is irreducible, it is positive recufzéntCor.
5.3.19, 5.3.22]Therefore, it possesses a unique stationary distributien (o, . .. , 7y) given by the
(unique) solution of the equationP = & such thatZ,NOn, =1[21, p. 208]

We proceed by induction to computeFrom the equation P = & we find thatt; = (o(N —1)+ 1)no
andmr, = ((o(N — 2) + 2)/2)p(N — D)mp. This suggests that

pIN=p+j pt (N-1)

; A.l
S R I § g v TR (A1)

forj=12,...,N.Assumethat (A.1) holdsfor=1,2,... ,i < N — 1. Let us show that it still holds
for j =i+ 1. We have

p(N—(i+1))+i+1(p(N — (i —1)))
Tiy1= i~ i—1

i+1 o(N—(i—1)+i—

p(N—(G+)+i+1(p(N—i)+i pt

- i+1 (il (N — i)
p(N—(G—1) (—1+pN—i+1)p2

T (IN=(G—=1)+i—1) (-1 — 2N — i+ 1)!

_PIN—(i+1)+i+1 p'(N —1)!
i+1 iI'(N — (i +1)!

) (N —D!'no (A.2)

o

4 Note that this chain is period (with period 2).

16 F. Clévenot et al./ Performance Evaluation 59 (2005) 1-18

where (A.2) follows from the induction hypothesis. The constafis computed by using the normalizing
conditionzf\;o 7 = 1; we findmg = 1/(2(1 + p)¥~1) as announced i(8). Plugging this value ofrg
into (A.1) gives(4).

Appendix B. Uniqueness of the solution of (12)

The linear systeni12) defined inProposition 4.Jadmits a unique solution if and only if det) £ 0.
SinceA is a tridiagonal matrix we can use th&) decompositiof22, Section 3.54 = LU with

L 0 . 0 1w - 0
.00 o . - 0
L= |7 , U=
: . . : . . Up—1
0 - B, I, o 0 ... 1

wherel;’s andu;’s are defined as follows:
ap1 =y, aij =li+a_wi—1, i=2,...,N, livi=aji+1, i=1...,N-1

Both matricesL. andU being bidiagonal matrices it follows that da) # O if and only if/; # O for
i=12,...,N.

We use an induction argument to show that Ofori =1,2,... , N.Wehavd; = y+p(N —1)+1.
Assumethat; > y+p(N—i)fori=1,2,... ,n < N—1landletusshowthgt ; > y+p(N —n—1).
We have

i An+1,n0n,n+1
n+1=An+1n+1 — l—
n

=J/+p(N—n—l)+(n+l)l"_p(N_n)lAu(n)Ad(n+l) >y +p(N—n—1)

by using the induction hypothesis together with the fact thatQ,(n)As(n + 1) < 1.

References

[1] D. Anick, D. Mitra, M.M. Sondhi, Stochastic theory of data-handling systems with multiple sources, Bell Syst. Tech. J. 61
(1982) 1871-1894.

[2] A. Elwalid, D. Mitra, Fluid models for the analysis and design of statistical multiplexing with loss priorities on multiple
classes of bursty traffic, in: Proceedings of the IEEE INFOCOM'92, Florence, Italy, 1992, pp. 415-425.

[3] A. Elwalid, D. Mitra, Effective bandwidth of general markovian traffic sources and admission control of high speed networks,
IEEE/ACM Trans. Network. 1 (1993) 329-343.

[4] K. Kumaran, M. Mandjes, Multiplexing regulated traffic streams: design and performance, in: Proceedings of the IEEE
INFOCOM 2001, Anchorage, AK, April 2001, pp. 527-536.

[5] F. LoPresti, Z. Zhang, D. Towsley, J. Kurose, Source time scale and optimal buffer/bandwidth trade-off for regulated traffic
in an ATM node, in: Proceedings of the IEEE INFOCOM'97, Kobe, Japan, 1997, pp. 676—683.

[6] R. Boorstyn, A. Burchard, J. Liebeherr, C. Oottamakorn, Statistical service assurances for traffic scheduling algorithms,
IEEE J. Selected Areas Commun. (Special Issue on Internet QoS) 18 (2000) 2651-2664.

