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Abstract

Degradable fault-tolerant systems can be evaluated uswayded continuous-time Markov
chain (CTMC) models. In that context, a useful measure taicien is the distribution of the
cumulative reward over a time intervil, ¢]. All currently available numerical methods for
computing that measure tend to be very expensive when tlduprof the maximum output
rate of the CTMC model antlis large and, in that case, their application is limited toMGI
models of moderate size. In this paper, we develop two mettmdompute bounds for the cu-
mulative reward distribution of CTMC models with rewardasissociated with states: BT/RT
(Bounding Transformation/Regenerative Transformaténg BT/BRT (Bounding Transforma-
tion/Bounding Regenerative Transformation). The methedsire the selection of a regener-
ative state, are numerically stable and compute the bouittiswell-controlled error. For a
class of rewarded CTMC models, clas8¥’, and a particular, natural selection for the regenera-
tive state the BT/BRT method allows to trade off bounds tigiss with computational cost and
will provide bounds at a moderate computational cost in nases of interest. For a class of
models, clas€’/, slightly wider than clas€’}’, and a particular, natural selection for the regen-
erative state, the BT/RT method will yield tighter bounda &igher computational cost. Under
additional conditions, the bounds obtained by the lessresipe version of BT/BRT and BT/RT
seem to be tight for any value ofor not small values of, depending on the initial probabil-
ity distribution of the model. Clas§’/ and clas<C}’ models with those additional conditions
include both exact and bounding typical failure/repairff@enability models of fault-tolerant
systems with exponential failure and repair time distitmg and repair in every state with
failed components and a reward rate structure which is aimmeasing function of the col-
lection of failed components. We illustrate both the apgiitity and the performance of the
methods using a large CTMC performability example of a féalktrant multiprocessor system.

Keywords. Fault-tolerant computer systems; Degradable systemdjr@aus-time Markov chains;
Distribution of cumulative reward; Bounds; Model transf@tion



1 Introduction

Fault-tolerant parallel and distributed systems typjcekhibit a degradable performance in the pres-
ence of faults. Examples include multiprocessors, gridtelucomputing systems and distributed
systems built over local or wide area networks. A combinegluation of the dependability and
the performance of such systems can be performed by assgciatvard rates with the states of
a “structure” continuous-time Markov chain (CTMC) modedpturing the failure/repair behavior
of the fault-tolerant system, where the reward rate astaatiaith a state is a measure of the per-
formance rate of the system in that state. Those models reae talled performability models
because they capture the general performability concéqudinced by Meyer [13, 14]. Rewarded
CTMC models have become very popular and several well-krntowis supporting their specifica-
tion and solution have been developed [1, 4, 6, 7, 8, 27]. Amgcsophisticated performability
modeling case-study of a fault-tolerant distributed systesing the UltraSAN tool can be found in
[15].

In the context of performability models, a useful measuredwsider is the distribution of the
cumulative reward over a time interval. With reward rateim@ppg@erformance rates, that measure is
the distribution of the performance accumulated over a titezval. Formally, letX = { X (¢);t >
0} be a CTMC with state spade and letr;, i € € be the reward rate structure imposed oxer
The quantityr; has the meaning of rate at which reward is earned whiiie in statei. The cumula-
tive reward complementary distributio@RCD(t, s), is defined as the complementary probability
distribution function of the reward earned in the time ingf0, ¢], i.e.

t
CRCD(t,s) =P [/ Tx(r) dT > s} .
0

The CRCD(¢, s) measure has interesting applications. Th¥is;ould model the failure/repair be-
havior of a multiprocessor ang, i € 2, could be the speedup of the multiprocessor in statea
that contextJOt 7 x(r) d7 would have the meaning of accumulated performance of théprmgessor

in the time interval0, ¢] (normalized with respect to the performance rate of a sipgleessor) and
CRCD(t, s) would be the probability that that accumulated performda@bove a given threshold
s. Several numerical methods have been developed to compaiteRCD (¢, s) measure. Most
of them assumé) finite. Some of the methods allow impulse rewards associatédtransitions
which are earned every time a transition is followed. In awiew, we will restrict our attention to
general-purpose methods which, besides (possiblying finite, do not impose any restrictions on
X. Smith et al. [28] developed a method with time complexityM/3), where M = ||, which

is based on the inversion of a double Laplace transform. Weromethod with time complexity
O(M?) using Laguerre functions was developed by Islam and Amnidr [Re Souza e Silva and
Gail [29] developed a randomization-based method with taraplexity exponential on the num-
ber of different reward rates. An extension of that methodaeer models with both reward rates
and impulse rewards using a path pruning technique wasrpsgtblater by Qureshi and Sanders
[21]. A method based on both randomization and Laplace fmamstechniques was developed by
Donatiello and Grassi [9]. That method has time complegitii’m N?), whereT is the number
of transitions of the randomized discrete time Markov ch@TMC) of X with randomization



rate equal ta\, the maximum output rate of, m + 1 is the number of different reward rates of
the model, andV is the truncation parameter of a Poisson process with Aatehich for large
At has value approximately equal fa. Pattipati et al. [20] have formalized the computation of
CRCD(t, s) in terms of the solution of a linear hyperbolic partial diffatial equation which, by
discretization, can be transformed into an ordinary défftial equation (ODE), and have proposed
to solve it using a standard stiff ODE solver. However, fogéaAt, the number of discretization
steps required to have good accuracy will be large and thiradetill be expensive. Nabli and Seri-
cola [16, 17] developed another randomization-based rdetiinich fors > rqnax t, Trmax D€ING the
second largest reward rate of the model, has time compléXity[C(N — C) + m(C?/2]), where

C is a truncation parameter which is small wheis close tor,.. ¢, rmax being the largest reward
rate of the model. The method is completely general and s@iso the case < rgy,a.t, but with a
time complexityO(T'mN?). In addition, the method is guaranteed to be numericallylstaQueshi
and Sanders [22] developed a method which is based on theeeatiom of sample paths and is also
numerically stable. Later, de Souza e Silva and Gail [30ktimed a randomization-based method
with time complexityO(T9N?) for the case in which only reward rates are present, whésea
positive integer no greater than. Finally, Racz et al. [23] have developed a method to comput
bounds for theCRCD(t, s) measure based on the computation, using randomization ¢81he
first moments of the cumulative reward. The computationat obthe method is basically the cost
of computing the moments, which (7'qN’), wheregq is the number of computed moments and,
for large At, N’ has value approximately equal . The bounds are very coarse formaround
the expected cumulative reward but get tightes gets apart from that value. All currently avail-
able general-purpose methods have high computationalwtwesiA¢ is large and, in that case, their
applicability is limited to models of moderate size.

In this paper, we develop two methods for computing bound$®CRCD(t, s) measure. The
main advantage of the methods is that, for certain classesw@rded CTMC models of interest,
they can be relatively inexpensive and yet provide quitiettimunds, allowing a numerical analysis
with error bounds in reasonable CPU times of very large nsoadlich were previously out of the
scope of numerical techniques. The methods are numerist@ble and compute the bounds with
well-controlled error. The methods build upon recently eleped methods for computing both
the interval availability distribution [2] and bounds fdrat measure [3]. The rest of the paper is
organized as follows. Section 2 describes the models whichbe handled by the methods and
defines the model class€q and C/’ to which the methods are primarily intended to be applied.
The methods are developed in Section 3. That section alsosties the computational costs of the
methods for models in class€¥’ and C7{’. Section 4 illustrates the performance of the methods
using a large performability example of a fault-tolerantltipaocessor for which bounding models
belong to classe€’ andC!” and identifies under which additional conditions the bouslolsined
by the methods seem to be tight. Model clagséandC?’ with those additional conditions include
both exact and bounding typical failure/repair perforrtigbiodels of fault-tolerant systems with
exponential failure and repair time distributions and neijpeevery state with failed components and
a reward rate structure which is a non-increasing functibth® collection of failed components.
Finally, Section 5 presents the conclusions. The Appemtikides a technical lemma which can be



used to circumvent some of the conditions imposed by the adstto the rewarded CTMC model
and the (long) proof of the theoretical result on which thehods are based.

2 Classesof Models

Let X = {X(¢);t > 0} be a CTMC with state spade and reward rate structureg, i € 2. As-
suming those quantities defined, 1gl.x = max;cq 7i, Tfmax = MaAXicQ : r;<rma 7i ANATmin =
min;cq r;. In this paper we target the computation of bounds for theutative reward comple-
mentary distribution measure

t
CRCD(t,s) =P [/ Tx(r) dT > s} )
0

wheret > 0 andryint < 8 < Tmax t. In addition, we will assume > rg,., t Whenever an upper
bound forCRCD(¢, s) has to be computed.

Leta; = P[X(0) =i],i € Q, let\;;, 4,7 € Q, j # i denote the transition rates of
and leth; = > ..o (i Aigs @ € Q denote the rates of output df. Also, givenB C (2, let
ap =) cpa;and, giveni € QandB C Q — {i}, letA; 5 = 3.5 Ai ;. The BT/RT Bounding
Transformation/Regenerative Transformajianethod will require the selection of a regenerative
stater. Letting Qumax = {4 € Q : 7 = rmax}) Qemax = {8 € Q 7 = rtmax}y Qmin = {7 €
Q = rmink = Q — max — max — Cminy Smax = S N Qmax, Stmax = S N Ltmax,
Smin = S N Qin, S = SN Q, Shax = Smax — {7} Shyax = Stmax — {7} Shyin = Smin — {7}
andS = S — {r}, the method will cover rewarded CTMC$ and selections for satisfying the
following conditions:

C1. Qis finite.

C2. The reward rates, i € ) are all finite and take at least three different values.
C3. Q= SorQ=SU{f}, wheref is an absorbing state.

C4. |S| > 2.

C5. Either all states il are transient oX has a single recurrent class of stafes” S.
C6. All states are reachable (from some state with nonnitihinprobability).

C7. max;cq,,,. A > 0 andmax > 0.

ilemax UﬁUQmin >\Z

C8. r € S and, if X has a single recurrent class of states S, r € C.

Cg If SI/naX 7é Q' )\Tvsrlnax > 0

!/

C10. If S}, # 0, ay, >0andag, =0,\,s > 0forsomeie S USU

fmax
’ .
S i With a; > 0.

-
Us'US.



Given a selection for the regenerative statghere exists a unique subset of statefor which
conditions C3, C5 and C8 can all be satisfies:must be() if X has no absorbing state of
has a single absorbing stateandr = a; S must beQ2 — {a} if X has a single absorbing state
a andr # a or X has two absorbing statesb andb = r; and, in any other case, n® exists
for which conditions C3, C5 and C8 can all be satisfied. Thikendt easy to check whether a
given rewarded CTMCX with a given selection for the regenerative state covered by BT/RT.
Conditions C2 and C7, except for the fact that reward ratdmbte, are mild, in the sense that, when
these conditions are not satisfied, computatio®BID(t, s) or of bounds fotCRCD(¢, s) can be
reduced to simpler problems. Thus, when the reward rat&Sarke finite but take only two different
values,ry,.x andryi,, CRCD(t, s) can be formulated in terms of the simpler interval availgpil
complementary distribution measutdVCD(¢,p) = P[(1/t) fot Ix(ryev dr > p] (I denotes the
indicator function returning value 1 if conditionis satisfied and value 0 otherwise), with subset
of up stated/ = Qpax USINGCRCD(t, s) = TAVCD(¢, (s/t — Tmin)/(Tmax — Tmin)) (S€€ Proof
of Theorem 2). When condition C2 is satisfied butix;cq,.. i = 0 the rewarded CTMC(P
and X" to be defined in Section 3 will be such that all their state$ wéward rate equal t6,,.
will be absorbing and the remaining states will have rewaté equal to, respectively,,;, and
rtmax, @nd, according to the previous discussion and the dismugsrformed in [2] concerning
the IAVCD(¢,p) measure whemax;ciy A; = 0, lower and upper bounds fafRCD(¢, s) can
be computed a®[X™((1 — (s/t — rmin)/("max — Tmin))t) € Qmax] and P[XP((1 — (s/t —
Timax) / (Tmax —Tfmax))t) € Qmax]. Similarly, assuming C2 satisfied bubx,, 5,0 Ai =0,
the rewarded CTMCX™® and X' to be defined in Section 3 will be such that all states with réwa
rate equal to, respectively,i, and re,. Will be absorbing and the remaining states will have
reward rate equal t6,,.x, and, according to the previous discussion and the dismugsrformed

in [2] concerning thdAVCD(¢, p) measure whemax;cp \; = 0, lower and upper bounds for
CRCD(t, s) can be computed @[ X™ (((s/t—rmin )/ (Fmax—Tmin))t) € Qmax] aNAP[X P (((s/t—
Ttmax)/ (Tmax — Ttmax))t) € Qmax]. Condition C6 can be trivialized by deleting non-reachable
states. Finally, conditions C9 and C10 can be circumvenjyeddaling toX a tiny transition rate

A <1070/ (2tmax ), wheres is the allowed error antl,., is the largest time at which bounds for
CRCD(t, s) have to be computed, with, according to Lemma 1 in the Apperrdaegligible impact
on CRCD(¢,5), 0 < t < tmax NO greater than0~1%. The possibilityQ = S U {f}, wheref is

an absorbing state, allows us to cover bounding models,hndrie useful for systems for which an
exact model would have a state space of unmanageable sadokmding model$ would include

a strict subset of the state space of the exact model and theding model would enter stagé
when the exact model would ex#t. Assigning to the states i the same reward rates as in the
exact model and to statga lower bound for all reward rates of the exact model,@fRCD(t, )
measure of the bounding model would lower bound@eCD(¢, s) measure of the exact model; if
a reward rate upper bounding all reward rates of the exacehipadssigned instead to statethe
CRCD(t, s) measure of the bounding model would upper bound@R&D(¢, s) measure of the
exact model.

