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Abstract

We consider end-to-end delay bounds in a network of Guaranteed Rate (GR) nodes. We

demonstrate that, contrary to what is generally believed, the existing end-to-end delay bounds

apply only to GR nodes that are FIFO per flow. We show this by exhibiting a counter-example.

Then we show that the proof of the existing bounds has a subtle, but important, dependency

on the FIFO assumption, which was never noticed before. Finally, we give a tight delay bound

that is valid in the non-FIFO case; it is noticeably higher that the existing one. In particular,

the phenomenon known as “pay bursts only once” does not apply to non-FIFO nodes. These

findings are important in the context of differentiated services. Indeed the existing bounds

have been applied to cases where a flow (in the sense of the GR definition) is an aggregate of

end-user microflows, and it is not generally true that a router is FIFO per aggregate; thus the

GR node model of a differentiated services router cannot always be assumed to be FIFO per

flow.

1 Introduction

In the differentiated services framework [3], end-to-end delay bounds may be obtained by assum-

ing that sources satisfy leaky bucket [13] traffic specifications, and that routers can be modelled as

Guaranteed Rate(GR) [9, 10] nodes. One of the main properties of a network of GR nodes is that

a tight upper bound on end-to-end delay can be obtained, given the parameters of the leaky buck-

ets at the source (burstiness and sustainable rate), and the parameters of the traversed GR nodes

(delay and service rate). This end-to-end bound, derived in the original paper [9], is recalled in

Equation (2); it has the remarkable property known as “pay bursts only once” [13], i.e. when a
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bursty flow traverses a number of GR nodes in sequence, the effect of the burstiness of the flow

on the end-to-end delay bound is the same as if the flow traversed only one node. Another way to

look at this property is that the end-to-end delay bound is much less than the sum of delay bounds

at each node [12, 7].

Many scheduling disciplines have been shown to belong to the GR node model. Among these

we have: Virtual Clock [11], Packet-by-Packet Generalized Processor Sharing (PGPS) [14], Self

Clocked Fair Queuing [8], Bin Sort fair Queuing [6], and Leap Forward Virtual Clock [15].

The GR node model may be used in the differentiated services framework as follows [13]. End-

user flows (called “microflows”) are grouped into “aggregates” at the network edge; inside the

network, each aggregate is handled as an individual flow, in other words, the “flow” that a GR

node sees inside the network is in fact an aggregate. In practice, although this procedure usually

preserves the ordering of packets within each microflow (in order to preserve sequence at the TCP

or RTP layer), packet reordering can take place inside an aggregate between packets belonging

to different microflows. In routers with multistage fabrics, this reordering is due to the presence

of multiple parallel paths between input and output ports [5, 1]. Thus the GR node model of a

differentiated services router cannot always be assumed to be FIFO per flow. More generally,

the GR class encompasses a great variety of algorithms, which are not necessarily FIFO per flow

[4]. In this paper we use the term “FIFO” to indicate a GR node that is FIFO per flow (since the

definition of GR node is relative to the treatment it gives to a flow viewed as a single entity).

We address an issue that arises from the application of the end-to-end delay bounds in [9] when the

GR nodes are not FIFO. In the original definition of GR node in [9], there is no mention of a FIFO

assumption. Therefore, the end-to-end delay bound in [9] has silently been assumed to be valid

whether the GR node is FIFO or not. It has formed the basis for delay computations in networks

that perform aggregate scheduling [2].

However, and this is our first contribution, the end-to-end delay bound in [9] isnot valid with non-

FIFO GR nodes. We show this in Section 3.2, by exhibiting an example of a network with non-

FIFO GR nodes, and which violates the delay bound. How can this happen given that the original

derivation in [9] does not appear to make use of any FIFO assumption ? We have analyzed the

proofs in [9], and indeed found a place where a hidden FIFO assumption is made; this assumption

is subtle, but is essential and invalidates the results in [9] in the non-FIFO case (Section 3.3).

Our second contribution is an end-to-end delay bound that is valid in the general, possibly non-

FIFO case (Section 4.1). The bound is valid for a network of GR nodes and for a leaky bucket

constrained flow that traversesM of these nodes. We show that this bound is tight (Section 4.2).

Unfortunately, the new bound has lost the attractive “pay bursts only once” property mentioned

earlier: the burstiness of the flow appears in the bound with a factorM , and it is noticeably

higher than the one valid for FIFO GR nodes. Our methodology to obtain this bound is based

on the mapping between a GR node and a service curve element ([13], Section 2.1); we exploit the
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Figure 1: We consider a (σ, ρ) constrained flow which traverses a succession of M nodes in a
network of GR servers. The flow can be interpreted as a differentiated services aggregate flow, in
which case (σ, ρ) is the sum of the parameters of the constituent microflows.

fact that the concatenation result for service curve elements holds independently from the FIFO

behavior of nodes, and we derive a bound on the burstiness increase due to traversing a (possibly

non-FIFO) GR node. The burstiness increase result is also a bound of independent interest, and

we show in Section 4.2 that it is tight as well.

