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Abstract

We consider end-to-end delay bounds in a network of Guaranteed Rate (GR) nodes. We
demonstrate that, contrary to what is generally believed, the existing end-to-end delay bounds
apply only to GR nodes that are FIFO per flow. We show this by exhibiting a counter-example.
Then we show that the proof of the existing bounds has a subtle, but important, dependency
on the FIFO assumption, which was never noticed before. Finally, we give a tight delay bound
that is valid in the non-FIFO case; it is noticeably higher that the existing one. In particular,
the phenomenon known as “pay bursts only once” does not apply to non-FIFO nodes. These
findings are important in the context of differentiated services. Indeed the existing bounds
have been applied to cases where a flow (in the sense of the GR definition) is an aggregate of
end-user microflows, and it is not generally true that a router is FIFO per aggregate; thus the
GR node model of a differentiated services router cannot always be assumed to be FIFO per
flow.

Introduction

In the differentiated services framework [3], end-to-end delay bounds may be obtained by assum-
ing that sources satisfy leaky bucket [13] traffic specifications, and that routers can be modelled as
Guaranteed RatéGR) [9, 10] nodes. One of the main properties of a network of GR nodes is that

a tight upper bound on end-to-end delay can be obtained, given the parameters of the leaky buck-
ets at the source (burstiness and sustainable rate), and the parameters of the traversed GR nodes
(delay and service rate). This end-to-end bound, derived in the original paper [9], is recalled in
Equation (2); it has the remarkable property known as “pay bursts only once” [13], i.e. when a
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bursty flow traverses a number of GR nodes in sequence, the effect of the burstiness of the flow
on the end-to-end delay bound is the same as if the flow traversed only one node. Another way to
look at this property is that the end-to-end delay bound is much less than the sum of delay bounds
at each node [12, 7].

Many scheduling disciplines have been shown to belong to the GR node model. Among these
we have: Virtual Clock [11], Packet-by-Packet Generalized Processor Sharing (PGPS) [14], Self
Clocked Fair Queuing [8], Bin Sort fair Queuing [6], and Leap Forward Virtual Clock [15].

The GR node model may be used in the differentiated services framework as follows [13]. End-
user flows (called “microflows”) are grouped into “aggregates” at the network edge; inside the
network, each aggregate is handled as an individual flow, in other words, the “flow” that a GR
node sees inside the network is in fact an aggregate. In practice, although this procedure usually
preserves the ordering of packets within each microflow (in order to preserve sequence at the TCP
or RTP layer), packet reordering can take place inside an aggregate between packets belonging
to different microflows. In routers with multistage fabrics, this reordering is due to the presence
of multiple parallel paths between input and output ports [5, 1]. Thus the GR node model of a
differentiated services router cannot always be assumed to be FIFO per flow. More generally,
the GR class encompasses a great variety of algorithms, which are not necessarily FIFO per flow
[4]. In this paper we use the term “FIFO” to indicate a GR node that is FIFO per flow (since the
definition of GR node is relative to the treatment it gives to a flow viewed as a single entity).

We address an issue that arises from the application of the end-to-end delay bounds in [9] when the
GR nodes are not FIFO. In the original definition of GR node in [9], there is no mention of a FIFO
assumption. Therefore, the end-to-end delay bound in [9] has silently been assumed to be valid
whether the GR node is FIFO or not. It has formed the basis for delay computations in networks
that perform aggregate scheduling [2].

However, and this is our first contribution, the end-to-end delay bound in {&jtigalid with non-

FIFO GR nodes. We show this in Section 3.2, by exhibiting an example of a network with non-
FIFO GR nodes, and which violates the delay bound. How can this happen given that the original
derivation in [9] does not appear to make use of any FIFO assumption ? We have analyzed the
proofs in [9], and indeed found a place where a hidden FIFO assumption is made; this assumption
is subtle, but is essential and invalidates the results in [9] in the non-FIFO case (Section 3.3).

Our second contribution is an end-to-end delay bound that is valid in the general, possibly non-
FIFO case (Section 4.1). The bound is valid for a network of GR nodes and for a leaky bucket
constrained flow that traverség of these nodes. We show that this bound is tight (Section 4.2).
Unfortunately, the new bound has lost the attractive “pay bursts only once” property mentioned
earlier: the burstiness of the flow appears in the bound with a fadtpand it is noticeably
higher than the one valid for FIFO GR nodes. Our methodology to obtain this bound is based
on the mapping between a GR node and a service curve element ([13], Section 2.1); we exploit the
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Figure 1: We consider as(p) constrained flow which traverses a succession of M nodes in a
network of GR servers. The flow can be interpreted as a differentiated services aggregate flow, in
which cased, p) is the sum of the parameters of the constituent microflows.

fact that the concatenation result for service curve elements holds independently from the FIFO
behavior of nodes, and we derive a bound on the burstiness increase due to traversing a (possibly
non-FIFO) GR node. The burstiness increase result is also a bound of independent interest, and
we show in Section 4.2 that it is tight as well.

