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Abstract

Clusters of Web caches are extensively used by different types of organizations, including companies, universities, ISPs,
and CDNs. To model Web caches, we must account for two types of stochastic events: objects being pulled into/out of
the cache cluster at random times, and caches going up and down at random times. Detailed stochastic models of such
complex systems quickly become intractable. In this paper we propose a stochastic fluid model which captures the salient
characteristics of a cache cluster. The stochastic fluid model replaces the object arrivals to the cluster and departures (object
modification/expiration) with a fluid flow, but maintains the up/down dynamics of the original system. The model can be
applied to a variety of cluster routing policies, and provides a simple means to estimate the hit rate. We compare the results
of the stochastic fluid model with that of a simulation of the real system. We find the fluid model to not only be a close
approximation, but also to exhibit the key qualitative properties of the original system. We conclude that stochastic fluid
models show great potential in modeling a variety of content distribution systems.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Beginning with the seminal work of Anick et al. in 1982[1], stochastic fluid models have been suc-
cessfully applied to a variety of packet-switching systems over the past 20 years (e.g., see[2–7]). In
these papers, detailed models of system behavior, which involve random arrivals of packets of discrete
size to network nodes, are replaced by macroscopic models that substitute fluid flows for packet streams.
The rates of the fluid flows are typically modulated by a stochastic process (such as a Markov process),
thereby resulting in a “stochastic fluid model”. Although the resulting stochastic fluid models ignore
the detailed, packet-level interactions, often they are mathematically tractable and accurate, providing
significant insight into the qualitative properties of the original system.
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We believe that stochastic fluid models are promising tools for modeling content distribution systems. In
this paper we illustrate the approach by focusing on clusters of Web caches. Instead of replacing packet
streams with fluid (as is done in the packet network modeling literature), we are proposing replacing
content – such as images, MP3s, text files, video clips – with fluid. The motivation for this approach is
that caches up/down dynamics introduce high complexity to the discrete model. Hence, classical tools
such as Markovian analysis and simulation appear to be untractable for the dynamic system. The model
that we discuss in this paper is also appropriate for P2P cooperative caches, for which objects are cached
cooperatively in a community of up/down peers[8].

Previous studies on cache cluster modeling and analysis mainly focus on static cluster population,
i.e., the number of caches in the cluster is constant[9,10]. Ref. [11] provides an analytical model for
comparing ICP and hash-based cache clusters. The model includes nodes dynamics to compare two
hashing schemes but only at join/leave instants, and the expected hit probability is chosen as a parameter
and not as a metric. In this paper, we compute the expected hit rate in the presence of cache dynamics.

In Section 2we provide an overview of hash-based cache clusters. We describe inSection 3a reference
detailed model, then we introduce a general stochastic fluid model which can model a wide variety
of content distribution systems. A specialized version of the model is appropriate for modeling cache
clusters.Section 4provides the principal contributions of the paper. We describe the fluid evolution and
show that the hit rate can be easily obtained, from a tridiagonal linear system of dimensionN whereN is
the number of caches in the cluster. We provide explicit, closed-form expressions forN = 2 in Section 5,
which provide insight into performance issues of cache clusters. Our analysis shows that two key systems
parameters largely determine the performance of the system. We also use the results of the stochastic fluid
model to compare two natural direction policies, namely, “partitioning” and “winning”. InSection 6we
compare the theoretical results from our fluid model with a simulation of the detailed model introduced
in Section 3.1. We find that the fluid model is largely accurate and has the same qualitative behavior as
the detailed model.

2. Overview of cache clusters

A cache cluster consists ofN nodes (that is, caches). The nodes hold objects. Each of the caches may go
down at random times. There are three event types in the cache cluster: node going up, node going down,
and request for an object. When a client in the organization makes a request for an object, the request is
sent to one of the up caches. If the up cache receiving the request has the object, it immediately sends a
copy to the client. Otherwise, the cache retrieves a copy of the object from the origin server, puts a copy
in its storage, and sends a copy to the client. Because caches are going up and down at relatively slow
time scales compared to requests, we assume throughout that each client always knows which caches are
up, that is, each client tracks the set of active caches. (This is typically done by configuring each browser
to retrieve aproxy automatic configuration (PAC) fileeach time the browser is launched. The PAC file
indicates which caches are currently up, and also implements the direction policy as discussed later in
this section.)