In many practical cases of interest, it is possible to bound the non-FIFO behavior of a GR node by

breaking down its latency into a fixed and a variable part. We give the improved bound for such

cases in Section 4.3. We note in passing that there is a concatenation result available for FIFO GR

nodes, that can be used to derive more simply the original end-to-end delay bound for FIFO GR

nodes (Section 4.4).

2 Model and Assumptions

We define aflow as a sequence of packets travelling on a link in a network. To a data flow we

associate the cumulative functionR(t), which counts the number of bits seen on the flow in the

time interval [0, t]. A wide-sense increasing functionf(t) is said to be an arrival curve for a

flow (which is then said to bef(t) constrained) with cumulative functionR(t) if it holds, for all

0 ≤ τ ≤ t:

R(t)−R(t− τ) ≤ f(τ)

The arrival curve of a given flow upper bounds the number of packets of the flow that can be

observed on a given time window. A (σ, ρ) constrained flow is a flow whose arrival curve is of the

form f(t) = σ + ρt, whereσ is theburstinessof the flow, andρ its sustainable rate.

We consider a network of routers that can be modelled asGuaranteed Rate(GR) nodes [9, 10].

The definition of this model is based on the concept ofGuaranteed Rate clock value:

Definition 2.1 (GR clock value[9]) Consider a flow that is associated with a service rater (in

bit/s) at a given node. Letpj denote thej-th packet of the flow, andlj its length. LetGRC(pj) and

A(pj) denote respectively the guaranteed rate clock value of packetpj and its arrival time at the
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Table 1: Symbols used in formulas

R(t) cumulative packet arrival function of the flow

σ burstiness

ρ sustainable rate

r service rate for the flow

em delay of them-th GR node

M nodes traversed by the flow

pj j-th packet of the flow

lj length of packetpj

lmax(lmin) maximum (minimum) packet length for the flow

GRCm(pj) GR clock value at nodem for pj (thej-th packet at the input of them-th node)

Am(pj) arrival time at nodem of pj (thej-th packet at the input of them-th node)

dm(pj) departure time from nodem of pj (thej-th packet at the input of them-th node)

τm,m+1 propagation delay between nodesm andm + 1
αm em + τm,m+1

βr,e service curve of the formr[t− e]+

fm(t) arrival curve for the flow at the input to nodem

node. The guaranteed rate clock value for packetpj is given by:

GRC(pj) =

{
0 j = 0

max {A(pj), GRC(pj−1)}+ lj

r
j ≥ 1

The concept of GR clock value is used to define theGuaranteed Rate(GR) node, as follows:

Definition 2.2 (GR node[9]) Consider a node that serves a flow. Packets are numbered in order of

arrival. The node is a Guaranteed Rate node for the flow, with rater and delaye, if it guarantees

that packetpj of the flow is transmitted byGRC(pj) + e, wheree depends on the scheduling

algorithm and the server.

Many practical implementations of the GPS scheduling algorithm, such as Virtual Clock schedul-

ing, Packet-by-Packet Generalized Processor Sharing scheduling, and Self Clocked Fair Queuing

have been shown [9] to belong to the GR category of servers.

We consider a flow that traverses a network of GR nodes, which are not necessarily FIFO (a node

is FIFO when, for each flow the sequence of packets at the output of the node is identical to the

sequence of packets at the input of the node).

We assume that the given flow traverses a succession ofM nodes in the network. As they traverse

the network, packets belonging to the flow experience a delay that accumulates along their path,

and that can be different in principle at each node for each packet.
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We assume that the arrival time of a packet at a node is the arrival time of the last bit of the packet,

and the departure time of a packet from a node is the departure time of the last bit of the packet.

This leads us to observe instantaneous packet arrivals and departures. In what follows we consider

that each link between two nodesm andm + 1 has a constant propagation delayτm,m+1, and with

τM,M+1 we indicate the propagation delay of the link between theM -th node and the destination.

Finally, we consider that all the nodes traversed by the flow are stable. A node along the path of

the flow is stable ifρ ≤ r, whereρ is the sustainable rate of the arrival curve of the flow (at its

source) andr is the reserved rate for the flow at the node [13].

3 The existing end-to-end delay bounds in GR nodes require

FIFO assumption

3.1 The existing results

The main result about end-to-end delay bounds in a network of (not necessarily FIFO) GR servers

which is presently available has been first derived in [9], and extended in [10]. In those papers a

method is defined to derive an end-to-end delay bound, based on the following result:

Theorem 3.1 ([9]) Consider a flow that traverses a succession ofM nodes in a network. If the

scheduling algorithm at each serverm ∈ (1, M) on the path of the flow belongs to GR for the

given flow, with service rater for the flow and delayem, then a bound to the end-to-end delay of

thej-th packet of the flow, denoted withDj, is given by

Dj ≤ GRC1(pj)− A1(pj) + (M − 1) max
n∈ 1,...,j

ln

r
+

M∑
m=1

αm (1)

whereαm = em + τm,m+1, andτm,m+1 is the propagation delay between nodesm andm + 1.

