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Abstract

Degradable fault-tolerant systems can be evaluated using rewarded continuous-time Markov

chain (CTMC) models. In that context, a useful measure to consider is the distribution of the

cumulative reward over a time interval[0, t]. All currently available numerical methods for

computing that measure tend to be very expensive when the product of the maximum output

rate of the CTMC model andt is large and, in that case, their application is limited to CTMC

models of moderate size. In this paper, we develop two methods to compute bounds for the cu-

mulative reward distribution of CTMC models with reward rates associated with states: BT/RT

(Bounding Transformation/Regenerative Transformation)and BT/BRT (Bounding Transforma-

tion/Bounding Regenerative Transformation). The methodsrequire the selection of a regener-

ative state, are numerically stable and compute the bounds with well-controlled error. For a

class of rewarded CTMC models, classC′′′

1
, and a particular, natural selection for the regenera-

tive state the BT/BRT method allows to trade off bounds tightness with computational cost and

will provide bounds at a moderate computational cost in manycases of interest. For a class of

models, classC′′

1
, slightly wider than classC′′′

1
, and a particular, natural selection for the regen-

erative state, the BT/RT method will yield tighter bounds ata higher computational cost. Under

additional conditions, the bounds obtained by the less expensive version of BT/BRT and BT/RT

seem to be tight for any value oft or not small values oft, depending on the initial probabil-

ity distribution of the model. ClassC′′

1
and classC′′′

1
models with those additional conditions

include both exact and bounding typical failure/repair performability models of fault-tolerant

systems with exponential failure and repair time distributions and repair in every state with

failed components and a reward rate structure which is a non-increasing function of the col-

lection of failed components. We illustrate both the applicability and the performance of the

methods using a large CTMC performability example of a fault-tolerant multiprocessor system.

Keywords: Fault-tolerant computer systems; Degradable systems; Continuous-time Markov chains;

Distribution of cumulative reward; Bounds; Model transformation



1 Introduction

Fault-tolerant parallel and distributed systems typically exhibit a degradable performance in the pres-

ence of faults. Examples include multiprocessors, grid cluster computing systems and distributed

systems built over local or wide area networks. A combined evaluation of the dependability and

the performance of such systems can be performed by associating reward rates with the states of

a “structure” continuous-time Markov chain (CTMC) model, capturing the failure/repair behavior

of the fault-tolerant system, where the reward rate associated with a state is a measure of the per-

formance rate of the system in that state. Those models have been called performability models

because they capture the general performability concept introduced by Meyer [13, 14]. Rewarded

CTMC models have become very popular and several well-knowntools supporting their specifica-

tion and solution have been developed [1, 4, 6, 7, 8, 27]. A recent, sophisticated performability

modeling case-study of a fault-tolerant distributed system using the UltraSAN tool can be found in

[15].

In the context of performability models, a useful measure toconsider is the distribution of the

cumulative reward over a time interval. With reward rates being performance rates, that measure is

the distribution of the performance accumulated over a timeinterval. Formally, letX = {X(t); t ≥

0} be a CTMC with state spaceΩ and letri, i ∈ Ω be the reward rate structure imposed overX.

The quantityri has the meaning of rate at which reward is earned whileX is in statei. The cumula-

tive reward complementary distribution,CRCD(t, s), is defined as the complementary probability

distribution function of the reward earned in the time interval [0, t], i.e.

CRCD(t, s) = P

[∫ t

0
rX(τ) dτ > s

]

.

TheCRCD(t, s) measure has interesting applications. Thus,X could model the failure/repair be-

havior of a multiprocessor andri, i ∈ Ω, could be the speedup of the multiprocessor in statei. In

that context,
∫ t

0 rX(τ) dτ would have the meaning of accumulated performance of the multiprocessor

in the time interval[0, t] (normalized with respect to the performance rate of a singleprocessor) and

CRCD(t, s) would be the probability that that accumulated performanceis above a given threshold

s. Several numerical methods have been developed to compute theCRCD(t, s) measure. Most

of them assumeΩ finite. Some of the methods allow impulse rewards associatedwith transitions

which are earned every time a transition is followed. In our review, we will restrict our attention to

general-purpose methods which, besides (possibly)Ω being finite, do not impose any restrictions on