In many practical cases of interest, it is possible to bound the non-FIFO behavior of a GR node by
breaking down its latency into a fixed and a variable part. We give the improved bound for such
cases in Section 4.3. We note in passing that there is a concatenation result available for FIFO GR
nodes, that can be used to derive more simply the original end-to-end delay bound for FIFO GR
nodes (Section 4.4).

2 Model and Assumptions

We define alow as a sequence of packets travelling on a link in a network. To a data flow we
associate the cumulative functid®(¢), which counts the number of bits seen on the flow in the
time interval [0, ¢]. A wide-sense increasing functiof(¢) is said to be an arrival curve for a
flow (which is then said to b§t) constrainedl with cumulative functionR(t) if it holds, for all
0<r<t:

R(t) — R(t — 1) < f(7)
The arrival curve of a given flow upper bounds the number of packets of the flow that can be

observed on a given time window. &,( p) constrained flow is a flow whose arrival curve is of the
form f(t) = o + pt, whereo is theburstinesf the flow, andp its sustainable rate

We consider a network of routers that can be modelleGaaranteed Rat¢GR) nodes [9, 10].
The definition of this model is based on the concepbaaranteed Rate clock value

Definition 2.1 (GR clock valug[9]) Consider a flow that is associated with a service rat@n
bit/s) at a given node. Let denote the-th packet of the flow, and its length. LetG RC(p’) and
A(p’) denote respectively the guaranteed rate clock value of paékatd its arrival time at the
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Table 1: Symbols used in formulas

R(t) cumulative packet arrival function of the flow
o burstiness

p sustainable rate

r service rate for the flow

e delay of them-th GR node

M nodes traversed by the flow

» j-th packet of the flow

19 length of packep’

lmaz (Lmin) | Maximum (minimum) packet length for the flow
GRC™(p?) | GR clock value at node: for p’ (the j-th packet at the input of the-th node)

A™(p?) arrival time at noden of p’ (the j-th packet at the input of the:-th node)

™ (p’) departure time from node: of p’ (thej-th packet at the input of the-th node)
rmemtl propagation delay between nodesandm + 1

a™ em 4 rmemtl

Br.e service curve of the form[t — e]*

() arrival curve for the flow at the input to node

node. The guaranteed rate clock value for pagkes given by:

o j=0
Grew _{ max {A(p), GROG} 42 j>1

The concept of GR clock value is used to define@aranteed RatéGR) node, as follows:

Definition 2.2 (GR nodd9]) Consider a node that serves a flow. Packets are numbered in order of
arrival. The node is a Guaranteed Rate node for the flow, with rated delaye, if it guarantees

that packetp’ of the flow is transmitted b RC(p’) + e, wheree depends on the scheduling
algorithm and the server.

Many practical implementations of the GPS scheduling algorithm, such as Virtual Clock schedul-
ing, Packet-by-Packet Generalized Processor Sharing scheduling, and Self Clocked Fair Queuing
have been shown [9] to belong to the GR category of servers.

We consider a flow that traverses a network of GR nodes, which are not necessarily FIFO (a node
is FIFO when, for each flow the sequence of packets at the output of the node is identical to the
sequence of packets at the input of the node).

We assume that the given flow traverses a successidh wbdes in the network. As they traverse
the network, packets belonging to the flow experience a delay that accumulates along their path,
and that can be different in principle at each node for each packet.
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We assume that the arrival time of a packet at a node is the arrival time of the last bit of the packet,
and the departure time of a packet from a node is the departure time of the last bit of the packet.
This leads us to observe instantaneous packet arrivals and departures. In what follows we consider
that each link between two nodesandm + 1 has a constant propagation detd@y™*!, and with

rM:M+1 e indicate the propagation delay of the link betweenthé¢h node and the destination.

Finally, we consider that all the nodes traversed by the flow are stable. A node along the path of
the flow is stable ifp < r, wherep is the sustainable rate of the arrival curve of the flow (at its
source) and is the reserved rate for the flow at the node [13].

