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Abstract

In this paper we consider the generalized processor sharing (GPS) mechanism serving two traffic classes. These
classes consist of a large number of independent identically distributed Gaussian flows with stationary increments.
We are interested in the logarithmic asymptotics or exponential decay rates of the overflow probabilities. We first
derive both an upper and a lower bound on the overflow probability. Scaling both the buffer sizes of the queues and
the service rate with the number of sources, we apply Schilder's sample-path large deviations theorem to calculate
the logarithmic asymptotics of the upper and lower bound. We discuss in detail the conditions under which the upper
and lower bound match. Finally we show that our results can be used to choose the values of the GPS weights. The
results are illustrated by numerical examples.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A major trend in communication networking is constituted by the integration of a growing range of
traffic types over a common network infrastructure. These traffic types are highly heterogeneous, with
respect to both (i) their diverse Quality-of-Service (QoS) requirements in terms of packet delay, loss,
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and throughput metrics, and (ii) their specific (stochastic) properties. We now comment on both types of
heterogeneity.

(i) Heterogeneous QoS, packet scheduliflg-O queues lack the capability of offering multiple QoS
levels. Hence, if a FIFO queue is used to support traffic classes with heterogeneous QoS re-
qguirements, all classes should be offered the most stringent of these requirements. This approact
clearly leads to inefficient use of network resources: some of the classes get a better QoS than
requested.

The need for efficient QoS-differentiating mechanisms motivates the development of discrimi-
natory scheduling disciplines that actively distinguish between streams of the various traffic types.
Packet versions of the ideal fluid discipligeneralized processor sharif@PS), see, e.g[20,21],
are considered to be suitable candidates. In GPS, each class is guaranteed a certain minimum servic
rate; if one of the classes does not fully use this guaranteed rate, the residual capacity is redis-
tributed among the other classes (in proportion to their guaranteed rates). Note that this makes GPS
a work-conserving discipline. GPS is considered as a promising compromise between isolation and
sharing: each traffic class is protected against ‘misbehavior’ of other classes, whereas at the same
time significant multiplexing gains between classes can be achieved.

In this paper we focus on two classes sharing the total service ca@aadgording to GPS. We
assign guaranteed rapgC to clasg, which can be claimed by clasat any time—thep; are referred
to asweights i = 1, 2. Both classes are assigned a queue, that fills when the input rate temporarily
exceeds the capacity available. When both classes are backlogged, i.e., have non-empty queues, bo
are served at their guaranteed rate. If one of the classes does not fully use its guaranteed rate, the
the unused capacity is made available to the other class. Itis clear that, in order to fully benefit from
GPS, the weights should be chosen appropriately. This is not a straightforward task, that usually
relies on expressions (or approximations) for the buffer content distributions of the queues. Weight
setting procedures available from the literature are often restricted to special classes of input traffic,
see, e.¢9.]10,12]for the case of leaky-bucket regulated traffic.

(i) Heterogeneous traffic, Gaussian moddis model the heterogeneity of the input traffic, Gaussian
models have proven to be particularly useful. Traditional traffic models, like for instance Markov-
modulated Poisson processes or exponential on-off sources, allow only a mildly correlated traffic
arrival process. As time correlations decay relatively fast in these models, they are referred to as
short-range dependentraffic measurements in the 1990s, however, convincingly showed that for
various types of traffic such correlations typically decay relatively slowly, motivating the use of
long-range dependemhodels[13]. Gaussian models cover both short-range (for instance Ornstein—
Uhlenbeck-type inputs) and long-range dependent traffic (for instance fractional Brownian motion,
abbreviated to fBm), and are therefore considered to be extremely useful.

A complicating issue in the choice of the appropriate traffic model is the fact that network traffic is usually
influenced by feedback loops, regulating the users’ input streams (think of TCP). Kilpi and INidkfos
argue that (non-feedback) Gaussian traffic models are still justified as long as the aggregation is sufficiently
large (both in time and number of flows), due to Central Limit type of arguments.

The Gaussian model is also justified by several theoretical results. Among these we mention Tagqu et
al. [23], who consider the superposition of many heavy-tailed on-off sources, and prove convergence of
the resulting aggregate traffic process to fBm (after rescaling time appropriately). It was recently shown
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in [7] that this convergence carries over to the queueing process, justifying the choice of fBm as a good
approximation of traffic inputs in queueing models.

In this paper we focus on GPS queues with Gaussian inputs. Our framework concentrates on traffic
heterogeneityacrossthe GPS classes, rather thaithin classes. We assume both classes to consist of
superpositions of i.i.d. sources.

1.1. Large deviations

Above we motivated the interest in GPS queues with Gaussian inputs. Our study focudasgen a
deviationsanalysis of this model.

Over the past two decades, significant research efforts have been made on the large-deviations analysis
of queueing models. These efforts have culminated in a wealth of contributions to the understanding of
the occurrence of rare events in queues. In particular, the celelnateg sourcescaling, introduced in
the seminal paper of Weig25], has provided a rich framework for obtaining large-deviations results.

In a many-sources setting, one considers a queue fed by the superpositiardotraffic sources, with
queueing resources (service rates, buffer thresholds) scaled astlvell. This framework is motivated

by the fact that the number of sources multiplexed in a network resource (particularly in the core) is
typically large. Under mild conditions on the source behavior, explicit expressions are available for the
exponentialdecay of the probability that the buffer content in a single FIFO queue exceeds a certain
level. Early references in this large-deviations framework are the logarithmic asymptotics found in, e.g.,
Botvich and Duffield5] and Courcoubetis and Webé.

In contrast, only few large-deviations results are known for queues operating under a non-FIFO schedul-
ing discipline. In[17], Mannersalo and Norros initiated the study of the priority mechanism, whereas
in [18] they examine the GPS discipline. In both papers useful intuition and heuristics were developed.
Their results on the priority mechanism were further enhancdd@h notably a lower bound on the
decay rate of overflow in the low-priority queue was found, as well as conditions under which this lower
bound coincides with the exact value. The main goal of the present paper is to obtain similar rigorous
many-sources large-deviations results for the two-class GPS system.

A second asymptotic regime is the so-cal@ge-bufferregime. Itis, however, not clear to what extent
the assumption of large buffers applies in practice — particularly real-time applications do not tolerate
large delays, and hence large buffers are not appropriate. It is noted that GPS in the large-buffer regime
(rather than the many-sources regime) is well understood. A significant contribution was made by Zhang
[26], but an essential assumption in his work is the assumption of short-range dependent traffic (to ensure
the existence of the asymptotic cumulant function); long-range dependent input (such as fBm) was not
covered. Other papers on the large-buffer regime are,[d]gwhere the focus is on a single node fed
by a mixture of heavy-tailed and light-tailed sources, f#j, where a GPS network (with heavy-tailed
sources) is analyzed.

1.2. Contribution

The results of the paper can be summarized as follows. In the first place, we derive upper and lower
bounds for the overflow probabilities in the two-queue GPS system. These are generic in that they do not
only apply to Gaussian inputs, but in fact to any input traffic model. Then we evaluate these bounds in
the many-sources framework, i.e., we derive their exponential decay rates (in the number of gpurces
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after rescaling the link spead = nc as well as the buffer thresholl= nb. We do this by using large-
deviations machinery, in particular the multi-dimensional version of the classicaECrasult for sample
means, and the pathwise large-deviations principle of Schilder. We then prove tightness of the derived
bounds under certain conditions, and present an intuitive motivation why tightness can be expected more
generally. Finally we address the problem of finding appropriate weights. In particular, we focus on the
operational issue of finding weights such that the QoS-requirement is met for all combinations of sources
within some predefined region.

The paper is organized as follows. Sectibdeals with preliminaries on GPS, Gaussian sources, and
large deviations. SectioBpresents the generic upper and lower bounds on the overflow probability of
(without loss of generality) queue 1. We first focus on the regime in which the mean rate of the type 2
sourcesnuy, is below their guaranteed rateé,.; lower and upper bounds on the decay rate are derived
in Sections4 and 5 Section6 deals with the (easier) caggi, > ngo.. A discussion on the results is
given in Sectiory; it turns out that three generic regimes can be distinguished. Sé&aiddresses weight
setting procedures. Secti@rconcludes.

2. Model and preliminaries

In Section2.1we introduce the two-class GPS model with the necessary notation. Then we discuss in
Section2.2 Gaussian processes. The large-deviations theorems ofCeard Schilder will be presented
in Section2.3.

