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Abstract:  

IEEE 802.11 exhibits both short-term and long-term unfairness [15]. The short-term fairness automatically gives 
rise to long-term fairness, but not vice versa [11]. When we thoroughly investigated a simple scenario with hidden 
terminals, we found it to be unfair on the short-term basis, though it provides fair access on a long-term basis. It implies 
that the protocol cannot be used to provide fair access for delay sensitive traffic even in a simple scenario. In this paper, 
we analyze the short-term behavior using the embedded-Markov chain method to answer the following two questions: 
(i) once a node gets control of the medium, what is the average number of packets this node can transmit consecutively 
without experiencing any collision, (ii) once a node loses its control of the medium, what is the average time the node 
has to wait before it gets control of the medium again. The first question reflects on how long a node can capture the 
medium, whereas the second question reflects on how long a node may be starved. The analytical model is validated 
by the simulation results. Our work is distinct from most of the work published in the literature in two aspects: we 
focus on the short-term behavior rather than the long-term, and the analytical method is adopted for the study. 
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1 Introduction 

Recently, mobile computing and wireless networks have attracted considerable research interest. IEEE 
802.11 [9] is the de facto industry standard for Wireless LANs, which defines two MAC protocols: Point 
Coordination Function (PCF) and Distributed Coordination Function (DCF). However, only the DCF is 
popular. DCF describes two techniques for packet transmission, a two-way handshake and a four-way 
handshake. The two-way handshake severely suffers from the well-known hidden-terminal problem. On the 
contrary, the four-way handshake greatly reduces the hidden-terminal problem. In this paper, we mainly 
focus on the four-way handshake case. 

As DCF operates in a distributed manner, fairness in accessing the medium is one of the most 
challenging issues [15]. Based on the length of the time over which we observe the system, the fairness can 
be defined on a short-term basis and a long-term basis. The short-term fairness implies long-term fairness, 
but not vice versa [11]. In particular, under certain scenarios, though the bandwidth allocation is fair in a 
long-term, it is very unfair if we view the system from a short-term viewpoint. The short-term fairness is 
very important for adaptive traffic (e.g., TCP kind of traffic) and for delay- or jitter-sensitive traffic [11]. In 
this paper, we model and analyze the short-term behavior of IEEE 802.11 in the presence of 
hidden-terminal. 

In the literature, there have been many analytical models (e.g., [2-4, 18]) developed to evaluate the 
long-term performance (e.g., capacity and average packet delay) in a single-hop IEEE 802.11 network. 
However, none of these models has thrown any light on the short-term unfairness in a hidden-terminal 
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scenario. In general, there are two challenges in modeling the short-term unfairness. Firstly, to model the 
short-term behavior, the model should capture the protocol in a very detailed manner, as otherwise the 
required details are lost in the model. Therefore, those models developed to study the long-term behavior 
(e.g., capacity and average packet delay) may not be appropriate to study the short-term performance as 
they may neglect the required details for simplicity. Secondly, while analyzing the throughput or packet 
delay, the models (e.g., [2-4, 18]) assume that all the nodes in the system have the same average behavior, 
and thus they only need to analyze the performance at a typical or tagged node. In contrast, to predict the 
unfairness precisely, the model should take into account the difference in the behavior of the various 
contending nodes. In other words, the fairness reflects the relative behavior, and can be predicted only by 
comparing the behavior at different nodes. Therefore, in the representation of the system state, we need to 
include one or more separate state variables for each of the contending nodes. Due to this, the modeling of 
the short-term unfairness of IEEE 802.11 becomes extremely complex. Moreover, the hidden-terminal 
problem itself incurs additional complexity. For example, in a single-hop network, a collision occurs mainly 
in the situation when two or more contending nodes have a same value of the back-off timers. On the 
contrary, in a hidden-terminal scenario, a collision will occur as long as the difference in the back-off values 
is small as will be shown in this paper. In the design of our model, we bear in mind the above challenges. 

Jain's index [5] can be used to reflect fairness over different time scale. Though the index is useful in 
comparing fairness of two different protocols, the absolute value of the index for a given protocol does not 
express the fairness of the protocol very clearly. Therefore, we measure the short-term fairness in an 
alternate way by evaluating the following two metrics: (i) once a node gets control of the medium, what is 
the average number of packets this node can transmit consecutively without experiencing any collision, (ii) 
once a node loses its control of the medium, what is the average time the node has to wait before it gets 
control to the medium again. The first metric reflects on how long a node can capture the medium, whereas 
the second metric reflects on how long a node may be starved. 

In this paper, using an embedded Markov chain model, the two metrics are measured based on the 
concepts of “expected state holding time” and “expected first passage time”. The analytical model is 
validated by the simulation results. The results show that IEEE 802.11 exhibits substantial short-term 
unfairness in the presence of hidden terminals. 

The remainder of the paper is organized as follows. In Section 2, through a simple simulation, we show 
that IEEE 802.11 exhibits considerable short-term unfairness in the presence of hidden-terminals. In 
Section 3, the Markov model is described. Sections 4 and 5 deal with the computation of the transition 
probabilities and the expected state holding time, respectively. Section 6 presents the analytical and 
simulation results. The related work is discussed in Section 7 and the paper is concluded in Section 8. 

2 Short-Term Unfairness in IEEE 802.11 

In order to show the short-term unfairness in the presence of hidden-terminal, we simulate a simple 
scenario depicted in Figure 1, which is commonly used to illustrate the hidden-terminal problem. In the 
figure, there are three nodes, A, B and C, with two single-hop flows: flow from A to B, and flow from C to B. 
Since nodes A and C cannot hear from each other, they may simultaneously try to communicate with a 
common node, i.e., node B, resulting in a collision. In such a situation, nodes A and C are referred as the 
hidden terminals of each other. The reason, that nodes A and C cannot hear from each other, may be that A 



and C are out of the range of each other. It may also be that there are some physical obstacles such as a wall 
between A and C. 

A B C
 

Figure 1: Hidden-terminal Scenario 

For the study, the simulation environment is as follows. NS-2 with CMU wireless extensions [6] and 
static routing is used. For each single-hop flow, a Constant Bit Rate (CBR) traffic generates 200 packets per 
second. Each packet is 1000-bytes long, resulting in a traffic source rate of 1.6 Mbps. The raw bandwidth is 
set with 2 Mbps, leading to a maximum throughput of around 1.4 Mbps due to the overhead of IEEE 802.11. 
The source rate is made greater than the medium capacity since unfairness occurs only when the system is 
overloaded. 