3 The existing end-to-end delay bounds in GR nodes require
FIFO assumption

3.1 The existing results

The main result about end-to-end delay bounds in a network of (not necessarily FIFO) GR servers
which is presently available has been first derived in [9], and extended in [10]. In those papers a
method is defined to derive an end-to-end delay bound, based on the following result:

Theorem 3.1 ([9]) Consider a flow that traverses a successionbihodes in a network. If the
scheduling algorithm at each server € (1, M) on the path of the flow belongs to GR for the
given flow, with service rate for the flow and delay™, then a bound to the end-to-end delay of
the j-th packet of the flow, denoted withv, is given by

D} < GRC'(pP) — AYp)) + (M —1) maxj7+zam (1)

wherea™ = ™ + r™™m+L andr™™+! is the propagation delay between nodesindm + 1.

The differencea RC' (p’) — A'(p?) in Equation (1) depends on source traffic specification. For a
(o, p) constrained flow, Equation (1) takes the form [9]

_U+(M—1) max — + a™ (2)
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Figure 2: Example of non-FIFO behavior of two GR nodes, traversed by ¢onstrained flow,
with o = [, p = r = 1, and where the propagation delay at all links is zetp.and b, are
respectively the arrival times of packets at nadend2, andc, are the departure times of packets
from node2. At all nodes only packet takes its maximum possible delay at the node (equal to its

GR clock value at the node), whereas all other packets get no delay from the nodes. The end-to-end

delay of packetl is of 3] — 2¢ time units: ife < L, packetl gets a larger delay than the delay

2!
bound in [9], which is oR! time units.

3.2 Counter example

However, from the analysis of even simple examples of non-FIFO behavior in GR nodes, we can
verify that in a network of non-FIFO GR nodes the end-to-end delay for a packet can actually be
higher than the bounds in Equation (1) and Equation (2).

As an example, we consider a sequence of two packets, belongingste)acbnstrained flow

that traverses two GR non-FIFO nodes (see Figure 3.2). To simplify the example, we took the
propagation delay at all links equal to zero= 0 for both nodesg = [ bits,p = r = 1. We
assume that packetis of length/, and that packe? is of length/ — . At the input to nodel,
packetl arrives at timeg = 0, packet at timel — ¢.

As there is no delay at the nodes, the maximum departure time for padckegiven by its GR

clock value at nodé, equal tol time units: then we can assume that padkietiaves the first node
attimet = [, and that all other packets get no delay at the node, so that their departure time equals
their arrival time at the node. In this way at the input to n@dee have that packe, arrived at

timel — ¢, precedes packét

At node2, we assume again that the departure time of packeguals its maximum departure time
(its GR clock value at the node) so that, as the GR clock value for paéket= 2(/ — <), the GR
clock value for packet is 3/ — 2¢, and this is also the end-to-end delay for this packet.

The end-to-end delay bound from Equation (2) in this case would instead Z3diofe units, so



thatife < % the delay of packet in the example is larger than the delay bound in Equation (2).
This simple example shows that the existing end-to-end delay bounds in a network of GR nodes
are not valid for non-FIFO nodes.

3.3 The hidden FIFO assumption in [9]

In this section, we analyze the original derivation of the end-to-end delay bounds of Equation (1)
and Equation (2) from [9], in order to put in evidence that those results are actually valid only for
FIFO GR nodes.

The hidden assumption is in the proof of the following Lemma in [9], used to derive the bounds in
Equation (1) and Equation (2):

Lemma 3.1 ([9]) If the scheduling algorithm at servers andm + 1 along the path of the flow
belongs to GR for that flow, then
, : 1k
GRC™(p') < GRC™(P') + max — +a™, j>1 (3)
kel,.5] T
wherep’ is the j-th packet of the flowi* is the length of thek-th packet of the flow; is the
guaranteed rate for the flow at nodesandm + 1.

The hidden FIFO assumption lies in the following inequality, between equatiShsuid @4) of
the proof of the lemma:
[t

GRC™(p’™') > GRC™(p") + W 4)

The hidden assumption is in the use of packet indices at two consecutivemnaatesm + 1. In
the proof, index refers to the succession of packet arrivals at nedel: indeed, from inequality
(4) (which has been derived from the GR clock value definition at nofleve see that the same
packet indexj is used for the succession of packets at the input to med&his implies that no
packet reordering takes place at nadgand that noden is assumed to be FIFO for the flow.