2.1. Generalized processor sharing

We consider a system where traffic is served according to the GPS mechanism, consisting of two queue:
sharing a link of capacitpc. We assume the system to be fed by traffic from two classes, wherd class
uses queue(i = 1, 2). Without loss of generality it is assumed that both classes considlafis (see
Remark 2.2 We assign a weigh#; > 0 to clasd and, again without loss of generality, assume that these
add up to 1, i.e.¢1 + ¢ = 1. The GPS mechanism then works as follows. Clagseives service at
rateng;c when both classes are backlogged. Because ictpeds at least service at raté;c when it has
backlog, we will refer to it as thguaranteed ratef classi. If one of the classes has no backlog and is
transmitting at a rate less than or equal to its guaranteed rate, then this class is served at its transmissic
rate, while the other class receives the remaining service capacity. If both classes are sending at rates le:
than their guaranteed rates, then they are both served at their sending rate, and some service capacity
left unused. We assume that the buffer sizes of both queues are infinitely large.

Without loss of generality, we focus on the workload of the first queue. The goal of this paper is to
derive the logarithmic asymptotics for the probability that the stationary workload exceeds a threshold
nb. Denoting byQ;, = Q;,(0) the stationary workload in théh GPS queue at time 0, the probability
of our interest reads

IP)(Qzl,n = }’lb) (1)
We denote by (s, ) the amount of traffic generated by tjik flow of class in the interval §, ¢], j =
1,...,n,i=1,2. DefiningB;,(s, t) as the total service that was available for ciasshe interval §, r),

we have the following identity:
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Qint) = Qin() + Y Ajils. 1) = Binls.1). Vs <1, withs, 1 € R, @)
J=1

The stationary queue can be represented by:

Qin(0) = sup > Aji(—1.0)— Biu(—1,0) ¢, 3
> j=1

where the negative optimizingcorresponds to the beginning of the busy period that includes time
0, as argued if22]. In Section3 we rewrite our problem in terms of thempirical mean processes
nty " A, ), i =1, 2. We define the realization af* >~_; A;(0, r) by fi(r), i.e., we speak of
fi(-) as thepath of the empirical mean process of clas8y A,[ f;]1(s, r) we then denote the value of
nt Z’}Zl Aji(s, t) for the (given) pathy;(-), i.e., A;[ fil(s, t) == fi(t) — fi(s). For notational convenience
we usef(-) to denote the two-dimensional patfi(-), f2(-)).

2.2. Gaussian processes

We assume the flows of classi to be i.i.d. Gaussian processes with stationary increments. Let
A;i(s, 1) be distributed as\;(s, 1), where A,(s, t) can be considered as the ‘generic’ random variable
corresponding to the amount of traffic of a single claBew arriving in the interval {, ¢),i = 1, 2. We
denote the corresponding mean traffic rate and variance functipndoydv;(), respectively: for alk <
t, EA;(s, 1) = u;(t — s) andVarA;(s, 1) = v;(r — s). We also define the aggregate mean rate- 1y + uo
and the aggregate variance functigr) := v1(-) + v2(-). To guarantee stability, we assume thak c.

In order to apply Schilder's sample-path large-deviations principle (LDRg¢¢rem 2.5 we also need
to introduce theenteredorocessA;(¢) := A;(0, 1) — w;t. The covariance functioR;(s, ) is for all s < ¢
defined by

F(s,1) = COVA(0, ), A0, 0] = COVIA), 0] = 5(0(5) + () — ut — ).

Finally we make the following assumptions on the variance function.

Assumption 2.1. We assume that, far= 1, 2, (A1) v;(-) is continuous, differentiable on (60); (A2)
J/vi() is strictly increasing and strictly concave; (A3) for some: 2 it holds thaw;(r)r* — Oast — oo.

Assumptions (Al) and (A3) are required to apply ‘Schilder’, Ede Assumption (A2) is needed in
the proof ofLemma 5.9

Remark 2.2. Above we assumed that both classes consistsdurces, but the analysis can be easily
extended to the case of an unequal number of sources. The scenario withhelasgyns; flows, with
meanyu; and variancey;(-), is equivalent to a scenario where clasgsn flows, with means;u; and
varianceg;v;(-), due to the infinitely divisibility of the Gaussian distribution.

2.3. Sample-path large deviations

The analysis in the present paper relies on a sample-path LDP for (centered) Gaussian processes
This section is devoted to a brief description of the main theorem in this field, (the generalized version
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of) Schilder’s theoren3]. However, we start by recalling the multivariate version of the well-known
Cramér's theoremse€[8, Thm. 2.2.30.

Theorem 2.3 (Multivariate Crangr). LetX; € R? be i.i.d. d-dimensional random vectoyjs= 1, ..., n,
distributed as a random vector X. Then! > i-1 X satisfies the following LDP:

(a) For any closed seF C R?,

. 1 1 . _
Ilin_)sogp; logP o E 1 X;jeF| < _12}1 A(x);
J=

(b) For any open seG C R?,

o1 1¢ .
lim inf ~log P ;2; Xj€G | = —inf A(x).
j=

where the large-deviations rate functiot(-) is given by

A(x) = sup((8, x) — logEe'®X)), (4)
R4

with the notation(, ) denoting the usual inner produdiz, b) ‘= a'b = Zf:l a;b;.

Remark 2.4. Consider the specific case th¥has a multivariate Normal distribution with mean vector
pand ¢ x d) non-singular covariance matri. Using logE(e®*)) = (6, u) + 367 X9, it is not hard to
derive that, with ¢ — u)" = (x1 — 1, ..., xg — ia),

0" = 57— p)andAW) = o(x — w5 — ), 5)

where6* optimizes(4); it is well-known thatA(-) is convex.

We now sketch the framework of Schilder's sample-path LDP, as establisH&d, isee alsd9].
We restrict ourselves to the aspects that are relevant in the present study; for more details we refer tc
[1,17,19] Considem i.i.d. centered Gaussian procesggs(-), for i = 1, 2, with stationary increments
and covarianc€oV[A ;(s), A;i(1)] = Ii(s, t). Define, fori = 1, 2, the path spac®; as

. . i . i
2, = Jw; : R — R, continuousw;(0) = 0, lim w—() = lim w—() =0y,
t—o0 14+t t—>-o00 14+t

which is a separable Banach space by imposing a specific norm, as explajh@&}l We adhere to the
approach if17] by choosing2 = £2, x £2; as our path space, whefa ;1(-)}"_; and{A;2(-)};_; are
independent. ‘
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Next we introduce and define theproducing kernel Hilbert spac®; C £2; — see[2] for a more
detailed account — with the property that its elements are roughly as smooth as the covariance functions
I(s, -). We start from a ‘smaller’ spacg, defined by

n
S =1w: R — R, a),() = Zaj,[l“,-(sj, -),aj,,',sj € R,]: 1,....n;neN
j=1

The inner product on this spaégis, for w, ;, w,,; € S;, defined as
(Wa,is wp i) R, = <Z a;ili(s;, ), Zbk,iﬂ(sk, ')> = Z Zaj,ibk,iri(sj, SK); (6)
j=1 k=1 g J=lk=l

notice that this impliesl(s, -), I;(-, 1))z, = (s, t). We now define the noriiw; || g, := /(wi, wi)g,. The

closure ofS; under this norm is defined as the spd;eBecause we have assumed the procesdses)

andA ;»(:) to be independent, we can define the reproducing kernel Hilbert space of the bivariate process
(Aj1(-), Aj2(-)) by R := Ry x R,. The inner product ifR, with w, ;, w,; € R;, obviously reads

(wa,1, @a,2), (@1, ©0p2)) R = (®a,1, ©p1) Ry F (Wa,2, Db.2) k-

Now we can define the rate function of the sample-path LDP by

slol if w e R;

I(w) = .
otherwise

(7)

Under Assumptions (A1) and (A3) the following sample-path LDP holds.
Theorem 2.5 (Generalized Schilder);~* Z;Zl Xj,,-(-) satisfies the following LDP:

(a) For any closed sef’ C £2,
lim sup-~ log P 1Xn:X ()e F| <—inf I(w);
n—)oopn g n- 1 Y © - weF @)
]:
(b) For any open set C £2,

n—-oo n

o1 1 — .
liminf = logP ;Z;Aj‘,-(.)ec; > — inf I(w).
]:

3. Generic upper and lower bound on the probability

In a GPS framework the workloads of the queues are intimately related: it is not possible to write down
an explicit expression fo@; ,(0), fori = 1, 2, without using the evolution of the workload in the other
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gueue. This makes the analysis of GPS systems hard. In this section we derive explicit upper and lowel
bounds forQ1 ,,(0) in terms of the process@;f:l Aji(-, ), i=1,2.