F. Cléevenot et al./ Performance Evaluation 59 (2005) 1-18 17

[7] M. Reisslein, K.W. Ross, S. Rajagopal, A framework for guaranteeing statistical QoS, IEEE/ACM Trans. Network. 10 (1)
(2002) 27-42.
[8] S. lyer, A. Rowstron, P. Druschel, Squirrel: a decentralized, peer-to-peer Web cache, in: Proceedings of the ACM Symposium
on Principles of Distributed Computing (PODC2002), Monterey, CA, 2002, pp. 213-222.
[9] P. Rodriguez, C. Spanner, E. Biersack, Analysis of web caching architectures: hierarchical and distributed caching,
IEEE/ACM Trans. Network. 9 (4) (2001) 404-418.
[10] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin, H. Levy, On the scale and performance of cooperative Web
proxy caching, in: Proceedings of the 17th ACM Symposium on Operating Systems Principles (SOSP’99), Kiawah Island,
SC, 1999, pp. 16-31.
[11] K.W. Ross, Hash-routing for collections of shared web caches, IEEE Network Mag. 11 (1997) 37-45.
[12] V. Valloppillil, K.W. Ross, Cache array routing protocol (CARP), Internet Draft, June, 1997.
[13] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina, K. lwamoto, B. Kim, L. Matkins, Y. Yerushalmi, Web
caching with consistent hashing, in: Proceedings of the Eighth International WWW Conference, Toronto, May, 1999.
[14] F.P. Kelly, Reversibility and Stochastic Networks, Wiley, Chichester, 1979.
[15] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and zipf-like distributions: evidence and implications,
in: Proceedings of IEEE INFOCOM'99, New York, 1999, pp. 126-134.
[16] F. Baccelli, P. Brémaud, Elements of Queueing Theory: Palm-Martingale Calculus and Stochastic Recurrences, Springer,
Berlin, 1994.
[17] P. Cao, S. Irani, Cost-aware WWW proxy caching algorithms, in: Proceedings of the USENIX Symposium on Internet
Technologies and Systems, Monterey, CA, 1997, pp. 193-206.
[18] S. Gribble, E. Brewer, System design issues for internet middleware services: deductions from a large client trace,
in: Proceedings of the USENIX Symposium on Internet Technologies and Systems, Monterey, CA, 1997, pp. 207-218.
[19] B. Duska, D. Marwood, M. Feeley, The measured access characteristics of world wide web client proxy caches,
in: Proceedings of the USENIX Symposium on Internet Technologies and Systems, Monterey, CA, 1997, pp. 23-35.
[20] E. Cinlar, Introduction to Stochastic Processes, Prentice Hall, Englewood Cliffs, NJ, 1975.
[21] G. Grimmett, D. Stirzaker, Probability and Random Processes, Oxford University Press, Oxford, 1992.
[22] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

Florence Clévenot received her engineering degree from the Ecole Nationale Supérieure des Télécommu-
nications (Paris) in 2000. In 2001, she worked as a network engineer for CS Telecom, Fontenay-aux-Roses,
France, and for Nortel Networks R&D, Chateaufort, France. In 2002, she received her M.Sc. in networks
and distributed systems at the University of Nice-Sophia Antipolis. She is now a Ph.D. student at INRIA
Sophia Antipolis (France) in the Maestro group, working on modeling and performance analysis of content
distribution systems.

Philippe Nain received the Mtrise Es-Sciences in Mathematics in 1978, the &nipé d’Etudes Ap-
profondies in Statistics in 1979, and the Doctorat de 3éme cycle specializing in Modeling of Computer
Systems in 1981 from the University of Paris Xl, Orsay, France. In 1987 he received the Doctorat d’Etat
in Applied Mathematics from the University Pierre and Marie Curie, Paris, France. Since december 1981
he has been with INRIA where he is currently the head of the research project Maestro devoted to the
modeling of computer systems and telecommunications networks. He has held visiting appointments at
the University of Massachusetts (1993-1994), at the University of Maryland (1987) and at North Carolina
State University (1988). His research interests include modeling and performance evaluation of commu-
nication networks. He is an associate editor of Performance Evaluation and Operations Research Letters,
and was an associate editor of IEEE Transactions on Automatic Control. He was a co-program chair of the ACM Sigmetrics
2000 conference and he is a member of IFIP WG 7.3.

18 F. Clévenot et al./ Performance Evaluation 59 (2005) 1-18

Keith W. Rossjoined Polytechnic University as the Leonard J. Shustek Professor in Computer Science in

: January 2003. Before joining Polytechnic University, he was a professor for five years in the Multimedia
Communications Department at Eurecom Institute in Sophia Antipolis, France. From 1985 through 1997,
he was a professor in the Department of Systems Engineering at the University of Pennsylvania. He received
aB.S.E.E from Tufts University, a M.S.E.E. from Columbia University, and a Ph.D. in computer and control
engineering from The University of Michigan. Professor Ross has worked in stochastic modeling, video
streaming, multi-service loss networks, web caching, content distribution networks, peer-to-peer networks,
voice over IP, optimization, optimal control of queues, and Markov decision processes. He is an associate
editor for IEEE/ACM Transactions on Networking. He has also served on the editorial boards of IEEE
Transactions on Automatic Control, Operations Research, Queuing Systems: Theory and Applications (QUESTA), Probability
in the Engineering and Information Sciences (PEIS), and Telecommunication Systems. He is co-author (with James F. Kurose)
of the textbook, Computer Networking: A Top-Down Approach Featuring the Internet, published by Addison-Wesley. The text

is used by over 200 US universities each academic year, is widely used internationally, and has been translated into 10 language!
Professor Ross is also the author of the research monograph, Multiservice Loss Models for Broadband Communication Networks,
published by Springer in 1995.

	Stochastic fluid models for cache clusters
	Introduction
	Overview of cache clusters
	A model for cache clusters
	Dynamic microscopic model
	Stochastic fluid model

	Hit rate analysis
	Infinite storage capacity
	Finite storage capacity

	Performance of the caching system
	Qualitative behavior
	Comparison of partition hashing and winning hashing

	Numerical results
	Unlimited capacity
	Validation for finite storage

	Concluding remarks
	Stationary distribution of the Engset model at jump times
	Uniqueness of the solution of (12)
	References