Indeed, if we look at the example in Figure 3.2, we can clearly see that, if haglaon-FIFO,
then Equation (4) is false for packet

This can be shown by comparing the GR clock values of packénhodesl and2. At nodel, the
GR clock value for packet is [. At node2, the GR clock value for packet(which is the first to
arrive at the node, at time— ¢) is 2(I — ¢), and the GR clock value for packet arrived at the
node at timd, is 3/ — 2¢. Now, for packetl Equation (4) translates into the following inequality:

3] — 2 < 21 (5)



As we saw in the example, if < é then3l — 2 > 2/, and Equation (4) does not hold in this case.

As in the non-FIFO case the lemma in [9] does not hold, the whole proofs of the delay bounds
in Equation (1) and Equation (2) in [9], which rely on that lemma, are not valid in the non-FIFO
case.

4 An end-to-end delay bound valid in the non-FIFO case

4.1 The delay bound

As we showed in the previous section, when nodes are not FIFO, as Theorem 3.1 and Equation (2)
cannot hold, the question that arises is whether the end-to end delay in a network of generic,
non-FIFO GR nodes is bounded, and which is the expression of the bound in this case. To our
knowledge the issue is still open, as no result in the present literature addresses it in an exhaustive
way. We answer to this with the following theorem, which is one of the main contributions of the
present paper:

Theorem 4.1 Consider a §, p) constrained flow that traverses a sequenc@/©oGR nodes. If all
nodes reserve the same service rate the flow, and if all nodes are stable, an end-to-end delay
bound for a packet belonging to the flow is given by

m—1

vyl . Pl ( P
d: v F 'maz r

T ror

M
et + Z e +Tmm+1 (6)

m=1 =1 m=1

wherel,,.. is the maximum packet length for the flow. Moreover, if we denoteowitthe bursti-
ness of the arrival curve for the flow at the output of nddewe have that

M
lmax m
oy =0+ Mp " —|—p§ e (7)

m=1

By comparing the bound in Equation (6) with the one that can be obtained when we know that
nodes are FIFO we can clearly see how, in the non-FIFO case, the contribution to the end-to-end
delay which is due to the burstines®f the initial flow is multiplied by a factof/. Hence, in the
non-FIFO case, the non-validity of the concatenation result for the computation of an end-to-end
delay bound brings to “pay” burst/ times, instead of only once [13].



We can also observe that another consequence of the non-FIFO behavior of GR nodes is an incre-
ment of the burstiness of the flow at the output of the last node by the quah;'fw with respect
to the FIFO case.

Proof. (of Theorem 4.1) We first observe that the hypothesis of node stability impliep that at all the M nodes.

As GR nodes are not necessarily FIFO, for the end-to-end delay computation we exploit some properties of GR nodes
that do not depend on their FIFO behavior. Among the Network Calculus results still valid in the non-FIFO case, we
have the following:

Theorem 4.2 (Equivalence with service curve [138 GR node with rate and latencye, with L-packetized input,
is the concatenation of a service curve element, with service curve equal to the rate-latency fanctiand an
L-packetizer. If the GR node is FIFO, then so is the service curve element.

An important implication of the preceding theorem is the following corollary:

Corollary 4.1 ([13]) A GR node (with rate and latencye) offers a minimum service cur\@ e+ lmaz -
As the equivalence between a GR node and a rate-latency service curve element holds also for non-FIFO nodes, a
sequence of/ GR nodes can still be studied as the concatenation of service curve elements, each one of the form
B, ey imaz - The link between two nodes on the path of the flow can be modelled as a FIFO constant delay element,
with a minimum service curve of the form.,~+1, and a maximum service curve with the same expression [13].

As a consequence of the equivalence between GR nodes and service curve elements, in order to derive a delay bound
at each of theél/ non-FIFO GR nodes we can exploit the following result [13]:

Theorem 4.3 ((Delay Bound) [13) For a flow with an arrival curvef(t), served in a (possibly non-FIFO) GR node
with rater and latencye, the delay for any packet at the node is bounded by

)

—t} +e
r

sup {
t>0
If we consider ad, p) constrained flow that traverses a sequenc&/oER nodes, the sequence of GR servers offers

to it a minimum service curve given by the min-plus convolution between the service curves of all the GR nodes and
links in the sequence, and a maximum service curve given by the min-plus convolution between the maximum service

curves of all links.

Proposition 4.1 ([13]) Consider a flow that traverses a sequence of service curve elements in a network. In order to
compute an output bound for the flow, fixed delay elements on the path of the flow can be ignored.