X. Smith et al. [28] developed a method with time complexityO(M3), whereM = |Ω|, which

is based on the inversion of a double Laplace transform. Another method with time complexity

O(M3) using Laguerre functions was developed by Islam and Ammar [11]. De Souza e Silva and

Gail [29] developed a randomization-based method with timecomplexity exponential on the num-

ber of different reward rates. An extension of that method tocover models with both reward rates

and impulse rewards using a path pruning technique was performed later by Qureshi and Sanders

[21]. A method based on both randomization and Laplace transform techniques was developed by

Donatiello and Grassi [9]. That method has time complexityO(TmN2), whereT is the number

of transitions of the randomized discrete time Markov chain(DTMC) of X with randomization
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rate equal toΛ, the maximum output rate ofX, m + 1 is the number of different reward rates of

the model, andN is the truncation parameter of a Poisson process with rateΛ, which for large

Λt has value approximately equal toΛt. Pattipati et al. [20] have formalized the computation of

CRCD(t, s) in terms of the solution of a linear hyperbolic partial differential equation which, by

discretization, can be transformed into an ordinary differential equation (ODE), and have proposed

to solve it using a standard stiff ODE solver. However, for largeΛt, the number of discretization

steps required to have good accuracy will be large and the method will be expensive. Nabli and Seri-

cola [16, 17] developed another randomization-based method which fors ≥ rfmax t, rfmax being the

second largest reward rate of the model, has time complexityO(T [C(N − C) +mC2/2]), where

C is a truncation parameter which is small whens is close tormax t, rmax being the largest reward

rate of the model. The method is completely general and covers also the cases < rfmaxt, but with a

time complexityO(TmN2). In addition, the method is guaranteed to be numerically stable. Queshi

and Sanders [22] developed a method which is based on the enumeration of sample paths and is also

numerically stable. Later, de Souza e Silva and Gail [30] developed a randomization-based method

with time complexityO(TθN2) for the case in which only reward rates are present, whereθ is a

positive integer no greater thanm. Finally, Rácz et al. [23] have developed a method to compute

bounds for theCRCD(t, s) measure based on the computation, using randomization [31], of the

first moments of the cumulative reward. The computational cost of the method is basically the cost

of computing the moments, which isO(TqN ′), whereq is the number of computed moments and,

for largeΛt, N ′ has value approximately equal toΛt. The bounds are very coarse fors around

the expected cumulative reward but get tighter ass gets apart from that value. All currently avail-

able general-purpose methods have high computational costwhenΛt is large and, in that case, their

applicability is limited to models of moderate size.

In this paper, we develop two methods for computing bounds for theCRCD(t, s) measure. The

main advantage of the methods is that, for certain classes ofrewarded CTMC models of interest,

they can be relatively inexpensive and yet provide quite tight bounds, allowing a numerical analysis

with error bounds in reasonable CPU times of very large models which were previously out of the

scope of numerical techniques. The methods are numericallystable and compute the bounds with

well-controlled error. The methods build upon recently developed methods for computing both

the interval availability distribution [2] and bounds for that measure [3]. The rest of the paper is

organized as follows. Section 2 describes the models which can be handled by the methods and

defines the model classesC′′
1 andC′′′

1 to which the methods are primarily intended to be applied.

The methods are developed in Section 3. That section also discusses the computational costs of the

methods for models in classesC′′
1 andC′′′

1 . Section 4 illustrates the performance of the methods

using a large performability example of a fault-tolerant multiprocessor for which bounding models

belong to classesC′′
1 andC′′′

1 and identifies under which additional conditions the boundsobtained

by the methods seem to be tight. Model classesC′′
1 andC′′′

1 with those additional conditions include

both exact and bounding typical failure/repair performability models of fault-tolerant systems with

exponential failure and repair time distributions and repair in every state with failed components and

a reward rate structure which is a non-increasing function of the collection of failed components.

Finally, Section 5 presents the conclusions. The Appendix includes a technical lemma which can be
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used to circumvent some of the conditions imposed by the methods to the rewarded CTMC model

and the (long) proof of the theoretical result on which the methods are based.