The BT/BRT Bounding Transformation/Bounding Regenerative Tramsédior) method also
requires the selection of a regenerative stand covers a subset of the rewarded CTMC mod-
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Figure 1. Small rewarded CTMX which with the selectior = 1 is covered by BT/RT and
BT/BRT.

els covered by BT/RT, which can be described as the set imgjuall rewarded CTMCsX and
selections for satisfying conditions C1-C10 and

C11. 8. . #0.

Note that conditions C9 and C11 imply thatcannot be absorbing and, then, according to the
discussion regarding the possibilities f®in BT/RT, in BT/BRT S must include precisely the non-
absorbing states.

To illustrate the classes of models covered by the methods,1Fshows a small rewarded
CTMC model of a repairable multiprocessor system with fivecpssors, one of which is spare, in
which active processors fail with rate= 10~% h~! and failed processors are repaired by a single
repairer at rate; = 0.1 h—!. A processor fault is covered with probabilify = 0.98. The initial
state is the state 1 in which no processor is failed. Sincenibeel has no absorbing state = 2.
With the selection- = 1, that model is covered by both BT/RT and BT/BRT.

The BT/RT method is primarily intended to be used for a cldssewarded CTMC models,
classC?, with a given “natural” selection for the regenerative staModel classC/ includes all
rewarded CTMCsX satisfying conditions C1-C7 and the condition:

C12. ApartitionSp U S7 U --- U Sy, for Spax €Xists satisfying the properties:



P2. If X has a single recurrent class of stafes S, 0 € C.
P3 If‘SmaX‘ 2 2, )\O7slu...Uch > O

>0 andaglu...uch = 0, >\i,51U---uch > ( for
SoMei € Stmax U S U Siin With o > 0.

P4 If |Smax| 2 2’ O[Sfmaxugus

P5. If [Smax| > 2, maxo<i<n, MaX;es, Aivsk_{i}USk+1U“‘USNCUSfmaxUEUSmin is sig-
nificantly smaller thamning« <y, min;es, Ai sou.-us, , > 0if @ = S or

Ming< k< Ne MiNies, Ai sou--us, ;ugry > 01f @ =S U {f}.

The natural selection for the regenerative state for aEssnodels isr = o. With that natural
selection, properties P2, P3 and P4 imply the fulfillmentedpectively, conditions C8, C9 and C10
and, then, the models will be covered by BT/RT.

The BT/BRT method is primarily intended to be used for a clZfsewarded CTMC models,
classC}’, with a given “natural” selection for the regenerative staodel clasC}” includes all
rewarded CTMCsX satisfying conditions C1-C7 and the conditions:

C13. |Smax| > 2.

C14. ApartitionSy U S1 U --- U Sn,, for Shax exists satisfying the properties:

P2. If X has a single recurrent class of statés” S,0 € C.
P6 )\O7S1U~~~USNC > 0

P7. If g, USUSL, > 0 and asu-USy, = 0, >\i,51U---uch > 0 for somei €
Stmax U S U Smin With a;; > 0.

P8. maxo<i<n, MaxX;es, A is significantly smaller

ivsk_{i}usk+1u"'uchUsfmaxugusmin
thanming«,<n. mines, i sou...us, , > 0if Q@ = Sor
ming< k<N Minjes, )\i7Sou~~uSk,1u{f} >0if @ =SU{f}.

P9. )\0 < minieslu---uch /\2

The natural selection for the regenerative state for €cl45models is- = o. With that natural selec-
tion, condition C13 and properties P2, P6 and P7 imply thi#llfaknt of, respectively, conditions
C11, C8, C9, and C10 and, then, the models will be covered BBRT. ClassC/” is a subset of
classC/.

The rewarded CTMC model described in Fig. 1 belongs to moldaisesC/ and C{’. A
partition for Sy,.x = {1,2} showing that isS;,.x = So U S7 with Sy = {1} andS; = {2}.



3 TheMethods

The BT/RT and BT/BRT methods are based on the following tesul

Theorem 1. LetW = {W(t);¢ > 0} be a conservative, uniformizable CTMC with denumerable
state spacé, ! uniformly upper bounded reward rate structurgi € Q with |r;| < oo, i € Q and
transition rates); j, i,j € Q, j # i. Letrgy, = sup;cq i, letz € Q with r, < 74, and letr’, such
thatr, < 7/, < reup. LetW’ = {W'(¢);¢t > 0} be another rewarded conservative, uniformizable
CTMC identical tolW except that state has reward rater!. and the rates of transition from state
z have values\, ; = BA;j,j € Q,j # 2, 8 = (rsup — 73)/(Tsup — 7). LEtCRCD(t,s) =
P[fot Tw(rdT > s] be the cumulative reward complementary distributionXoin the time interval
[0,¢], ¢ > 0 and letCRCD'(¢, s) = P[fot rwindr > s] be the cumulative reward complementary
distribution of W in the time interval0, ¢], t > 0. ThenCRCD'(¢, s) > CRCD(t, s).

Proof. See the Appendix. O

Essentially, the reasons why the result holds are thathél$¢aling of rates of transition from state
x keeping their relative values will not modify the embeddéstite time Markov chain DTMC
IT of W, (2) the scaling factop is chosen in such a way that the reward lostly in each visit
to statex with respect to the reward that would be earned had stateward raterg,, has an
exponential distribution with parametéi, / (rsup —17%,), identical to the parameteX,, / (rsup —r2),

of the exponential distribution of the reward lost By in each visit to state:. Then, since (see,
for instance, [12]) bothV and W’ can be interpreted in terms of by associating with the states
visited byII independent exponential holding times with parameter lequthe rate of output from
the visited state, the rates of output from and the ratesveding: of the states different from are
equal inW andW”’, and, with0 < 8 < 1, the rate of output from statein 1V’ is non-greater than
the rate of output from statein 1, each realization off” will have a corresponding realization of
W' with the same sequence of visited states, same holding tinstates different fronx, greater
holding times inxz, and same reward lost in each state visit with respect toewand that would
be earned had the state a reward ratg. As Fig. 2 illustrates, this will make the “loss” of reward
accumulated byV’ in the time interval0, ¢] not greater than the “loss” of reward accumulated by
W in the same time interval and, therefore, the reward accatedibyV’ in the time interval0, ¢|
will be not smaller than the reward accumulatedbyin the same time interval. As the reward
accumulated in the time intervél, t] by W’ for a realization ofi¥’’ is not smaller than the reward
accumulated in the time intervdl, ¢] by W for the corresponding realization &f, the probability
that W’ will accumulate a reward in the time intervial, t| greater thars will be not smaller than
the probability thaf?” will accumulate a reward in the time intenjal ¢] greater thars. Note that
Theorem 1 also holds if is an absorbing state. In that case, bidgtrandW’ will remain indefinitely

in z once they enter that state and the result simply holds becaus r,.

see, for instance, [12] for the definitions of conservativsiformizable CTMCs with denumerable state space. Ba-
sically, they are CTMCs with denumerable state space intwtie output rate from any statés equal to the sum of the
transition rates fromi and in which the output rates are uniformly upper bounded.
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Figure 2: Comparison of corresponding realization$lofind W’ satisfying the conditions of The-
orem 1 regarding the loss of accumulated reward in the titegval [0, ] with respect to the reward
that andW’ would earn had all the states reward rag,.



The BT/RT method allows us to compute a lower boundd@®CD(¢, s), an upper bound for
CRCD(t, s), or both. The bounds are computed with error upper boundeqd Wherees is a user-
provided error control parameter. The method combines aetrtaahsformation phaséunding
Transformatiof with the RT Regenerative Transformatipmethod described in [2]. When a lower
bound forCRCD(t, s) has to be computed, the model transformation is performeatiaahe re-
sulting rewarded CTMCX'®, has only two different reward rates and, according to Témot,
has a cumulative reward complementary distribution meastiRCD'™ (¢, s), which lower bounds
CRCD(t, s). When an upper bound f@/RCD(¢, s) has to be computed, the model transformation
is performed so that the resulting rewarded CTMCP, has only two different reward rates and, ac-
cording to Theorem 1, has a cumulative reward complemeudiatybution measureRCD" (¢, s),
which upper bound§€RCD(¢, s). With X' and X" having two different reward rates, the com-
putation of CRCD™(¢, s) and CRCD"(¢, s) can be mapped into the computation of the simpler
interval availability complementary distribution meassiof, respectivelyX'® and X", with sub-
set of up state®,,.x, and those computations are performed using RT with regéwerstate- and
allowed error=.

The lower bounding rewarded CTMC mod&l!", has the same state sp&tasX, same initial
probability distribution as¥, reward rates,,., associated with the states(if, .., reward rates,,iy,
associated with the statesify.« U © U Qmin, and transition rates:

b _ Tmax — Tmin A

) INE) Z € Qfmax U Qa

Tmax — T4
MNP =\ i€ Qmax U Qo
1,7 — V] ? max min -

The upper bounding rewarded CTMC mod&l", has same state spa@easX, reward rates,
associated with the states, .., reward rates,,. associated with the statesMiax U QU Qmin,
and transition rates:

W= Tmax 7 Thmax Nij. 1€QU Q.

Tmax — T4

/\;l}]) = >\i,j ) i€ Qmax U Qfmax .

That CRCD"" (¢, s) upper bound€CRCD(t, s) follows by considering, for eache Q U Qyy, in
turn, the scaling by the factdr,ax — rtmax)/(Tmax — 7i) Yielding the transition rates from state
i in X" from the transition rates from statén X and applying Theorem 1 to each scaling step,
noting thatr; < Tnax < Tmax, ¢ € QU Qmin. ThatCRCD(¢, s) upper bound€CRCD™ (¢, s) and,
therefore CRCD'® (¢, s) lower boundsCRCD(t, s) follows by considering, for eache Qgyax U Q

in turn, the scaling by the fact@r,.x — 7i)/(rmax — Tmin) Yi€lding the transition rates from state
i in X from the transition rates from statén X' and applying Theorem 1 to each scaling step,
noting thatrmin < 7 < max, 4 € Qgmax U .

The mappings o@RCle(t, s) andCRCD“b(t, s) into the interval availability complementary
distributions of, respectively¥'® and X P with subset of up state8,,. are given by the following
theorem.



Theorem 2. Let IAVCD™(t,p) = P[(1/t) [y Ixio(r)cau.. &7 > p] and IAVCD™(¢,p) =
P[(1/t) [y Ixuo(r)caua, A7 > p]. Then, fort > 0,

CRCD™ (¢, 5) = IAVCD® (t, M)

Tmax — Tmin

and .
CRCD™(t, ) = IAVCD"™ (t, m) .