As a consequence, if we indicate wiffi**1(¢) an arrival curve of the flow at the input to the + 1-th node in the
sequencer € [1, M]), using the properties of the deconvolution operator [13] we have that

fm+1(t) = [(0‘ + pt) &® 5217;0 Ti,i+1] (%) ﬁh Z?;U[lm,i‘”%'ﬁi-’—ﬂ'”l] =

(0+p) OB, som [tmar 4] =



:U—l-p(t-l-zrn;aac—}—ei]) (8)

i=0

where® is the convolution operator, is the deconvolution operator [13], aril S [Lmas i priit] is the service
’ i=0 r o
curve of the concatenation of nodes.., m and of the links between them. From Equation (8), if we indicate with

FM+1(t) the arrival curve at the output of nodé, we can observe that its burstiness has the expression in Equation (7).

Using Theorem 4.3, a delay bound at theth node along the succession of theGR nodes is given by

g lﬂ’)
dyy = =+ (m —1p az pZP—Fe 9)

and a delay bound for the concatenation of theh node and the link between nodesandm + 1 is given by

dy, + 7ML

An end-to-end delay bound for the packets of the flow is obtained by summing the delay bounds in Equation (9) at
each node along the path of the flow, and taking into account the propagation delays at all links:

M

d="Y"(dy + ™"+ =

m=1

I M M m-—1 M
= M= +BMZ +BZ el+z _|_7_mm+1):
T rr m=1 r m=1 i=1 m=1
M m-—1 M
lmax M—-1)
:ME+BM(7+BZ el 4 + pmomt)
r rr r m=1 i=1 m:l

4.2 The delay bound in the non-FIFO case is tight

Theorem 4.4 With the same assumptions as in Theorem 4.1, the bounds in Equation (6) and Equa-
tion (7) are tight. More precisely, we can always define a succession of packets and a series of
scheduling behaviors of the chain of GR nodes such that the burstiness of the flow at the output of
the M -th node achieves the bound in Equation (7), and that at least one packet from the given flow
experiences an end-to-end delay equal to the bound in Equation (6).

Proof. The proof of Theorem 4.4 is by example: let's takerad) constrained flow, that traverses a sequenc/of
non-FIFO GR nodes, all with the same detagnd the same service ratdor the flow.

We assume for simplicity that = & time units, withk € N, thatvm, ™™+l = 7 = % and we taker = nl >
(k + 1)I. In order to simplify the notation, we assume that r, and that all packets are of the same lerigth

The example can be built as follows:
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The sequence of packetsve consider the following sequence of packets, at the input to the first of the M nodes:

e att = 0, we have the arrival of a burst of dimensien= ni;
e then, with a period”(i) = 2 + (i — 1)£ + ik, i > 1, we have the arrival of a burst of dimension= ni.
The arrival time of the-th burst at the first of thé/ nodes is given by

by = ZP(j) =
j=1

K2

o 1 1 <
=24t 1)+ kS
ZT"'TjE:l(J )+ 7,;213

e Fori > 1 we define the time instant$ as

ﬁ:m—@—mé—mé

Then we assume that in the time interviajs ¢,), ¢ > 1 we have a packet arrival at timgand then the arrival
of a packet eaclé time units, so that a total af— 1 + ik packets arrive in each intervaf, ¢;).

We can verify that such a succession of packets,ig)(constrained. On Figure 3 we have an example of a succession
of packets with these characteristics, with= 4/, e = 2L and % = 1 time unit.

The scheduling behavior given the initial burst of the sequence, of dimensios nl, which arrives at the first of the
M nodes at timé), we consider one of the packets that compose it, and we indicate ipyvitin order to distinguish
it from p™, then-th packet to get into a given node).

We assume that, at the input to theth node along the path of the flow:

o all packets that precede packgt (p,, included) at the input of the:-th node get thenaximumdelay at the
node;

e if p, is part of a burst of packets, arrived at a node in the same time instant &ss always the last to be
served (non-FIFO behaviour);

e all packetgy’ (1) that get into then-th node after packet,, and in time interval§t} + (m — 1)7, ¢; + (m —
1)7), i > 1, get a delay equal te+ £, but do not get out of the node after time+ (m — 1)r. That s, their
departure time is

d™(p’) = min {A(pj) +e+ % ti+ (m— 1)7}

o all packets that get into thex-th node after packet,,, and at time instants;, + (m — 1)7, ¢ > 1, get the
minimumdelay for that node.

At each GR node, the maximum departure time for each packet is equal to the sum of its Guaranteed Rate clock
value and of the delay of the node, whereas its minimum departure time is equal to its arrival time at the node. As

a consequence, given the structure of the sequence of packets, for all packets that precede or arrive at the same time
as packep,, at the input of a node (packgt, included), we observe at the output, starting from the first packet, one
packet departure eac%htime units.