The differenceGRC1(pj) − A1(pj) in Equation (1) depends on source traffic specification. For a

(σ, ρ) constrained flow, Equation (1) takes the form [9]

Dj ≤ σ

r
+ (M − 1) max

n∈ 1,...,j

ln

r
+

M∑
m=1

αm (2)
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Figure 2: Example of non-FIFO behavior of two GR nodes, traversed by a (σ, ρ) constrained flow,
with σ = l, ρ = r = 1, and where the propagation delay at all links is zero.ak and bk are
respectively the arrival times of packets at node1 and2, andck are the departure times of packets
from node2. At all nodes only packet1 takes its maximum possible delay at the node (equal to its
GR clock value at the node), whereas all other packets get no delay from the nodes. The end-to-end
delay of packet1 is of 3l − 2ε time units: if ε < l

2
, packet1 gets a larger delay than the delay

bound in [9], which is of2l time units.

3.2 Counter example

However, from the analysis of even simple examples of non-FIFO behavior in GR nodes, we can

verify that in a network of non-FIFO GR nodes the end-to-end delay for a packet can actually be

higher than the bounds in Equation (1) and Equation (2).

As an example, we consider a sequence of two packets, belonging to a (σ, ρ) constrained flow

that traverses two GR non-FIFO nodes (see Figure 3.2). To simplify the example, we took the

propagation delay at all links equal to zero,e = 0 for both nodes,σ = l bits, ρ = r = 1. We

assume that packet1 is of lengthl, and that packet2 is of lengthl − ε. At the input to node1,

packet1 arrives at timet = 0, packet2 at timel − ε.

As there is no delay at the nodes, the maximum departure time for packet1 is given by its GR

clock value at node1, equal tol time units: then we can assume that packet1 leaves the first node

at timet = l, and that all other packets get no delay at the node, so that their departure time equals

their arrival time at the node. In this way at the input to node2 we have that packet2, arrived at

time l − ε, precedes packet1.

At node2, we assume again that the departure time of packet1 equals its maximum departure time

(its GR clock value at the node) so that, as the GR clock value for packet2 is t = 2(l− ε), the GR

clock value for packet1 is 3l − 2ε, and this is also the end-to-end delay for this packet.

The end-to-end delay bound from Equation (2) in this case would instead be of2l time units, so
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that if ε < l
2

the delay of packet1 in the example is larger than the delay bound in Equation (2).

This simple example shows that the existing end-to-end delay bounds in a network of GR nodes

are not valid for non-FIFO nodes.

3.3 The hidden FIFO assumption in [9]

In this section, we analyze the original derivation of the end-to-end delay bounds of Equation (1)

and Equation (2) from [9], in order to put in evidence that those results are actually valid only for

FIFO GR nodes.

The hidden assumption is in the proof of the following Lemma in [9], used to derive the bounds in

Equation (1) and Equation (2):

Lemma 3.1 ([9]) If the scheduling algorithm at serversm andm + 1 along the path of the flow

belongs to GR for that flow, then

GRCm+1(pj) ≤ GRCm(pj) + max
k∈[1,..,j]

lk

r
+ αm, j ≥ 1 (3)

wherepj is the j-th packet of the flow,lk is the length of thek-th packet of the flow,r is the

guaranteed rate for the flow at nodesm andm + 1.

The hidden FIFO assumption lies in the following inequality, between equations (23) and (24) of

the proof of the lemma:

GRCm(pj+1) ≥ GRCm(pj) +
lj+1

r
(4)

The hidden assumption is in the use of packet indices at two consecutive nodesm andm + 1. In

the proof, indexj refers to the succession of packet arrivals at nodem+1: indeed, from inequality

(4) (which has been derived from the GR clock value definition at nodem) we see that the same

packet indexj is used for the succession of packets at the input to nodem. This implies that no

packet reordering takes place at nodem, and that nodem is assumed to be FIFO for the flow.

Indeed, if we look at the example in Figure 3.2, we can clearly see that, if node1 is non-FIFO,

then Equation (4) is false for packet1.

This can be shown by comparing the GR clock values of packet1 at nodes1 and2. At node1, the

GR clock value for packet1 is l. At node2, the GR clock value for packet2 (which is the first to

arrive at the node, at timel − ε) is 2(l − ε), and the GR clock value for packet1, arrived at the

node at timel, is 3l − 2ε. Now, for packet1 Equation (4) translates into the following inequality:

3l − 2ε ≤ 2l (5)
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As we saw in the example, ifε < l
2

then3l− 2ε > 2l, and Equation (4) does not hold in this case.