Tmax — Tfmax

Proof. Denoting byr!®, i € Q the reward rate structure of'®, sincer® = ., fori € Q. and

i

t
CRCle(t, S) =P |:/ Tl)?lb(T) dr > S:|
0

t t
= P T‘max/ Ile(T)GQn)aX dr + Tmin/
L 0 0

Ile(T)EQfmaxUQUQmin dT > 3:|

r t
= P |rmint+ (Tmax — Tmin)/ [le(T)GQmax dr > S:|
0

¢ - mint 1 t t— min
= P[ [ tevrctuntr > ] oL [ o i T

Tmax — Tmin t Tmax — Tmin

— JAVCD'® <t M) )
’ Tmax — "min
The result fonCRCDub(t, s) can be obtained similarly, the only difference being thidt has to be
replaced byX """, r!> by r®, > being the reward rate of "’ in statei, andr o, by rinax, because
the reward rate oK "" in the states € Qg U QU Qi 1S 78 = Pppay. O

The method BT/BRT differs from BT/RT in that, instead of camipg CRCD™®(¢,s) =
TAVCD™(t, (5/t — Tmin)/(fmax — Tmin)) With error < e using the RT method with regenera-
tive stater, a lower bound for it,CRClevlb(t, s), is obtained by computing a lower bound for
IAVCle(t, (s/t — Tmin)/(Tmax — Tmin)) USINg the BRT Bounding Regenerative Transforma-
tion) method [3] with regenerative stateand allowed erroe. Similarly, instead of computing
CRCD"(t,s) = IAVCD" (¢, (5/t — Ttmax)/(Tmax — Tfmax)) With error < e using RT with regen-
erative state, an upper bound for iCRCD“b’“b(t, s), is obtained by computing an upper bound for
IAVCD“b(t, (8/t —Trfmax)/(rmax — Ttmax)) USINg BRT with regenerative statexind allowed errot.
Thus, BT/BRT will yield less tighter bounds than BT/RT. ThRBmethod [3] has a control param-
eter D¢ which allows to trade-off bounds tightness with computagiocost. The BT/BRT method
has also a control parametéls and the BRT method is invoked with itl8~ control paremeter
equal to theDs control parameter of BT/BRT. ThB control parameter has to be selected [3] so
that it satisfied < Do < Amax/Amins Amax = MaXesr  Aj, Amin = mingegr ;. Note that, as
we have discussed, conditions C9 and C11 imply $hatust include precisely the non-absorbing
states and, thereforé,,.x > Amin > 0. In the possible casg.x = Amin NO Selection forD¢
would be possible. In that case, BT/RT should be used. SiBlgea$ Do increases, the bounds
for the interval availability complementary distributiaitained by BRT get arbitrarily tighter; as
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D¢ increases, the bounds obtained by BT/BRT approach thoséneltby BT/RT. Furthermore,

as we shall discuss, for cla€4” models with the natural selection= o, the computational cost

of BT/BRT should increase witlb- and, therefore, thé& - parameter allows to trade-off bounds
tightness with computational cost.

The BRT method [3] can be described as the succession of al tnadsformation phase, in
which transition rates from “up” states different from thegenerative state and, if existent, the
absorbing state, are scaled, and the RT method with the segeaerative state as BRT, which is
used to solve the transformed CTMC model. When, in BT/BR& Ithwer bound folCRCD(t, s)
has to be computed, the CTMC mod&l>!*, which has to be solved by the RT method has [3]
same state spade as X'P (and X), same initial probability distribution a&'® (and X), subset of
up state€,,,,, and, calling)\l, i € Q, the output rates ak'® and noting that\!® = \;, i € Qpax
and, thereforemax;es,  Al® = A, transition rates related to the transition ratesdf as

Ib
\lbdb _ max{\;”, Amax/Dc } A\lb
VA A\lb 637
(A

ies

N =N S
When, in BT/BRT, the upper bound fafRCD(t, s) has to be computed, the CTMC mod&IPuP,
which has to be solved by the RT method has [3] same state §pas& " (and X), same initial
probability distribution ast"P (and.X), subset of up state3,,,, and, calIing/\;‘b, i € Q, the output
rates ofX"P and noting that\!® = \;, i € Quax and, thereforemines, A = Ay, transition
rates related to the transition ratesXf" as

)\ub,ub o min{)‘?b; DC)\min} )\l_lb i c S/

7,7 - /\ub 2,7 9 max ’
)

AR = \EB G S

We also point out that RT uses Algorithm A of [25] as a back-€eRldat back-end is preceded
by a transformation phase in which the behavior of the CTM@eh¢X'® or X" in BT/RT and
XIb or xub.ubin BT/BRT) from S’ = S — {r} until either a hit of state or, if existing, hit of the
absorbing statg, and fromr until either next hit of state or, if existing, hit of the absorbing state
is characterized while keeping track of the amount of timengjin up states b’ (states inSy,ax)-
That characterization is done through a truncated tram&fdrCTMC model having, with some
small error, the same interval availability distributios tae original CTMC modelX'™™ or X in
BT/RT andX'™™!® or XP:uP in BT/BRT). Fig. 3 clarifies the decomposition of the BT/RT thed in
terms of the RT method and Algorithm A of [25] and the deconitims of the BT/BRT method in
terms of the BRT method, the RT method, and Algorithm A of [28]the figure, the CTMC model
which is solved by Algorithm A of [25] when in BT/RT the loweobnd forCRCD(t, s) has to be
computed is called}, the CTMC model which is solved by Algorithm A of [25] when iTEBRT
the lower bound folCRCD(t, s) has to be computed is calldd"”, the CTMC model which is
solved by Algorithm A of [25] when in BT/RT the upper bound f6RCD(t, s) has to be computed
is calledV;b, and the CTMC model which is solved by Algorithm A of [25] whenBT/BRT the
upper bound foRCD(, s) has to be computed is calléd™"".

11



-

BT/RT A
N
x —{»| scalingof |XP Algorithm A of [26] CRCD™ (1. s
. Aini € Qpax US & (t;s)
scaling of Xvb Tub
X "o T | Algorithm A of [26] = CRCD™(t, s)
Xijsi € U Dpin
J
\ J
(" BT/BRT h
(" BRT B N h
RT
scaling of | X™» scaling of Y lblb yel :
P “Ty1b,1b .
X Nijsi € Vg UTE Sl e Pllyeritiinm A 61T ] = CRCD™P(¢, 5)
scaling of Xub scaling of b,ub 7ub.ub
X Njsi € TTU Qi * A e gs S 17| mgorithm A of [26] = CRCD™""(t, 5)
IR Emin 1,77 *max
\ Y,
\_ J
\ J

Figure 3: Schematic description of the BT/RT method in teohthe RT method and Algorithm

A of [25] and schematic description of the BT/BRT method imte of the BRT method, the RT
method, and Algorithm A of [25].
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Since the RT method is numerically stable, the BT/RT and BRIVBnethods will be numer-
ically stable. In addition, since the computation error ifi iR well-controlled, both BT/RT and
BT/BRT will compute the bounds with well-controlled errdihe assumed conditions in the BT/RT
method for the rewarded CTMQ& and the selection for the regenerative stafgonditions C1-
C10) guarantee that the CTMG8P and X" with subset of up state8,,. and regenerative state
r will be covered by the RT method (see [2]). Similarly, theussed conditions in the BT/BRT
method for the rewarded CTM& and the regenerative statéconditions C1-C11) guarantee that
the CTMCsX'™® and X"P with subset of up states,,.,. and regenerative statewill be covered by
the BRT method (see [3]).

A possible alternative would be to use Algorithm A of [25] ta& the CTMC modelsy'™ and
Xub or X'PIb gnd Xb-ub, That alternative would be, however, expensive wheiis large and the
original rewarded CTMC modeX is large.

The transformation phases involving the scaling of trémsitates yieldingX'™ or X in
BT/RT andX'™!P or XuP:uP in BT/BRT have, in practice, negligible computational cosmpared
with the computational costs of the transformation phaséhefRT method and the application
of Algorithm A of [25] to the solution of the resulting tramsfmed model. The flop count of the
transformation phase of the RT method is, for large CTMC nwdeand S, . # 0, CK(2T" +
MIQ|) + Ing>0CL2T" + M|S), whereT” is the number of transitions of, M = 11if Q =
Su{f}andM =9if Q = S, andC, K and L are truncation parameters defining the size of the
transformed CTMC model. The flop count of the application tgokithm A of [25] to the solution
of the transformed model can be estimated A€’ T"”, whereT” is the number of transitions of the
randomized DTMC of the transformed model with randomizatate equal to the maximum output
rate of that model and/ andC’ are truncation parameters. An approximate estimaté&fdior the
caseS) ., # 0is M'CK + I, ~oM'CL, whereM' = 9if @ = SU{f}andM’' =7if Q@ = S.
Let e be the absolute error with which the bounds have to be cordpiitee value of the truncation
parameter§’, N andC’ can be easily estimated. For the BT/RT meth@d,V andC’ have value’

e 1b,.lb k

b . At (AP ) €

= > . max ~ AR/ 7

C min {c >1: E e x =10
k=c+1

o0

1b k

b _ - . APt (APt max) €

N —mln{nEO. g e - §4 )
k=n-+1

IA

o0 b, lb \k
Z 1b,.1b (A T )
O/lb — mln {C > 0 . e_A Tmax X "INax/
- k!
k=c+1
when the lower bound is computed and values

> AUb$Ub

k
C"P = min {c >1 - Z e_Aubxumt;xM < f}
- ' p— )
k=c+1 k! 4

0 ub k
ub _ . . — APt ax (A" timax) €
N —mln{nz(). E e — §4 ,
k=n+1

2strictly speaking””’ could be slightly larger in some cases.
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" . = ub yub AUb:Eumbax kg
C""" = min {c >0: kzzc;rle A maX% < Z}
when the upper bound is computed, where, Withs;), 1 < i < n being the(t, s) pairs at which
the bounds folCRCD(t, s) have to be computed and withbeing a positive quantitg 1 (in our
implementations10~4), A'® and A", which are the maximum output rates of, respectivefy?
and X" affected by the factofl + 6), have values

Tmax — T'm;
AP = (1+6)max{ max J);, max —— RN\,
1€Q2maxUmin 1€Q%max U Tmax — T4

and
Tmax — Tfmax
AP = (I+60)maxq  max Ai, max ———————\; ¢,
1€QmaxUQmax 1€QUQmin Tmax — T4
b Tmax ti — S;
LTmax — Hax )
1<i<n Tmax — Tmin
Tmax t; — S;
T = max ——
1<i<n 'max — Tfmax
and

tmax = max t;.
1<i<n

For the BT/BRT method(’, N andC’ have the values given by the previous expressions with (we
rememberAyax = maxjes: A aNdAyin = mingegr  A;)

Tmax — Tmin
AP = (1 +0) max< Apax, max JA;, max ——————N\;,
3S :nin €S/ Ugl Tmax — T4

fmax

Tmax — "min
‘[T’Esmaxusmin )\7” + ITGSfmaxU§ )‘7” }’

Tmax — Tr

ZESfmax iEEIUS, Tmax — T4

min

A = (1+9)maX{Dc)\min,lmgx i, max M)\i,

Tmax — Tfmax
Iresmaxusfmax >\7' + IT’E?USmin r —r >\7’ )
max T

and same values far'®, , z"P andt,... The values of\'® and A"P for the BT/BRT method are

max’ max

the maximum output rates of, respectivek>!” and X 1P affected by the factofl + 6).

The truncation parametefs andL are known to be smooth functionsidthey areO(log(t /<)),
but their actual values can be large, depending on the dieaisdics of the original rewarded CTMC
model X and the selection for the regenerative state. Strongeltseare available regarding
the values ofK and L for classC} and classC{” models with the natural selectian = o for
the regenerative state. Assume thatis a classC/ model With? |Spax| > 2 and letRyay =

3For |Smax| = 1, with the selection = o Sl... = 0 and [2] the RT method for computing the interval availafilit
complementary distributiohAVCD(t, p) will be highly efficient for, inX™, p = (5/t — Tmin)/(Tmax — Tmin) Will be
closeto 1 and, foX ", p = (8/t—Tmax)/ (Tmax — Ttmax ) Will be close to 1, implying that BT/RT will be highly efficien
for s close tormaxt.