1we underline here that packet indices refer to the succession of packets at the input to a specific node, so that in
general different packet indices are to be used for packets at the input to each node.
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Figure 3: Evolution of a sequence of packets, at the input to each of three GR nodes on its path, and
at the output of noda. At the input to nodd, there is a sequence with the characteristics described

in the proof of Theorem 4.4, and which i, () constrained, witlr = 4/, ¢ = 2% time units,% =1

time unit. As the propagation delay at all links is bfime unit, the delay experimented by the
packet marked in black at nodés2 and3 (taking into account propagation delay of the link at

the output of each node) is respectively7ofl0 and13 time units (for an end-to-end delay 8

time units), and the burstiness of the output flow at each node is respectivélylof and13/, as
predicted by Theorem 4.4.

In order to demonstrate the tightness of the bounds in Equation (6) and Equation (7), we use induction on the index
of the succession of thil nodes on the path of the flow.

Base casem = 1, the first node of the path. The departure time of the first packet to be served dt isode
1/,.1 1/,.1 ! !

d'(p*)=A(p )+;+e:(k+1);

since we assumed that the arrival time at nbdgatt = 0. As all then packets that arrived at= 0 leave the node

with the maximum delay, starting from timte= d'(p') we observe at the output of nodeone packet leaving the
node eachﬁ time units, up to packet,,, which then leaves the node at time

l
d'(p) = A'(p) + 17 o= te

Taking into account propagation delay on the link between nodesl2, the delay of packet,, at the input to node
2 is equal tod* (p,,) + 7, and in this case the delay bound in Equation (6) is verified.

In the time intervalZ, < + k%) at the input to nodé, we have one packet arrival eaghime units and a total of

r?or

packet arrivals in the whole interval. The first of this packets arrives at had¢imet = Z, and it leaves the node
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attimet’ =  + k% This implies that all packets arrived in that time interval leave the node atttiniehen, at
timet’ at the input of the node we have the arrival of a burst of dimensiennl, that is not delayed by node As
d'(p,) = t', we have that at tim¢ at the output of the node the flow has a burst of dimengior k + 1)/, achieving
the burstiness bound in Equation (7).

Iterative step The inductive hypothesis is that Equation (6) and Equation (7) hold for the sequence of hodésdrom
m. We want to demonstrate that they hold also for the sequence of node$ foom + 1 (m + 1 < M).

By the inductive hypothesis, the time at which pagketrrives at noden can be obtained by Equation (6):

m—1 m—1

A ) = (m =7+ D3 G =)+ ke Y g (= 17

g
r

and the time at which it leaves nodeis given by

m

m+1 _ Tl P I~ _
d (pn)_mr+r;(j 1)+/~cr;g+(m T

Due to the structure of the sequence of packets and the scheduling behavior of nodes, after the g(ratatofiern
we have, in the time intervédd?, + (m — 1)7, t,, + (m — 1)7], the arrival ofn + mk + m — 1 packets, with

m

o 1 _ By
tmzm;—F;Z(]—l)—O—k;;j
J =

1

Then, for the scheduling behavior of the sequence of nodes, the packet that arrives hahtideet’, (and so, the
first packet to arrive at node: in the time intervalt;, + (m — 1)7, t,, + (m — 1)7]) takes by each node in the
successiori, ..., m a delay equal t¢k + 1)%, and by each link a delay of. Therefore, it leaves node at a time
t' + (m — 1)7, wheret’ is given by

l

t' = min {t;; +m(k+1)-, tm}

r

As } }
bty —tr, =mk—~+ (m—1)—
r T

then we have that = ¢,,, and all then + mk + m — 1 packets leave node at timet,,, + (m — 1)7.

As A"t (p,) = t,, +mT, attimet,, + m7 at the input to noden + 1 we have the arrival of. + mk + m packets,
and a burst of dimension + m(k + 1).

In general, at the output of each nader € 1, ...,m, at timet, + (x — 1)7 we have the departure of packegt and
of n + xk + z — 1 other packets. As at all nodgg is always the last packet to be served among those that arrived at
the same time ag,,, and as all packets served befpreget the maximum delay, we have that

Remark 4.1 At the input of nodeg, ..., m + 1, the arrival at time of packetp,, is always preceded by the arrival, at
timet — L, of another packet.