The simulation results show that each flow gets an average throughput of about 0.7 Mbps (more 
specifically, 0.68 Mbps), which means that the two flows share the medium fairly on a long-term basis. 
However, if we compute the values of the two short-term metrics defined in Section 1, the protocol exhibits 
substantial unfairness. For metric (i), we find that, on an average, once a node gets control to the medium, it 
can transmit about 6.4 packets consecutively without experiencing any collision in between. For the metric 
(ii), once a node (say node C) loses control of the medium, it has to wait for the other node (i.e., A) to 
transmit about 27 packets before it gets control of the medium again. However, this does not mean that node 
A can transmit 27 packets consecutively without experiencing any collision. We illustrate this using the 
following example. Consider that after node C loses control of the medium, node A gets control of the 
medium and it transmits one or more packets consecutively. Then, one or more collisions occur. After the 
collision(s), node A again gets control and transmits one or more packets consecutively. This kind of 
process may repeat several times before node C gets control of the medium, which explains why the values 
of the two metrics differ so much. In addition to the average values, we also observed the corresponding 
maximum values, which are equal to 35 and 160, respectively, for the two metrics. This shows how much 
short-term unfairness is ingrained in the current IEEE 802.11, which is unacceptable for jitter-sensitive 
traffic. In the next subsection, we describe some basic techniques adopted in IEEE 802.11, based on which, 
we intuitively explain in Section 2.2 how the hidden-terminal problem causes short-term unfairness. 

2.1 Basic Techniques in IEEE 802.11 

To combat with the hidden-terminal problem, IEEE 802.11 defines a four-way handshake. In the 
handshake, before the transmission of a Data frame, the sender first sends out a Request To Send (RTS) 
frame. In response to this request, the receiver sends back a Clear To Send (CTS) frame if the medium is 
determined to be idle. Then, the sender sends out the Data frame and the receiver responds with an ACK 
frame if it receives the Data frame without error. For the convenience, we call the exchange of 
RTS/CTS/Data/ACK frames as a frame exchange sequence (FES). Moreover, FES (A, B) represents a FES 
between nodes A and B, initiated by node A, implying that node A sends one packet successfully to node B. 
For simplicity, we call node A as the transmitting node and B as the receiving node, while node C is called 
the waiting node. Note that the word ‘packet’ implies the protocol data unit (PDU) of a higher layer whereas 
‘frame’ is the MAC layer PDU. 
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hidden-terminal problem does not arise any more. For example, in Figure 1, once node B sends back a CTS 
to node A, node C also hears this CTS and thus defers its transmission, avoiding collision. The four-way 
handshake solves the hidden-terminal problem largely by introducing the RTS/CTS handshake before the 
real Data frame is transmitted. However, it cannot eliminate the problem completely as RTS/CTS cannot 
always be transmitted successfully. In a while, we will derive the condition under which the RTS/CTS can 
be successfully completed. 

The IEEE 802.11 adopts the well-known Binary Exponential Back-off (BEB) algorithm as its 
Contention Resolution (CR) mechanism, which is described as follows. Whenever an attempt to transmit a 
packet fails, a retransmission is scheduled, unless a retry limit (say n) is reached. Every node maintains a 
Contention Window (CW) and a back-off timer. Before every transmission (including the retransmission), 
the node first defers by a back-off timer, which is generated according to Equation (1), unless the back-off 
timer already contains a non-zero value, in which case it is unnecessary to generate a new random back-off 
timer. 

()Backoff Time Random SlotTime= ×   (1) 

In the Equation (1), the SlotTime is specified by the physical layer, and the random value is uniformly 
distributed over the range [0, CW]. For the first transmission attempt of a packet, the CW will be set to 
CWmin. Whenever a retransmission is initiated, the CW is doubled. The CW increases to its maximum value 
after m retries. After that, the CW remains at the maximum value until the retry limit (i.e., n) is reached. 
Once the retry limit is reached, the CW will be reset to CWmin. The CW is also reset to CWmin whenever a 
transmission attempt is successful. For the convenience, we call a retransmission attempt as a stage. If we 
denote the stage number by index i, which is in the range [0, n-1], the CW can be expressed as:  

min

min

( 1) 2 1; 0

( 1) 2 1;

i

m

CW i m
CW

CW m i n

⎧ + × − ≤ ≤⎪= ⎨
+ × − < <⎪⎩

  (2) 

When a FES is in progress, the waiting node freezes its back-off timer. After the FES is successfully 
completed, all the nodes first defer for a DCF Inter-Frame Space (DIFS) period. Then, the transmitting node 
generates a new random value from its CW and backs-off before it initiates another FES. On the other hand, 
the waiting node simply resumes counting down from its frozen back-off timer. Clearly, due to the freezing 
mechanism, the transmitting node may transmit several packets consecutively before the waiting node’s 
back-off timer is reduced to zero, leading to short-term unfairness.  

Contrary to a successful transmission, when a collision occurs, all the colliding nodes will generate a 
new random value from their corresponding CWs. Since IEEE 802.11 uses a timeout mechanism to detect 
the collision, and since the starting time of the two collided frames may not be the same, the time at which 
the two nodes detect the collision may be different. 

Now let us derive the condition under which the RTS/CTS can be successful when two hidden nodes (A 
and C) contend for the medium (Figure 1). The condition is as follows: after a collision or a successful FES, 
the difference between the back-off timers at the two hidden nodes should be large enough for node B to 
send back a CTS to node A (C) before that node C (A) starts sending its RTS. The minimum time difference 
required is equal to the transmission time of RTS plus a Short Inter-Frame Space (SIFS). This can be 
expressed as: 
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where Z is the difference between the back-off timers. Len is equal to about 19 slots when the slot time is 20 
µs for DSSS [9]. Note that the TxTime(RTS) corresponds to the time needed for the complete transmission 
of the MAC layer frame, i.e., it includes the physical layer overhead (192 µs) and the MAC layer contents 
(20×8 = 160 µs). It is easy to see that the condition is difficult to satisfy when the CWs at the contending 
nodes are small (e.g., 31). Note that in the above analysis, we have omitted the propagation delay, which is 
negligible. We also assume that the two nodes begin to back-off at the same time, i.e., after a collision, the 
time difference between the two nodes detecting the collision is neglected. 