It remains to specify how a client, requesting a particular object, determines to which cache it should
direct its request. This is specified by thedirection policy. Ideally, to avoid object duplication across
caches, we want requests from different clients for the same object to be directed to the same cache in
the cluster. This ensures that at most one copy of any object resides in the cache cluster. Also, we would
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like the request load to be evenly balanced among the caches in the cluster. These two goals are often
achieved by using a common mapping at all the clients. When a client wants an object, it maps the object
name (typically a URL) to a specific cache in the cluster, and directs its request to the resulting cache.
This mapping can be created with a hash function as follows. Leth(·) be a hash function that maps object
names to the set [0,1). Let i be the number of up caches. Partition [0,1) into i intervals of equal length,
Ψ1 = [0,1/i), Ψ2 = [1/i,2/i), . . . , Ψi = [1 − 1/i,1). Associate one up cache with each of these
intervals. Then when a client makes a request for objecto, it calculatesh(o) and determines the interval
Ψj for whichh(o) ∈ Ψj. It then directs its request for objecto to thejth cache. We refer to this direction
policy aspartition hashing. If the hash function has good dispersion properties, partition hashing should
balance the load among the caches in a more-or-less equitable manner.

Partition hashing has a serious flaw, however. When a new cache is added or goes down, approximately
50% of all the cached objects are cached in the wrong caches[11]. This implies that after an up/down
event, approximately 50% of the requests will be directed to the wrong up cache, causing “misses” even
when the object is present in the cluster. Furthermore, partition hashing will create significant duplication
of objects after an up/down event. (Because the caches employ cache replacement policies, such asleast
recently used (LRU), this duplication will eventually be purged from the system.)

To resolve this problem, independent teams of researchers have proposed refined hashing techniques,
including CARP and consistent hashing, which route requests to their correct caches with high proba-
bility even after a failure/installation event[12,13]. Such robust hashing techniques have been used in
Microsoft and Netscape caching products, and also appear to have been implemented in the Akamai
content distribution network. We now briefly describe CARP; consistent hashing is similar. CARP uses a
hash functionh(o, j) that is both a function of the object nameo and the cache namej. When the client
wants to obtain objecto, it calculates the hash functionh(o, j) for eachj, and finds the cachej∗ that
maximizesh(o, j). We henceforth refer to this technique aswinning hashing. The principal feature of
winning hashing is that relatively few objects in the cluster become misplaced after an up/down event
[11]. Specifically, when the number of active caches increases fromj to j+1, only the fraction 1/(j+1)
of the currently correctly placed objects become incorrectly placed; furthermore, when the number of up
nodes decreases fromj + 1 to j, none of the currently correctly placed objects become misplaced.

The model that we describe in the subsequent section is also appropriate for when a community of users
(for example, employees in a large corporate campus) pool their peer computers to create a cooperative
cache[8]. The resulting large storage capacity is highly desirable for caching large audio and video files.
In such a P2P cache, the individual nodes go down when peers disconnect.

3. A model for cache clusters

3.1. Dynamic microscopic model

LetO = {o1, o2, . . . , oc} be the collection of all objects. We assume that each cache has a capacity of
B objects. LetOj be the set of all objects currently in nodej. LetU be the set of nodes in{1, . . . , N}
that are currently up. We assume that nodes go up and down independently of each other, the time until
a given up (resp. down) node goes down (resp. up) is exponentially distributed with rateµ (resp.λ). The
resulting processN(t) = |U| ∈ {0,1, . . . , N} is a particular birth–death process, known in the literature
as theEhrenfestmodel. LetN∞ denote the stationary number of caches which are up. Settingρ = λ/µ,
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we have[14, p. 17]

P(N∞ = i) =
(
N

i

)
ρi

(1 + ρ)N . (1)

In particular, the expected number of caches which are up in steady-state is

E[N∞] = Nρ

1 + ρ . (2)

Requests for objects arrive at random timesa1 < a2 < · · · . We assume that this random point process
(e.g. a Poisson process) has an intensityσ. Moreover, different objects are requested according to a given
probability distribution (typically a Zipf distribution[15]). Last, we assume that each cached document
has a time-to-live (TTL) associated with it (seeSection 3.2for details).

The description of the dynamic model is completed by defining a direction policy (seeSection 2) and
specifying an associated hash function. The resulting detailed model, although accurately reflecting the
real-world system, is unwieldy for traditional microscopic (including Markovian) analysis. Discrete-event
simulation of this complex system can also be very slow.

3.2. Stochastic fluid model

We now propose a broad class of fluid models which capture many of the salient characteristics of
content distribution systems. The basic observation is that requests for objects occur at a much faster time
scale than the nodes up/down events. We are therefore motivated to replace the arrivals of new objects to
the up nodes – which occur at discrete times in reality – with a fluid flow. Specifically, letxj denote the
number of objects currently stored in nodej ∈ U. In between up/down events we suppose thatxj grows
at a continuous rate. This growth corresponds to a request directed to nodej and not being immediately
satisfied; nodej then retrieves the object from the origin server and stores a copy, causingxj to increase.
This growth is slowed down by object expirations, which can also be modeled as a fluid flow going out
of the system.