14



ae—{o} Ai- Then, since for clas€’f modelsX with [Sp.x| > 2, both X'
and X" belong to the model clags; defined in [2] with the same state, for clas€’} models with
|Smax| > 2 and the natural selection= o, the truncation parametefs and L when BT/RT is used
to compute both the lower and the upper bound should incredeR,, . and, forR . > 1, can
be roughly upper bounded By R,,... AssumeX is a clasgC}" model. Since for clas€{” models
X, both X' and X" belong to the model class] defined in [3] with the same state, for clas§;”
models with the natural selection= o, the truncation parametefs and L when BT/BRT is used
to compute both the lower and the upper bound should be veajl son D~ = 1, should increase
with D¢ and, forDe > 1, can be roughly upper bounded ByD.. Thus, for clas<C!” models
with the natural selection = o, in BT/BRT, the D~ control parameter allows to trade-off bounds
tightness with computational cost. Since the truncaticamatersC™® andC"P will have moderate
values whers is close torp,.y t for every (¢, s) pair of interest, for large”}’ models, we should
expect the BT/BRT method with = o and D¢ = 1 to be relatively inexpensive whenis close to
rmax t fOr every(t, s) pair of interest. Whether the BT/RT with= o is also relatively inexpensive
in that case depends on how larBg,. is.

MAXe Sy Ai/ MiNGeg

4 Analysis

In this section we analyze the performances of the BT/RT afBRT methods using a large per-
formability example. The example is a model of a fault-tatérmultiprocessor including 16 proces-
sors interconnected by a 8-node hypercube, as shown in FRyotessors fail with rat&p; nodes

of the hypercube fail with ratéy; links of the hypercube fail with rat&;,. A fault of a processor

is covered with probabilityCp; a fault of a node of the hypercube is covered with probabdit;.
Coverage to link faults is assumed perfect. There is an utleithmumber of repairmen to repair com-
ponents in covered failure. The repair rate:jsfor processorsyy for nodes, andly, for links. A
completely down system because there was an uncoveredsfauttught to a fully operational state
without failed components at rate;. Components do not fail when the system is completely down.
Unless otherwise stated, we will use the set of model paemgt = 2x10~°h~!, Ay = 107°h ™1,

AL =5x10"h"1, Cp = 0.99, Cx = 0.995, up = 0.1 h™!, ux = 0.05 ™1, g, = 0.05 h~ 1, and
pe = 0.2h~L. We assume the availability of diagnosis and reconfigungtimcedures to determine
a subset of interconnected unfailed processors of maxigeabsd to reconfigure the multiprocessor
so that it works using such a maximal subset. As reward ratesjse the speedup function of the
number of connected processors in the healthy subset imvihécsystem is configured described
by Table 1. Thusy,., Will be equal tol2h~!. The cumulative reward will be then the accumulated
performance (normalized with respect to the performantgeaia single processor) and we should
expect it to be close tb2 ¢ with high probability.

An exact rewarded CTMC model of the multiprocessor systemdrmunmanageable state
space. Instead, we will use bounding models with state sfacgf }, wheref is an absorbing state
in which the bounding models enter when the exact model wexildsubsetS and.S includes the
states with up to four covered faults and the state in whiehsifstem is down due to an uncovered
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P12

Figure 4. Architecture of the fault-tolerant multiprocessystem.

fault. By assigning to the absorbing state a reward rate- 0 we obtain a lower bounding model;
by assigning to the absorbing state a reward rate- 12 h=! we obtain an upper bounding model.
The bounding models have 213,055 states and 2,072,658titvaas The bounds given by those
bounding models are very tight. This can be justified by thetfaat the probability that the bounding
models have entered stafey timet = 20,000h (the largest time we will consider) is very small,
e.g., assuming that the initial state is the state withoiledacomponents, that probability is only
8.764 x 10710, implying that theCRCD(t, s) measures given by the bounding models would differ
in less thar8.764 x 10719, for ¢ < 20,000h. We will use the methods to compute a lower bound for
the lower bounding model and an upper bound for the upperdingmmodel. Since the solutions
of the bounding models are extremely tight, virtually a# tfference between the lower and upper
bounds for theCRCD(¢, s) measure of the exact model thus obtained are attributalhe timited
tightness of the bounds given by the BT/RT and BT/BRT methd@itgh bounding models belong
to model classe€’/ andC!", being state the state without failed components, which will be taken
as regenerative state in both BT/RT and BT/BRT. All methodsran with a single(¢, s) target
and an error requirement= 10~1. CPU times are measured/estimated in a workstation with a
Sun-Blade 1000 processor and 4 GB of memory (significantyelathan the memory consumption
for all methods). We will start assuming that initially theutiprocessor is in the state without failed
components.

Tables 2 and 3 summarize the performances of, respectiBd{BRT with Do = 1 and
BT/RT in terms of bounds tightness and values of the truonaparameters’ and K of the
model transformation step implicit to the RT method (thentation controlled by the parame-
ter L is not performed because the initial probability distribntof the models inS is concen-
trated in the regenerative state) when both bounds are dechgar increasing values af and
s/t = 11.99,11.999, both of which are reasonable choices, since the steaty+stard rate of
the exact model can be estimated to be equallte966. That estimation was obtained by com-
puting the expected transient reward rates at tiroéthe bounding models, which bound the ex-
pected transient reward rate at timef the exact model, for increasing valuestand taking the
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Table 1. Speedups of the multiprocessor as a function ofdhngber of connected operational pro-
cessors.

processory speedup
1 1
2 1.96667
3 2.9
4 3.8
5 4.66667
6 55
7 6.3
8 7.06667
9 7.8
10 8.5
11 9.16667
12 9.8
13 10.4
14 10.96667
15 11.5
16 12

value at which they “stabilize” (before the probability dfet absorbing state is significant). We
call C'™ and K the values of the truncation parametétsand K corresponding to the applica-
tion of the RT method taX'™ in BT/RT and X'®!® in BT/BRT andC"P and K" the values of
the truncation paramete8 and K corresponding to the application of the RT methodXis®

in BT/BRT and to X" in BT/BRT. We can first note that the bounds obtained by thehmet
ods are quite tight for all values ofand s considered. For BT/RT we define the relative error as
max{(CRCD"(t, s) - CRCD'™(t, 5)) /2/((CRCD'™ (¢, s) + CRCD""(t, 5))/2), (CRCD"P (¢, 5) —
CRCD™(t,5))/2/(1 — (CRCD™(t,s) + CRCD"(t,5))/2)}, i.e. as the maximum of the relative
errors overCRCD(t, s) and1 — CRCD(t, s) when (CRCD™ (¢, s) + CRCD"P(t, 5))/2 is taken
as estimate foCRCD(¢, s). The relative error for BT/BRT is defined similarly. The riéla error
varies from0.105 % to 2.97 % for the BT/BRT method witlD~ = 1 and from0.0808 % to 2.72 %
for the BT/RT method. The relative error is significantly dlerafor s closer tor,..t = 12t.
Regarding the truncation parametérsand K, we can note that, as predicted theoretically,is
always very small in the BT/BRT method witb = 1. The value of the truncation paramefgris
significantly larger for the BT/RT method and is upper bouhdg 30R,,.x ~ 120. In both cases,
the truncation parametéf increases logarithmically withand is independent af The truncation
parameteC increases witht and ass gets apart fromr,, t = 12¢.

Fig. 5 plots the CPU times consumed by the methods for the atatipn of the lower bound
for CRCD(t, s) (Ib) and the upper bound fdtRCD(¢, s) (ub) as a function of for s = 11.99¢
ands = 11.999¢. We can note that the CPU times increase gsts apart fromr,,.t = 12¢ and
increase fast witlt. The latter is due to two reasons. The first one is that the otatipnal cost
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Table 2: Results for BT/BRT witlb~ = 1 when the initial state is the state without failed compo-

nents.
t (h) s/t | CRCD™®(¢,s) CRCD"™"P(t,s) error (%) C® K (Cw K
1 11.99 0.99960102 0.99960874 0.977 4 5 4 4
10 11.99 0.99607366 0.99615272 1.02 5 7 5 6
100 11.99| 0.96665320 0.96733703 1.04 10 9 10 D
1,000 11.99| 0.90000197 0.90216084 1.09 26 10 26 10
10,000 11.99| 0.95260672 0.95454693 2.09 103 11 103 11
20,000 11.99| 0.98111980 0.98220912 2.97 173 11 173 11
1 11.999| 0.99960011 0.99960095 0.105 2 5 2 4
10 11.999| 0.99601099 0.99602264 0.146 4 7 4 6
100 11.999] 0.96136877 0.96150542 0.177 5 9 5 D
1,000 11.999 0.71162283 0.71251906 0.156 10 10 10 10
10,000 11.999 0.19927493 0.20078590 0.378 26 11 26 11
20,000 11.999 0.08224490 0.08336233 0.675 37 11 37 11
Table 3: Results for BT/RT when the initial state is the sttbout failed components.
t (h) s/t | CRCD™®(t,s) CRCD"(t,s) error (%) C™ KW cw Kvub
1 11.99 | 0.99960108 0.99960874 0.969 4 7 4 ¥
10 11.99 | 0.99607762 0.99615272 0.967 5 13 5 13
100 11.99| 0.96670875 0.96733698 0.953 10 38 10 38
1,000 11.99| 0.90018604 0.90216058 0.999 26 79 26 79
10,000 11.99| 0.95277489 0.95454669 1.91 103 88 103 88
20,000 11.99| 0.98121513 0.98220898 2.72 173 91 173 91
1 11.999| 0.99960018 0.99960095 0.0964 2 7 2 v
10 11.999| 0.99601501 0.99602264 0.0958 4 13 4 13
100  11.999] 0.96143288 0.96150536 0.0941 5 38 5 38
1,000 11.999 0.71205362 0.71251843 0.0808 10 79 10 19
10,000 11.999 0.20000281 0.20078479 0.195 26 88 26 88
20,000 11.999 0.08278256 0.08336150 0.348 37 91 37 91
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Figure 5: CPU times in seconds consumed by the BT/BRT methttd My = 1 and the BT/RT
method fors = 11.99 ¢ (left) ands = 11.999 ¢ (right) as a function of.

of the transformation step implicit to the RT method is apprately proportional to the truncation
parameterg’ and K, andC' increases considerably withThe second one is that the computational
cost of Algorithm A of [25] is approximately proportional @ and K (since the size of truncated
transformed model which is solved by the algorithm is préipoal to C and K) and, for larget,
increases, approximately quadratically witlsince, for large, the truncation parametér increases
approximately linearly witht and, for larget (typically much larger), the truncation parameter
also increases approximately linearly with The higher computational cost of the lower bound
is due to the fact that the maximum output raté?, of the model &' in BT/RT and X" in
BT/BRT) built during the computation of the lower bound igrsficantly larger than the maximum
output rate AP, of the model £ in BT/RT andX"P-"" in BT/BRT) built during the computation
of the upper bound and this makes the computational costeofpiplication of Algorithm A of
[25] substantially higher. For the largestonsidered# = 20,000 h) the resulting CPU times are
considerable, specially when the lower bound is computeddsan 11.99¢. Thus, for thosé and

s, computation of the lower bound consumed 231,000 s (abotib6#s) under the BT/RT method
and 14,500 s (about 4.0 hours) under the BT/BRT method ith= 1. Since the bounds achieved
by BT/BRT with Do = 1 are only slightly less tight than the bounds achieved by BTtRe
significantly smaller computational cost of the BT/BRT nuethwith Do = 1 makes that method
more attractive than the BT/RT method, when both are aggécdor clas€”/ models withS,., =
{0} only the BT/RT method is applicable and, since for those rts0B&/RT with » = o will be
relatively inexpensive fos close tor,.x t, that method should be used.