Another result that is important for the rest of the proof, is the following:

Lemma 4.1 Atnodesl,...,m + 1, for all packet® that arrive at the node before packgt we have that
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GRC(p) = Ap) + - (10)

Proof.(of Lemma 4.1) At the node, the GRC of the first packet that arrives, is given by

GROG) = A(') +

as no packet precedes it. The GRC of the second packet is

GRO(p?) = max {A(p?), GRC(p")} + % _

= max {A(pQ)vA(pl)O + i} + %

As all packets that preceds, at the node get their maximum delay, packet interarrival times are at Ieésﬁmb
units. So we have that(p?) > A(p') + L, and

GRC(p*) = A(p*) + !

r

For the same reason, in general (for all packétthat get at a node befogs,) we have thatd(p?) > A(p’~1) + f
and Equation (10) holds.
O

At nodem + 1, the GR clock value of the first packet to be served among those arrived at,tirkenr (that we
denote withp?) is given by:

GRC™(p?) = max (tm +m7, GRC™ M (p 1) + l) + !

T T

wherep’~! is the packet that precedes paciett the input to noden + 1.
Using Lemma 4.1 and Remark 4.1, we have that- mr = GRC™!(pi~!) + L. So we have

GRC™ Y (p?) =ty +m7 + %

Then packep,,, that is the last packet to be served amongthemk + m packets arrived at timg,, + m, will have
a GR clock value at node: + 1 given by

l
GRC™ ! (py) = tm +m7 + (n+mk +m)-

”
and the departure time from node+ 1 for packetp,, is

l
d" 1 (pn) = GRC™ (p,) + b =

l
:tm—|—m7'—|—(n—|—(m+1)k—|—m);=

14



m—+1 m—+1

o l
- DIFEN G-k
(m+ )r+rj:1(‘7 )+ Tj:1j+m7

and taking into account the propagation delay of the link at the output of modlel, we have that the end-to end
delay for packep,, for the succession of nodés...,m + 1 is given byd™*'(p,) + 7, and it equals the end-to-end
delay bound in Equation (6).

Also, with a similar procedure to the one followed at nedewe have that, at timg,, ,; + m7 (= d™**(p,,)) at the
output of noden + 1 we have a burst of, + (m + 1)(k + 1) packets, so that the flow at the output of nedet- 1
achieves the burstiness bound in Equation (7). O

4.3 A Refined Result

We now introduce a new node model, more realistic than the GR node model. Specifically, this
new model is composed by a FIFO GR node, with ra@@nd zero delay, followed by a FIFO
constant delay element with delay, and by a non-FIFO variable delay element, with maximum
delaye,.

Although the GR node model does not put a lower bound to a packet delay (which can even be
equal to zero), real schedulers do not have a minimal delay equal to zero: they usually introduce
a minimal delay for packets. That is, the departure time of a pactatived at the node at time

A(p))is

A(p) + e, <d(p) < GRC(p) + e, + € (11)

As an example, this happens in input buffer switches, in which the minimum delay for a packet in
the node is due to the minimum time necessary for a packet to traverse the fabric: in the presented
model, the fabric is modelled by the succession of the constant delay element and of the variable
delay element. In this sense, the model presented captures more closely and realistically the char-
acteristics of network nodes.

In this case, we have the following proposition:

Proposition 4.2 It is given a GR node, with rateand delaye, + ¢, at which the departure time
for a generic packet falls inside the intenjal(p) + e,, GRC(p) + e, + e]. Such a node can be
modelled as the succession of a FIFO GR server, withraead zero delay, followed by a FIFO
constant delay element with delay, and by a non-FIFO variable delay element, with maximum
delaye,.

Proof. Let's analyze the delay of a packet at the output of such a succession of elements. By definition, the departure

15



time of a packep at the FIFO GR server is upper bounded by the GR clock V@lR€’(p) for that packet at the GR
node.

Now, for anyr’ > 0, a variable delay element is a GR node, with ndtand delayle;, — %ﬁ(z) [13], wherel,,;n,
is the minimum packet size for the flow. If we indicate WlRC’ (p) the GR clock value of packetat the variable
delay element, and the arrival time of packedt the variable delay element a$(p), the departure timé’(p) of a
generic packep at this element is given by

Lnin 1T

7,.1
Now, lettingr’ — oo, we haveGRC’(p) = A’(p), and the departure timé&(p) falls in the interval
Ap) <d(p) < Ap) +e

Then the total delay of the succession of the FIFO constant delay element and the variable delay element falls in the
interval [e,, e, + ep]. Taking into account also the delay of the FIFO GR element, we have that the departure time
d(p) of packetp from the succession of the three elements is

A(p) +eq < d(p) < GRC(p) +eq + ey

We then have another version of Theorem 4.1:

Theorem 4.5 Consider a §, p) constrained flow that traverses a sequenc#/aiodes. We assume
that each noden, m € 1,...,M is a GR node, with rate and delaye!" + ¢;*, at which the
departure time for a generic packet falls inside the intefvdf (p) + ¢7*, GRC™(p) + €' + ¢}'].