2.2 Explanation for the Short-term Unfairness 

Now let us explain how the hidden-terminal problem causes short-term unfairness. Consider the 
situation that the CWs at nodes A and C are very small (e.g., 31). As discussed above, under such situation 
the condition illustrated in equation (3) is difficult to satisfy, i.e., the transmission of RTSs of nodes A and C 
may overlap partially, and as a result collide. The collision may occur several times until the CWs are large 
enough to allow either node to get control of the medium. In particular, one of the two nodes (let us say, 
node A) may select a small back-off time from its CW, while the other node (i.e., C) selects a large value. 
The difference between these two values may be large enough to satisfy the condition illustrated in equation 
(3) and, the FES (A, B) can be successfully completed. Once the FES (A, B) is completed, node A resets its 
CW and backs-off before initiating another FES. However, the remaining back-off timer at node C may be 
large compared to the back-off timer at node A, which is drawn from the range [0, CWmin]. In that case, 
nodes A and B may exchange several more FESs before node C’s back-off timer reduces to zero. 

Whenever the back-off timer at node C reduces to zero, node C contends for the medium. However, as 
the CW at node A is equal to CWmin, the contention is most likely to result in a collision. After the collision, 
node A doubles its CW from CWmin whereas node C doubles its CW from a larger value (at least 63). 
Therefore, the CW at node C is greater than that at A, and node A is more likely to get control of the medium 
again. This is obviously unfair for node C since A has already transmitted several packets while C is starved 
during this period. Moreover, this process (i.e., several packet transmissions by node A, followed by 
collisions, and then packet transmissions by node A again) may repeat several times, leading to starvation at 
node C for a long period (compared to the time needed for a FES). 

However, several mechanisms incorporated in the IEEE 802.11 prevent node C from starving 
completely, such as: (i) after every FES, node A will back-off before initiating another FES, which gives 
node C a chance to contend for the medium with node A; (ii) the CW at node C will be reset to CWmin after 
the retry limit n is reached. These mechanisms ensure long-term fairness between the two flows. 

Though the above analysis intuitively explains how the hidden-terminal problem causes short-term 
unfairness, we still need to evaluate the unfairness quantitatively, which is carried out in the following 
sections. 

3 Analytical Modeling 

In this section, we model the hidden-terminal scenario indicated in Figure 1 using an embedded 
Markov chain. In the discussion, the reader must differentiate between the words stage and state, which are 
very often used. 
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3.1 Markov Chain Model 

At any point of time, the medium is in one of the following five states: TA, TB, TC, Col and Idle, where TA 
means that node A is getting the control of the medium and transmitting its packet, i.e., FES(A,B) is in 
progress. Similarly, TB and TC correspond to nodes B and C, respectively. However, in our considered 
scenario, TB does not arise, as node B does not have any data packets to send. State Col means that there is a 
collision on the medium, while state Idle means that there is no transmissions or collisions over the medium. 
As our objective is to analyze the short-term fairness rather than the capacity utilization of the medium, we 
do not need to consider the Idle state. As a result, only three states of the medium are considered: TA, TC, and 
Col. When the medium is either in TA or in TC, we simply say, for the convenience of the presentation, that 
the medium is in a T state.  

As mentioned before, to reveal the unfairness in IEEE 802.11, we should model the system state in a 
way that there is at least one separate parameter to represent the state of every contending station (i.e., nodes 
A and C in the hidden-terminal case). Since the transition probabilities among these three states (i.e., TA, TC, 
and Col) depend on the values of CWs at nodes A and C, which, in turn, are determined by the 
corresponding stages, the system can be modeled using three random variables: state of the medium, stage 
at node A, and stage at node C. Therefore, the system states are (TA, k, l), (TC, k, l), and (Col, k, l), where k 
and l denote the stages at nodes A and C, respectively. Obviously, k, l = 0, …, n-1. When the medium is in 
state TA, it is easy to see that the stage at the transmitting node (i.e., node A) must be zero, that is, only (TA, 
0, l) system states are possible. Similarly, when the medium is in state TC, the possible system states are (TC, 
k, 0). Therefore, if the retry limit is n, there are n2 number of Col states, and n number of states 
corresponding to each of TA and TC, and thus the number of all possible system states is: 
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n2 2stateN n= +   (4) 

From a Col state, whenever a transition occurs, the system can enter anyone of the three kinds of states 
as shown in Figure 2. If the next state is a Col state, both of the stages, k and l, are incremented by one, 
except that the stage is reset to zero whenever the retry limit n is reached. On the other hand, if the next state 
is a T state, the stage at the transmitting node is reset while the other stage remains unchanged.  

Col, k, l

Col, k', l'

TC, k, 0

k'=(k+1) mod n
l'=(l+1) mod n

TA, 0, l

 

Figure 2: State Transitions from a Col State 

In state TA, whenever node A transmits another packet, it is natural to view this event as a self-transition. 
However, if we model the system in such a way, the transition probabilities depend upon the remaining 
back-off timer at the waiting node (i.e., node C), which in turn, depends upon how many times this timer has 
been frozen and decremented, i.e., how many self-transitions have occurred in the TA state. This requires 
memorizing the history to obtain the current transition probabilities, which will violate the memoryless 
requirement of the Markov chain. Therefore, we do not treat this event as a state transition. Rather, only 
when the system enters a Col state or a TC state, a state transition occurs in state TA. Therefore, whenever the 



system enters a TA state, the time that the system will remain in that state depends on the number of packets 
that node A can transmit consecutively before that node C controls the medium or that a collision occurs. 
Similar explanation will apply for the state TC. The state transition at a T state is illustrated in Figure 3. It is 
easy to see that the chain obtained in such a way is an embedded Markov chain, which is defined at the 
instances where a transition occurs whenever the control of the medium is passed from node A to C or 
vice-versa, or a collision takes place after successful transmission of packet(s) from any of these two nodes. 

TC, k, 0

Col, k', 1

TA, 0, 0

k'=(k+1) mod n

TC, 0, 0

Col, 1, l'

TA, 0, l

l'=(l+1) mod n

 

Figure 3: State Transitions from a T State 

To illustrate the model clearly, we present the complete state transition diagram in Figure 4, where we 
assume n=3. The diagram is primarily based on the transitions diagrams shown in Figures 2 and 3. We 
realize that the diagram is quite complex even in such a simple case, and it is difficult to draw it on paper 
when n is large since the number of states is n2+2n. 