We further simplify the fluid model by supposing that the direction policy balances the load across
all of the up nodes in the cluster. With this simplified description, the state becomes(i, x), wherei,
i = 0,1, . . . , N, is the number of up nodes andx, 0 ≤ x ≤ c, is the total amount of fluid in the system.
Also, c denotes the total amount of fluid in the universe.

We now define the dynamics of our fluid model. Similarly to the detailed model described inSection 3.1,
when there arei up nodes, nodes go down at rateiµ and nodes go up at rate(N− i)λ. In between up/down
events, requests occur at rateσ and each cached object expires at rateθ.

Let us denotep(i, x) as the steady-state probability of a hit when the state is(i, x). (We shall indicate
howp(i, x) is modeled shortly.) The content increases whenever there is a miss event. Therefore, a natural
model for the rate at which the fluid increases in the system between up/down events isσ[1 − p(i, x)].
However, the content decreases at the constant rateθ due to object expirations. Therefore, the fluid increase
rate in state(i, x) is actuallyσ[1 − p(i, x)] − θx.

Now consider how the fluid level changes at an up/down event. In the general model, we allow for an
instantaneous change in the fluid level after an up/down event. Specifically, when in state(i, x) and a
node goes down, a fraction of the current fluid is instantaneously removed from the content distribution
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system. The remaining amount of fluid is�d(i)x. Similarly, when in state(i, x) and a node goes up, the
fraction�u(i) of the current fluid remains in the system.

Our general stochastic fluid model is now defined. The parameters in the model areN, c, λ,µ, σ, θ,B,
p(i, x), �u(i) and�d(i). The general stochastic fluid model can model a variety of content distribution
systems, including server farms, cache clusters, and P2P file-sharing systems.

We now specialize this model to cache clusters. Recall thatc is the total number of objects. A natural
model for the hit probability is thereforep(n, x) = x/c. Thus, fori ≥ 1, the rate at which the fluid
increases between up/down events is given byσ[1 − x/c] − θx. An alternative model forp(n, x), which
is not studied in the current paper, is to usep(n, x) = f(x), wheref(x) is an increasing concave function.
Such a “concave” model would capture the fact that the cached objects tend to be the more popular objects.

It remains to define�u(i) and�d(i). As discussed inSection 2, for partition hashing it is natural to
define�d(i) = 1/2 for i = 1, . . . , N and�u(i) = 1/2 for i = 0, . . . , N − 1. For winning hashing, it is
natural to define�d(i) = (i− 1)/i wheni > 0 and�u(i) = i/(i+ 1) for i < N.

In the next section we will determine the hit rate for general�u(i) and�d(i), and use the result to
compare partition hashing with winning hashing.

4. Hit rate analysis

In this section we compute the hit rate associated with the fluid model introduced at the end of the
previous section. We now define more precisely the fluid model under consideration. LetX(t) ∈ [0, c]
be the total amount of correctly cached fluid at timet andN(t) ∈ {0,1, . . . , N} be the number of caches
which are up at timet. Let 0≤ T1 < T2 < · · · be the successive jump times of the process{N(t), t ≥ 0}.
We will assume that the sample-paths of{N(t), t ≥ 0} and {X(t), t ≥ 0} are left continuous. Hence,
Nn := N(Tn+) andXn := X(Tn+) are the number of up caches and the amount of correctly cached fluid,
respectively, justafter thenth jump. Letπi = limn↑∞P[Nn = i] be the steady-state probability that there
arei active caches just after a jump. We show inAppendix Athat

π0 = 1

2(1 + ρ)N−1
, (3)

πi = i+ ρ(N − i)
2i(1 + ρ)N−1

(
N − 1
i− 1

)
ρi−1, 1 ≤ i ≤ N. (4)

4.1. Infinite storage capacity

Througout this section we assume that each cache can store an unlimited number of objects. (Cur-
rently, disk storage capacity is abundant for most caching systems, and capacity misses are very rare
as compared to freshness misses. Nevertheless, in the next section we take explicitly into account finite
storage capacity.) The fluid arrival process is defined as follows: in(Tn, Tn+1) the fluid arrival rate is
σ(1 − X(t)/c) − θX(t) if Nn ∈ {1,2, . . . , N} and is equal to 0 ifNn = 0. Thus, the rate at which the
fluid increases in the cache cluster is

∂

∂t
X(t) = σ

(
1 − X(t)

c

)
− θX(t) = σ −

(σ
c

+ θ
)
X(t) (5)

for Tn < t < Tn+1 andNn ∈ {1,2, . . . , N}.
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The following new parameters will play a role in understanding the system behavior1:

α := θc

σ
and γ := σ

µc
. (6)

For sake of convenience we also introduce

η := c

1 + α. (7)