In the remainder of this paper, we have to distinguish between two regimes. The most involved regime
is 2 < ¢oc, which we refer to asinderload for class 2In this regime, class 2 is stable regardless of
the behavior of the other class. The other regime.s ¢-c, the regime where class 2 is said to be in
overload Although the bounds that are derived in this section hold for both regimes, they are only useful
in the regime with underload for clag — they will be exploited in Sectiomsand 5 The analysis for
the regime with class 2 in overload is presented in Sed&ion

Note that the results in this section hold regardless of the distribution of the inputs; they are also valid
for non-Gaussian traffic. We also remark that, in order to justify the use of the large deviations results, we
formally have to verify whether the sets under consideration are indeed open or closed. This (technical)
issue can be dealt with in precisely the same fashion HinTheorem 3., and is left out here.

Trivially, we can rewrite the overflow probability to

P (Ql,n(o) = nb) =P (U{Ql,n(o) + QZ,n(O) > nx + nb’ QZn(O) = nx}) . (8)

x>0

Because of the work-conserving nature of GPS, it is easily seen that the following relation holds for the
total queue:

01.,(0) + 02,(0) = supy > (A1, 0) + A 2(~1, 0)) — net | . ©)

> j=1

Substituting this relation foQ1 ,(0) + Q2.,(0) in the right-hand side B), we find

P (U supi D (Aja(=1,0)+ Aj2(—1,0) — nct § > nx + nb, Q2,(0) < nx]) . (10)
x>0 >0 =1
We denote the optimizingin the above supremum by. Following[22], —¢* can be interpreted as the
beginning of the busy period of the total queue containing time 0. Next we con@;d€0). Let us denote

by —s* the beginning of the busy period of queue 2 containing time 0. Then clgady0, ¢*], since the

busy period of the total queue cannot start after the start of the busy period of queue 2. Now using the
supremum relatio3), we obtain

02,(0) = sup > Aja(—s5,0) = Bau(—s,0) . (12)
se(0,7 j:l

In order to find bounds foP(Q1.,(0) > nb), it follows from (10) that we need to bound the class 2
workload at time 00> ,(0). Given its representation {fi1), this means that we have to find bounds on
the service that was available for class 2 during the busy period containing time O.
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We introduce the following additional notation:

dx>0,t>0:Vse (0,1):

<%) Z(Afll(_t’ 0)+ Aj2(—1,0)) > x + b +ct,

E, = P} -
l n
- Z Aj2(=s,0) < x4+ ¢ocs
n) ‘=
dx>0,r>0:Vse(0,¢):3u e (0,s):
1 n
o (Z) D (Aja(—1.0)+ Aja(—1,0)) = x + b +ct, |
n ~— j=1 .
1 n
<;) Z(Aj*Z(_S’ 0)+ Aj1(—s, —u)) < x+ ¢1cu —cs
J=1

In the next lemmas we derive the lower and upper bound for the overflow probability of class 1.
Lemma 3.1 (Lower bound).

P(Q1,(0) = nb) > P(&,).
Proof. Recall that—s* denotes the beginning of the busy period of queue 2 that contains time O.
Hence, the workload of class 2 is positive in the intervab*, 0), indicating that class 2 claims at

least its guaranteed rate in this interval ,(—s*, 0) > n¢ocs™. Using this lower bound ir(11), we
derive

02.,(0) < sup IZ Aja(—s,0)— ¢2ncsl . (12)

se) |15
The lower bound fof?(Q1.,(0) > nb) is now found by substitutingl2) for 0, ,(0) in (10). O
Lemma 3.2 (Upper bound).
P(Q1,(0) = nb) < P(F,).
Proof. From(11) it follows that we need an upper bound 85 ,(—s*, 0). We distinguish between two
scenarios: (a) queue 1 is strictly positive durirg?{, 0) and (b) queue 1 has been empty at some time in

(—s*, 0).

(a) Since both queues are strictly positive durirg™, 0), both classes claim their guaranteed rate, i.e.,
By, (—s*, 0) = npacs™.
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(b) Trivially, By ,(—s*,0) < ncs* — B1,(—s*, 0). Bearing in mind that queue 1 has been empty in
(—s*, 0), we definex* :=inf{u € (0, s*) : Q1.,(—u) = 0}. Hence both queues were strictly posi-
tive during u*, 0), and consequently both classes are assigned their guaranteed rates. Togethel
with (2) this yields

B1,(—s*,0) = By, (—s*, —u*) + By,(—u*, 0)

= Q1.(—s") + Z Aj1(—s", —u*) + nocu”

j=1

>uel(rg)fs*)[ZA,1( s* —u)+n¢1cu}

This implies

ue(0,s*)

By, (—s*,0) < nes* — inf iz Aja(—s", —u) + n¢1cu} . (13)
j=1

As the right hand side dfL3)is larger thamg,cs*, items (@) and (b) imply that usin@3)in (11) yields

s€(0,7)

02.,(0) > sup lZAJZ( s, 0)—ncs+ |nf 'ZAj_l(—s, —u)+n¢1cu} } .
j=1

Substituting this forQ, ,(0) in (10) then yields the desired upper bound.]

Remark 3.3. Compare the set$, andF,; evidently,£, C F,. Any pathf of the sample-mean process in

F,. defines epochg* ands* (as identified in the proof dfemma 3.2. It is not hard to see thatif* = s*,
fisalsoing,. From the proof of.emma 3.2takingu* = s* means that scenario (a) applies, where queue

1 is strictly positive during the busy period of queue 2 containing time 0. These simple observations turn
out to play a crucial role in the discussion presented in SegGtion

Remark 3.4. Bounds similar to those used in the proofsLeimmas 3.1 and 3.Bave been applied in
Zhang[26]. A crucial novelty of our approach, compared to Zhang's, is that it explicitly indicates when
the bounds match, relying on the interpretation*of*, andu*, see alsdRemark 3.3

There is, however, an important other difference with Zhang'’s approach. In Zhang’s upper bound for
01.,(0) he uses the ‘trivial GPS upper bound’, whereas his lower bound is more invohad.dpproach
it is crucial thatQ1 ,(0) is large, when (i) the total queu®; ,(0) + Q2.,(0) islarge, and (ii) at the same
time Q,,(0) is relativelysmall see(10). This explains that ouower bounduses the trivial GPS upper
bound (but now applied to queue 2), whereasupper bounduses Zhang'’s lower bound (again applied
to queue 2). We used these more sophisticated bound® p(0) > nb}, as Zhang’s simpler bounds
were not sharp enough in our setting.
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4. Lower bound on the decay rate: class 2 in underload

Sections4 and 5concern the regime in which class 2 is in underload, jug.< ¢,c. In Sectiord we
determine the decay rate of the upper bound?¢f ,(0) > nb) as presented ihemma 3.2 Then in
Section5 we calculate the decay rate of the lower bound6@1 ,,(0) > nb) as presented ibemma 3.1

Because ofemma 3.2

—lim sup IogP(an(O) > nb) > —lim sup IogIP’(]—",,).

n—oo n—o0

We now investigate the decay rate in the right-hand side of the previous display. Defining the set of paths

At {f ‘ A1 f1(=1,0) + Ao fI(=1.0) = x + b +ct, }

A f1(=s, 0) + Ag[ f1(—s, —u) < x — ¢1cu +cs

and

-0 Y

5€(0,1) ue(0,s)
Schilder’s sample-path LDP yields

— lim —IogIP’(]—")_ |nf JE(x), whereJb(x) := |nf inf I(f). (14)

n—o0on >0 feAl

Notice that we used that the decay rate oh#&onof events is just the infimum over the individual decay
rates. Although we do not have such a relation foinéersectiorof events, it is possible to find an explicit
lower bound, as presented in the next theorem.

Theorem 4.1.