As in the non-FIFO case the lemma in [9] does not hold, the whole proofs of the delay bounds

in Equation (1) and Equation (2) in [9], which rely on that lemma, are not valid in the non-FIFO

case.

4 An end-to-end delay bound valid in the non-FIFO case

4.1 The delay bound

As we showed in the previous section, when nodes are not FIFO, as Theorem 3.1 and Equation (2)

cannot hold, the question that arises is whether the end-to end delay in a network of generic,

non-FIFO GR nodes is bounded, and which is the expression of the bound in this case. To our

knowledge the issue is still open, as no result in the present literature addresses it in an exhaustive

way. We answer to this with the following theorem, which is one of the main contributions of the

present paper:

Theorem 4.1 Consider a (σ, ρ) constrained flow that traverses a sequence ofM GR nodes. If all

nodes reserve the same service rater to the flow, and if all nodes are stable, an end-to-end delay

bound for a packet belonging to the flow is given by

d = M
σ

r
+

ρ

r

lmax

r

M(M − 1)

2
+

ρ

r

M∑
m=1

m−1∑
i=1

ei +
M∑

m=1

(
em + τm,m+1

)
(6)

wherelmax is the maximum packet length for the flow. Moreover, if we denote withσM the bursti-

ness of the arrival curve for the flow at the output of nodeM , we have that

σM = σ + Mρ
lmax

r
+ ρ

M∑
m=1

em (7)

By comparing the bound in Equation (6) with the one that can be obtained when we know that

nodes are FIFO we can clearly see how, in the non-FIFO case, the contribution to the end-to-end

delay which is due to the burstinessσ of the initial flow is multiplied by a factorM . Hence, in the

non-FIFO case, the non-validity of the concatenation result for the computation of an end-to-end

delay bound brings to “pay” burstM times, instead of only once [13].

8



We can also observe that another consequence of the non-FIFO behavior of GR nodes is an incre-

ment of the burstiness of the flow at the output of the last node by the quantityρ lmax

r
, with respect

to the FIFO case.

Proof. (of Theorem 4.1) We first observe that the hypothesis of node stability implies thatρ ≤ r at all theM nodes.

As GR nodes are not necessarily FIFO, for the end-to-end delay computation we exploit some properties of GR nodes

that do not depend on their FIFO behavior. Among the Network Calculus results still valid in the non-FIFO case, we

have the following:

Theorem 4.2 (Equivalence with service curve [13])A GR node with rater and latencye, with L-packetized input,

is the concatenation of a service curve element, with service curve equal to the rate-latency functionβr, e, and an

L-packetizer. If the GR node is FIFO, then so is the service curve element.

An important implication of the preceding theorem is the following corollary:

Corollary 4.1 ([13]) A GR node (with rater and latencye) offers a minimum service curveβr, e+ lmax
r

.

As the equivalence between a GR node and a rate-latency service curve element holds also for non-FIFO nodes, a

sequence ofM GR nodes can still be studied as the concatenation of service curve elements, each one of the form

βr, e+ lmax
r

. The link between two nodes on the path of the flow can be modelled as a FIFO constant delay element,

with a minimum service curve of the formδτm,m+1 , and a maximum service curve with the same expression [13].

As a consequence of the equivalence between GR nodes and service curve elements, in order to derive a delay bound

at each of theM non-FIFO GR nodes we can exploit the following result [13]:

Theorem 4.3 ((Delay Bound) [13]) For a flow with an arrival curvef(t), served in a (possibly non-FIFO) GR node

with rater and latencye, the delay for any packet at the node is bounded by

sup
t>0

[
f(t)
r

− t

]
+ e

If we consider a (σ, ρ) constrained flow that traverses a sequence ofM GR nodes, the sequence of GR servers offers

to it a minimum service curve given by the min-plus convolution between the service curves of all the GR nodes and

links in the sequence, and a maximum service curve given by the min-plus convolution between the maximum service

curves of all links.

Proposition 4.1 ([13]) Consider a flow that traverses a sequence of service curve elements in a network. In order to

compute an output bound for the flow, fixed delay elements on the path of the flow can be ignored.

As a consequence, if we indicate withfm+1(t) an arrival curve of the flow at the input to them + 1-th node in the

sequence (m ∈ [1, M ]), using the properties of the deconvolution operator [13] we have that

fm+1(t) =
[
(σ + ρt)⊗ δ∑m

i=0 τ i,i+1

]® βr,
∑m

i=0[ lmax
r +ei+τ i,i+1] =

(σ + ρt)® βr,
∑m

i=0[ lmax
r +ei] =
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= σ + ρ

(
t +

m∑

i=0

[
lmax

r
+ ei

])
(8)

where⊗ is the convolution operator,® is the deconvolution operator [13], andβr,
∑m

i=0[ lmax
r +ei+τ i,i+1] is the service

curve of the concatenation of nodes1, ...,m and of the links between them. From Equation (8), if we indicate with

fM+1(t) the arrival curve at the output of nodeM , we can observe that its burstiness has the expression in Equation (7).