Integrating(5) gives

X(t) = η+ (Xn − η)e−(t−Tn)σ/η (8)

for Tn < t < Tn+1 provided thatNn ∈ {1,2, . . . , N}. If Nn = 0 thenX(t) = 0 for Tn < t < Tn+1.
At time Tn a jump occurs in the process{X(t), t ≥ 0} as described inSection 3.2. Note that from(8),
0 ≤ X(t) < η for all t > 0 as long as 0≤ X0 < η. From now on we will assume without loss of
generality thatN0 = 0 andX0 = 0 a.s. Under the aforementioned assumptions{(N(t),X(t)), t ≥ 0} is
an irreducible Markov process on the set{0,0} ∪ {{1,2, . . . , N} × [0, η)}. Denote byX the stationary
regime ofX(t).

Our objective in this section is to compute the hit rateH , defined as

H = E[X]

c
. (9)

Proposition 4.1. Assume that

0 ≤ �u(i)�d(i+ 1) ≤ 1 for i = 0,1, . . . , N − 1. (10)

The hit rate H is given by

H = 1

(1 + α)(1 + ρ)N
N∑
i=1

(
N

i

)
ρivi, (11)

where the vectorv = (v1, . . . , vN)
T is the unique solution of the linear equation

Av = b (12)

with b = (b1, . . . , bN)
T a vector whose components are given bybi = γ(1 + α) for i=1,2,. . . ,N, and

A = [ai,j]1≤i,j≤N aN ×N tridiagonal matrix whose non-zero elements are

ai,i = γ(1 + α)+ i+ ρ(N − i), 1 ≤ i ≤ N, ai,i−1 = −i�u(i− 1), 2 ≤ i ≤ N,
ai,i+1 = −ρ(N − i)�d(i+ 1), 1 ≤ i ≤ N − 1.

Proof. Let Yn be the amount of correctly cached fluid just before the(n+ 1)st event (i.e.Yn = XTn+1−).
We first computeE[Yn|Nn = i] for 1 ≤ i ≤ N. With (8) we have

1 The system is defined in terms of six parameters:N, c, ρ, µ, θ, σ; definitions in(6) will allow us to express the hit rate only
in terms of four parameters, namely,N, ρ, α andγ, as shown inProposition 4.1.
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E[Yn|Nn = i] = E[η+ (Xn − η)e−(Tn+1−Tn)σ/η|Nn = i]
= ηγ(1 + α)+ (ρ(N − i)+ i)η−1

E[Xn|Nn = i]
ρ(N − i)+ i+ γ(1 + α) . (13)

To derive(13) we have used the fact that, givenNn = i, the random variablesXn andTn+1 − Tn are
independent, andTn+1 − Tn is exponentially distributed with parameter(N − i)λ+ µi.

Let us evaluateE[Xn|Nn = i].
Definevi := η−1limn↑∞E[Yn|Nn = i]. Conditioning onNn−1 we have

lim
n↑∞

E[Xn|Nn = i] = lim
n↑∞

E[Xn|Nn = i, Nn−1 = i− 1]P(Nn−1 = i− 1|Nn = i)
+ lim
n↑∞

E[Xn|Nn = i, Nn−1 = i+ 1]P(Nn−1 = i+ 1|Nn = i)1[i<N]

=�u(i− 1) lim
n↑∞

E[Yn−1|Nn−1 = i− 1]
πi−1

πi

ρ(N − i+ 1)

ρ(N − i+ 1)+ i− 1

+�d(i+ 1) lim
n↑∞

E[Yn−1|Nn−1 = i+ 1]
πi+1

πi

i+ 1

ρ(N − i− 1)+ i+ 1
1[i<N]

= η�u(i− 1)vi−1i+�d(i+ 1)vi+1ρ(N − i)
ρ(N − i)+ i (14)

by using(4) and the definition ofvi. Finally, introducing(14) into (13)yields

(ρ(N − i)+ i+ γ(1 + α))vi = γ(1 + α)+ i�u(i− 1)vi−1 + ρ(N − i)�d(i+ 1)vi+1 (15)

for i = 1,2, . . . , N, or equivalently(12) in matrix form withv = (v1, . . . , vN). The uniqueness of the
solution of(12) is shown inAppendix B.

The vectorv in (12) gives the conditional stationary expected amount of fluid correctly cached just
before jump epochs (up to a multiplicative constant). However, the hit rateH in (9) is defined in terms
of the stationary expected amount of fluid correctly cached atarbitrary epochs. The latter metric can be
deduced from the former one by using Palm calculus, through the identity (see e.g.[16, Formula (4.3.2)])

E[X] = ΛE
0

[∫ T1

0
X(t)dt

]
(16)

whereE
0 denotes the expectation with respect to the Palm distribution2, T1 denotes the time of the first

jump after 0, and whereΛ denotes the global rate of the Engset model, i.e.