—lim sup~ IogIP’(an(O) > nb) > — |nf JE(x)

n—-oo

where

JE(x) > inf sup inf inf I(f). (15)
>0 se(0, t)ue(O s) feASH

Proof. The first claim follows directly from the above. We now prove the second claim. Because for all
s € (0, 1), for givent,

ﬂ U Avtuc U Avtu

s€(0,r) ue(0,s) ue(0,s)
we have for alls € (0, ¢),

inf I(f) > inf

feA; FeUue A I(f) .
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Hence, it also holds for the maximizirsy

inf 1(f) > sup inf I1(f).

feA 5€(0,1) F€Uvueo, Y)A”M

This implies the second claim.(J

5. Upper bound on the decay rate: class 2 in underload

This section concentrates on the decay rate of the lower bouR@@®@, (0) > nb) as given inLemma
3.1 The procedure turns out to be more involved than that of Sedtion
Because otemma 3.1

— I|m |nf Iog]P’(Ql,,(O) > nb) < — I|m |nf Iog]P’(S ).

We now investigate the decay rate in the right-hand side of the previous display. Define the set of paths
A = {fIALfI(—1, 0) + A2[ fI(—=2,0) = x + b+ ct,  A2[ f](—s,0) < x + ¢acs).
Similarly to the first claim ifTheorem 4.1Schilder’'s sample-path LDP yields the following upper bound.

Lemma5.1.

—liminf = IogIP’(Ql,,(O)>nb)<|nf JY(x), where JY(x) :=inf inf  I(f).
>0 fEUxe(O.t)Ail

The objective of this section is to prove that, under some assumptions,

JY(x) = inf sup inf I(f). (16)
>0 5¢(0,r) fEAY

Again, because of the fact that an intersection is involved, no explicit expressidfi oy is available.
We therefore take the following approach: we first derive in Sedidra lower bound for/Y(x), and
then in Sectiors.2we give conditions under which this lower bound matches the exact valifé(e.

Remark 5.2. Notice the similarity between the right-hand sideg(1%) and (16)in particular if the
optimizingsandu in (15) coincide, see alsBemark 3.3

5.1. Lower bound o'V (x)

The following lemma gives a lower bound f@f (x). Its proof is analogous to that of the second claim
in Theorem 4.1and hence omitted.

Lemma 5.3.

JY(x) = inf sup inf I(f).
>0 s (0,1) fEAY
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The lower bound inLemma 5.3can be expressed more explicitly. To this end, we first concentrate on
calculating the minimum of (1) over f € A', for fixed s andt. The result, as stated iremma 5.4
requires the introduction of two functions. First recall the large-deviations rate fund{ion), of the
bivariate normal random variabld {(—z, 0) + A2(—t, 0), A2(—s, 0)), as given in(5),

T
1(y1—pt ) _1(y1—m ) (v(t) Iofs, f))
Ay1, y2) = 5 2(s, 1 A= '
We also define

x+b+(c—np))
v(r)

ki(x,s, 1) i= wis + I(s, ).

Lemma5.4. Fors € (0, 1),

A(x + b+ ct, x + ¢ocs),  if ka(x, s, 1) > x + ¢pacs;

At 1) = Tols 1) = {(x b+ (c— e2/2u(t), if ka(x, 5, £) < x + acs.

Proof. UsingTheorem 2.3

inf I(f) = inf A(y1, y2)-
fE.Aif’ y1=x+b+-ct, y2<x+¢pocs

BecauseA(., -) is convex iny; andy,, we can use the Lagrangian to find the infimum oweand y,:

L(y1, y2, &1, &2) = A(y1, y2) — E1(y1 — x — b — ct) + &2(y2 — x — ¢2cs),

with &1, & > 0. Two cases may occur, depending on the specific valuassondt. (i) If x, s andt
are such thak,(x, s, t) > x + ¢2cs, then both constraints are binding, i.¢;,= x+ b + ¢t and y, =

x + ¢ocs. (i) If x, s andt are such thaty(x, s, 1) < x + ¢2cs, then only the first constraint is binding, i.e.,
y1=x+ b+ ct,andy, = ko(x, s, 1). O

Remark 5.5. Note that thed* in Theorem 2.3re related to the Lagrange multipligrsandé, that are
used in the proof ofemma 5.41n case (ip; (s, t) = & > 0 andd(s, t) = —&> > 0, whereas in case (ii)
07(s, 1) = & > 0 andbi(s, t) = —& = 0.

Observe that’ (s, ) is continuous at | 0, i.e.,

(x 4+ b+ (c — p)1)?
20(t) '

Now Lemmas 5.3 and 5.yield the final lower bound foy?(x), as stated in the next corollary.

7:(0,7) =

Corollary 5.6.

JY(x) = inf sup (s, 7).

>0 5¢(0,1)
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Interpretation of 1(s, ). The decay ratd(f) can be interpreted as the cost of having a gatnd,
likewise, T (s, r) as the cost of generating a traffic pattern in the4¥gt

The proof ofLemma 5.4hows that thérstconstraint, i.e.y; > x + b + ct is always binding, whereas
the secondconstraint, i.e.y> < x + ¢ocs, IS sometimes binding, depending on the valugxk, s, 1)
compared toc + ¢ocs. Observe thats(x, s, ¢) is in fact a conditional expectation:

ka(x, s, t) = E[A(—s, 0)]A1(—1,0)+ Ax(—1,0) = x + b + c1].

The two cases dfemma 5.4an now be interpreted as follows. (i) The optimal valueyfds x + ¢ocs. In
this casek,(x, s, 1), which is the expected value of the amount of traffic sent by class-2sir)) given that
intotalx + b + cris sentduring€z, 0), islarger tham + ¢,cs: with high probability the second constraint
is not metjust by imposing the first constraint. In terms of cost, this means that in this regime additional
costisincurred by imposing the second constraint. (i) The optimal value feipreciselyk,(x, s, t), and
is smaller thamn + ¢ocs: A1(—1, 0) + Ax(—t, 0) = x + b + ct implies Ax(—s, 0) > x + ¢ocs With high
probability. Intuitively this means that, given that the first constraint is satisfied, the second constraint is
already met, with high probability.

Using this reasoning, it follows after some calculations that we can re¥yfser) in a helpful way as
shown in the next corollary. The first term accounts for the cost of satisfying the first constraft, in
the second term (which is possibly 0) for the second constraint.

Corollary 5.7.
(x + b+ ct — E[A1(—1, 0) + Aa(—1, 0)])?
2Var[A1(—t, 0) 4+ Ax(—t, 0)]

maxX{E[Aa(—s, 0)|A1(—t, 0) + Ax(—t,0) = x + b + ct] — x — ¢pocs, 0}
2Var[Az(—s, 0)]A1(—1, 0) + Ax(—1,0) = x + b + ct] )

Yi(s, 1) =

Two regimes for ¢,. Corollary 5.7implies that

2
inf sup 1y(s.1) > inf & H2 =W (17)
>0 5¢(0.1) >0 2U(I)

Letthe optimum in the right-hand side be attained ifwhich is, in fact, a function af, but we suppress
xhere, axis held fixed in this section). Suppose that forsadl (0, ) it holds thatk,(x, s, ) < x + ¢ocs,
then obviously the inequality ifiL7) is tight. This corresponds to a critical Weigbg'U(x) above which
there is tightness. This critical value is given by

. . ko(x, s, t) —
¢§’U(x) =inf {¢o: sup {ka(x,s, 1) —x — ¢pocs} <03 = sup M
s€(0.1°) 5€(0,1¢) cs

(18)

The resulting two regimes can be intuitively described as follows.

Large ¢o. If ¢ > ¢§’U(x), using the interpretation in terms of conditional expectations, the buffer
content of queue 2 at time 0 is likely to be below Hence, if in totaln(x + b + ct°) is sent during
(=1, 0), itis likely that at time 0, the buffer of class 1 has vahie

Smallg,. If ¢ < ¢§’U(x) then the guaranteed rate for class 2 is relatively small, meaning that its buffer
content may easily grow. Again in total (at leasty + b + cz“) has been sent during the interval(, 0),
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but now it isnot obvious that most of it goes to the buffer of class 1. Class 2 has to be ‘forced’ tattake
mostits guaranteed rate during this interval.

5.2. Conditions for exactness

As the overflow behavior in case ¢bh > ¢§’U(x) is essentially different from that in case ¢f <
¢§’U(x), we will consider in this section the two regimes separately.