If all nodes are stable, an end-to-end delay bound for a packet belonging to the flow is given by

pu ,0[ M( p M m—1 M
o max m m m,m+1
d=M-_+ "= +;§1]§:1e +m1(ea+eb+7 ) (12)

Moreover, the burstiness of the arrival curve for the flow at the output of Adéde,,, is given by

M
lmax m
oy =0+ Mp +p§ ey (13)

m=1

Proof. For each GR node we make use of Proposition 4.2. First of all, we can consider the FIFO constant delay
element at then-th GR node f» € 1,..., M) and the link between this node and nade+ 1 as a single FIFO
constant delay element, with delay® = e + 7™ ™+1,

At the m-th GR node, the service curve of the succession of the FIFO GR element and of the non-FIFO variable delay
element is given by the min-plus convolution between:

2The notationz] T stands fomax(z, 0).
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Table 2:Comparison of the FIFO and non-FIFO delay bounds

o Delay bound{us) Delay boundfus)
(non-FIFO case, Equation (12))(FIFO case, Equation (2)[9]

512 bytes 117.49 31.47

1kB 146.16 35.57

1.5 kB 174.83 39.66

2 kB 203.50 43.76

Values assumed by the delay bounds in Equation (2) from [9] and in Equation (12). We made the following assump-
tions: M = 7 nodes; all nodes have the same delay ¢, (and the same fixed part of delay); all links introduce the

same delay- = 400us; all nodes guarantee a service rate: 1 Mbit/s to the flow;p = r, ¢, = 100ns, ¢, = 10ns;

all packets have the same length 512 bytes.

¢ the service curve of the FIFO GR element, equakta);
¢ the service curve of the non-FIFO variable delay element that, by the equivalence with a GR node [13], is equal
to3, (e — Lmgn 1+ foranyr’ > 0. Lettingr’ — oo, it becomes equal té.;-.
s 1€ !

The resulting service curve is then giveny ..

The proof then proceeds similarly to the one in Theorem 4.1, withnstead ofe™ at each node, and substituting
7 mEL with o™, O

In order to have an idea of the difference between the values assumed by delay bounds in Equa-
tion (2) and those given by Equation (12) of Theorem 4.5, in Table 2 we reported the values
assumed by the two bounds in an example, for different values of the burstifi@sthe consid-

ered flow. We can observe that the actual delay bound in the non-FIFO case can be many times
larger than the one holding for FIFO nodes.

4.4 The FIFO case

When GR nodes are FIFO per flow, the result in Theorem 1 [9] is valid. Another way to derive it
in the FIFO case is to exploit Network Calculus results for the concatenation of FIFO GR nodes
[13]:

Theorem 4.6 (Concatenation of FIFO GR nod§k3]) The concatenation o/ GR nodes (that
are FIFO per flow) with rates,,, and latencies:™ is GR with rater = min,,(r,,) and latency
€= Z%:l e + Z%:_f %

Using Theorem 4.4, a delay bound for the concatenation aifHdFO GR nodes, when the flow
that traverses them is( p) constrained, and when all nodes reserve the same servicefaatine
flow, is given by the expression in Equation (2), so that we find the result of Theorem 1.
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5 Conclusion

In the present paper, we considered end-to-end delay bounds in a network of Guaranteed Rate
nodes. We have demonstrated that, contrary to what is stated in the literature, the validity of the
available methods to derive end-to-end delay bounds in a network of Guaranteed Rate servers is
restricted to the case in which nodes are globally FIFO (that is, they are FIFO per flow and per
microflow). We have proved with a counterexample that those delay bounds are not valid in the
non-FIFO case. We have exhibited the implicit FIFO assumption in the original derivation of
the bounds, and we have determined new bounds that are valid in the non-FIFO case. We have
shown the tightness of the bounds derived in the non-FIFO case. We also gave evidence of how,
in a realistic scenario, they can be sensibly higher than the ones valid in the FIFO case. We also
showed how, in the FIFO case, the existing bounds derive from well-known Network Calculus
results.
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