Using Theorem 4.3, a delay bound at them-th node along the succession of theM GR nodes is given by

dm =
σ

r
+ (m− 1)

ρ

r

lmax

r
+

ρ

r

m−1∑

i=1

ei + em (9)

and a delay bound for the concatenation of them-th node and the link between nodesm andm + 1 is given by

dm + τm,m+1.

An end-to-end delay bound for the packets of the flow is obtained by summing the delay bounds in Equation (9) at

each node along the path of the flow, and taking into account the propagation delays at all links:

d =
M∑

m=1

(dm + τm,m+1) =

= M
σ

r
+

ρ

r

lmax

r

M∑
m=1

(m− 1) +
ρ

r

M∑
m=1

m−1∑

i=1

ei +
M∑

m=1

(
em + τm,m+1

)
=

= M
σ

r
+

ρ

r

lmax

r

M(M − 1)
2

+
ρ

r

M∑
m=1

m−1∑

i=1

ei +
M∑

m=1

(
em + τm,m+1

)

¤

4.2 The delay bound in the non-FIFO case is tight

Theorem 4.4 With the same assumptions as in Theorem 4.1, the bounds in Equation (6) and Equa-

tion (7) are tight. More precisely, we can always define a succession of packets and a series of

scheduling behaviors of the chain of GR nodes such that the burstiness of the flow at the output of

theM -th node achieves the bound in Equation (7), and that at least one packet from the given flow

experiences an end-to-end delay equal to the bound in Equation (6).

Proof. The proof of Theorem 4.4 is by example: let’s take a (σ, ρ) constrained flow, that traverses a sequence ofM

non-FIFO GR nodes, all with the same delaye and the same service rater for the flow.

We assume for simplicity thate = k time units, withk ∈ N, that∀m, τm,m+1 = τ = l
r and we takeσ = nl >

(k + 1)l. In order to simplify the notation, we assume thatρ = r, and that all packets are of the same lengthl.

The example can be built as follows:
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The sequence of packets: we consider the following sequence of packets, at the input to the first of the M nodes:

• at t = 0, we have the arrival of a burst of dimensionσ = nl;

• then, with a periodP (i) = σ
r + (i − 1) l

r + ik l
r , i ≥ 1, we have the arrival of a burst of dimensionσ = nl.

The arrival time of thei-th burst at the first of theM nodes is given by

ti =
i∑

j=1

P (j) =

= i
σ

r
+

l

r

i∑

j=1

(j − 1) + k
l

r

i∑

j=1

j

• For i ≥ 1 we define the time instantst∗i as

t∗i = ti − (i− 1)
l

r
− ik

l

r

Then we assume that in the time intervals[t∗i , ti), i ≥ 1 we have a packet arrival at timet∗i and then the arrival

of a packet eachlr time units, so that a total ofi− 1 + ik packets arrive in each interval[t∗i , ti).

We can verify that such a succession of packets is (σ, ρ) constrained. On Figure 3 we have an example of a succession

of packets with these characteristics, withσ = 4l, e = 2 l
r and l

r = 1 time unit.

The scheduling behavior: given the initial burst of the sequence, of dimensionσ = nl, which arrives at the first of the

M nodes at time0, we consider one of the packets that compose it, and we indicate it withpn (in order to distinguish

it from pn, then-th packet to get into a given node).

We assume that, at the input to them-th node along the path of the flow:

• all packets that precede packetpn (pn included) at the input of them-th node get themaximumdelay at the

node;

• if pn is part of a burst of packets, arrived at a node in the same time instant aspn, it is always the last to be

served (non-FIFO behaviour);

• all packetspj (1) that get into them-th node after packetpn, and in time intervals[t∗i + (m− 1)τ, ti + (m−
1)τ), i ≥ 1, get a delay equal toe + l

r , but do not get out of the node after timeti + (m− 1)τ . That is, their

departure time is

dm(pj) = min
{

A(pj) + e +
l

r
, ti + (m− 1)τ

}

• all packets that get into them-th node after packetpn, and at time instantsti + (m − 1)τ, i ≥ 1, get the

minimumdelay for that node.

At each GR node, the maximum departure time for each packet is equal to the sum of its Guaranteed Rate clock

value and of the delay of the node, whereas its minimum departure time is equal to its arrival time at the node. As

a consequence, given the structure of the sequence of packets, for all packets that precede or arrive at the same time

as packetpn at the input of a node (packetpn included), we observe at the output, starting from the first packet, one

packet departure eachlr time units.