The procedure followed will be the same for both regimes. Let us denote the optirsiamdjt in
Corollary 5.6by s* andr*, respectively. (Notice that and:* are functions ok, but, for conciseness, we
again suppress the argumaetjtFirst we use Schilder’s theorem to determine the most probable path in
A;*"* for the regime ofp, under consideration. Denoting this optimal pathfiywe then check whether

relyna (19)

>0 s€(0,7)

If so, the optimal path giving rise to the lower bound3afrollary 5.6 is in fact the optimal path far¥ (x).
Consequently, under conditigth9), /Y (x) and its lower bound coincide.

Case A.¢, larger than critical weight.

Because of the definition @fy Y (x), it holds for allg, > ¢5Y (x) that

b _ € 2
inf sup 7x(s, 1) = e+ b+ (c—wr) ,
>0 4c(0,1) 20(1°)

as identified before. The next theorem states that, for ihegee lower bound oY (x) (seeCorollary
5.6) actuallyequalsJY(x). We omit its proof because it essentially follows from the proof of Theorem
3.8in[16].

Theorem 5.8. If ¢ > ¢35V (x), then

: (x+ b+ (c — u))?
JY(x) = inf sup Ti(s, 1) = ,
(x) = inf Sup Txls. 1) 20()

and the most probable paths are, foe (—¢¢, 0),
f1(r) = =E[Ax(r, 0)|Ar(—1¢, 0) + Ap(—1°, 0) = x + b + ct] = —ka(x, —1, 1);
f5(r) = =E[Ax(r, 0)]A1(—1¢, 0) + Ax(—1°,0) = x + b + ct] = —ka(x, —1, 1°).
Case B¢, smaller than critical weight.

The analysis of this regime is more involved than that of case A. First we will show in the next lemma
that in this regime both constraintsliemma 5.4are met with equality. Its proof is omitted here, as it is
along the lines of Lemma 3.9 [i6]. Note that Assumptions (A2) and (A3) are used in the proof.

Lemmab.9. If ¢, < ¢§’U(x), thenky(x, s*, t*) > x + ¢ocs™.
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The next lemma gives the most probable paths in thedséfor the regime where for given, s and
t, we have thaky(x, s, t) > x + ¢ocs. We give the most probable paths foe (—¢, 0), but they can be
trivially extended to the entire real axis.

Lemma 5.10. If ko(x, s, 1) > x + pacs, then, forr € (—, 0), the most probable paths i#®' are

f1(r) = =E[A1(r, 0)|A1(—1, 0) + A2(—1,0) = x + b + ct, Ax(—s, 0) = x + ¢ocs];
fa(r) = —E[A2(r, 0)|A1(—1, 0) + Az(—1,0) = x + b + ct, Az(—s, 0) = x + ¢acs].

Proof. This is shown by using the arguments of the proofs of Lemma 3.106jhand Proposition 1 in
[19]. O
Easy calculations show that we can rewrite the above-mentioned paths as

fi(r) = par — 65(s, )M(—r, 1);
fa(r) = por — 07 (s, ) o(—r, 1) — 65(s, ) [2(—r, 5),
where they* follow from Theorem 2.3see alsdRemark 5.%. Interestingly, only one covariance function
is involved in the most probable path of class 1, meaning that its path will be symmetric ar¢Lirt)z.
Now we present conditions under which the lower boundofollary 5.6matches/Y (x), with an

approach that is similar to the one followed[i6] for tandem and priority queues. First we introduce
new notation. For; < ry,

IEA,'(I";L, }”2) = ]E[Ai(l"l, 1"2)|A1(—l‘*, O) + Az(—l*, O) =x+b+ Cl*], =12,

with Var() andCov(, -) defined similarly. For € (—¢*, 0) we define the functions

) = EA(r, 0) — x + dacr () = m(r) ) CoV(Aa(r, 0), Az(—s*, 0))
T VaA(h0) sy VT VarAL( 0)Vard (s, 0)

Again, we should formally writen,(-) and p,(-) to indicate the dependence gnbut we leave out the
subscripix in this section. Botl:(-) andp(-) attain a maximum 1 at= —s*; for m(-) this follows from
Corollary 5.7andLemma 5.9for p(-) from the fact that it is a correlation coefficient.

Theorem 5.11. If ¢, < ¢35 (x), then

JY(x) = inf sup Yi(s, 1) = A(x + b + ct*, x + ¢ocs™),

>0 5¢(0,1)

under the condition that:(r) < p(r) for all r € (—¢*, 0). The corresponding most probable paths are,
fori =1, 2,

f5(r) = —E[Ai(r, 0)| Az(—s*, 0) = x + ¢hocs™].



M. Mandjes, M. van Uitert / Performance Evaluation 61 (2005) 225-256 241

Proof. We have to show th¢f.9) holds. Straightforward calculations show that inddeflf*](—¢*, 0) +
Ao[ f*1(—1*,0) = x + b + ct*, as desired. Now it remains to be shown thain{f) < p(r) for all r €
(—1*, 0), thenA,[ f*](r, 0) < x — ¢ocr for all r € (—¢*, 0). This follows immediately from the following
(standard) decomposition:

(CO_V[AZ(I”, O)? AZ(_S*a 0)]
VarA;(—s*, 0)

Aol £1(r, 0) = — f3(r) = EA(r, 0) + (x + pocs™ — EAo(—s", 0)).

The fact that the decay rate now equals + b + ct*, x + ¢ocs*) is due toLemma 5.9 This proves the
stated. OJ

Remark 5.12. Note that the conditiom(r) < p(r) for all » € (O, #*) only involves properties of the class
2 input process. The abotd&eorem 5.11herefore holds foanyclass 1 Gaussian process with stationary
increments.

Remark 5.13. Following the approach ifil6], the optimal input rate pathg(-) and g,(-), which are
the first derivatives of;(-) and 5 (), can be calculated. Assuming0) = 0, these paths exhibit similar
properties as those [t6]: (i) g1(—1*) + g2(—1*) = c and (ii) g2(—s*) = ¢c. Hence, at time-r* the total
input rate isnc, making the server operate at full capacity. Then at tiraethe total input rate of queue
2 isngoc, meaning that queue 2 starts claiming its guaranteed rate.

6. Analysis of the decay rate: class 2 in overload

In this section the decay rate B{Q1 ,(0) > nb) is calculated for the regimgyc < uo.

Theorem 6.1. If ¢ < u2/c, then

(b + (p1c — pua)t)?
2vs(1)

— lim }IogIP’(Ql,n(O)znb) = ing (20)
n—>oo n >

Proof. We first show that the desired expression is a lower bound. Denot@/{0) the stationary
workload of queueif it is served (in isolation) at a constant rate Then the lower bound follows from

1 n
P(Q1,(0) = nb) <P (Ht >0:=> Aj(-1.0)=b+ dnct) :
n

j=1

due t001,(0) < 0;%(0).
The upper bound is a matter of computing the rate function of a feasible patti. thesthe optimizer
in the right-hand side o20). Forr € (—¢*, 0) define

F10) = ~E[A1(r O As(~1",0) = b+ er’] = par — CHEGI My (=, 7);
f5(r) .= =E[A2(r, 0)|A1(—1*, 0) = b + p1ct™] = por.
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This path clearly leads to overflow in queue 1 of the GPS system (as the type 2 sources claim their weight,
such that exactly service raig,c is left for the type 1 sources). The norm gf(-) is obviously 0, as

these sources are transmitting at mean rate; the rate function correspongii{g ®quals the desired
expression. [

7. Discussion of the results

In this section we will discuss the results of the previous sections. We identify three regimes for the
value of¢,, corresponding to three generic overflow scenarios. Case (i) directly relates to the overload
regime of Sectior®; Cases (ii) and (iii) to the underload regime of Sectidrend 5

For Case (i) our analysis immediately yields the exact decay rateltssmrem 6.1For Cases (i)
and (iii), however, the situation is more complicatdtheorems 4.15.8, and 5.11provide boundson
the decay rate. We strongly believe, however, that under fairly general conditions these bounds coincide
This claim is justified (1) by heuristic arguments in Sectibd, (2) by extensive numerical experi-
ments, as reported in Secti@n2, and (3) by explicit results for the special case of Brownian motion
input in Section7.3. In this section we usé to denote the decay rate B{Q1 ,(0) > nb), given that it
exists.

7.1. Structure of the solution

7.1.1. Ad Case (i): Class 2 in overload

First consider the situatiapp < uo/c =: ¢4. In this scenario the type 2 sources claim their guaranteed
raten¢o,c with overwhelming probability, so that overflow in queue 1 resembles overflow in a FIFO queue
with link raten¢;c; this principle plays a crucial role in the proof ©heorem 6.1We repeat it here for
comparison with Cases (ii) and (iii).