2 Classes of Models

Let X = {X(t); t ≥ 0} be a CTMC with state spaceΩ and reward rate structureri, i ∈ Ω. As-

suming those quantities defined, letrmax = maxi∈Ω ri, rfmax = maxi∈Ω : ri<rmax ri andrmin =

mini∈Ω ri. In this paper we target the computation of bounds for the cumulative reward comple-

mentary distribution measure

CRCD(t, s) = P

[∫ t

0
rX(τ) dτ > s

]

,

wheret > 0 andrmin t < s < rmax t. In addition, we will assumes > rfmax t whenever an upper

bound forCRCD(t, s) has to be computed.

Let αi = P [X(0) = i], i ∈ Ω, let λi,j, i, j ∈ Ω, j 6= i denote the transition rates ofX

and letλi =
∑

j∈Ω−{i} λi,j, i ∈ Ω denote the rates of output ofX. Also, givenB ⊂ Ω, let

αB =
∑

i∈B αi and, giveni ∈ Ω andB ⊂ Ω − {i}, let λi,B =
∑

j∈B λi,j . The BT/RT (Bounding

Transformation/Regenerative Transformation) method will require the selection of a regenerative

stater. LettingΩmax = {i ∈ Ω : ri = rmax}, Ωfmax = {i ∈ Ω : ri = rfmax}, Ωmin = {i ∈

Ω : ri = rmin}, Ω = Ω − Ωmax − Ωfmax − Ωmin, Smax = S ∩ Ωmax, Sfmax = S ∩ Ωfmax,

Smin = S ∩ Ωmin, S = S ∩ Ω, S′
max = Smax − {r}, S′

fmax = Sfmax − {r}, S′
min = Smin − {r},

andS
′
= S − {r}, the method will cover rewarded CTMCsX and selections forr satisfying the

following conditions:

C1. Ω is finite.

C2. The reward ratesri, i ∈ Ω are all finite and take at least three different values.

C3. Ω = S orΩ = S ∪ {f}, wheref is an absorbing state.

C4. |S| ≥ 2.

C5. Either all states inS are transient orX has a single recurrent class of statesC ⊂ S.

C6. All states are reachable (from some state with nonnull initial probability).

C7. maxi∈Ωmax λi > 0 andmaxi∈Ωfmax∪Ω∪Ωmin
λi > 0.

C8. r ∈ S and, ifX has a single recurrent class of statesC ⊂ S, r ∈ C.

C9. If S′
max 6= ∅, λr,S′

max
> 0.

C10. IfS′
max 6= ∅, α

S′
fmax∪S

′
∪S′

min
> 0 andαS′

max
= 0, λi,S′

max
> 0 for somei ∈ S′

fmax ∪S
′
∪

S′
min with αi > 0.
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Given a selection for the regenerative stater, there exists a unique subset of statesS for which

conditions C3, C5 and C8 can all be satisfied:S must beΩ if X has no absorbing state orX

has a single absorbing statea andr = a; S must beΩ − {a} if X has a single absorbing state

a andr 6= a or X has two absorbing statesa, b and b = r; and, in any other case, noS exists

for which conditions C3, C5 and C8 can all be satisfied. This makes it easy to check whether a

given rewarded CTMCX with a given selection for the regenerative stater is covered by BT/RT.

Conditions C2 and C7, except for the fact that reward rates befinite, are mild, in the sense that, when

these conditions are not satisfied, computation ofCRCD(t, s) or of bounds forCRCD(t, s) can be

reduced to simpler problems. Thus, when the reward rates ofX are finite but take only two different

values,rmax andrmin, CRCD(t, s) can be formulated in terms of the simpler interval availability

complementary distribution measure,IAVCD(t, p) = P [(1/t)
∫ t

0 IX(τ)∈U dτ > p] (Ic denotes the

indicator function returning value 1 if conditionc is satisfied and value 0 otherwise), with subset

of up statesU = Ωmax usingCRCD(t, s) = IAVCD(t, (s/t − rmin)/(rmax − rmin)) (see Proof

of Theorem 2). When condition C2 is satisfied butmaxi∈Ωmax λi = 0 the rewarded CTMCsX lb