TA,0,0

Col,1,1TA,0,1

Col,1,2TA,0,2 Col,2,2

TC,0,0

TC,1,0

Col,2,1 TC,2,0

Col,0,0Col,0,1Col,0,2 Col,2,0Col,1,0

Col,0,0Col,0,1Col,0,2 Col,2,0Col,1,0

 

Figure 4: State Transition Diagram for n=3 

 

3.2 Basic Analysis of the Model 

For the convenience of presentation, rather than representing the system states using three variables as 
above, we assign a single variable to represent the states, by ordering them as indicated in Table 1. 

Table 1: Re-designating the State Variables 

States Single Variable Range 
(TA, 0, 0) to (TA, 0, n-1) [0, n-1] 
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(TC, 0, 0) to (TC, n-1, 0) [n, 2n-1] 
(Col, 0, 0) to (Col, n-1, n-1) [2n, n2+2n-1] 

For the embedded Markov chain, we need to know the transition probability matrix, P. Once we get the 
matrix P, we can find the steady state probability vector, π, by solving the following equation: 

0 1 2
2

[ , , ,...], [ ]

1 [0, 2 1]
ij

i
i

P P

i n n

π π π π π π

π

= ⋅ = =⎧⎪
⎨ = ∈ + −
⎪⎩
∑

p
  (5) 

In a discrete Markov chain, if the interval between two consecutive transitions (including 
self-transition) is identical, the steady state probability πi reflects the proportion of the time that the system 
is in state i. However, in our model, since the interval between a T state and its next state is a random 
variable, πi can only tell us the probability that the system enters state i whenever a transition occurs [8]. To 
get the time average state probabilities of being in state i, we must first analyze the holding time of state i. 

Let µji denote the average time that the system will remain in state i once a transition from state j to i 
occurs. The µji is given by: 

⎪
⎩

⎪
⎨

⎧

−∈>×
−+∈>

=

=
]12,0[&0),(

]12,2[&01
00

2

nipijnumr
nnnip

p

ji

ji

ji

jiµ   (6) 

Whenever the transition probability pji is zero, the µji must also be zero. The holding time in a Col state, 
since it does not depend upon the previous or the present state, is assigned a unit value as indicated in the 
second line of the above formula. For expressing the holding time of a T state, let us define num(j, i), which 
denotes the average number of packets the transmitting node can transmit consecutively once the system 
reaches the T state (i.e., state i) from state j. Clearly, the holding time of a T state is proportional to num(j, i). 
Moreover, we define the 'FES time' as the time needed for a FES to be completed, and 'Col time' as the time 
needed to detect the collision, while r is the ratio between the 'FES time' and the 'Col time'. Therefore, 
whenever the system transits to a T state, the average holding time can be represented by r × num(j, i), if the 
time required to detect a collision is unity. This explains the last line of equation (6). From µji, which 
corresponds to a transition, we can get µi, the expected holding time of state i, as follows: 

j ji
i

ij

pπ
jiµ µ

π
×

= ∑   (7) 

Clearly, by the definition of a Markov chain, the state holding time of state i should not dependent on 
any previous state (i.e., state j), and thus the chain obtained here is indeed an approximation of the Markov 
model. Also, the average is calculated as in equation (7) since πi = ∑(πj ×pji). It is easy to see that the µi 
corresponding to a Col state is always equal to one. Corresponding to a T state, we define num(i) in equation 
(8), which denotes the average number of packets that the transmitting node can transmit consecutively 
once the system reaches state i. 

( ) ( , ) [0,2 1]j ji

ij

p
num i num j i i n

π
π
×

= ∑ ∈ −   (8) 

As a result, formula (7) can be replaced by: 
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Now we can get ρi, which represents the time average state probability of state i, as follows [8]: 

]12,0[, 2 −+∈
×

×
=
∑

nnji
j

j
j

ii
i µπ

µπ
ρ   (10) 

3.3 Derivation of the Metrics 

Based on the above analysis, we can obtain the two metrics defined in Section 1. To recall, the first 
metric is, once a node gets control of the medium, what is the average number of packets this node can 
transmit consecutively without any collision. In our Markov chain model, let us say for node A, it is not 
possible for the system to travel from one TA state to another TA state without in-between visiting a TC or Col 
state. Moreover, once the system enters a given TA state (let us say, state i), the average number of units of 
'FES time' for which the system remains in that TA state, is simply equal to num(i), which is defined by 
equation (8). Therefore, the metric-1 can be obtained by taking average of all num(i) corresponding to TA 
states: 

1
[0, 1] [0, 1]

( ), ( )
( )

i
metric i

i n i n

H num i where A
A

π
π π

π−
∈ − ∈ −

= × =∑ ∑    (11) 

Since the behavior is identical at nodes A and C, the Hmetric-1 is also applicable to node C.  

Now, we recall that the second metric is, once a node loses its control of the medium, what is the 
average time the node has to wait before it gets control to the medium again. Since there are only two nodes 
(i.e., A and C) contending for the medium (Figure 1), the metric, let us say for node A, can be replaced by: 
once the medium is controlled by node A, what is the average number of packets that A can transmit before 
the medium is controlled by node C. This simply implies that once the system enters a TA state, what is the 
average number of units of 'FES time' that the system can remain in any TA state (via visiting Col state 
in-between) before the system enters a TC state. Note that the second metric allows a visit to a Col state 
in-between two TA states, which is not permitted in the first metric.  

Here we use the concept of “expected first passage time” [8], which means that if the system starts in a 
given TA state (let us say, state i), what is the expected time after which the system will enter any TC state for 
the first time. The expected first passage time, Vi, can be expressed as follows [8]:  

2

0 [ ,2 1]

' [0, 1] [2 , 2i i ij j
j

i n n
V R p V i n n n n

∈ −⎧
⎪= ⎨ + ∈ − +
⎪⎩

∑ ∪ 1]−
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  (12) 

where Ri is the immediate reward once the system enters state i. For a TA state, it is equal to the 
corresponding num(i). Since all TC states are the trapping states, Ri is zero for these states [8]. We should 
also assign Ri with zero for all Col states, as our objective is to obtain the number of FESs, rather than the 
number of collisions. Therefore, Ri: 
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num i i n
R
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  (13) 



In equation (12), p'ij is a modified value of the original transition probability pij. Since the TC states are 
considered as trapping states, the transition probabilities out of a TC state is set to zero, whereas the 
self-transition probability for each TC state is set to one. Other transition probabilities remain unchanged. 
Therefore, the p'ij: 
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ij

ij

i n n j i
p i n n j i

p i n n n n

⎧ ∈ − ≠
⎪⎪= ∈ − =⎨
⎪ ∈ − +⎪⎩ ∪ −

  (14) 

Obviously, Vi corresponding to the trapping states (i.e., all TC states) should be zero. For all the other 
states, Vi is equal to the 'immediate reward' Ri plus the expected reward earned from whatever state is 
entered next. This explains the equation (12). 