Forg, € [0, ¢9] :

(b (Bac — pa)r)?
/= Itl;lg 2v1(2)

7.1.2. Ad Case (ii): Class 2 in underload, wiph small

As argued in Section4 and § in this regime it is not sufficient to require thatx + b + cr) traffic is
generated in units of time, since, with high probability, a considerable amount of traffic will be left in
gueue 2. Hence, additional effort is required to ensure that queue 2 staysrbelow

Based on heuristic arguments, we present two claims.

A. Regarding the optimal values of u andRecall the probabilistic upper boundliemma 3.2In the
proof of thatlemmas;-s* denotes the beginning of the busy period of the second queue, which contains
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time 0. Hence, the second queue remains backlogged during the intesal{ and claims at least
its guaranteed ratep,c, leaving at most rate¢; ¢ to the first queue. Parallelling the proofladdmma
3.2, two scenarios are possible: in scenario (a) queue 1 was continuously backlogged-ditj@g,
whereas in scenario (b), queue 1 has been empty aftertithé.e., queue 1 was empty at some time
—u* during the busy period of queue 2.

Scenario (b) is not likely to be optimal, for the following reason. As queue 1 was empty*ait
does not benefit from any effort befora:*; queue 1 has to build up its entire buffer in the interval
(—u*, 0]. Now recall that queue 2 already started to show deviant behavior from-tirthe: —u*,
claiming its guaranteed rate. However, this additional effort of queue 2 before-timds of no
‘benefit’ for queue 1. In order for queue 1 to fully exploit that queue 2 takes its guaranteed rate during
(—s*, 0], it should be continuously backlogged during this interval, as in scenario (a). We therefore
expect that in the most likely scenarid = s*.

B. Regarding the optimal value of We introduced in the left-hand side f8). From this representation

it follows immediately thahx can be interpreted as the amount of traffic left in queue 2 (at the epoch
when the total queue size reachs + b)).

We argued before that queue 2 has to claim its guaranteed rate dusin@|. If a positive amount
of traffic is left in queue 2 at time 0, the type 2 sources apparently ‘generated too much traffic’; the
guaranteed rate could have been claimed with less effort. We therefore expect that in the most likely
scenarioc* = 0. Notice that an essential condition here is that- »/c, as otherwise a build-up of
traffic in queue 2 would not be ‘wasted effort'.

Because of Claims A and B, we expect that this regime appligs to[¢3, ¢5], with

k2(0, s, (0
@5 = sup k2(0. 5. 1(0) ()).
5€(0.1¢(0)) cs

Defining

()= (i)

we expect that the following relation holds:

For¢s € [¢5, ¢5] :

21(t) )T (vlm () T, r))‘l (m(t))

1.
J = —=inf sup (ZZ(S) (s, 1) vo(s) z2(s)

21200,

provided that for ali- € (—*(0), 0) it holds thatno(r) < po(r).
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7.1.3. Ad Case (iii): Class 2 in underload, with large
Here overflow of the total queue implies overflow of queue 1. Consequently, we expect the following
relation.

Forg, € [¢5,1] :

(b4 (e —w))?
S= 0

In Appendix Ait is formally shown that this result applies fgg € [sup,. ¢3Y(x), 1]; arguments
similar to claim B above (and extensive numerical experiments) suggest thag $§|B(x) = ¢5.

7.2. Numerical results

Section7.3 verifies the claims of Sectioii.1 for the special case of Brownian inputs. Extensive
numerical experiments, however, suggest that the claims are valid under considerably more genera
conditions — we have not found any counterexamples so far. In this section we present two numerical
examples.

Example 1. In this example type 1 sources are fractional Brownian motion (fBm) with= 0.2 and
v1(t) = ?", with Hurst paramete = 0.75, whereas type 2 sources are Ornstein—Uhlenbeck (OU)
sources withu, = 0.3 andv,(r) =t + €' — 1. Takec = 1 andb = 1. Here¢$ = 0.3, while numerical
computations yield thap; = 0.4914. Empirically, it turns out that in Case (ii) whepe € [¢9, ¢9], it
holds thatng(r) < po(r) for all € (—*(0), 0). Hence we can compare the upper and lower bounds. As
they turn out to match, we conclude that we found the exact value of the decay rate. Regarding Case (iii)
whereg, € [¢5, 1], we empirically find that indeed syp, ¢§’U(x) = ¢5, implying the correctness of the
relation that we expected. -

A specific example is consideredhig. 1. There we focus on a situation in whigh is in regime (ii):
¢> = 0.4. Numerical computations yield that = 0, r* = 6.1819, whiles* = u* = 5.6853. The figure
shows the traffic rates of both classes as a function of time. The total buffer starts to build up-attime
whereas queue 2 starts a busy period gt More detailed inspection yields that with these traffic rates,
at time 0 the first queue has indeed overflow, whereas the second queue is empty — in other words: the
path is feasible.

Example 2.In this example we interchange the two classé&s@mple 1Now¢3 = 0.2 andg = 0.7232.
We again find sup,, ¢§’U(x) = ¢5, so that the relation we expected for Case (iii) holds.

For Case (ii) however, we now dwtfind the exact decay rate. Consider the exargple- 0.4. In the
computation of the lower bound we find = 0, * = 5.0723, and™* = u* = 5.0597. Again we verified
the ‘exactness condition’, but now we found (—¢*, 0) such thatz(r) > p(r) — hence, the upper bound
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Fig. 1. Input rate paths; type 1 corresponds to fBm and type 2 to OU.

does not holdFig. 2 explains what happens. The corresponding input rate path of the fBm sources has a
‘dip’ at time —s*. Consequently, this pathimotfeasible: it is true that the sources buildiug- ct* traffic,
as desired, but a positive amount of traffic is left in the second queue at time O.

Despite the fact that in this case our approach does not yield the exact outcome of the decay rate
in Case (ii), it still provides us with useful information. (1) In the first place, we do not have an up-
per bound, but fortunately thiewer bound on the decay rate still applies. Such a lower bound cor-
responds to an upper bound on the probability of interest, which is of practical interest, as typically
communication networks have to be designed such that overflow is sufficiently rare. (2) Numerical ex-
periments showed that the amount of fluid left in the second queue at time 0 is usually extremely small.
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Fig. 2. Input rate paths; type 1 corresponds to OU and type 2 to fBm.
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This makes us believe that the lower bound is relatively close to the exact outcome. (3) (Rough) full-
link approximations, as introduced [t8], optimize over path$ such that there is a> 0 such that
A1[f1(—1,0) + Ao[ f1(—t, 0) exceedd + ct, while at the same time,[ f](—1, 0) < ¢oct. It is easily

seen that this procedure provides a more conservative lower bound (as it a priori cheogedhe
observations (1)—(3) justify to use, in Case (ii), the lower bound as an approximation, as is done in
Section8.1

7.3. Brownian motion input

In this section we consider the special case that both types of sources correspond to Brownian motions
v1(t) = Aqt, v2(f) = Aot. The formulae from the previous section can be evaluated explicitly, as shown in
[15]. The result is given below. In particular, in the proof of this result —[$8¢— it turns out that both
Claims A and B hold.

Theorem 7.1. Suppose;(r) = A;t,i = 1, 2. Then, with

AL — A2 1_M1+M2 M1,
A+ Ao c

p;=1-
it holds that (i) forg, € [0, #3],

7= 2¢1C — 1
Al

(ii) for ¢ € [, ¥4l

b;

b
 J($1c — 12)? + (fac — p2)2(h1/h2)

J— 1 ((b + (p1c — pua)t*)? n (¢p2c — Mz)zt*> ;
2 Aqt* Ao

f=s"=u*

(iii) for ¢, € [¢5, 11,

c—

J=2 .
A1+ A2

Notice that in all three Cases (i)—(iii) it holds thats linear inb; for Case (ii) it takes some simple
algebra to see this.