To illustrate the relative importance of the two componesftshe computational cost of the
methods: model transformation (up > and V> in BT/RT and up toV,;>"" and V2" in
BT/BRT) and application of Algorithm A of [25], Fig. 6 displa the breakdown into these two
components of the CPU times consumed by the methods wheowlez bound is computed for
s = 11.99¢t ands = 11.999¢, as a function of. We label the CPU times consumed in the model
transformation phase by “trans”, the CPU times consumelddrmpplication of Algorithm A of [25]

to the transformed model by “sol”, and the total CPU times toy”" We remember that the model
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Figure 6: Breakdown of the CPU times consumed by the BT/BRihatewith Do = 1 and the
BT/RT method when the lower bound is computeddes 11.99 ¢ (left) ands = 11.999 ¢ (right) as
a function oft.

transformation phases involving scaling of transitioresafup toX'® and X" in BT/BRT and up

to X! and X PP jn BT/BRT) have negligible relative computational cost attn, virtually all
CPU times labeled by “trans” are due to the transformatioasphimplicit to the RT method. We
can note that for largeands = 11.99¢, almost all the computational cost of the methods is due
to the application of Algorithm A. Fos = 11.999¢, the computational cost due to the application
of Algorithm A is relatively smaller but also dominant forrdge ¢. The computational cost of the
application of Algorithm A is approximately proportional the size of the transformed model han-
dled by the method‘{}b in BT/RT andVle’lb in BT/BRT) and the truncation parameté¥sandC’

of the method. Table 4 gives the size of the truncated tram&d model and the truncation param-
etersN and C’ corresponding to the application of the methods for conmguthe lower bound,
for increasingt and the two values considered foft. The approximately linear dependenceNof
on t and the increase of the size of the transformed model@ndith ¢ explain the fast growth
of the computational cost of the application of Algorithm Athwvt and the fast growth for large

t of the computational cost of the BT/RT and BT/BRT methods.e Télative importance of that
second component of the computational cost (applicatiohlgdrithm A) decreases as the size of
the original model increases and, for large enogtthe second component should be negligible.
The experiments seem to indicate, however, fdtas to be extremely large for that to happen.

We compare next the computational costs of the methodsajseein this paper with that of the
method described in [16, 17]. The considered values fatisfys > rq,.t and, then, the method
described in [16, 17] works in its most favorable case. Thé& d@mes consumed by the method
described in [16, 17] fot = 20,000 h are very large and we estimated them based on measure
CPU times fort = 1,000 h and the rule, that we found accurate, that, for a gieege model and
5 > Temaxt, the CPU times are proportional @(N — C) + m(C? /2, wherem + 1 is the number
of different reward rates an®/ andC' are the truncation parameters of the method. Table 5 gives
actual speedups and potential speedups (neglecting f&®Bditd BT/BRT the computational cost
of the application of Algorithm A of [25]). Potential spequureflect the speedups which would be
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Table 4: Sizes of the transformed models in terms of numbiessates and numbers of transitions

and truncation parameters of their solution by AlgorithmfA25] when computing the lower bound
using the BT/BRT method witlb~ = 1 and the BT/RT method.

BT/BRT BT/RT
t (h) s/t | states trans. NP (O | states trans. NP P
1 11.99 39 109 28 4 57 180 28 4
10 11.99 | 69 224 118 5 135 488 118 5

100 11.99| 171 612 769 10| 780 3,048 769 10
1,000 11.99| 480 1,784 6,529 26| 4,137 16,412 6,529 264

10,000 11.99| 2,073 7,848 61,741 10418,012 71,604 61,741 104
20,000 11.99| 3,473 13,168 122,530 17431,233 124,208 122,530 174
1 11.999| 23 55 28 2 33 94 28 2

10 11.999, 57 180 118 4 111 396 118

100 11.999] 91 312 769 5| 410 1,588 769 5
1,000 11.999 192 696 6,529 10| 1,641 6,492 6,529 10
10,000 11.999 533 1,996 61,741 26| 4,614 18,320 61,741 26
20,000 11.999 753 2,832 122,530 37 6,753 26,832 122,530 37

obtained for large enough. They also reflect the speedups which would be achieved hrkm

A of [25] were replaced by a substantially more efficient baokl, a direction we are pursuing. We
can note that, for largg the actual speedups are important for the BT/BRT method it = 1
and significant for the BT/RT method. In practical terms, speedups achieved by the BT/BRT
method withD~ = 1 make affordable the computation of bounds for very largesilg” models
out of hand for “exact” available methods (the method désdtiin [16, 17] can be considered the
state-of-the-art exact general-purpose method for rexdaf@iTMC modelsX for values oft and

s for which max;cq A\;t is large ands is > renact). To illustrate the point, for = 20,000h and

s = 11.99¢, the CPU time of the BT/BRT method witb- = 1 is 14,500 s (about 4.0 hours) for
the lower bound and 1440 s (about 24 minutes) for the uppendyjomplying that both bounds
are obtained in 15,940 s (about 4.4 hours), while our estirfat the CPU time for the method
described in [16, 17] is 1,083,000 s (about 13 days). If Atban A of [25] could be replaced by a
substantially more efficient back-end, the CPU times of théBRT method withDs = 1 would

be reduced up to 858 s (about 14 minutes) for the lower bouddiprio 841 s (about 14 minutes)
for the upper bound, implying that both bounds would be elgtdiin 1699 s (about 28 minutes).

For larget, the tightness of the bounds obtained by BT/RT and BT/BRT lwgnintuitively,
explained by the fact that most of the time spent bygllX'™°, Xub, XP:Ib gnd Xub:ub in §'is spent
in stateo and the rewarded CTMC models only differ in that the holdinges in states itb — {o}
are different (the reward lost with respect to the reward wauld have been earned had the state
a reward rate,,, in each visit to states € Sya — {0} U Stmax U S U Smin i, by construction,
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Table 5: Actual/potential speedups of the BT/BRT methochvid = 1 and the BT/RT method
over the method described in [16, 17].

method ¢ (h) s/t lower bound upper bound
BT/BRT 1,000 11.99| 36.6/38.1 39.3/39.5
BT/BRT 20,000 11.99| 74.7/1,261 753/1,287
BT/BRT 1,000 11.999 17.0/17.2 17.5/17.5
BT/BRT 20,000 11.999 242/636 619/666
BT/RT 1,000 11.99| 9.07/10.4 10.5/10.6
BT/RT 20,000 11.99| 4.69/187 69.6/190
BT/RT 1,000 11.999 7.15/7.50 7.49/7.51
BT/RT 20,000 11.999 26.9/145 121/145

identical in all models and the reward rate associated wighabsorbing statg in the bounding
models is identical to the reward rate associated with gtate X'). This will be the case for any
classC7 or any clas<C” model for which the following additional conditions areisfied:

C15. The partitior5o U .S; U - - - U Sy, for Spax can be extended to a partitici§ U S} U
U S}V,C for S satisfying the properties:

P10. S}, = Sy = {o}.
P11. Foreache 5,0 < k < N{, Ai,s;—{i}us,’cﬂu...usgv, if Q=S or

. .C . g
>\i7sllc_{i}usfl€+1UWUS;\I’CU{f} if Q@ = S U {f} is significantly smaller than

)\i,S()u~~~uS,’€71-

P12. X, < min{minjes,, ..~ {o}USgmax Mi» MiD;50s, ., (Mmax —Tmax) / (Fmax —77)) A}

C16. If Q = SU{Sf}, f € Qmax U Qmin if the lower bound has to be computed and
f € Qmax U Qmax if the upper bound has to be computed.

The reasons are that P10 and P11 imply that from any stateS — {o} the embedded DTMC
of all X, X xub xIblb gnd xubub will go towards stater with almost 1 probability, P12
implies that the holding time in each visit to a state S — {o} will be much smaller than the
holding time in each visit to statein all X, X'®, X x™Pb andXxubub and C16 implies that,
in the case2 = S U {f}, the reward rate of statg will not be modified by the model trans-
formation. ClasgC] and C/" models with the additional conditions include typical taé/repair
performability models of fault-tolerant systems with erpatial failure and repair time distribu-
tions and repair in every state with failed components anglaard rate structure which is a non-
increasing function of the collection of failed componenBartitions for, respectivel\§,,.x and
S showing that would be5;, = {states with maximum reward rate ahdailed components and
S;. = {states withk failed components Then, properties P5 and P8 of the partition ..
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would follow from the fact tha“i,sk—{z‘}uskﬂu...uchusﬁnaxu§usmin’i € Sk, 0 <k < Ng, only
collects failure transitions whilg; s,u...us,_,,% € Sk, 0 < k < N, only collects repair transitions;

similarly, property P11 of the partition fa& would follow from the fact thaki,sé_{i}uséﬂu,,ug;w ,

0 < k < N¢, only collects failure transitions Wh”ﬁi’séu,,,us];il, 0 < k < N, only collegts
repair transitions; finally, property P12 of the partiticor 5 would follow from the fact that\,
only collects failure transitions while evedy, i € Siyax — {0} U Stmax U S U Swin, collects repair
transitions. Bounding models of that type would also be madesince in those models the absorb-
ing state would be entered following failure transitiomaplying that property P11 of the partition
for S would continue to follow, a lower bounding model of that typeuld naturally assign to the
absorbing state capturing the pruned behavior the minimaymand rate of the exact model, and an
upper bounding model of that type would naturally assigmét state the maximum reward rate of
the exact model. Then, since when a lower bounding modelad osly the lower bound would
be typically computed, condition C16 would be satisfied:;ilsirty, since when an upper bounding
model is used only the upper bound would be typically computendition C16 would also be
satisfied. As will be illustrated next using the example,ausced faults taking the system to down
states with null reward rate which are recovered into ugesthy fast recovery activities are not a
problem: it suffices to consider a partition f8rin which every down state is after every state from
which the down state can be reached and after the up stateith thle system is recovered from
that down state.

The bounding rewarded CTMC models under consideratiosfgatonditions C15 and C16.
A partition for .S showing that isS; U S7 U S5 U S5 U S} U SE, whereS; includes the single
stateo, S;, 1 < k < 4 includes the states with covered faults and includes the state in
which the multiprocessor is completely down due to an un@m/dault. The induced partition
ON Smax, So U S1 U Sy U S3U Sy, So = S, S1 = S N Smax # 0, S2 = S5 N Smax # 0,
Sg = S5 N Smax # 0, S4 = S} N Smax # 0 shows that the bounding rewarded CTMC models
belong to model class&3/ andC/’. Properties P11 and P12 of the partition are satisfied mtalgra
by the bounding rewarded CTMC models singexo<y<s max;es; ALS,;—{i}US,;HU---USgU{f} =
5.15 x 107* h™!, mingcp<s minjeg Ajspus;_, = 0.05 h™', A, = 5.2 x 107* h~!, and
min{min;eg. .~ {o}USkax )\i,miniegusmm((rmax — Ttmax)/(Pmax — 7)) N} ~ 0.0227 h—1. We
should expect the bounds to be tighter were these propediedied more strongly. The fact that
the bounds in BT/BRT are also tight for smatas to do with the fact that all the initial probability
distribution of X in Sy, IS concentrated in state Table 6 gives the bounds obtained by BT/BRT
with Do = 1 when the initial state is the state in which the link from nddi@ to node N1 is in
covered fault (which belongs t6,,.x — {0}). We can note that, in that case, the bounds are not
tight for small values of. Having some initial probability distribution if,,.x — {0} does not seem
to degrade the quality of the bounds obtained by BT/RT forlkwadues oft as Table 7 illustrates.
We should, however, expect a degradation of the qualityebthunds obtained by BT/RT for small
values oft when the model has some initial probability distribution9g,ax U S U Spin. This is
because transition rates fraff,,, U S are scaled when constructidg’® and transition rates from
S U Spin are scaled when constructidg?.
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Table 6: Results for BT/BRT witlD~ = 1 when the initial state is the state in which the link from

node NO to node N1 is in covered fault.

t (h) s/t | CRCD™™®(¢,5) CRCD"™(t,5) error (%)
1 11.99 | 0.99852766 0.99960875 58.0
10  11.99| 0.99104228 0.99615350 39.9
100  11.99| 0.96177512 0.96734418 7.86
1,000 11.99| 0.89846302 0.90216318 1.86
10,000 11.99| 0.95246687 0.95454714 2.24
20,000 11.99| 0.98108013 0.98220917 3.08
1 11.999| 0.99852441 0.99960096 57.4
10  11.999| 0.99090241 0.99602346 39.2
100  11.999| 0.95574350 0.96151370 6.97
1,000 11.999 0.70801574 0.71252460 0.778
10,000 11.999 0.19866954 0.20078683 0.530
20,000 11.999 0.08202169 0.08336267 0.811

Table 7: Results for BT/RT when the initial state is the statehich the link from node NO to node

N1 is in covered fault.

t (h) s/t | CRCD™®(t,s) CRCD"™(t,5) error (%)
1 11.99 | 0.99960108  0.99960874 0.969
10  11.99 | 0.99607762  0.99615272 0.967
100  11.99| 0.96670875  0.96733698 0.952
1,000 11.99| 0.90018604  0.90216058 0.999
10,000 11.99| 0.95277489  0.95454669 1.91
20,000 11.99| 0.98121513  0.98220898 2.72
1 11.999| 0.99960018  0.99960095  0.0964
10  11.999| 0.99601501  0.99602264  0.0958
100  11.999| 0.96143288  0.96150536  0.0941
1,000 11.999 0.71205362  0.71251843  0.0808
10,000 11.999 0.20000281  0.20078479 0.195
20,000 11.999 0.08278256  0.08336150 0.348
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Figure 7:CRCD(t, (12 — p)t) as a function op for several values of (h).