The metric-2 is obtained by taking average over all Vi values corresponding to the TA states: 

2
[0, 1] [0, 1]

, ( )
( )

i
metric i i

i n i n

H V where A
A

π
π π

π−
∈ − ∈ −

= =∑ ∑   (15) 

The Hmetric-2 computed for node A, is also applicable to node C.  
To solve the above equations, we only need to know the transition probability matrix P and num(j, i), 

which are computed in sections 4 and 5, respectively. 

4 Transition Probability Computation 
The transition probabilities depend upon the value of the back-off timers at nodes A and C. In each of 

the subsections 4.1 and 4.2, we first compute the transition probabilities in general terms based on the 
possible ranges of the back-off timers, and then obtain the specific transition probabilities. 

4.1 Transition Probabilities out of a Col State 

Assuming two nodes are contending for the medium, after a collision, each node will generate a 
random number from its CW according to the uniform distribution. Let us denote the two random numbers 
by X and Y, and their corresponding CW by CWx and CWy. Moreover, we denote Tx as a T state under which 
the node, whose contention window is CWx, gets control of the medium, while Ty is a T state corresponding 
to the node with the CWy. It is clear that the difference between X and Y determines what is the next state 
and what is the corresponding transition probability. As in formula (3), we refer to this difference as Z, i.e., 
Z=X-Y. Since one of the CWs must be smaller than or equal to the other one, we can assume CWx ≤ CWy and 
thus Z is in the range [-CWy, CWx]. As a result, all the possible transition probabilities from Col states can be 
expressed as follows in terms of Z: 

Pr( | ( , , )) Pr(- - )
Pr( | ( , , )) Pr(- )
Pr( | ( , , )) Pr( )

x x y y

x y

y x y

T Col CW CW CW Z Len
Col Col CW CW Len Z Len
T Col CW CW Len Z CW

= ≤ <
= ≤ ≤
= < ≤ x

]y

  (16) 

The distribution function of Z can be easily derived as follows: 

( 1) [ ,
Pr( ) ( 1) [ ,0]

( 1) [0, ]

y xy y x

x xy x y

x xy x

CW z P z CW CW CW
Z z CW P z CW CW

CW z P z CW

⎧ + + ∈ − −
⎪= = + ∈ −⎨
⎪ − + ∈⎩

  (17) 
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))1)(1/((1 yxxy CWCWPwhere ++= . 

We can compute the transition probabilities using equations (16) and (17). It is easy to see that the 
transition probabilities depend upon the value of Len with respect to those of CWx, CWy, and (CWx - CWy). 
We here show in Figure 5 how to obtain the Pr(Tx |(Col, CWx, CWy)). 

Similarly, we obtained all the other probabilities under various conditions. However, due to the space 
limitation, we directly present the results in Figure 6 under the assumption that 0<Len<CWmin, which is true 
in the considered case where Len = 19 and CWmin = 31. Clearly, when CWx < CWy, the CWy – CWx must be 
greater than CWmin. Therefore, in this case, Len must be in the range of [0, CWy – CWx]. 
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Figure 5: Computation of Pr(Tx|Col,CWx,CWy) 
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Figure 6: Transition Probabilities out of a Col state 

Now it is easy to compute the transition probabilities out of a given Col state. This is achieved by 
translating the stages at the two nodes to the corresponding CWs, and then, assign the smaller CW to CWx 
and the greater one to CWy. 

4.2 Transition probabilities out of a T state 

Once the system enters a T state, the transmitting node may transmit one or several packets before the 
waiting node’s back-off timer reduces to zero. Figure 7 shows how the back-off timer at the waiting node 
decrements. 

S2S1 S(num-1) Snum STransmitting Node:

Waiting Node: U

Len Len Len Len

W

 

Figure 7: Counting Down of the Back-off Timer at the Waiting Node 

In the diagram, U denotes the back-off timer at the waiting node when the system enters a T state, and 
num (≥ 1) denotes the number of packets transmitted by the transmitting node before the back-off timer at 
the waiting node reduces to zero. Sk represents the back-off timer at the transmitting node corresponding to 
the kth consecutive FES. Now let us consider how much the U will be reduced during each 'FES time'. 
During each Sk, the waiting node counts down its back-off timer. From the time, the transmitting node 
initiates a RTS, to the time, the receiving node begins to send back a CTS, the waiting node also counts 
down its back-off timer. This period is equal to Len. As soon as the waiting node overhears the CTS, it 
freezes its back-off timer. Therefore, during each 'FES time', the waiting node reduces its back-off timer by 
(Sk +Len). When the last FES (i.e., the numth FES) is completed, the transmitting node generates a new 
random number (let us say, S), while the waiting node simply counts down its frozen back-off timer. W 
denotes the remaining value of the frozen back-off timer, which can be expressed as: 
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k LenSUW

1
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To find the next state and the corresponding transition probability, we need to know the ranges and the 
distributions of S and W. It is easy to see that S is uniformly distributed over the interval [0, CWmin]. 
However, it is not so trivial to get the distribution of W.  

It is intuitive that, when the CW at the waiting node (let us say, CWu), from which U is drawn, is large, 
the num is also large. Though, to get the distribution of W, computationally it is possible to consider all 
values of CWu, for simplicity, we consider only two cases here: CWu = CWmin and CWu > CWmin.  