Λ = 1

E0[T1]
. (17)

From now on we assume that the system is in steady-state at time 0. Under the Palm distribution we
denote byN−1 andY−1 the number of up caches and the amount of correctly cached fluid respectively,
just before time 0 (i.e. just before the jump to occur at time 0).

2 i.e. assuming that a jump occurs at time 0 and that the system is in steady-state at time 0.
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We first compute 1/Λ. We have

1

Λ
=

N∑
i=0

πiE
0[T1|N0 = i] = 1

µ

N∑
i=0

πi

ρ(N − i)+ i = 1 + ρ
2Nρµ

(18)

by using(3) and (4).
Let us now determineE[X]. From(8), (16) and (18)we find

E[X] =Λ
N∑
i=1

πiE
0

[∫ T1

0
(η+ (X0 − η)e−tσ/η)dt|Nn = i

]

=Λη
[
N∑
i=1

πiE
0[T1|N0 = i] + 1

σ

N∑
i=1

πiE
0[(X0 − η)(1 − e−T1σ/η)|N0 = i]

]

=Λη
[

E
0[T1] − π0E

0[T0|N0 = 0]

+ 1

σ

N∑
i=1

πi(E
0[X0|N0 = i] − η)(1 − E

0[e−T1σ/η|N0 = i])
]
, (19)

E[X] =Λη
[

1

Λ
− 1

2Nρµ(1 + ρ)N−1
+ 1

µ

N∑
i=1

πi
η−1

E
0[X0|N0 = i] − 1

ρ(N − i)+ i+ γ(1 + α)

]

= c

1 + α

[
1 − 1

(1 + ρ)N + 2Nρ

1 + ρ
N∑
i=1

πi
η−1

E
0[X0|N0 = i] − 1

ρ(N − i)+ i+ γ(1 + α)

]
. (20)

By definition,E0[X0|N0 = i] = limn↑∞E[Xn|Nn = i], which has been computed in(14). By combining
(14) and (15)we obtain

E
0[X0|N0 = i] = η(ρ(N − i)+ i+ γ(1 + α))vi − γ(1 + α)

ρ(N − i)+ i .

Plugging this value ofE0[X0|N0 = i] into the RHS of(20), and using(4), yields after some straightforward
algebra

E[X] = c

1 + α

[
1 − 1

(1 + ρ)N + Nρ

(1 + ρ)N
N∑
i=1

(
N − 1
i− 1

)
ρi−1

i
(vi − 1)

]

= c

(1 + α)(1 + ρ)N
N∑
i=1

(
N

i

)
ρivi. (21)

According to(9) it remains to divide both sides of(21)by c to get(11). This concludes the proof. �

Conditions(10) in Proposition 4.1ensure that the system(12) has a unique solution (see Appendix
A). They are satisfied for both winning hashing (since�u(i)�d(i + 1) = (i/(i + 1))2 for i < N) and



F. Clévenot et al. / Performance Evaluation 59 (2005) 1–18 9

for partition hashing (since�u(i)�d(i+ 1) = 1/4 for all i < N) schemes – see discussion at the end of
Section 3.

Remark. SinceA is a tridiagonal matrix,(12)can be solved in onlyO(N) operations, once the mappings
�u and�d are specified.

4.2. Finite storage capacity

We assume in this section that the amount of fluid in each cache cannot exceed a given constantB.
More specifically, we assume thatX(t) ≤ BN(t) for all t ≥ 0. In this setting the time-evolution ofX(t)
between two consecutive jump times of the process{N(t), t ≥ 0} is given by

X(t) = min(BNn, η+ (Xn − η)e−(t−Tn)σ/η) (22)

for Tn < t < Tn+1. WhenB = ∞ then we retrieve(8).
Unfortunately, whenB is finite the computation ofE[Yn|Nn = i] introduces a non-linearity due

to the minimum operator in(22). Therefore, unlike in the case whenB = ∞, it is not possible to
find a closed-form expression for the hit rateH . An alternative approach to computeH is to use an
hybrid equation-based/discrete-event simulator that uses(22). This can be done as follows: First, run a
discrete-event driven simulation of the process{(Nn, Tn), n ≥ 1}. Then, use{(Nn, Tn), n ≥ 1} in (22) to
evaluateE[X]. We expect this solution to be much more time-efficient than a classical discrete-event driven
simulation of the entire system since the hybrid approach will only have to simulate events (up/down
events) on a slow time scale. This method is discussed inSection 6.2.

5. Performance of the caching system

In this section we useProposition 4.1to analyze cache clusters. First, we show how the result provides
qualitative insight for the hit rate. We then use the result to compare the hit rates of partition hashing and
winning hashing.