andXub to be defined in Section 3 will be such that all their states with reward rate equal tormax

will be absorbing and the remaining states will have reward rate equal to, respectively,rmin and

rfmax, and, according to the previous discussion and the discussion performed in [2] concerning

the IAVCD(t, p) measure whenmaxi∈U λi = 0, lower and upper bounds forCRCD(t, s) can

be computed asP [X lb((1 − (s/t − rmin)/(rmax − rmin))t) ∈ Ωmax] andP [Xub((1 − (s/t −

rfmax)/(rmax−rfmax))t) ∈ Ωmax]. Similarly, assuming C2 satisfied butmaxi∈Ωfmax∪Ω∪Ωmin
λi = 0,

the rewarded CTMCX lb andXub to be defined in Section 3 will be such that all states with reward

rate equal to, respectively,rmin and rfmax will be absorbing and the remaining states will have

reward rate equal tormax, and, according to the previous discussion and the discussion performed

in [2] concerning theIAVCD(t, p) measure whenmaxi∈D λi = 0, lower and upper bounds for

CRCD(t, s) can be computed asP [X lb(((s/t−rmin)/(rmax−rmin))t) ∈ Ωmax] andP [Xub(((s/t−

rfmax)/(rmax − rfmax))t) ∈ Ωmax]. Condition C6 can be trivialized by deleting non-reachable

states. Finally, conditions C9 and C10 can be circumvented by adding toX a tiny transition rate

λ ≤ 10−10ε/(2tmax), whereε is the allowed error andtmax is the largest timet at which bounds for

CRCD(t, s) have to be computed, with, according to Lemma 1 in the Appendix, a negligible impact

onCRCD(t, s), 0 < t ≤ tmax no greater than10−10ε. The possibilityΩ = S ∪ {f}, wheref is

an absorbing state, allows us to cover bounding models, which are useful for systems for which an

exact model would have a state space of unmanageable size. Ina bounding model,S would include

a strict subset of the state space of the exact model and the bounding model would enter statef

when the exact model would exitS. Assigning to the states inS the same reward rates as in the

exact model and to statef a lower bound for all reward rates of the exact model, theCRCD(t, s)

measure of the bounding model would lower bound theCRCD(t, s) measure of the exact model; if

a reward rate upper bounding all reward rates of the exact model is assigned instead to statef , the

CRCD(t, s) measure of the bounding model would upper bound theCRCD(t, s) measure of the

exact model.

The BT/BRT (Bounding Transformation/Bounding Regenerative Transformation) method also

requires the selection of a regenerative stater and covers a subset of the rewarded CTMC mod-
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Figure 1: Small rewarded CTMCX which with the selectionr = 1 is covered by BT/RT and

BT/BRT.

els covered by BT/RT, which can be described as the set including all rewarded CTMCsX and

selections forr satisfying conditions C1–C10 and

C11. S′
max 6= ∅.

Note that conditions C9 and C11 imply thatr cannot be absorbing and, then, according to the

discussion regarding the possibilities forS in BT/RT, in BT/BRTS must include precisely the non-

absorbing states.

To illustrate the classes of models covered by the methods, Fig. 1 shows a small rewarded

CTMC model of a repairable multiprocessor system with five processors, one of which is spare, in

which active processors fail with rateλ = 10−4 h−1 and failed processors are repaired by a single

repairer at rateµ = 0.1 h−1. A processor fault is covered with probabilityC = 0.98. The initial

state is the state 1 in which no processor is failed. Since themodel has no absorbing state,S = Ω.

With the selectionr = 1, that model is covered by both BT/RT and BT/BRT.

The BT/RT method is primarily intended to be used for a class of rewarded CTMC models,

classC′′
1, with a given “natural” selection for the regenerative state. Model classC′′

1 includes all

rewarded CTMCsX satisfying conditions C1–C7 and the condition:

C12. A partitionS0 ∪ S1 ∪ · · · ∪ SNC
for Smax exists satisfying the properties:
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P1. S0 = {o} (i.e. |S0| = 1).

P2. IfX has a single recurrent class of statesC ⊂ S, o ∈ C.

P3. If |Smax| ≥ 2, λo,S1∪···∪SNC
> 0.