When CWu= CWmin, the num is unity, therefore, equation (18) can be simplified as: 

)( 1 LenSUW +−=   (19) 

We note that the (U-S1) must be greater than Len, otherwise the system will not enter the T state. 
Moreover, as U is drawn from the range [0, CWmin], the range of S1 must be [0, CWmin - Len]. Therefore, 
from equation (19), W must be in the range of [0, CWmin - Len]. Since both S1 and U are uniformly 
distributed and their ranges are known, the distribution of W can be derived as follows:  

)2)(1(
)1(2)Pr(

minmin

min

LenCWLenCW
wLenCWwW

−+−+
−−+

==   (20) 

When CWu > CWmin, we note that W must be smaller than CWmin + Len, otherwise, the transmitting 
node will be able to transmit one more packet. Since in this case, it is difficult to obtain the exact distribution 
of W, we approximate it with a uniform distribution in the range [0, CWmin]. 

Once we know the ranges and the distributions of the back-off timers (i.e., S and W), we can obtain the 
transition probabilities as done in Section 4.1. However, we here present the results directly in Figure 8.  
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Figure 8: Transition Probability out of a T state 

Now the transition probabilities can be found according to the following rule: if the stage at the waiting 
node is equal to zero, the probabilities corresponding to CWu = CWmin are used, otherwise, the other 
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probabilities are used. 

5 State Holding Time Computation 

Now we show how to compute num(j, i), the average number of packets the transmitting node can 
transmit consecutively once the system reaches a T state (i.e., state i) from state j. If the previous state (i.e., 
state j) is also a T state, both the stage number in the present state must be zero (see Figure 3), and therefore 
num(j, i) is unity in this case. However, if the previous state is a Col state, computation of num(j, i), is not so 
trivial. 

In section 4.2, when the system enters a T state (Figure 7), the back-off timer at the waiting node is U 

while the back-off timer at the transmitting node is S1. The corresponding CWs are  and CW
1sCW u, 

respectively. It is easy to see that, when the system is in the state j (i.e., previous state), the CWs are also 

and CW
1sCW u. Moreover, we have concluded that, during each 'FES time', the waiting node reduces its 

back-off timer by Sk +Len. Since Sk (when k>1) is uniformly distributed over the range [0, CWmin], the 

average of Sk (when k>1) is (CWmin +1)/2. However, as the  may not be the same as CW
1sCW min, we need to 

compute the average value of S1 separately. When the last FES (i.e., the numth FES) is completed, the 
remaining back-off timer at the waiting node is W, which is a very small value as seen from Section 4.2, and 
so its average value can be neglected. Therefore, by renewal theory, the num(j, i) can be expressed as: 

1 1

min

( ) ( ( ) ) ( ) ( ) ( )
( , ) 1 1

( ; 1) ( 1) / 2k

Avg U Avg S Len Avg W Avg U Avg S Len
num j i

Avg S k Len CW Len
− + − − −

= + ≈ +
> + + +

  (21) 

In order to solve (21), we only need to know the average values of U and S1. Since we are considering 
the average values of U and S1 under the condition that the system enters a T state (i.e., U- S1>Len), we must 
first derive the conditional distribution of U and S1, from which we can obtain their average values. In the 
following we illustrate how to compute the average value of S1. The conditional distribution of S1 is: 

11 1
1 1

1 1 1
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In the above formula, Pr(U- S1 > Len) is equal to )1/()2/(
1
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which can be easily computed from the formula (17). Therefore, 
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The average of S1 under the condition U- S1>Len (i.e., E(S1|…)) is: 

1
1 1

1

1 1 1 1
0

(3 3 2 1)
( | ( )) Pr( | ( ))

6( / 2)

sCW
s u s

u ss

CW CW Len CW
E S U S Len s S s U S Len

CW Len CW=

− − −
− > = × = − > =

− −∑  

14 



Similarly, we can get the average value of U, and then using equation (21) we can evaluate num(j, i). 
The results are directly presented in Figure 9. 
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Figure 9: State Holding Time Computation 

Now it is easy to compute a specific num(j, i) when state j is a Col state. To achieve this, the stages in 
state j are first translated to the corresponding CWs, and then the CW belonging to the present transmitting 

node is assigned to  and the other one to CW
1sCW u. 

Before we present the numerical results, we would like to restate the main approximations used in the 
analytical model: (i) In equation (3), we have neglected the propagation delay and the time difference 
between two nodes detecting a collision. (ii) In equation (7), we obtained the average state holding time 
using a Markov approximation. (iii) In the text right below equation (20), we have approximated the W with 
a uniform distribution. (iv) In equation (21), we have neglected the value of W. (v) In the derivation and the 
results presented in the next section, we assume that CWmin = 31 and Len =19. Clearly, all these 
approximations may lead to error in the performance prediction. Nevertheless, the results presented in the 
next section show that the model predicts the short-term fairness very accurately.  

6 Numerical Results 

In Section 6.1, values of the transition probabilities and num(j, i) calculated from the Makov chain are 
presented. Based on these results, in Section 6.2, we compute the metrics and compare them to those 
obtained from the simulation. 

6.1 Transition Probabilities and State Holding Time 

Transition Probabilities in Col States: 

The transition probabilities from the Col states are presented in Table 2, which are computed from the 
formulas derived in Section 4.1. From the results, we can see that, when the CWs are small (e.g., 31), the 
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probability of the system transiting to another Col state is very large (e.g., 0.848). To resolve collisions, we 
must reduce this probability, so that the system is more likely to enter a T state. From the table we see that 
the transition probability from a Col state to another Col state is small in the following two situations: (i) 
when both the CWs are large, (ii) when the difference between the two CWs is large. However, in such 
situations, if the system does enter a T state, the system will remain in that T state for a long time (this is 
clearly brought out by the later results), which results in short-term unfairness. This shows that there is a 
fundamental conflict in IEEE 802.11 between resolving collisions and achieving short-term fairness in the 
hidden-terminal scenario. 

Table 2: Transition Probabilities out of a Col State 

CWx CWy Pr(Tx | Col ) Pr(Ty | Col ) Pr(Col | Col )

31 31 0.076 0.076 0.848
63 0.445 0.038 0.517

127 0.723 0.019 0.258
255 0.861 0.010 0.129
511 0.931 0.005 0.064

1023 0.965 0.002 0.033
63 63 0.241 0.241 0.518

127 0.598 0.121 0.281
255 0.799 0.060 0.141
511 0.900 0.030 0.070

1023 0.950 0.015 0.035
127 127 0.359 0.359 0.282

255 0.674 0.180 0.146
511 0.837 0.090 0.073

1023 0.918 0.045 0.037
255 255 0.426 0.426 0.148

511 0.712 0.213 0.075
1023 0.856 0.107 0.037

511 511 0.462 0.462 0.076
1023 0.731 0.231 0.038

1023 1023 0.481 0.481 0.038  
Transition Probabilities in T States: 

Similarly, we compute the transition probabilities out of a T state (see Table 3) using the results of 
Section 4.2. We see that the transition probability from a T state to another T state is small in comparison to 
the transition probability from a T state to a Col state. This shows, after a node loses control of the medium, 
the system is more likely to experience collisions before the other node gets control of the medium. 