8. Weight setting

This section focuses on the operational issue of selecting appropriate weights in a two-class GPS systen
With any set of weight® = (¢1, ¢») anadmissible regiorS(¢) can be associated, i.e., combinations of
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sources of both classes such that the required QoS is realized. Obviously the size andS{zgplepénds
critically on the weightsp chosen. We refer to, e.g., Zhang et[@l7] for a study on these admissible
regionsS(¢) for given weights (in the setting of short-range dependent inputs in the large-buffer regime).
When selecting appropriate weights, various objectives could be chosen. In this section we investigate
two approaches. Following Elwalid and Mitf&0], we assume in Sectidh2that, for practical reasons,
it should be avoided to switch between a large number of different weights — in fact, we require that just
one set of weight® be used. Therefore, we consider the situation that the user population fluctuates just
mildly around some ‘operating point:{, n,). We develop an algorithm to findgasuch that some ‘ball’
around {1, n) is contained inS(¢).
In Section8.3 we take the opposite approach and allmfinitely manyweight adaptations, and
we compute the resulting admissible regie= | J, S(¢). Both Sections3.2 and 8.3equire fast and
straightforward approximations of the overflow probabilities in the GPS system. We start with these in
Section8.1

8.1. Approximation of the overflow probabilities

In this section we develop an approximation for the overflow probabilities in both queues of the GPS
system. Recall that far= 1, 2, n; is the (typically large) number of sources of typa\Ve denote the
stationary buffer content in this GPS model with unequal number of sourc@s, ltlye service rate b§,
and the buffer threshold of queulsy B;. InvokingRemark 2.2the GPS model with, # n, is equivalent
to a GPS model witim sources in both classes, mean ratgegn)u; and variance functions:(/n)v;(-).
We scale the buffer threshold and service rate wisuch thatb; = B; andnc = C. Now we can apply
our earlier results, where we assumed both classes to consisbafces.

To approximate the overflow probabilities, three regimes are distinguished as in Sécfigain,
we concentrate on the first queue; the second queue can be treated analogouslyA[efing) :=
—logP(Q; > B;). Then it holds that\;(n1, n2) = — logP(Q;, > nb;), with its approximation given by
Ai(n, no) ‘= nJ.

First definegs := nouo/C. Consider

(B1+ (C — nips — naua)t)?.
n1v1(t) + nova(t) '

1.
>t

denote the minimizer by, and define also

(¢, s))
¢ = su B1+(C—n —n ).
v se[o,g] (Cs v(t€) (B1 +( 141 — npp2)t’)

(i) If ¢2 € [0, $3], then

_ 1 (But (1€ — naa)i)?
Ax(n, n2) = 5 inf navi(f) .
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(i) If @2 € (49, ¢5), then

_ 1 .
A1(ny, np) = = inf sup
>0 5¢(0,1)

<z1(t, ni, n2) )T (nlvl(t) +nova(t)  nalu(s, z))l (zl(t, N, n2) ) |

z2(s, n1, na) nal>(s, t) nova(s) 22(s, n1, no)
where

(Zl(l» ni, ny) ) _ (Bl +(C —napg — nz,uz)l)
za(s,n1,n2) ) (#2C — nauz)s '

(iii) If ¢, € [¢5, 1], then

(B1 + (C — nipq — nopp)t)?
nyv1(t) + navo(t)

Ay(ng, np) = > EQB

8.2. Weight setting algorithm

This section focuses on a procedure for finding weights ¢.) such that both classes receive the
desired QoS, despite (mild) fluctuations in the number of sources present. More precisely, for specified
(positive) numbers;, we require that\;(n1, n,) > §; for all (n1, ny) ina ‘ball’ B(ny, n,) around {1, ny) :

B(n1, m2) = {(n1, n2) € N?|y1(n1 — n1)? + ya(na — n2)? < 13,

for positive y1, y». It can be easily verified that the procedure described below works, in fact, for any
‘target areaB that is finite ancdconvexrather than just these ellipsoidal sets.
To simplify our algorithm, we use the following expansionty{ny, n,) around 1, n2) = (n1, ny):

BZi(nl, ns) aZi(nls ny)

al’ll + (I”lz B n2) 8712

(n1,n2)=(n1,n2)

Zi(nl, ny) & Zi(VTL n) + (n1 —ny)
(n1,n2)=(n1,n2)

(21)

This approximation requires the evaluation of two partial derivatives, which can be done relatively ex-
plicitly, as described imppendix B
Relying on(21), we have to verify whether for alk(, n,) € B(n1, np) andi = 1, 2,

Ai(n1, 12) + (n1 — na, np — n2) e > 65,
where

3Ai(n1, n2)
31’[1

82,'(1’11, l’lz)
ono

(n1,n2)=(n1,n2)

e; = (ej1, ei2) ‘= (

(n1,n2)=('71,r72))
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Because of the convex shapeRifi;, n,), we only have to verify this condition for the two points on the
boundaryB(n1, nz) having a tangent with slopes equaHe; 1/e1, and—e;;/e2,, respectively. Denoting
these points by ,, n},) and @3,, n3,), we have

£t o ¢h Vi - e ys -1
(i np) == |m+ |(n+-5 =) n2t [|r2+—5= ,
€1 v2 €5 V1

i =1, 2. We say thap is feasible ifK; := A;(n1, n2) + (n}, — n1, nl, — n2)Te; > &; for bothi = 1 and
2. Notice thatX; is a function of the weights; a& + ¢, = 1, we can writeK;(¢1). K1(¢1) will increase
in ¢1, whereask»(¢1) will decrease.

This suggests the following solution to the weight setting problem: (i) First find the sm@jlssich
thatK1(¢1) > 8;. If this does not exist, then there is no solution. (ii) If it does exist, then verify if for this
¢ it holds thatK,(¢1) > é,. If this is true, then the weight setting problem can be solved; if not, then
there is no solution (i.e., there is gosuch that3(nq, no) < S(¢)).

Example 3. We first explain how requirements on the admissible numbers of sources naturally lead to a

set of the typd3(ny, ny).

¢ Our analysis assumes fixed numbers of sources of both types, but in practice this number fluctuates in
time: sources arrive, and stay in the system for a random amount of time. Now suppose that sources of

both types arrive according to Poisson processes (withvaties i = 1, 2), and that, if admitted, these
would require service for some random duration (with finite méang). If there were no admission

control, the distributions of the number of jobs of both types are Poisson with means (and variances!)

I’Ti = I)[EDl'.
e Suppose the system must be designed such that this meanp) £ twice the standard deviation
should be in the admissible region, i.e., should be containé&gfih This suggests choosing

K (91)

30
25

20

K(91)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
¢'1 —

Fig. 3. The curve;(¢1) of Example 3



250 M. Mandjes, M. van Uitert / Performance Evaluation 61 (2005) 225-256

(372 +(52) =)

In this example we choosg = 900 and:, = 1600, which leads to:

B(ni, np) = {("1, ny) € N?

B(n1, np) = B(900, 1600)= {(n1, n2) € N?|16(11 — 900F + 9(n, — 1600 < 5760Q.

We suppose that both types of sources correspond to Brownian motiong, witl®.2, u, = 0.3,v1(z) =

2t, andvy(r) = t. We rely on explicit results for Brownian motions, as summarizedppendix B in
particular for the partial derivatives of th& (n1, n,) with respect to the numbers of sources. We choose
C =1000,B; = 35, andB, = 25.

First suppose the performance targetssare 9 ands, = 7 (roughly corresponding to overflow prob-
abilities 12 x 10~*and 91 x 10~%). Fig. 3shows that no weighis exist to meet this target (to guarantee
that the overflow probability in queue 1 is small enoughshould be larger than 0.39, but this implies
that K»(¢1) < 5.7 < 82). Now suppose thal; = 8 ands, = 6. Then an analogous reasoning gives that
¢1 should be chosen in the interval 8a, 0.37).

8.3. Admissible region

While above we restricted ourselves to just one set of weights, we might allow to switch weights
whenever necessary. Clearly, the resulting admissible region can be obtained as the union of the admissibl
regions for fixed weights.
Example 4. In Fig. 4we have computed the admissible region for the same types of sources as in the

previous section, with performance targéi{s= 5, §, = 7. We have not succeeded in finding explicit
expressions for the boundary of the admissible region.

2000

Tng

1000

1000 2000 3000
noo—

Fig. 4. Admissible region oExample 4
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9. Concluding remarks

We have considered a two-class GPS system with Gaussian inputs in the many-sources regime. We
have focused on the asymptotic decay rate of the buffer overflow probability, as function of the number
of sources.