5.1. Qualitative behavior

For smallN, we can compute the hit rate in closed form. We do this now for winning hashing.
ForN = 2 we have

H = 2γ
ρ

(1 + ρ)2
2γα+ ργα+ 2γ + ργ + ρ2 + 4 + 3ρ

2γ2 + 4γ2α+ 6γ + 2γ2α2 + 6γα+ 4 + 2ργ + 2ργα+ 3ρ
.

We observe that the hit rate only depends on the parametersα, γ, defined inSection 4(see(6)), andρ. This
result actually holds for any value ofN since a glance atProposition 4.1indicates that the components
of A andb depend on the model parameters only throughα, ρ andγ. Interestingly enough, the fact that
the hit rate for a given rate of change depends on the parametersσ andc only through the ratioσ/c was
observed in[10] in a slightly different context. This is an indication that our fluid model is able to capture
some of the main features of the caching system.
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Fig. 1. Impact ofρ, γ andα on the hit rate for small clusters.

Fig. 1shows how the hit rate depends onγ,ρ andα for small clusters (i.e. whenN is small). The concave
shapes onFig. 1(a) shows that increasingγ (throughσ, for instance) can offer a large performance gain in
the smaller range, in this case whenγ ≤ 20. This can be related to empirical observations in[10,17,18]:
for small client population sizes, the authors found that the hit rate increases in a log-like3 fashion of the
population size. Moreover, Duska et al. showed that request rate is a better metric of performance than
client population size, and that the hit rate also increases with request rate[19]. Our model exhibits similar
shapes, although the hit rate is a rational function ofγ rather than a logarithmic function ofγ. Moreover,
it explains analytically these properties, and also includes the caches dynamic behavior throughµ in the
γ definition.

Parameterρ is fairly new in cache cluster analysis. It typically represents one aspect of the dynamic
behavior of the system, as apparent in(1) and (2).

Fig. 1(b) represents the hit rate as an increasing function ofρ, converging rapidly to its maximum value
(≈ 40% inFig. 1(b)). The curves flatten to become almost constant for high values ofρ; the largerN the
quicker the curve flattens. Therefore, except for very small values, in which case the hit rate drops very
quickly, ρ has very little influence on the hit rate. This can be easily explained. Indeed, we see from(1)
that with the probability 1/(1 + ρ)N all caches are down. Therefore, all caches are down with very high
probability whenρ is small, yielding very low hit rates, as shown inFig. 1(b). On the other hand, when
ρ is large there is always at least one cache up with a high probability which prevents the hit rate from
dropping to zero. Under these circumstances, the limiting factor for the hit rate will be the removal of
documents in caches, modeled by parametersγ (as described above) andα.

Fig. 1(c) shows howα impacts the hit rate forρ = 1 (which is large enough to avoid long periods of
total unavailability since in this case 50% of the caches are up on the average as shown in(2)) andγ = 1.
The curve is obviously decreasing sinceα is proportional to the rate of change (or expiration) of cached
documents. The highest hit rate is therefore obtained withα = 0. Also observe that the hit rate drops
significantly asα increases.

FromFig. 1 we infer that the key parameters of the system areγ andα, which almost determine the
hit rate as long asρ is not too close to zero. This can be explained by the fact that for high values ofρ,
γ andα capture the main interactions between object population, request rate, document rate of change
and cache dynamics – which correspond to document losses and misplacements in the cluster.

3 The hit rate is either a logarithm or a small power of the population size.



F. Clévenot et al. / Performance Evaluation 59 (2005) 1–18 11

Fig. 2.H as a function ofγ andα for ρ = 1.

Sinceγ andα are the two only limiting factors for realistic systems (whereP(N∞ = 0) ≈ 0), we may
want to compare their influence on the system. InFig. 2we observe that the domain where the hit rate is
high (above 40%) is very small (α ≤ 1, γ ≥ 10). In fact,γ has a real impact on the hit rate whenα ≤ 1.
The concave shape observed inFig. 1(a) for α = 0 is still present for positive values ofα but it is less
and less pronounced asα increases. This can be explained analytically from the fact thatXt ≤ η for all
t > 0 (provided thatX0 < η) as already observed inSection 4.1, which implies thatH is bounded from
above by 1/(1 + α).

5.2. Comparison of partition hashing and winning hashing

Fig. 3compares the hit rate for partition hashing with that of winning hashing whenα = 0, i.e. when
documents do not expire. The performance difference is striking, especially for smallγ andρ > 1: for
any set of parameters, winning hashing always exhibits much higher hit rates than does partition hashing
scheme. For instance, atρ = 50 andγ = 1 (seeFig. 3(b)), the hit rate for winning hashing is 36%, which
is 50% higher than that for partition hashing, i.e., 24%.