P4. If |Smax| ≥ 2, αSfmax∪S∪Smin
> 0 andαS1∪···∪SNC

= 0, λi,S1∪···∪SNC
> 0 for

somei ∈ Sfmax ∪ S ∪ Smin with αi > 0.

P5. If |Smax| ≥ 2, max0≤k≤NC
maxi∈Sk

λi,Sk−{i}∪Sk+1∪···∪SNC
∪Sfmax∪S∪Smin

is sig-

nificantly smaller thanmin0<k≤NC
mini∈Sk

λi,S0∪···∪Sk−1
> 0 if Ω = S or

min0<k≤NC
mini∈Sk

λi,S0∪···∪Sk−1∪{f} > 0 if Ω = S ∪ {f}.

The natural selection for the regenerative state for classC′′
1 models isr = o. With that natural

selection, properties P2, P3 and P4 imply the fulfillment of,respectively, conditions C8, C9 and C10

and, then, the models will be covered by BT/RT.

The BT/BRT method is primarily intended to be used for a classof rewarded CTMC models,

classC′′′
1 , with a given “natural” selection for the regenerative state. Model classC′′′

1 includes all

rewarded CTMCsX satisfying conditions C1–C7 and the conditions:

C13. |Smax| ≥ 2.

C14. A partitionS0 ∪ S1 ∪ · · · ∪ SNC
for Smax exists satisfying the properties:

P1. S0 = {o} (i.e. |S0| = 1).

P2. IfX has a single recurrent class of statesC ⊂ S, o ∈ C.

P6. λo,S1∪···∪SNC
> 0.

P7. If αSfmax∪S∪Smin
> 0 andαS1∪···∪SNC

= 0, λi,S1∪···∪SNC
> 0 for somei ∈

Sfmax ∪ S ∪ Smin with αi > 0.

P8. max0≤k≤NC
maxi∈Sk

λi,Sk−{i}∪Sk+1∪···∪SNC
∪Sfmax∪S∪Smin

is significantly smaller

thanmin0<k≤NC
mini∈Sk

λi,S0∪···∪Sk−1
> 0 if Ω = S or

min0<k≤NC
mini∈Sk

λi,S0∪···∪Sk−1∪{f} > 0 if Ω = S ∪ {f}.

P9. λo ≤ mini∈S1∪···∪SNC
λi.

The natural selection for the regenerative state for classC′′′
1 models isr = o. With that natural selec-

tion, condition C13 and properties P2, P6 and P7 imply the fulfillment of, respectively, conditions

C11, C8, C9, and C10 and, then, the models will be covered by BT/BRT. ClassC′′′
1 is a subset of

classC′′
1.

The rewarded CTMC model described in Fig. 1 belongs to model classesC′′
1 andC′′′

1 . A

partition forSmax = {1, 2} showing that isSmax = S0 ∪ S1 with S0 = {1} andS1 = {2}.
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3 The Methods

The BT/RT and BT/BRT methods are based on the following result.

Theorem 1. LetW = {W (t); t ≥ 0} be a conservative, uniformizable CTMC with denumerable

state spaceΩ, 1 uniformly upper bounded reward rate structureri, i ∈ Ω with |ri| <∞, i ∈ Ω and

transition ratesλi,j, i, j ∈ Ω, j 6= i. Letrsup = supi∈Ω ri, letx ∈ Ω with rx < rsup and letr′x such

that rx ≤ r′x < rsup. LetW ′ = {W ′(t); t ≥ 0} be another rewarded conservative, uniformizable

CTMC identical toW except that statex has reward rater′x and the rates of transition from state

x have valuesλ′x,j = βλx,j , j ∈ Ω, j 6= x, β = (rsup − r′x)/(rsup − rx). Let CRCD(t, s) =

P [
∫ t

0 rW (τ)dτ > s] be the cumulative reward complementary distribution ofX in the time interval

[0, t], t > 0 and letCRCD′(t, s) = P [
∫ t

0 rW ′(τ)dτ > s] be the cumulative reward complementary

distribution ofW ′ in the time interval[0, t], t > 0. ThenCRCD′(t, s) ≥ CRCD(t, s).

Proof. See the Appendix.