We will end this section using the BT/BRT method witl; = 1 to analyze the performability
of the fault-tolerant multiprocessor. We plot in all figut@ggRCD™™!"(¢, s) + CRCD"PP (¢, 5)) /2
and do not plot explicitly the bounds, since they are closeugh to consider the estimate
(CRCD™!P(¢, 5) + CRCD"P(¢, 5))/2 almost exact at the plot resolution. Fig. 7 analyzes how
the shape oCRCD(t, s), as a function ofs, depends ort. Let SSRR = limy o0 Elrx,, ... (1)
where X ..t is the rewarded CTMC modeling exactly the multiprocessatesy (with state space
of unmanageable sizepSRR has a value approximately equal 1.9966. Using renewal reward
process and regenerative process theories (see, fordesti4]), CRCD(¢, s) for the exact re-
warded CTMC modeK ..t has an asymptotic shape witlRCD(¢,s) = 1 for s/t < SSRR and
CRCD(t,s) = 0 for s/t > SSRR. However, that asymptotic shape is reached very slowly, im-
plying that theCRCD(¢, s) measure could be of interest for very large values arfid stressing the
need for efficient methods to compute the measure for larde Fig. 8 we perform a sensitivity
analysis. More specifically, we analyze h@RCD(t, s) for ¢ = 2 years is improved when we
improve the repair actions in three different ways: (1)dasepair of processorsif = 0.2h™1), (2)
faster repair of components of the hypercupg & p1, = 0.1 h™1), and (3) faster repair of down
systems due to an uncovered fault,(= 0.4 h=1). In all cases, we double the corresponding repair
rates with respect to the baseline values. We can note thahdst efficient way of improving the
performability depends on the required probability leW&#hen the accumulated performance has to
be guaranteed with very high probability, improving theaiejpf down systems due to an uncovered
fault is the most efficient alternative; when the accumulagerformance has to be guaranteed with
moderate probability, the most efficient alternative isnipiove the repair of processors; for inter-
mediate values of the probability with which the accumuaperformance has to be guaranteed,
the most efficient alternative is to improve the repair of poments of the hypercube. Using the
simplerEARR(t) = E[(1/t) fot 7x(r) dT] measure would have led to the conclusion that the most
efficient alternative is to improve the repair of componesftthe hypercube, as Table 8 illustrates.
Thus, use of the more detail€tRCD(¢, s) measure provides interesting information to guide the
maintenance of the fault-tolerant multiprocessor system.
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Figure 8:CRCD(t, (12 — p)t) as a function op for ¢ = 2 years and the baseline repair rates, a set
of repair rates withup = 0.2 h™!, a set of repair rates withy = 1, = 0.1 h™!, and a set of repair
rates withug = 0.4 h=1.

Table 8: EARR(t) measure fot = 2 years and the baseline repair rates, a set of repair rates
with zp = 0.2 h™!, a set of repair rates withy = pr, = 0.1 h™!, and a set of repair rates with
pe =0.4h7t

case EARR(?)
baseline 11.996558
pp = 0.2h71 11.997350
pun = p, = 0.1h71 | 11.997379
pe =0.4h7t 11.996666
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5 Conclusions

We have developed two methods, BT/RT and BT/BRT, for the agatpn of bounds for the cumu-
lative reward complementary distribution meastiRCD(¢, s) for CTMC models with reward rates
associated with states. Both methods require the seleofiarregenerative state, are numerically
stable and compute the bounds with well-controlled error. &class of rewarded CTMC models,
classC/’, and a particular, natural selection for the regeneratise ¢he BT/BRT method allows
to trade off bounds tightness with computational cost arlprdvide bounds at moderate compu-
tational costs fok close tor,.. t, Wherer,,.. is the largest reward rate of the model, allowing in
such a case a rigorous analysis, with error bounds, of sorge taodels which were beyond the
scope of previously proposed “exact” methods. For a clagswérded CTMC models, class/,
slightly wider than clas€’}’, and a particular, natural selection for the regenerataie sthe BT/RT
method will yield tighter bounds at a higher computatior@dtc When the rewarded CTMC model
satisfies additional conditions, the bounds obtained byldbe expensive version of the BT/BRT
method seem to be tight for any valuetodr not small values of, depending on whether the ini-
tial probability distribution of the CTMC model in the sulbs¥# states with maximum reward rate
different, if existing, from the absorbing state is concat®d in the natural selection for the regen-
erative state or not, and the bounds obtained by the BT/RTadeteem to be tight for any value
of t or not small values of, depending on whether the initial probability distributiof the CTMC
model in the subset of states different, if existing, frora #bsorbing state is concentrated in the
states with maximum reward rate or not. Cl@§sand clas<"/” models with those additional condi-
tions include both exact and bounding typical failure/ieparformability models of fault-tolerant
systems with exponential failure and repair time distidng and repair in every state with failed
components and a reward rate structure which is a non-isiaigeéunction of the collection of failed
components. Combined with bounding techniques, the msttiedeloped in the paper should allow
the analysis of performability models of quite complex @egble and repairable fault-tolerant par-
allel and distributed systems in affordable CPU times, wh#hobvious implications. In the future,
we are planning to develop more efficient methods than AtlgoriA of [25] to act as a back-ends of
BT/RT and BT/BRT. For large, this would yield significant reductions in the CPU times ludde
methods.

In Section 1, we concentrated our review of numerical mettiodcomputing th&RCD(t, s)
measure to general purpose methods which, besides (p9sQillleing finite, do not impose any
restrictions onX. None of those methods is able to handle in reasonable CRig tirhen\t¢ is large
large rewarded CTMC models of the type for which BT/RT andEBRT seem to give tight bounds
at a relatively moderate computational cost whénclose tor,.t. Numerical methods exist which
can be (are) more efficient than the method described in [J6ptrewarded acyclic CTMC models
[18] (rewarded block acyclic CTMC models [19]). Rewardegdic and rewarded block acyclic
CTMC models naturally arise when modeling, respectivebn-repairable fault-tolerant systems
and fault-tolerant systems in which some components aggredgpe and some are not.
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Appendix

Lemmal. LetW = {W(t);t > 0} be a CTMC with finite state spaé®and uniformly bounded
reward rate structurer;, i € Q with |r;| < oo, i € Q and letW’' = {W'(t);t > 0} be
a rewarded CTMC differing fron¥ only in that the transition rate of/” from some staté to
some statej has been increased by > 0. Let CRCD(t,s) = P[fot Tw(r dr > s] be the
cumulative reward complementary distribution 1f in the time interval[0,¢], ¢ > 0 and let
CRCD'(t, s) = P[fot rwi(rydT > s] be the cumulative reward complementary distributioriiof
in the time interval0, ¢], ¢ > 0. Then|CRCD'(t, s) — CRCD(t, s)| < 2At.

Proof. The proof is based on the formulation fGiRCD(¢, s) used in the algorithm described in
[16, 17]. Leta denote the initial probability distribution row vector &F, let y™ > rm~1 >
... > 10 be them + 1 different reward rates di’, and assunfern > 1. Let Q) be partitioned as
BoUBiU---UBp,whereB; = {i € Q : r; = r7}. LetA > max;eq \; + A, where);, i € Q
are the output rates @¥/, and letP be the transition probability matrix of the randomized DTMC
of W with randomization ratd: P = I+ A /A, whereA is the transition rate matrix (infinitesimal
generator) ofi” andI is an identity matrix. Lef s, 5, denote the subblock d? including the
elements with subindice§, m) € B; x B; (transition probabilities from states ii; to states in
B;j), given a (row or column) vectax with subindices irf2, let xp, denote the restriction of to
the subindices irB;, and let0, and1 s, denote a vector of size3;| with all its elements equal to,
respectively, 0 and 1. The following formulation f6RCD(¢, s) has been obtained in [16, 17]:

0 B At n N m . . .
CRCD(t,5) = > e At% SN Livcern(B)sh (1 = s)"F09) (n, k) | (1)
n=0 T k=0j=1

wherel,. denotes the indicator function with value 1 when condittos satisfied and value 0 other-

wise, '
s—ri—1t

T

the coefficient$/) (n, k) are given by

b (n, k) = ab¥) (n, k),

*In the casen = 0, the cumulative reward is equal t8¢ with probability 1 and the result is trivial.
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and the column vectonsgl) (n, k) satisfy the following set of recursive expressions:

bgl)(n,O):]_Bl, 1§l§m’ (2)
bg’;)(n,n):OBl, 0§l<m’ (3)
bgl)(n,O) :bgl—l)(n,n), 1<j<i<m, 4)
bgl)(n,n) :bgl+1)(n’0)’ 0<l<j<m, )
j Tl—rj ; TJ—T‘] 1
bggm,m = mbg?(n,ky—l T ZPBle (n—1,k—1),
G) Al E) o . 9

It is also proved in [16, 17] thalp, < bgl)(n, k) < 1p,, where the inequality among the vectors
means that the inequality stands element by element.

In the following we will denote using a prime the quantitieserred to the CTMGV’, i.e. P’
will denote the transition probability matrix of the randiaed DTMC of W’ with randomization
rate A.

We will start by showing||b’\)(n, k) — bW (n, k)|l < n(2\)/A, 1 < j < m, n > 0,
0 < k < n. The proof is by induction on.

Forn = 0, (2)~(5) implyb) (0,0) = 15, for 1 < j < 'm, j <1 < mandby)(0,0) = 0,
forl < j <m,0 <[ < j; similarly, we haveb’(j)(o 0) =1 for1 <j<m,j <l <mand
b/(J)(O 0) = 0p, for1 < j <m,0 <1< j,implying |[b"7)(0,0) — b1 (0,0)||c = 0,1 < j < m.
This shows the base cage= 0.

Consider now that the result holds for= » — 1 and let us show that the result holds foe v,
v > 1. Since||b'D) (v, k) — b (v, k)||oo = maxo<i<m B (v, k) — bY) (v, k)|, itis enough to
show: (1)|b (v, k) — b (1, k)l < V(2A)/A, 1< j <m,0<k < v, j<I<m, and (@)
Hbg)(u, k) — bgl)(u, Eloo < v(2A\)/A,1<j<m,0<k<wv,0<I<j Tothatendwe can
use[b (v = 1,k) = bR (v — 1, k) oo < DD (v~ 1,k) = bW (1 — 1, k)|l < (v — 1)(2A)/A,
1<57<m,0<k<v-—1,0<1<m. The proof of both (1) and (2) will be done by complete
induction. For (1), the base case will pe= 1, k¥ = 0 and the induction step will prove that the
resultforl < j <:—1,0<k <wvandj =0 <k <k —1implies the result fo = . and
k=r,with:=1,0<k<vorl <:<m,0<k <v. For (2), the base case will je=m
k = v and the induction step will prove that the resultfor 1 < j < m, 0 < k <vandj =,
k+1<k<vimpliestheresultfoj = candk = k,with: = m,0 <k <vor0<.:<m,
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0 < k < v. Letsy be the state “from” and let; be the state “to” of the transition whose rate has
been increased byin IW’. Letn; andn, such thats; € B, ands; € By,.

Proof of (1) The base casg (= 1, &k = 0) follows immediately from (2). For the induction step,
we will consider two cases: (A)<t:<m,k=0,(b)1 <:<m,0< k <v.Incase (a), from (4):

L L —1 —1
b (v,0) — b (1,0) = b5~V (w,v) bl V(w,v),
and using the (inner) induction hypothesis:
L L L— 1 —1
I (17,0) = B (1,0) oo = B~V (w,1) = bV (1, 0) |0 < v(2X)/A.