6. Numerical results

In this section, we compare quantitatively our macroscopic fluid model with a discrete-event driven
simulation of the microscopic model described inSection 3.1for N = 10 caches. Throughout this
section we use winning hashing: the CARP hashing function[12] is implemented in the simulator while
the corresponding values of�u and�d are used in the fluid model. Experimental results are given with
99% confidence intervals.
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Fig. 3. Comparison of winning hashing and partition hashing forN = 4 andα = 0.

6.1. Unlimited capacity

In this section, the fluid model estimation is computed usingProposition 4.1. We begin with a validation
of parameterγ. Table 1shows results for various values of the(σ, µ, c) triple with a constant ratioγ = 2
andρ = 1. Of course, the fluid model provides identical values, i.e., 50.9%, for all experiments (see
Section 5). We observe that the discrete-event simulation is almost insensitive to the variations of the
number of documents, request arrival rate or failure rate whenγ is constant: even when they vary by
several orders of magnitude, the hit rate remains between 50 and 52%, which is close to the fluid model
value. We conclude that our analytical evidence that the system is characterized by parametersρ and
γ is confirmed here by simulation results. Of course, whenσ becomes of the same order of magnitude
asµ, which is highly unlikely to happen in real systems, discrete-event simulation does not see enough
requests to create reliable statistics.

We now consider the impact ofγ on the hit rate.Fig. 4displays the hit rate as a function ofγ with ρ = 1,
for two different values ofα. We observe that the fluid model curves closely follow the same shapes as
the discrete-event simulations and therefore mimics the discrete system behaviour very accurately. An
important feature appearing onFig. 4 is the range ofH whenα = 0 andρ not too small:H increases
with γ from zero to almost 100%. Although this observation is not true for very small values ofN, as
shown inFig. 1, the upper bound seems to increase with N and is already very close to 100% forN = 10.
Therefore, for small values ofα andρ ≥ 1, it is possible to reach almost any desired hit rate by increasing

Table 1
Hit rate (%) forγ = 2 andρ = 1

c 2000 2000 2000 20,000 20,000 20,000
σ 0.2 2 20 0.2 2 20
µ 5×10−5 5×10−4 5×10−3 5×10−6 5×10−5 5×10−4

Simulation 50.0 ± 1.5 50.8 ± 1.9 51.8 ± 1.7 51.0 ± 1.2 50.3 ± 2.4 50.4 ± 1.9
Fluid model 50.9 50.9 50.9 50.9 50.9 50.9
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Fig. 4. Fluid model vs. simulation: impact ofγ (with N = 10 andρ = 1).

γ accordingly. This validates our finding thatγ determines the hit rate of the system whenα = 0. Also, the
curves comparing our fluid model to discrete-event simulation whenα = 1 clearly shows how this second
parameter limits the hit rate even for large values ofγ, which is rather intuitive: indeed,α represents the
time needed for the system to cache all existing documents (filling time) divided by the time-to-live of
the cached documents, whileγ is the ratio of the average lifetime of a cache and this filling time. It is
clear that if the document modification rate is high with regard to the filling time, fewer documents will
become misplaced upon failure events.

Finally, we examine the influence ofρ on the hit rate.Fig. 5 shows that both the fluid model and the
simulation exhibit a steep slope for small values ofρ and an almost flat shape forρ ≥ 1. This validates
the fact thatρ has very little influence on the hit rate except when it is close to zero.

We conclude that the fluid model provides an accurate approximation for the actual hit rate of the
discrete system and more importantly, highlights the key parameters and properties of the system.

6.2. Validation for finite storage

Fig. 6 compares the results obtained with the equation-based simulator that uses(22) with that of a
discrete-event driven simulator as a function of the average storage capacityNmoyB for γ = ρ = 1 and
α = 0, whereNmoy = Nρ/(1 + ρ) is the mean number of active caches (see(2)).

The flat shape after a threshold around 1.5c whenα = 0, indicates that increasing capacity beyond a
certain value does not improve the cache performance, limited by other factors such as cache dynamics.
This phenomenon is even more obvious whenα > 0, because object expirations happen faster than cache
filling, and justifies the infinite capacity assumption inSection 4.1.

Fig. 6shows that the equation-based simulator results not only exhibits the same shape as the discrete
system hit rate, but also provides an accurate numerical approximation. This strengthens the conclusion
that the fluid model is able to capture the main features of the discrete system.
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Fig. 5. Fluid model vs. simulation: impact ofρ (with N = 10 andγ = 10).

Moreover, the equation-based simulator is a much faster tool than the discrete-event driven simulation
of the system, especially for large values of request rates. In addition to an obvious efficiency gain, it
provides higher accuracy by allowing the simulation of a much larger number of up/down events, thereby
approaching more closely the stationary state. Also, the equation-based simulation method can easily be
extended to other equations than(22), for instance to take into account document popularity as discussed
in Section 3.2.