We have found the exact value of the decay rate in case one of the classes generates on average mor
than its guaranteed rate. The opposite case turned out to be considerably harder; there we have develope
upper and lower bounds on the decay rate. These appear to be tight under fairly general conditions, as
corroborated by extensive numerical experiments, as well as explicit calculations for the special case of
Brownian motion sources, and further justified by heuristic arguments. Explicitly finding these conditions,
however, remains a challenging problem. The asymptotic results directly lead to approximations for the
overflow probability, which we have used to develop weight-setting procedures.

Future research directions include: (1) The results of Se@tapwplying to arbitrary sources, it can be
expected that our main results hold for more generaltraffic classes than just Gaussian. Our analysis depend:
heavily on the availability of a sample-path LDP (‘Schilder’), which suggests the examination of other
traffic processes for which such an LDP is known — for instance exponential on-off sourci2g]s€8
Another possible extension could be GPS systems with more than just two classes. (3) Our results suggest
that, under general conditions, the upper and lower bounds, as derived in this paper, coincide. Further
analysis is needed to determine the (minimal) conditions under which they match. (4) Squioides
a procedure for finding a weight vecipisuch that some (finite, convex) ‘target argds fully contained
in the admissible regio(¢). Suppose that it is not possible to findiagleweight such thats ¢ S(¢)

— for instance because the target area is relatively large — but suppofechagS(¢). In this case it is
necessary to switch between weights to cdgeNow a relevant question is: how to choose a collection
of weightsg', ¢", . . ., such that the GPS scheduler has to switch weights as infrequently as possible.
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Appendix A. Analysis of underload regime with large ¢,

This appendix focuses on the underload regime with lgxgdy deriving the counterpart far” (x)
of Theorem 5.8we can prove that for a specific rangegefthe derived upper and lower bounds match.
We first introduce some new notation:

ko(x, s, t, u) = E[Aa(—s, 0) + A1(—s, —u)|A1(~t, 0) + Ax(—t,0) = x + b + ct],

¢§,L(x) = SURc(0.() infue(O,s) kZ(X’X’tC(X)’Zz_X-H(M_S)'

Lemma A.1. Forall x > 0, it holds thatgy™ (x) < ¢5"(x).
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Proof. Notice that]?z(x, s, t, u) andky(x, s, 1) coincide foru = 5. Then the stated follows directly from
the definitions oty " (x) andgy ¥ (x). O

The counterpart of heorem 5.8ollows directly now.

Lemma A.2. If ¢ > ¢5"(x), then

(x + b+ (c — p)r)?

/) = 20(1)

This leads to the following result.

Theorem A.3. If ¢, € [sup..o ¢35 (x), 1], then

(b + (c — W)

.1 '
— nll_r)noo - logP(Q1.,(0) > nb) = ',QE 2u(t)

Proof. Due toLemma A.1if ¢ > SUR.>o ¢§’U(x), then alsap, > ¢§'L(x) for all x > 0. Now the stated
follows directly from the fact thatfor all x > 0, Theorem 5.&ndLemma A.2apply. Hence the infima
overt andx can be interchanged, and the result follow§l

Our numerical experiments suggest thag§gp>§’U(x) = q&;’U(O). The following shows that this prop-
erty holds under a sufficient condition that can be verified (relatively) easily. Dengtédthe optimizing
s € (0,°(x)) in (18).

Lemma A.4. If, forall x > 0,

(¢¢ al(s, t
0D 150, 100 = 227280 , 22)
v(t¢(x)) 0 | mgeq)i=re@)
thensup..o 65" (x) = ¢35 (0).
Proof. We prove thatjbg’U(-) is decreasing under conditig@2). For brevity write
ok, . oko(x, s, 1) oky . oko(x, s, 1)
¥ ds s=s¢(x),1=1°(x) ’ a or s=s¢(x),1=1°(x) .
Notice thatr“(x) ands®(x) satisfy
x+b+(c—wi(x) v(E(x)) . Oko ' :
= ‘X)— =k ¢ ¢ —X. 23
) oy WG =kl s @) () — ¥ (23)
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It is easy to check that the derivative<pﬁ‘U(-) is non-positive if

(ka(x, s°(x), 1°(x)) —x) < 0.

() Oko dsC(x)  Okp dr’(x)  Oko 1 ds“(x)
e ds dx or dx ox dx

Notice that because of the second equatiof2B) various terms cancel out. Now due to

8_/{2_ Fz(s,l) - Fz(s,l) - Fz(s,l) <1
ax  u() T ovt) T Vo) T

(apply Assumption A2), and:t{x)/dx > O (seeLemma 3.1in [14]), it is left to check thabk,/dr < O.
It is a matter of straightforward calculus, using the first equatiof28), to show that this is equivalent
to(22). O

Appendix B. Weight setting algorithm: partial derivatives
In this appendix, we determine expressions for the partial derivativés(@xfl, ny) to the numbers of

sources, as required in the weight setting algorithm of Se&iarrhe Cases (i)—(iii) below correspond
to the regimes identified in Secti@l

(i) Based oriTheorem 2.3in the regimep; < [0, ¢3],

_ , 1
Aq(n1, np) = inf SUP(9(31 + ($1C — napa)t) — —92n1v1(t)) :
>0 gcr 2

The inner supremum is attained for

_ Bi+ (1€ — npa)t

9*
nyvs(r)

Denoting the optimizing by ¢*, we derive

9A1(n1, no)
81’12

dA1(n1. n2) _
an1

1
—0% g t* — 5(9*)21}1(1’*), 0.

(if) Similarly, in the regimep, € [¢5, ¢9], Zl(nl, ny) can be rewritten as

inf sup Sup<0T (Zl(t’ 1 ”2)) _ 1‘9T <”1v1(t) + nova(f)  naln(s, t)> 0) |

>0 5(0.1) geR? 22(s, n1, np) 2 nal>(s, t) nvo(s)
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The optimizingg is given by

ot — (nlvl(f) +nava(t)  nala(s, l)>_l (Zl(f, ni, ny) ) ‘

nal>(s, 1) n2v(s) 22(s, na, no)

Straightforward computations give that, with the optimizingdenoted by*, r*,

9A1(n1, n) 1 2
anl 1“1 2( l) Ul( )
321(111, I’lz) 1 vz(t*) Fz(s*, l‘*)
——— = = —OFuat* — Osuas™ — =0T 0*.
anz iz 228 75 Io(s™, 1) va(s™)

(iii) In the third regimeg, € [¢9, 1],

_ , 1
Aq(ng, np) = ltgg ?URF)(@Zl(l, ni, ny) — 592(7111210) + nzvz(f))> .
€

The inner supremum is attained for

" z1(t, n1, no)

 nyua(t) + nova(t)”

Denoting the optimizing by *, we derive

dA1(n1, n2) _
3711 -

A 1(n1, n2) _

1
—0* pot™ — Z(0%)%vo(tY).
ny Mm2 2( ) vz( )

1
—0"puat” — 5(9*)2v1(t*)»

Now we consider the special case that both types of sources correspond to Brownian motions. We assum
v1(f) = Aat, v2(r) = Apr. We again consider the three regimes separately. We have explicit formulae for
the ‘critical’ values ofg.:

o M2M2
¢2 - C °

$=1— niA1 — n2k2 1 M +rnopz  mip,
2 nlkl + nz)\z C C ’

() Inthis case

~ $1C — n1jq
X A]_(I’Z) = ZTB]_

. By
— $1C —nyuy
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This yields:
dA C  9A
R —231¢+; oo,
ony l’ll)x]_ onz
(i) In this case
B

*

" 61C — nui + #2C — napd i jnaia)

A _ *\2 . 2
Av(n1, np) = 1 ((B1+ (¢1C — mapa)t¥) . (p2C — nopo) ny
2 niiit* NoAn

Also s* = r*. This yields:

A p1 1(Bi+ (¢1C — nipua)r*)?
— = —(B1+ (¢1C — napu1)t* - = :
ony (B1+ (91 1M1) )n1)»1 > et
dA; pa2  1(¢2C — nauo)?
——= = —(¢2C — nou)t* - = rr.
oy (¢2 2142) nohs 2 2
(iii) In this case
B _ C — nypy —
= L ; Ai(ng, np) =2 Rl — Mol By.
C —nipuy — napz niky + noks
This yields:
941 _ 2By B C —niuy — nauz
ony niii + naky Y (1 + ngho)?
94, 2B1u2 C —nypy —nop2
= — — 2B1Ao 2
ony niii + naks (n1A1 + noAo)
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