In case (b), we will consider three subcases: (b¥)ny, (b2)] = ny # ny, and (b3) = ny = ny.
In case (bl), from (6), noting th&tB B, = Pp,p, foralli

l

L L r—rt L L
bél)(yv K) — bs;;?(l/, K) = o ey <bgl)(u, k—1)— b(B)(I/, K — 1))
7’ —rt L
—= 1ZPBZ’ ( v—1,k—1)— bsgz(y—l,/{—l)>,
and using the induction hypotheses and the fact that the gbtte matrixP add up 1:
!
L L r L L
B0 m) = B m)loe <~ IS~ 1)~ B (v~ D
—i—% Hb/ (1/ —1,k—1)— b(L)(V -1,k —1)]|oc
T
rl—prt 2N pt— gl 2 2\
< — v

AT P <
rl— =1 A+rl—rb_1(1/ )A<VA

In case (b2), using (6), noting that in that case the bldelg,lsﬁi which are different fronPp, p,
are the bIockstan Ba, andP’an B,

() IRR0) _ M=t BTN B
anf(u,/{) anf(u,/{)— <anf(1/,/{ 1) anf(I/,I{ 1))

Py — TL—I

T_TTle 5, B, < (1/—1/{—1) b%z(lj—l,/{—l))

1

o 0
+ rnf — =1 (P/ananf - Pananf> anf (V - 17’% - 1)

rt—pet , o
* W <PB”f’Bnt B PB"f’B"t> ant (V —1LKk- 1)7

and using the induction hypotheses, the fact that the ro$ afid up 1| P’ np B —Pp, B, lleo =

A/A, ||Pan7Bnt — PBnJHBntHOO = A/A, and0 < ||bBl(V —1,k—1)|eo <1t

() R0 =t ) R0 B
Hanf(’/a“) anf(V7H)HOO§T.TLf_TL—1 ”anf(Vﬂﬁ 1) anf(V7“ D)oo

rt— ot
W'
rt— ot 1 (L)

WOw—1,k—1)=bY (1 =1,k —1)|
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L —1

rt—r
1 P 5., ~ oy b (DR, (7 = 1k = Dl
< rf =t 2)\+ rt— ol ( 1)2)\+ rt—rtho) i rt—rto)
e Ry TR I AL A — LA
27
= v—.
A

In case (b3), using (6), noting that in that case the onIylb]B’ghBi which is different fromP g, 5,
is the bIockPjan Bn,*

rf —rt

Py — pt—1

by, () = b () = (b (o= 1) =) (wr 1)

T_TTle Bun;,Bi ( (V—l’f—l) b()(V—lﬁ—l))

1
T _ (v _ _
R ——— (PB”f’B"f PB"f’B"f> bB”f v=1r=1),
and using the induction hypotheses, the fact that the rows$ afld up 1J|P’

(2A)/A, ando < |[bY) (v — 1,k — 1)[|oc < 1:

0 =t ) 0!
Hb (V K) — anf (v, K)loo < Py —— Hanf (v,k—1) — anf(Vﬂ’i — Dl

% DO —1,6 - 1) = DO — 1,5 — 1)[|
t—1
b P, i, — Prin i e D) (7~ L= Dl
"f -7t 2A rt— ol 2A rt—rth 2N
S VR bt DT Y g
2
= I/K.

This completes the proof of (1).

Proof of (2) The base casg (= m, k£ = v) follows immediately from (3). For the induction step,
we will consider two cases: (A)<:<m,k=v,(b)1 <:<m,0 <k <. Incase (a), from (5):

bg)(% V) - b%?(l/, V) = b/gz—i_l)(yv 0) - b%jl)(mo) )
and using the (inner) induction hypothesis:
b (v, ) = b (v, 9)loe = 675V (,0) = BV (1, 0) o0 < w(20)/A.

In case (b), we will consider three subcases: (bf)ny, (02)1 = ny # ng, and (b3) = ny = ny.
In case (b1), from (7), noting th&, ; = Pp, p, forall i:

7,.L—1 o 74l

S000m) b = T (Wm0 - B 1)

rt —pl

r—r iPBz, ( (v—1,Kk) — bgz(y—l,m)>,
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and using the induction hypotheses and the fact that the gbti® matrixP add up 1:

L L rb_l—rl . .
b (v, k) = bY (K)o < —— by (v, 5 + 1) = Y (v, 5 + 1)
L —1
o PO = 1,8) = b~ 1,x)
< rel el 2 rb—rb_l( 1)2/\< 2
S N A S

In case (b2), using (7), noting that in that case the bldks , which are different fronP g, p,
are the bIockstan B, andean Bu,-

bg) (v,K) — bfé) (v, k) = ! _Z <bg) (v,k+1) — bg) (v, K+ 1))
rt—orhf nf
L —1 m
r-r / 1(v) (1)
+ rt — pny Z;Pan,Bi <bBL (V -1, ’{) - bBZ-(V -1, ’{))
rt— 7,L—1 , B
rt— ,r.l,—l .
+ rt— pns (P/an,Bnt - Pan,Bnt> b(Bit (V -1, "i) )
and using the induction hypotheses, the fact that the rod$ afld up 1| P/, g By —Panan lloo =
MAPG, 5, = Ph,, 5.l = /A, and0 < [big) (v = 1,5) e < 1:
1—1 n
e L r —rtf (e L
I (v,r) =B (k) oo € ——— D) (vor+1) =bfy) vk + 1]
n pt — pt=1 Hb/(b)(l/ 1 I{) o b(L)(V -1 ’{)H
TL _ rnf ’ bl (o]
rt— 7,.L—1 .
i 1P, 5., —Pr 5, o b, (v = 190
rt— 7,.L—1 .
1P, 5, = Pr s [P, (v = 11
< =l — pns 1/2)\ rt— 1 (v— 1)2)\ n rt—pttloN e\
T oort=r™ A ot =1 A rt—rm A rt—r"r A
_
= v

In case (b3), using (7), noting that in that case the onIyleghBi which is different fromP g, B,
is the bIockPjan Bn,*

—1 n
(1) 0 _ o ) ®)
bB”lf (7/, K}) — bB”lf (7/, K}) = m <bB”lf (7/, K+ 1) — bB"f (7/, K+ 1))

L —1 m
r—-r / "Wy, RO
+ ;PBW,BZ. (bl (v = 1.0) =B~ 1,m))

rt— ,,,.L—l , ©
+ rt — pnsf (Pan,an _Pananf>anf (V_ 17’%)7
and using the induction hypotheses, the fact that the rows$ afld up 1J|P’an B., —Panan lloo =

(2A)/A, ando < |[bY) (v — 1, k)| < 1:

—1 n
) — bl NN R0
Hanf (v, k) anf (v, K)o < E—y ||anf (v, k+1) anf W,k + 1o

32



L —1

rt—r

o PO = 1,6) = bO (v = 1) oo

L —1

+ o 1P, 5., P sl (B, (V= 10l
- 7nL—l_Tnf VQ TL_TL—I (V_l)%_’_rb_rb_l %
- ort=r™ A b= A rt—r" A
2
= v

This completes the proof of (2) and, therefore, the prodftsf’) (n, k) — bl (n, k)||oe < n(2X)/A,
1<57<m,n>0,0<k<n.

But
¥ (. K) — b9 (n. ) = b, k) — @b (n. k) = o (B0 (m, ) ~ B0 (n,B)
Then, using|e|« = 1, we have
8D (n, k) = b9 (n, k)| < let]loo 16D (n, k) = bY) (n, k) oo
160 (1, k) — DD (0, k) oo < 022, 1< <mn>0,0<k<n.

Let! be thej such that’/~1¢ < s < rit, we can write (1) as

- — At " n n—
CRCD(t,s) = ) e e n,) > (s = s)m R (n, k).
n=0 " k=0

Then, noting thab < s; < 1:

— — At " n n—
|CRCD(t,s) — CRCD(t, )| < ) e ar(A) > (s =s)" O (n, k) — b0 (n, k)|
n=0 k=0

— —a (A" = net, 2A 2 (A"
< 2 e M 2 (s s T = 0 D me M
n=0 k=0 n=0

LD Ly (A S (A
= e (n—l)!_AAth_:Oe o =2Xt. O

n=1

Proof of Theorem 1. As theoretical background for measure theory and Lebesgagration we
use [10]. The characterization of the probability spaceetlythg a discrete time Markov chain with
denumerable state space is discussed in [5]. A recent sloorft@f the existence of arbitrary product
probability measures can be found in [26]. Det= Zjeg_{i} Ai,; denote the output rate F from
statei. LetII = {II,,;n =0, 1,2,...} be the embedded discrete-time Markov chaio{see, for
instance, [12])).I1 has the same state space and initial probability distobusisiW and transition
probabilitiesy); ; = Pll,11 = j |1, =14 = X\ij/Ni, J # 4,3 = Pl =4 |1, =4 =0
for the states with \; = ZjGQ_{i} Nij > 0andy;; = Py = 5|10, =1 = 0,7 # 4,
;i = P[4 = ¢ |1, = 4] = 1 for the states with \; = 0. The embedded DTMC o’
has same state space, initial probability distribution @adsition probabilities aH and, therefore,
is probabilistically identical tdI. Both W and W’ can be interpreted in terms oF. II gives the
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sequence of states visited by (W) and each state visit has a duration given by an independent
holding time variable with exponential distribution witAnameter equal to the output rate from the
visited state.

We start by constructing a common probability spé&€eA, @) in terms of which bothiv’
and W’ can be defined. This is done by combining the probability spawerlyingII with the
probability space underlying a set of exponentially digttéd independent random variables which
will account (with scaling in the case &) for the holding times. To simplify the proof, we
will associate with absorbing states exponentially distied holding times with finite parameter.
Let (&m, A, Q) be the probability space underlyidd: & is the set of infinite sequences=
(s§,sT,...), sT € Q, Ay is theo-algebra generated by the collection of subggfs " = {r =
(s5,87,...) : 88 =89 A 8T =51 A -+ A 8T = 8.}, (S0,---,80) € Q"1 n =0,1,...,
andQu[E ") = Py = S0 ¥so,s1°** Ysn_1,5n- LEtHp s, n=0,1,..., s € Q be independent
exponential random variables with parametgrwhereA; = A\ if Ay > 0andA; = A* > 0if A\; =
0. For each random variable,, s, n = 0, 1,..., s € Q let ([0,00), Bjg o), fin,s) b€ the underlying
probability spaceB . is the Borelor-algebra or0, oc) anduy, s is the Borel probability measure
defined by the distribution function of the random variablg. Let (£x, A, 1) be the product of
the probability space§0, o), Bjp,«); Hn,s), » = 0,1,..., s € Q. The probability spacés, A, Q)
is the product of the probability spac&S, A, Qu) and (Ex, A, p). With respect t€y, given
aw € &y, hy s(w) will denote the coordinate af equal to the realization of the random variable
H, .. With respect tef, given aw € £, m(w) = (sp“, s, ...) will denote they; coordinate of
w andh,, s(w) will denote the coordinate @ equal to the realization of the random varialdlg ,
n=0,1,...,s € Q.

The CTMCW can be defined in terms ¢f, A, ) as follows. Eaclw € £ gives a realization,
W(w,t), of W:

W(w,t) =53¢, 0<t<hy W),

20

W(w,t) =51, hy gr (W) ST <Ry o (W) 1y i) ()

W(w,t) = S;Tn(w) ) Z h s

n=0 =

m
(w) (w) S t < Z hn7s’7";(w) (w) ’
n=0

Let L(w), w € & be the random variable defined B&v) = min{l > 0 : Zln:O h e (w) >t}

It is well known (see, for instance, [12]) thatly, H1, ... being independent exbgnential random
variables with parameter, A1, . .. such thatup,~o A\; < oo, limy, oo Ho + Hy + -+ -+ Hy = o0
with probability 1, implying thainin{n >0 : Hy+ H;+---+ H,, > t} is defined with probability

1. Then:

!
QI[L is defined = Q Hw €& : min {l >0 : Zhn e (w) > t} is defined}]
n=0 o

34



l
= / i [{w’ € &y : min {l >0 : thsg(w/) >t}is defined}] dQm(m)
&n

n=0
= dQn(m) =1.
&n
Let A be the subset f:
L(w)-1
A=Sweé : L(w) isdefinedA > 7 awh w(w)
n=0

n=0

L(w)-1
+ rstr((w)) t— Z hmsgm)(w) > 85

Since A collects, except for a subset with probability 0, all reaians ofI¥ for which the cumu-
lative reward in the time interval), ] is > s,

CRCD(t, s) = Q[A].