Essentially, the reasons why the result holds are that: (1) the scaling of rates of transition from state

x keeping their relative values will not modify the embedded discrete time Markov chain DTMC

Π of W , (2) the scaling factorβ is chosen in such a way that the reward lost byW ′ in each visit

to statex with respect to the reward that would be earned had statex reward ratersup has an

exponential distribution with parameterβλx/(rsup−r′x), identical to the parameter,λx/(rsup−rx),

of the exponential distribution of the reward lost byW in each visit to statex. Then, since (see,

for instance, [12]) bothW andW ′ can be interpreted in terms ofΠ by associating with the states

visited byΠ independent exponential holding times with parameter equal to the rate of output from

the visited state, the rates of output from and the rates of reward of the states different fromx are

equal inW andW ′, and, with0 < β ≤ 1, the rate of output from statex in W ′ is non-greater than

the rate of output from statex in W , each realization ofW will have a corresponding realization of

W ′ with the same sequence of visited states, same holding timesin states different fromx, greater

holding times inx, and same reward lost in each state visit with respect to the reward that would

be earned had the state a reward ratersup. As Fig. 2 illustrates, this will make the “loss” of reward

accumulated byW ′ in the time interval[0, t] not greater than the “loss” of reward accumulated by

W in the same time interval and, therefore, the reward accumulated byW ′ in the time interval[0, t]

will be not smaller than the reward accumulated byW in the same time interval. As the reward

accumulated in the time interval[0, t] by W ′ for a realization ofW ′ is not smaller than the reward

accumulated in the time interval[0, t] byW for the corresponding realization ofW , the probability

thatW ′ will accumulate a reward in the time interval[0, t] greater thans will be not smaller than

the probability thatW will accumulate a reward in the time interval[0, t] greater thans. Note that

Theorem 1 also holds ifx is an absorbing state. In that case, bothW andW ′ will remain indefinitely

in x once they enter that state and the result simply holds because r′x ≥ rx.

1See, for instance, [12] for the definitions of conservative,uniformizable CTMCs with denumerable state space. Ba-

sically, they are CTMCs with denumerable state space in which the output rate from any statei is equal to the sum of the

transition rates fromi and in which the output rates are uniformly upper bounded.
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The BT/RT method allows us to compute a lower bound forCRCD(t, s), an upper bound for

CRCD(t, s), or both. The bounds are computed with error upper bounded byε, whereε is a user-

provided error control parameter. The method combines a model transformation phase (Bounding

Transformation) with the RT (Regenerative Transformation) method described in [2]. When a lower

bound forCRCD(t, s) has to be computed, the model transformation is performed sothat the re-

sulting rewarded CTMC,X lb, has only two different reward rates and, according to Theorem 1,

has a cumulative reward complementary distribution measure,CRCDlb(t, s), which lower bounds

CRCD(t, s). When an upper bound forCRCD(t, s) has to be computed, the model transformation

is performed so that the resulting rewarded CTMC,Xub, has only two different reward rates and, ac-

cording to Theorem 1, has a cumulative reward complementarydistribution measure,CRCDub(t, s),

which upper boundsCRCD(t, s). With X lb andXub having two different reward rates, the com-

putation ofCRCDlb(t, s) andCRCDub(t, s) can be mapped into the computation of the simpler

interval availability complementary distribution measures of, respectively,X lb andXub, with sub-

set of up statesΩmax, and those computations are performed using RT with regenerative stater and

allowed errorε.

The lower bounding rewarded CTMC model,X lb, has the same state spaceΩ asX, same initial

probability distribution asX, reward ratesrmax associated with the states inΩmax, reward ratesrmin

associated with the states inΩfmax ∪ Ω ∪ Ωmin, and transition rates:

λlbi,j =
rmax − rmin

rmax − ri
λi,j , i ∈ Ωfmax ∪ Ω ,

λlbi,j = λi,j , i ∈ Ωmax ∪Ωmin .

The upper bounding rewarded CTMC model,Xub, has same state spaceΩ asX, reward ratesrmax

associated with the states inΩmax, reward ratesrfmax associated with the states inΩfmax∪Ω∪Ωmin,

and transition rates:

λubi,j =
rmax − rfmax

rmax − ri
λi,j . i ∈ Ω ∪ Ωmin .