1We underline here that packet indices refer to the succession of packets at the input to a specific node, so that in
general different packet indices are to be used for packets at the input to each node.
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Figure 3: Evolution of a sequence of packets, at the input to each of three GR nodes on its path, and
at the output of node3. At the input to node1, there is a sequence with the characteristics described
in the proof of Theorem 4.4, and which is (σ, ρ) constrained, withσ = 4l, e = 2 l

r
time units, l

r
= 1

time unit. As the propagation delay at all links is of1 time unit, the delay experimented by the
packet marked in black at nodes1, 2 and3 (taking into account propagation delay of the link at
the output of each node) is respectively of7, 10 and13 time units (for an end-to-end delay of30
time units), and the burstiness of the output flow at each node is respectively of7l, 10l and13l, as
predicted by Theorem 4.4.

In order to demonstrate the tightness of the bounds in Equation (6) and Equation (7), we use induction on the indexm

of the succession of theM nodes on the path of the flow.

Base case: m = 1, the first node of the path. The departure time of the first packet to be served at node1 is

d1(p1) = A1(p1) +
l

r
+ e = (k + 1)

l

r

since we assumed that the arrival time at node1 is att = 0. As all then packets that arrived att = 0 leave the node

with the maximum delay, starting from timet = d1(p1) we observe at the output of node1 one packet leaving the

node eachl
r time units, up to packetpn, which then leaves the node at time

d1(pn) = A1(p1) + n
l

r
+ e =

σ

r
+ e

Taking into account propagation delay on the link between nodes1 and2, the delay of packetpn at the input to node

2 is equal tod1(pn) + τ , and in this case the delay bound in Equation (6) is verified.

In the time interval[σ
r , σ

r + k l
r ) at the input to node1, we have one packet arrival eachl

r time units and a total ofk

packet arrivals in the whole interval. The first of this packets arrives at node1 at timet = σ
r , and it leaves the node
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at timet′ = σ
r + k l

r . This implies that all packets arrived in that time interval leave the node at timet′. Then, at

time t′ at the input of the node we have the arrival of a burst of dimensionσ = nl, that is not delayed by node1. As

d1(pn) = t′, we have that at timet′ at the output of the node the flow has a burst of dimension(n + k + 1)l, achieving

the burstiness bound in Equation (7).

Iterative step: The inductive hypothesis is that Equation (6) and Equation (7) hold for the sequence of nodes from1 to

m. We want to demonstrate that they hold also for the sequence of nodes from1 to m + 1 (m + 1 ≤ M ).

By the inductive hypothesis, the time at which packetpn arrives at nodem can be obtained by Equation (6):

Am(pn) = (m− 1)
σ

r
+

l

r

m−1∑

j=1

(j − 1) + k
l

r

m−1∑

j=1

j + (m− 1)τ

and the time at which it leaves nodem is given by

dm+1(pn) = m
σ

r
+

l

r

m∑

j=1

(j − 1) + k
l

r

m∑

j=1

j + (m− 1)τ

Due to the structure of the sequence of packets and the scheduling behavior of nodes, after the arrival ofpn at nodem

we have, in the time interval[t∗m + (m− 1)τ, tm + (m− 1)τ ], the arrival ofn + mk + m− 1 packets, with

tm = m
σ

r
+

l

r

m∑

j=1

(j − 1) + k
l

r

m∑

j=1

j

Then, for the scheduling behavior of the sequence of nodes, the packet that arrives at node1 at timet∗m (and so, the

first packet to arrive at nodem in the time interval[t∗m + (m − 1)τ, tm + (m − 1)τ ]) takes by each node in the

succession1, ..., m a delay equal to(k + 1) l
r , and by each link a delay ofτ . Therefore, it leaves nodem at a time

t′ + (m− 1)τ , wheret′ is given by

t′ = min
{

t∗m + m(k + 1)
l

r
, tm

}

As

tm − t∗m = mk
l

r
+ (m− 1)

l

r

then we have thatt′ = tm, and all then + mk + m− 1 packets leave nodem at timetm + (m− 1)τ .

As Am+1(pn) = tm + mτ , at timetm + mτ at the input to nodem + 1 we have the arrival ofn + mk + m packets,

and a burst of dimensionn + m(k + 1).

In general, at the output of each nodex, x ∈ 1, ..., m, at timetx + (x − 1)τ we have the departure of packetpn and

of n + xk + x− 1 other packets. As at all nodespn is always the last packet to be served among those that arrived at

the same time aspn, and as all packets served beforepn get the maximum delay, we have that

Remark 4.1 At the input of nodes2, ...,m + 1, the arrival at timet of packetpn is always preceded by the arrival, at

time t− l
r , of another packet.