Since, givens > 0 and beingH an exponential random variable with parameters 0, H/f

is an exponential random variable with parametar the CTMC1V’ can be defined in terms of
(€, A, Q) as follows. Eachw € & gives a realizationiV’(w, t), of W':

W (wt)=sg®@, 0<t<I o5 ) I h
(wit)=s5 ', 0<t< w0 g T, WCICOR
h 7(w) (CU)
/ _ 7(w) 0,50
Wiw,t) =177, lpw_—p—+ L) 4, Mg gmr (@)
hO,sg(w) (w)
St <L, Lo Ry e (w)

h17s71"(w) (w)

e, — g t ol ge (w)

' m(w) () hn,sli‘” (W)
Wiw,t) = sm, Z [sg(“’):xT + Isg(w);éthsg(w)
n=0

m hn’sg(w)(w)
<t<y Isz(w):xT R ECIRSEC R
n=0

Let L'(w), w € & be the random variable defined & (w) = min{Il > 0

S o <Isﬂ(w)=whn @ @)/B + s b o) (w)> > t}. It can be proved thak/ is defined
with probability 1 as it was proved thdtwas defined with 1. Le#l’ be the subset df:

Al = {w €& : L'(w) is definedA
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(w)—1 h’n Sﬂ(w)(w)
Z < ) x%—i_‘[”(u’)# T h sww)(w))
n=0
S TR
Lt h (W)

<Isg(“’):x# + Isg(“’);«éxhn7s$<“) (w)) > S}.

Since A’ collects, except for a subset with probability 0, all reafians of W’ for which the cumu-
lative reward in the time intervdd, t] is > s,

CRCD'(t, s) = Q[A].

To prove the theorem it suffices to show thiat- A’. In that proof, we will use the shorthamﬂ(“’)
for hn §7(@) (w)

First note that, a9 < g < 1, Zil:o <ISW> /ﬁ + 1 W(w)# 7r w ) > Zn SR,

implying thatL’(w) is defined wher.(w) is and that, in that casé, (w) < L(w). AssumlngL(w)
andL’'(w) defined, let

L{w)— " L(w)—1 "
B(w ;:0 r @y —1—7‘2(&)) t— ;::0 ho\
and let
N b (W)
B(w) = 7;) (IS;;M Lo g g ks )
L (w)-1 BT
+ (Iszﬁfz) o +12§f)ﬂé 258)) (t 1;) <Isz(“)x5+Isz(“)¢xhg(w)>>'

It suffices to showB’(w) > B(w). Since
B(w) = reuypt — C(w)

with "
L(w)—-1
Clw) = 7;) (Tsup w<w>> hr(@) 4 <7’sup Tor) > Z hﬂ(w @)

and, it can be checked usify= (rsup — 7%)/(rsup — 72) that
B'(w) = regpt — C'(w)

with
L'(w)-1

C'w) = 3 (row =1 ) h5¢

n—=
7r(L«/) Tsup ) +1 A £z <Tsup W(w) >>
SL/(w) 5L/ (w)

("J) 1 hw(w)
Z I n(e)_ + fsgw)#hz(w) ; ©)

o

+

Sn /8

n=0

36



it suffices to show that, assumidgw) and L' (w) defined and/ (w) < L(w), C'(w) < C(w). Two
cases will be considered: (&)(w) = L(w), and (b)L/(w) < L(w).

In case (a), using (8), (Nsup — 7 < Tsup — 7z, and BT /B > B,

L(w)-1

C'w) = Z <rsup - rsfﬁ”) hr (@)

n=0

+ (1 7(w) (rsup ) +1 TF(W) Tsup = T _n(w)
SL@) =% SLw) 7T SL(w)

L(w)—1 hﬂ(w)
t— Z <ISZ(W)=IT -+ Isz(w);éxh;;(w))

n=0
L(w)-1 L(w)—
< Z (Tsup — TSZ(W)> hg(w) + <rsup z(ﬂ) ( Z hﬂ(w )
n=0 «
= C(w).

In case (b), assumlngL, £z, Zﬂ;’)_1<lsﬂ(w):xhﬁ(w)/ﬁ + Ism)#hﬁ(“)) + hﬁ}‘ﬁ) >
¢ implies (t - Zﬁlg’)‘1<lsﬂ<w):xhﬁ(“’)/5 S #hﬂ“’))) < h”(‘(“)) and <rsup —_
Tr(w) > <t - Zf]j:(g)_l <—[s7r(w):mh:;(W)/5 + ISZ(W)7£(Ehz(UJ)>> S <Tsup - 7r(w) >h7£§(:u))) AS'

SL(w) L’( )
suming ng(u))) = gz, Y- ( ) ”(“)/ﬂ + Lrwy,
plies <t - zggg")—l(JSZ(m:th(“ /B + I #hz(“’))) < b /B and (ray, — r;)<t =

L' (w)— (w (w (w (w
TE@ 1<152(w>:mhn< 1B+ g, B >>> < (raup =50 /B = (raup —7a) 7). Thus,
we always have

hZ(“)> + hL, /6 > t im-

<[ m(w) m(Tsup )""I m(w) £ <Tsup 7r(uf) >>
L'(w) 5L (w) L/ (w)
L'(w)—1 hw(w)
t— > (Is:;M:xT+Is:;<W>¢mh§(“))

n=0
< <Tsup - Tsﬂ(w) > hzsz))) .
L (w)
Using that result, (8) and (9), for the case (b),

L' (w)-1
Cl(w) < nzz;] (rsup - rs:;(“’)> hZ(w) + <Tsup — 7‘8258)> hng(i)))
L(w)-1
5 ()
n=0
L(w)-1

L(w)-1
Z <7‘sup - rszrl(w)> hg(w) + <Tsup - 'r'sfr(w)> (t - Z hg(w))

IN

IN

n=0 L(w) n=0

= C(w).
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It remains to check thak,,, E/, € A,n =0,1,..., whereE,, = {w € £ : L(w) = n} and
E ={we& : L'(w)=n}, and thatd, A’ € A.

We start by checking that,, € A, n =0,1,.... LetF,, ={we & : > _, 57 (w) >
t},n = 0,1,.... SinceEy = Fp and, forn > 1, E, = F, N ES_4, it sufflces to check that
F, e Ain=01,... LetF*o" = {w e &y : > ohms,(w) > t}. SinceF, =

Uso,..osmyeqntt &7 7% x Fso--sn Qi+l is denumerable and*" € A, it suffices to check
that Fso-5n ¢ Ag, (sg,...,s,) € Q"1 n = 0,1,.... This follows if H,, = {(ho,...,hn) €
[0,00)"* = S0 g hn >t} € @ Bo,oo) = Bjo,cc)n+1. = 0,1,..., which can be proved
by induction omn as follows. The case = 0 is trivial since Hy = (t,00) € Bjg ). Assume the
result holds fom = i > 0. We haveH; | = G411 U U;'.J;})Jj, whereG 1 = {(ho, ..., his1) €
0,00)F2 - hg >0 A -+ A hiyr >0 A S by >t andJ; = {(ho, ..., hit1) € [0,00)72 :

hj =0 A ZZ“ hm > th. ButGiy1 € Bjg iz, SINCEG 41 is an open subset ¢6, co)i*2
andJ; € By, oo)z+2 = Blo,00) @ B, c)it1, Since{0} € Bjg o) and, by the induction hypothesis,
H; € By ooyitt- ThatE!, € A,n =0,1,... can be checked similarly, the only difference being that
H, has to be replaced b§f}, = {(ho, ..., hy) € [0,00)" T + 3" hy/am >t} 0 < ap < 1,
which can be easily shown to belongg ..)n+1.

Let us check now thatl € A. Let

n—1 n—1
A, = {w €& : Z rsﬂm(w)hm7s7rm(w)(w) + ng(w) (t — Z hmﬁﬂm(w)(w)) > s} .

SinceA = U2 (B, N A,,), it suffices to check that,, € A,n =0,1,.... Let

n—1
AB0oSn — {w S SH : Z Tsmhm,sm + Tsn ( Z hm Sm ) } ’
m=0

Since A, = Uy, sycqn1 &7 7" x ASorsn Ol is denumerable andy " € Ap, it
suffices to check that*o+5» ¢ Ay, (so,...,5,) € Q" n = 0,1,.... SinceA®*» can be
expressed as

n—1

AS0nsn — {w €€y : Z(rsm — s, ) hm s, (W) > 5 — rsnt} )
m=0
it suffices to check thak(,, (Yo, - - -, Yn,0) = {(ho, ..., hn) € [0,00)" T + S0 vphy > 8} €
Q=0 Bjo,00) = Bjo,coynt1, =00 < Y < 00, Ym # 0,0 <m <n, —00 <6 <oo,n=0,1,...,
which can be proved by induction enas follows. The base case= 0 is trivial, sinceK(vo,0) =
(6/70,00) if 79 > 0andd > 0, Ko(v0,9) = [0,00) if 79 > 0andd < 0, Ko(y0,6) = 0 if
Y% < 0andd > 0, and Ko(y0,0) = [0,6/70) if 70 < 0 andd < 0 and@,[0,00) € By,
and, fora > 0, [0,a), (a,00) € B ). Assume the result holds for = i > 0 and let us prove
that the result holds fon = i + 1. We haveK;+1(70,.--,%i+1,0) = M;x1(70,--+,%it1,0) U
UEON; (Yo, - -+, %it1, ), where Mgy (Yo, - -, %i41,0) = {(ho, ..., his1) € [0,00)2 : hg >
OA---Ahiys > 0Ny by > 6} andNj(yo, - .-, 7ie1,6) = {(ho, -, hir1) € [0,00)1+2
hj =0A zi;tlo Ymham > 0}, BUL M1 (Y0, - - s Yis1,6) € Blg soyit2, SINCEM; 11 (Yo, - - - Yis1,6)
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is an open subset ¢, c0)"*2 and N; (7o, - . . ,Vi+1,0) € Bjo,soyit2 = Bjo,00) @ Bjo,o0yit+1, SINCE
{0} € By, and, by the induction hypothesi&,; (o, - - -, ¥j—1,Vj+15 - - - » Yi+1,9) € By scyit-

To prove thatd’ € A, let

/ = / hmsﬂm(w) (w)
ATL - w e g : Z ISZ’L(W):SUT"ET + IS:;I(W)#SCTSZL(W) hm78:rn(w) (w)

m=0
+ (Isg<w>:z7°; + Isg<w>¢m7°s;<w))
n—1 hm’sﬂm(w) (OJ)
t— Z Isﬁf“’):xT + Iswm@)#mhmﬁﬂm(w) (w) > S0,
m=0

SinceA’ = U2 ((E;, N A), it suffices to check thatl], € A,n =0,1,.... Let

n—1
h
A/SOy"-vsn — {w = SH : Z <Ism:mr;‘%(u}) + Is’,YL;éxTSmhm’Sm(w))

m=0

+ (Isn:x’l"/x + Isn;é:c"'sn)
n—1
h w
<t -y (gmzm%() + 187,L¢th73m(w)>> > s}'
m=0

Since A}, = Uy, syeanni &7 x Alsomsn Ol is denumerable and ™" € Arp, it
suffices to check thatl’so--n € Ay, (sg,...,s,) € Q"L n =0,1,.... SinceA’0+*» can be
expressed as

-1
A/S()7...,Sn _ . S / hm7sm(w)
=< weE gH : Z Ism:x/\sn;éx(rx — T’sn)T

m=0

+ s, £ A sp=z (Tsp — T;)hm,sm (w)

+ s, £ A spta (Tsp — Tsn)hmsm (W)>

> 8 — ([Sn:xré + Isn;éxrsn) t}a

the result follows fromik, (o, - - ., ¥n,0) = {(ho, ..., hy) € [0,00)" T = S0 vhm > 6} €
®nm:08[0,oo) = Bjg,eoynt1y =00 < Y < 00, Ym # 0,0 <m <n, —00 < d <oo,n=0,1,...,
which was proved previously. O
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