λubi,j = λi,j , i ∈ Ωmax ∪ Ωfmax .

ThatCRCDub(t, s) upper boundsCRCD(t, s) follows by considering, for eachi ∈ Ω ∪ Ωmin in

turn, the scaling by the factor(rmax − rfmax)/(rmax − ri) yielding the transition rates from state

i in Xub from the transition rates from statei in X and applying Theorem 1 to each scaling step,

noting thatri < rfmax < rmax, i ∈ Ω ∪ Ωmin. ThatCRCD(t, s) upper boundsCRCDlb(t, s) and,

therefore,CRCDlb(t, s) lower boundsCRCD(t, s) follows by considering, for eachi ∈ Ωfmax ∪Ω

in turn, the scaling by the factor(rmax − ri)/(rmax − rmin) yielding the transition rates from state

i in X from the transition rates from statei in X lb and applying Theorem 1 to each scaling step,

noting thatrmin < ri < rmax, i ∈ Ωfmax ∪ Ω.

The mappings ofCRCDlb(t, s) andCRCDub(t, s) into the interval availability complementary

distributions of, respectively,X lb andXub with subset of up statesΩmax are given by the following

theorem.

9



Theorem 2. Let IAVCDlb(t, p) = P [(1/t)
∫ t

0 IXlb(τ)∈Ωmax
dτ > p] and IAVCDub(t, p) =

P [(1/t)
∫ t

0 IXub(τ)∈Ωmax
dτ > p]. Then, fort > 0,

CRCDlb(t, s) = IAVCDlb

(

t,
s/t− rmin

rmax − rmin

)

and

CRCDub(t, s) = IAVCDub

(

t,
s/t− rfmax

rmax − rfmax

)

.

Proof. Denoting byrlbi , i ∈ Ω the reward rate structure ofX lb, sincerlbi = rmax for i ∈ Ωmax and

rlbi = rmin for i ∈ Ωfmax ∪ Ω ∪ Ωmin,

CRCDlb(t, s) = P

[∫ t

0
rlbXlb(τ) dτ > s

]

= P

[

rmax

∫ t

0
IXlb(τ)∈Ωmax

dτ + rmin

∫ t

0
IXlb(τ)∈Ωfmax∪Ω∪Ωmin

dτ > s

]

= P

[

rmin t+ (rmax − rmin)

∫ t

0
IXlb(τ)∈Ωmax

dτ > s

]

= P

[
∫ t

0
IXlb(τ)∈Ωmax

dτ >
s− rmin t

rmax − rmin

]

= P

[

1

t

∫ t

0
IXlb(τ)∈Ωmax

dτ >
s/t− rmin

rmax − rmin

]

= IAVCDlb

(

t,
s/t− rmin

rmax − rmin

)

.

The result forCRCDub(t, s) can be obtained similarly, the only difference being thatX lb has to be

replaced byXub, rlbi by rubi , rubi being the reward rate ofXub in statei, andrmin by rfmax, because

the reward rate ofXub in the statesi ∈ Ωfmax ∪ Ω ∪ Ωmin is rubi = rfmax.

The method BT/BRT differs from BT/RT in that, instead of computing CRCDlb(t, s) =

IAVCDlb(t, (s/t − rmin)/(rmax − rmin)) with error ≤ ε using the RT method with regenera-

tive stater, a lower bound for it,CRCDlb,lb(t, s), is obtained by computing a lower bound for

IAVCDlb(t, (s/t − rmin)/(rmax − rmin)) using the BRT (Bounding Regenerative Transforma-

tion) method [3] with regenerative stater and allowed errorε. Similarly, instead of computing

CRCDub(t, s) = IAVCDub(t, (s/t− rfmax)/(rmax − rfmax)) with error≤ ε using RT with regen-

erative stater, an upper bound for it,CRCDub,ub(t, s), is obtained by computing an upper bound for

IAVCDub(t, (s/t−rfmax)/(rmax−rfmax)) using BRT with regenerative stater and allowed errorε.