Another result that is important for the rest of the proof, is the following:

Lemma 4.1 At nodes1, ..., m + 1, for all packetsp that arrive at the node before packetpn, we have that

13



GRC(p) = A(p) +
l

r
(10)

Proof.(of Lemma 4.1) At the node, the GRC of the first packet that arrives, is given by

GRC(p1) = A(p1) +
l

r

as no packet precedes it. The GRC of the second packet is

GRC(p2) = max
{
A(p2), GRC(p1)

}
+

l

r
=

= max
{

A(p2), A(p1)0 +
l

r

}
+

l

r

As all packets that precedepn at the node get their maximum delay, packet interarrival times are at least ofl
r time

units. So we have thatA(p2) ≥ A(p1) + l
r , and

GRC(p2) = A(p2) +
l

r

For the same reason, in general (for all packetspj that get at a node beforepn) we have thatA(pj) ≥ A(pj−1) + l
r ,

and Equation (10) holds.

¤

At nodem + 1, the GR clock value of the first packet to be served among those arrived at timetm + mτ (that we

denote withpj) is given by:

GRCm+1(pj) = max
(

tm + mτ, GRCm+1(pj−1) +
l

r

)
+

l

r

wherepj−1 is the packet that precedes packetpj at the input to nodem + 1.

Using Lemma 4.1 and Remark 4.1, we have thattm + mτ = GRCm+1(pj−1) + l
r . So we have

GRCm+1(pj) = tm + mτ +
l

r

Then packetpn, that is the last packet to be served among then+mk +m packets arrived at timetm +mτ , will have

a GR clock value at nodem + 1 given by

GRCm+1(pn) = tm + mτ + (n + mk + m)
l

r

and the departure time from nodem + 1 for packetpn is

dm+1(pn) = GRCm+1(pn) + k
l

r
=

= tm + mτ + (n + (m + 1)k + m)
l

r
=

14



= (m + 1)
σ

r
+

l

r

m+1∑

j=1

(j − 1) + k
l

r

m+1∑

j=1

j + mτ

and taking into account the propagation delay of the link at the output of nodem + 1, we have that the end-to end

delay for packetpn for the succession of nodes1, ...,m + 1 is given bydm+1(pn) + τ , and it equals the end-to-end

delay bound in Equation (6).

Also, with a similar procedure to the one followed at nodem, we have that, at timetm+1 + mτ (= dm+1(pn)) at the

output of nodem + 1 we have a burst ofn + (m + 1)(k + 1) packets, so that the flow at the output of nodem + 1
achieves the burstiness bound in Equation (7). ¤

4.3 A Refined Result

We now introduce a new node model, more realistic than the GR node model. Specifically, this

new model is composed by a FIFO GR node, with rater and zero delay, followed by a FIFO

constant delay element with delayea, and by a non-FIFO variable delay element, with maximum

delayeb.

Although the GR node model does not put a lower bound to a packet delay (which can even be

equal to zero), real schedulers do not have a minimal delay equal to zero: they usually introduce

a minimal delay for packets. That is, the departure time of a packetp (arrived at the node at time

A(p)) is

A(p) + ea ≤ d′(p) ≤ GRC(p) + ea + eb (11)

As an example, this happens in input buffer switches, in which the minimum delay for a packet in

the node is due to the minimum time necessary for a packet to traverse the fabric: in the presented

model, the fabric is modelled by the succession of the constant delay element and of the variable

delay element. In this sense, the model presented captures more closely and realistically the char-

acteristics of network nodes.

In this case, we have the following proposition:

Proposition 4.2 It is given a GR node, with rater and delayea + eb, at which the departure time

for a generic packet falls inside the interval[A(p) + ea, GRC(p) + ea + eb]. Such a node can be

modelled as the succession of a FIFO GR server, with rater and zero delay, followed by a FIFO

constant delay element with delayea, and by a non-FIFO variable delay element, with maximum

delayeb.

Proof. Let’s analyze the delay of a packet at the output of such a succession of elements. By definition, the departure
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time of a packetp at the FIFO GR server is upper bounded by the GR clock valueGRC(p) for that packet at the GR

node.

Now, for anyr′ ≥ 0, a variable delay element is a GR node, with rater′ and delay[eb − lmin

r′ ]+(2) [13], wherelmin

is the minimum packet size for the flow. If we indicate withGRC ′(p) the GR clock value of packetp at the variable

delay element, and the arrival time of packetp at the variable delay element asA′(p), the departure timed′(p) of a

generic packetp at this element is given by

A′(p) ≤ d′(p) ≤ GRC ′(p) +
[
eb − lmin

r′

]+

Now, lettingr′ −→∞, we haveGRC ′(p) = A′(p), and the departure timed′(p) falls in the interval

A′(p) ≤ d′(p) ≤ A′(p) + eb

Then the total delay of the succession of the FIFO constant delay element and the variable delay element falls in the

interval [ea, ea + eb]. Taking into account also the delay of the FIFO GR element, we have that the departure time

d(p) of packetp from the succession of the three elements is

A(p) + ea ≤ d(p) ≤ GRC(p) + ea + eb

¤

We then have another version of Theorem 4.1:

Theorem 4.5 Consider a (σ, ρ) constrained flow that traverses a sequence ofM nodes. We assume

that each nodem, m ∈ 1, ..., M is a GR node, with rater and delayem
a + em

b , at which the

departure time for a generic packet falls inside the interval[Am(p) + em
a , GRCm(p) + em

a + em
b ].