Table 3: Transition Probabilities out of a T State 

CWu Pr(Col|T) Pr(T|T)

31 0.75 0.25

>31 0.918 0.082
 

State Holding Time: num(j, i) 

As discussed in Section 5, the num(j, i) is equal to unity when the previous state (i.e., state j) is also a T 
state. When the previous state is a Col state, the values of num(j, i) are presented in Tables 4. From the table, 
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we can see that when the two CWs are very large (e.g., both are 1023), or the difference between the two 
CWs is very large (e.g., one is 31 and the other one is 1023), the num(j, i) is very large (e.g., 10.581 and 
15.137, respectively). This strengthens our earlier conclusion that resolving collisions and achieving 
short-term fairness are contradictory objectives when using IEEE 802.11 in a hidden terminal scenario. 

Table 4: num(j, i) when the state j is a Col state 

CWs1 CWu Avg(S1) Avg(U) num(j,i)
≡31 31 3.667 27.333 1.133

31

63 12.509 47.754 1.464
127 14.578 80.790 2.349
255 15.113 145.057 4.170
511 15.321 273.161 7.824

1023 15.414 529.207 15.137
≡63 63 14.333 48.667 1.438

63

127 27.039 87.020 2.171
255 29.831 152.416 3.960
511 30.759 280.879 7.603

1023 31.149 537.075 14.912
≡127 127 35.667 91.333 2.048

127
255 55.586 165.293 3.592
511 60.314 295.657 7.181

1023 62.048 552.524 14.471
≡255 255 78.333 176.667 3.267

255
511 112.517 321.759 6.435

1023 121.269 582.135 13.625
≡511 511 163.667 347.333 5.705
511 1023 226.315 634.657 12.124

1023 1023 334.333 688.667 10.581  

6.2 Comparison between Analytical and Simulation Results 

In this section, we evaluate the equations derived in Section 3, and the analytical results are compared 
with those obtained from the simulation. The simulation environment is the same as described in Section 2. 
The results correspond to the case when CWmin=31, Len=19, m=5, and n=7, which are typically used in 
IEEE 802.11. Since our main objective is to analyze the behavior at the T states, and the behavior at nodes A 
and C are identical, we only present the results for the TA states. 

State Probabilities:  

In Table 5, we present the values of πi and ρi. To recall, πi represents the proportion of transitions 
entering state i, while ρi reflects the proportion of time spent in state i. We can see that the analytical results 
are quite close to those of simulation. We also notice that, though the sum of πi is quite small (about 0.24), 
the sum of ρi is quite large (0.496). Since the TC states also have the same values, the total fraction amount of 
time spent in T states is about 0.992, which implies that only a very small amount of time is spent in the large 
number of Col states. The reason is that the ratio (i.e., r) between the 'FES time' and the 'Col time' is very 
large (i.e., 20 in our case). Note that in the above discussion, we have excluded the time spent in the idle 
states. However, as mentioned in Section 2, the aggregate throughput of the two flows in the 
hidden-terminal scenario is about 1.36 Mbps. In comparison, the aggregate throughput in a single-hop 
scenario with also two contending flows is about 1.43 Mbps. Therefore, though the hidden-terminal 
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problem leads to considerable collisions, it does not result in substantial capacity wastage in our context. 
This shows the advantage of using the short RTS/CTS frames before the long Data frame is transmitted. 
However, we notice that the throughput degradation due to collisions becomes substantial when the ratio r 
becomes smaller, which is true in the emerging standards such as IEEE 802.11 A and G. 

Table 5: State Probabilities Comparison 

From (TA,0,0) (TA,0,1) (TA,0,2) (TA,0,3) (TA,0,4) (TA,0,5) (TA,0,6) Total

π i
Model 0.025 0.031 0.037 0.038 0.037 0.035 0.032 0.236

Simulation 0.025 0.038 0.039 0.039 0.037 0.034 0.031 0.243

ρi
Model 0.008 0.014 0.025 0.046 0.088 0.165 0.150 0.496

Simulation  0.008 0.015 0.023 0.045 0.088 0.167  0.150 0.496
 

Expected State Holding Time: 

Table 6 presents the results of num(i), which denotes the average number of packets node A can 
transmit consecutively once the system enters a given TA state (i.e., state i). We see that the results match 
very closely. As the stage at the waiting node (i.e., node C) increases, the num(i) also increases, which 
indicates that it becomes more unfair for the node C. 

Table 6: Expected Holding Time Comparison 

num(i) (TA,0,0) (TA,0,1) (TA,0,2) (TA,0,3) (TA,0,4) (TA,0,5) (TA,0,6)

Model 1.006 1.450 2.143 3.830 7.496 14.858 14.893
Simulation 1.002 1.206 1.829 3.616 7.461  15.336 15.348

 

Expected First Passage Time: 

Table 7 presents the results of Vi, which represents, if the system starts in a given TA state (i.e., state i), 
what is the expected number of FESs after which the system will enter any TC state for the first time. Again, 
the results obtained from the model are quite close to those from simulation. When the stage at the waiting 
node (i.e., node C) increases (from 0 to 4), the Vi also increases, which implies that it becomes more unfair 
for node C. However, when the stage at the node C further increases (i.e., from 4 to 5, and then 6), the Vi 
decreases. First, let us explain why the Vi corresponding to the (TA, 0, 6) state is small. We recall that Vi is 
equal to the immediate reward (i.e., num(i)) plus the expected reward earned from whatever state is entered 
next. When the system departs from this (TA, 0, 6) state, the system enters the state (Col, 1, 0) where the 
stage at node C has been reset. From this Col state, the system is more likely to enter a TC state, in 
comparison to, from other Col states. For instance, when the system transits to a Col state from the (TA, 0, 5) 
state, the stage at node C will not be reset, and the probability of transiting to a TC state is small. This implies 
that after leaving (TA, 0, 6) state, the expected reward earned from the future states is smaller in comparison 
to that after leaving the state (TA, 0, 5).  Therefore, the Vi corresponding to (TA, 0, 6) is small compared to the 
(TA, 0, 5) state. Now, we explain why the Vi corresponding to the (TA, 0, 5) state is smaller than that for the 
(TA, 0, 4) state. Since the state (TA, 0, 6) is a future state of (TA, 0, 5), a small Vi for (TA, 0, 6) will also affect 
the Vi for the (TA, 0, 5) state. However, the effect of the reset behavior decreases rapidly as the stage at the 
waiting node becomes smaller than 4. From the above discussion, it is clear that the resetting mechanism 
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adopted in the IEEE 802.11 improves the short-term fairness. 