Fig. 6. Impact ofB on the hit rate.
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7. Concluding remarks

In this paper we have considered a complex system consisting of multiple nodes that randomly go
up and down and which store new objects arriving randomly from origin servers. The system exhibits
randomness on two time scales: object arrivals on a fast time scale, and cache up/down events on a slower
time scale. To analyze this complex system, we have approximated the system with a stochastic fluid
model, which although non-trivial, turns out to be mathematically tractable. Comparison with simulation
results has shown that the hit rate provided by the solution to the model is a good approximation of the
actual hit rate. Also, the solution highlights the key characteristics of the actual system.

Our stochastic fluid model inSection 3is quite general and can be used to model a variety of content
distribution systems. Many open problems remain. For example, it is of interest to extend the theory to
cover object popularity (e.g., Zipf distribution). It is also of interest to extend the theory to model content
dynamics in P2P file sharing and in CDNs.

Appendix A. Stationary distribution of the Engset model at jump times

In this section we compute the limiting distribution of the Markov chain{Nn, n ≥ 1}. Let P =
[pi,j]0≤i,j≤N be its transition probability matrix. We havepi,i+1 = ρ(N − i)/(ρ(N − i) + i) for i =
0,1, . . . , N − 1,pi,i−1 = i/(ρ(N − i)+ i) for i = 1,2, . . . , N andpi,j = 0 otherwise.

Since this Markov chain4 has a finite-state space and is irreducible, it is positive recurrent[20, Cor.
5.3.19, 5.3.22]. Therefore, it possesses a unique stationary distributionπ = (π0, . . . , πN) given by the
(unique) solution of the equationπP = π such that

∑N
i=0πi = 1 [21, p. 208].

We proceed by induction to computeπ. From the equationπP = π we find thatπ1 = (ρ(N−1)+1)π0

andπ2 = ((ρ(N − 2)+ 2)/2)ρ(N − 1)π0. This suggests that

πj = ρ(N − j)+ j
j

ρj−1

(j − 1)!

(N − 1)!

(N − j)! π0 (A.1)

for j = 1,2, . . . , N. Assume that (A.1) holds forj = 1,2, . . . , i < N − 1. Let us show that it still holds
for j = i+ 1. We have

πi+1 = ρ(N − (i+ 1))+ i+ 1

i+ 1

(
πi − ρ(N − (i− 1))

ρ(N − (i− 1))+ i− 1
πi−1

)

= ρ(N − (i+ 1))+ i+ 1

i+ 1

(
ρ(N − i)+ i

i!

ρi−1

(N − i)!
− ρ(N − (i− 1))

(ρ(N − (i− 1))+ i− 1)

(i− 1 + ρ(N − i+ 1))ρi−2

(i− 1)(i− 2)!(N − i+ 1)!

)
(N − 1)!π0 (A.2)

= ρ(N − (i+ 1))+ i+ 1

i+ 1

ρi(N − 1)!

i!(N − (i+ 1))!
π0

4 Note that this chain is period (with period 2).
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where (A.2) follows from the induction hypothesis. The constantπ0 is computed by using the normalizing
condition

∑N
i=0πi = 1; we findπ0 = 1/(2(1 + ρ)N−1) as announced in(3). Plugging this value ofπ0

into (A.1) gives(4).

Appendix B. Uniqueness of the solution of (12)

The linear system(12) defined inProposition 4.1admits a unique solution if and only if det(A) �= 0.
SinceA is a tridiagonal matrix we can use theLU decomposition[22, Section 3.5]A = LU with

L =




l1 0 · · · 0

β2
. . .

. . . 0
...

. . .
. . .

...

0 · · · βn ln


 , U =




1 u1 · · · 0

0
. . .

. . . 0
...
. . .

. . . un−1

0 0 · · · 1




whereli’s andui’s are defined as follows:

a1,1 = l1, ai,i = li + ai,i−1ui−1, i = 2, . . . , N, liui = ai,i+1, i = 1, . . . , N − 1.

Both matricesL andU being bidiagonal matrices it follows that det(A) �= 0 if and only if li �= 0 for
i = 1,2, . . . , N.

We use an induction argument to show thatli �= 0 for i = 1,2, . . . , N. We havel1 = γ+ρ(N−1)+1.
Assume thatli > γ+ρ(N− i) for i = 1,2, . . . , n < N−1 and let us show thatln+1 > γ+ρ(N−n−1).
We have

ln+1 = an+1,n+1 − an+1,nan,n+1

ln

= γ + ρ(N − n− 1)+ (n+ 1)
ln − ρ(N − n)�u(n)�d(n+ 1)

ln
> γ + ρ(N − n− 1)

by using the induction hypothesis together with the fact that 0≤ �u(n)�d(n+ 1) ≤ 1.
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