If all nodes are stable, an end-to-end delay bound for a packet belonging to the flow is given by

d = M
σ

r
+

ρ

r

lmax

r

M(M − 1)

2
+

ρ

r

M∑
m=1

m−1∑
j=1

ej
b +

M∑
m=1

(
em

a + em
b + τm,m+1

)
(12)

Moreover, the burstiness of the arrival curve for the flow at the output of nodeM , σM , is given by

σM = σ + Mρ
lmax

r
+ ρ

M∑
m=1

em
b (13)

Proof. For each GR node we make use of Proposition 4.2. First of all, we can consider the FIFO constant delay

element at them-th GR node (m ∈ 1, ..., M ) and the link between this node and nodem + 1 as a single FIFO

constant delay element, with delayαm = em
a + τm, m+1.

At them-th GR node, the service curve of the succession of the FIFO GR element and of the non-FIFO variable delay

element is given by the min-plus convolution between:

2The notation[x]+ stands formax(x, 0).
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Table 2:Comparison of the FIFO and non-FIFO delay bounds

σ Delay bound (ms) Delay bound (ms)

(non-FIFO case, Equation (12))(FIFO case, Equation (2)[9])

512 bytes 117.49 31.47

1 kB 146.16 35.57

1.5 kB 174.83 39.66

2 kB 203.50 43.76

Values assumed by the delay bounds in Equation (2) from [9] and in Equation (12). We made the following assump-
tions:M = 7 nodes; all nodes have the same delayea +eb (and the same fixed part of delayea); all links introduce the
same delayτ = 400µs; all nodes guarantee a service rater = 1 Mbit/s to the flow;ρ = r, ea = 100ns, eb = 10ns;
all packets have the same lengthl = 512 bytes.

• the service curve of the FIFO GR element, equal toβr, 0;

• the service curve of the non-FIFO variable delay element that, by the equivalence with a GR node [13], is equal

to β
r′, [em

b −
lmin

r′ ]+
, for anyr′ ≥ 0. Lettingr′ −→∞, it becomes equal toδem

b
.

The resulting service curve is then given byβr, em
b

.

The proof then proceeds similarly to the one in Theorem 4.1, withem
b instead ofem at each node, and substituting

τm, m+1 with αm. ¤

In order to have an idea of the difference between the values assumed by delay bounds in Equa-

tion (2) and those given by Equation (12) of Theorem 4.5, in Table 2 we reported the values

assumed by the two bounds in an example, for different values of the burstinessσ for the consid-

ered flow. We can observe that the actual delay bound in the non-FIFO case can be many times

larger than the one holding for FIFO nodes.

4.4 The FIFO case

When GR nodes are FIFO per flow, the result in Theorem 1 [9] is valid. Another way to derive it

in the FIFO case is to exploit Network Calculus results for the concatenation of FIFO GR nodes

[13]:

Theorem 4.6 (Concatenation of FIFO GR nodes[13]) The concatenation ofM GR nodes (that

are FIFO per flow) with ratesrm and latenciesem is GR with rater = minm(rm) and latency

e =
∑M

m=1 em +
∑M−1

m=1
lmax

rm
.

Using Theorem 4.4, a delay bound for the concatenation of theM FIFO GR nodes, when the flow

that traverses them is (σ, ρ) constrained, and when all nodes reserve the same service rater for the

flow, is given by the expression in Equation (2), so that we find the result of Theorem 1.
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5 Conclusion

In the present paper, we considered end-to-end delay bounds in a network of Guaranteed Rate

nodes. We have demonstrated that, contrary to what is stated in the literature, the validity of the

available methods to derive end-to-end delay bounds in a network of Guaranteed Rate servers is

restricted to the case in which nodes are globally FIFO (that is, they are FIFO per flow and per

microflow). We have proved with a counterexample that those delay bounds are not valid in the

non-FIFO case. We have exhibited the implicit FIFO assumption in the original derivation of

the bounds, and we have determined new bounds that are valid in the non-FIFO case. We have

shown the tightness of the bounds derived in the non-FIFO case. We also gave evidence of how,

in a realistic scenario, they can be sensibly higher than the ones valid in the FIFO case. We also

showed how, in the FIFO case, the existing bounds derive from well-known Network Calculus

results.
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