Table 7: Expected First Passage Time Comparison 

Vi (TA,0,0) (TA,0,1) (TA,0,2) (TA,0,3) (TA,0,4) (TA,0,5) (TA,0,6)
Model 11.796 25.416 31.081 34.059 34.404 30.273 17.661

Simulation 10.413 23.584 29.998 34.031 34.896 31.430 18.555
 

Metrics: 

Table 8 presents the values of the two metrics defined earlier. We also present the corresponding 
maximum values. Again, the analytical results match the simulation results. Note that the values of the two 
metrics differ largely. The reason is that whenever the system departs from a TA state, the probability that the 
system enters a Col state is very large (See Table 3). After the collision(s), the system is more likely to enter 
another TA state (rather than a TC state) as the CW at node A is smaller than that at node C. This may be 
repeated several times, resulting in such a large difference. 

Table 8: Comparison of the Metrics 

From metric-1 Max
metric-1 metric-2 Max

metric-2
Model 6.683 NA 27.379 NA

Simulation 6.413 35 27.090 160
 

General Applications of the Model 

The above results correspond to the case when CWmin=31, Len=19, m=5, and n=7. By varying 
parameters n, m, CWmin, and Len, the short-term behavior for other scenarios can be obtained. For example, 
by making Len=TxTime(Data)+SIFS, we can model the two-way handshake in the presence of hidden 
terminals. On the other hand, by making Len=0, we can model anyone of the two handshakes without 
hidden terminals. By varying n, m and CWmin, we can model different physical layers, such as FSSS, DSSS 
and IR [9]. Moreover, since the model can predict the short-term behavior precisely, it would also predict 
the long-term behavior accurately. 

7 Discussion and related work 

7.1 Future work 

In this paper, we have presented a novel embedded-Markov model to study the short-term unfairness in 
a simple 3-nodes hidden-terminal case. One obvious future work is to extend the model into a scenario with 
more number of hidden terminals. This may not be trivial. However, it is necessary to mention that the 
modeling process described in Section 3 is quite general for the study of short-term behavior, especially the 
adoption of the first passage time. 

Another focus is to propose a solution to cope with the short-term unfairness problem. From the results, 
we have already seen that the resetting CW mechanism improves the short-term fairness. Therefore, in 
addition to the standard resetting mechanism, we are of the opinion that the CW should also be reset 
whenever the short-term unfairness occurs while the short-term unfairness can be detected using dynamic 

19 



20 

measurements. Our preliminary results [12] show that this method improves the fairness. However, the 
aggregate throughput may degrade. 

7.2 Related work 

In the literature, many analytical models have focused on the calculation of the throughput (or capacity) 
of IEEE 802.11. For example, paper [3] derives the theoretical throughput of IEEE 802.11 by relating IEEE 
802.11 to a p-persistent CSMA protocol. Paper [17] derives the throughput of IEEE 802.11 by using 
average analysis technique. However, the above two models have over-simplified the calculation of the 
transmission probability (normally represented by τ), which characterizes the main feature of the BEB 
algorithm. In contrast, paper [2] derives a more precise value of τ by modelling the stochastic process 
representing the back-off time counter as a discrete-time Markov chain. Furthermore, paper [20] extends the 
model by considering the frame retry limit used in IEEE 802.11. While most of the published models focus 
on the throughput of IEEE 802.11, two recent work [4, 18] concentrate on the analysis of the packet delay in 
a single-hop IEEE 802.11 network. As mentioned in the introduction, while the above models capture the 
long-term behavior (e.g., capacity or packet delay) of IEEE 802.11 very well in a single-hop scenario, they 
are not appropriate to study the short-term unfairness in a hidden-term scenario. 

In another related work [11], the authors have studied the short-term fairness by first developing two 
short-term fairness metrics and then applying the metrics in analyzing two MAC protocols: CSMA/CA and 
ALOHA. Though IEEE 802.11 is mainly based on CSMA/CA, it has many other features, and therefore, [11] 
cannot be applied to IEEE 802.11. Moreover, they do not consider the hidden-terminal problem and they 
mainly focus on developing general fairness metrics, which are different from our work.  

We should note that the short-term unfairness problem is also known as “capture” in Ethernet [7, 16]. 
However, the main reason of capture in Ethernet is due to the deficiency of the BEB algorithm when the 
number of contending stations is very large. Moreover, the capture phenomenon scarcely occurs in an 
Ethernet when there are only two contending stations. On the contrary, in an IEEE 802.11 wireless network, 
the capture phenomenon poses severe problem even in the scenario with just two contending stations (e.g., 
in the hidden-terminal scenario). Clearly, in addition to the deficiency of the BEB, the freezing mechanism 
of the back-off timer, and the hidden-terminal problem itself (which is rooted in wireless networks) causes 
unfairness. 

At last, while there are very few analytical models to quantify the unfairness of IEEE 802.11, there is a 
large number of papers (e.g., [1, 10, 13-15, 19]) focusing on developing algorithms to solve the unfairness 
problem in wireless networks.  

8 Conclusions 

In this paper, we have presented an analytical model that is extremely accurate in predicting the 
short-term unfairness of the system, which is not available in the literature. Our main contributions include: 
(i) a Markov chain model to depict the IEEE 802.11 in detail, (ii) conclusion that the IEEE 802.11 exhibits 
substantial short-term unfairness in presence of hidden terminals, (iii) deduction that resolving collisions 
and achieving short-term fairness are contradictory objectives when using IEEE 802.11 in a hidden terminal 
scenario, and finally (iv) the resetting of the contention window improves the short-term fairness. 
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