Thus, BT/BRT will yield less tighter bounds than BT/RT. The BRT method [3] has a control param-

eterDC which allows to trade-off bounds tightness with computational cost. The BT/BRT method

has also a control parameterDC and the BRT method is invoked with itsDC control paremeter

equal to theDC control parameter of BT/BRT. TheDC control parameter has to be selected [3] so

that it satisfies1 ≤ DC < λmax/λmin, λmax = maxi∈S′
max

λi, λmin = mini∈S′
max

λi. Note that, as

we have discussed, conditions C9 and C11 imply thatS must include precisely the non-absorbing

states and, therefore,λmax ≥ λmin > 0. In the possible caseλmax = λmin no selection forDC

would be possible. In that case, BT/RT should be used. Since [3], asDC increases, the bounds

for the interval availability complementary distributionobtained by BRT get arbitrarily tighter; as

10



DC increases, the bounds obtained by BT/BRT approach those obtained by BT/RT. Furthermore,

as we shall discuss, for classC′′′
1 models with the natural selectionr = o, the computational cost

of BT/BRT should increase withDC and, therefore, theDC parameter allows to trade-off bounds

tightness with computational cost.

The BRT method [3] can be described as the succession of a model transformation phase, in

which transition rates from “up” states different from the regenerative state and, if existent, the

absorbing state, are scaled, and the RT method with the same regenerative state as BRT, which is

used to solve the transformed CTMC model. When, in BT/BRT, the lower bound forCRCD(t, s)

has to be computed, the CTMC model,X lb,lb, which has to be solved by the RT method has [3]

same state spaceΩ asX lb (andX), same initial probability distribution asX lb (andX), subset of

up statesΩmax and, callingλlbi , i ∈ Ω, the output rates ofX lb and noting thatλlbi = λi, i ∈ Ωmax

and, therefore,maxi∈S′
max

λlbi = λmax, transition rates related to the transition rates ofX lb as

λlb,lbi,j =
max{λlbi , λmax/DC}

λlbi
λlbi,j , i ∈ S′

max ,

λlb,lbi,j = λlbi,j , i 6∈ S′
max .

When, in BT/BRT, the upper bound forCRCD(t, s) has to be computed, the CTMC model,Xub,ub,

which has to be solved by the RT method has [3] same state spaceΩ asXub (andX), same initial

probability distribution asXub (andX), subset of up statesΩmax and, callingλubi , i ∈ Ω, the output

rates ofXub and noting thatλubi = λi, i ∈ Ωmax and, therefore,mini∈S′
max

λubi = λmin, transition

rates related to the transition rates ofXub as

λub,ubi,j =
min{λubi ,DCλmin}

λubi
λubi,j , i ∈ S′

max ,

λub,ubi,j = λubi,j , i 6∈ S′
max .

We also point out that RT uses Algorithm A of [25] as a back-end. That back-end is preceded

by a transformation phase in which the behavior of the CTMC model (X lb or Xub in BT/RT and

X lb,lb orXub,ub in BT/BRT) fromS′ = S −{r} until either a hit of stater or, if existing, hit of the

absorbing statef , and fromr until either next hit of stater or, if existing, hit of the absorbing state

is characterized while keeping track of the amount of time spent in up states inS (states inSmax).

That characterization is done through a truncated transformed CTMC model having, with some

small error, the same interval availability distribution as the original CTMC model (X lb or Xub in

BT/RT andX lb,lb orXub,ub in BT/BRT). Fig. 3 clarifies the decomposition of the BT/RT method in

terms of the RT method and Algorithm A of [25] and the decomposition of the BT/BRT method in

terms of the BRT method, the RT method, and Algorithm A of [25]. In the figure, the CTMC model

which is solved by Algorithm A of [25] when in BT/RT the lower bound forCRCD(t, s) has to be

computed is calledV lb
T , the CTMC model which is solved by Algorithm A of [25] when in BT/BRT

the lower bound forCRCD(t, s) has to be computed is calledV lb,lb
T , the CTMC model which is

solved by Algorithm A of [25] when in BT/RT the upper bound forCRCD(t, s) has to be computed

is calledV ub
T , and the CTMC model which is solved by Algorithm A of [25] whenin BT/BRT the

upper bound forCRCD(t, s) has to be computed is calledV ub,ub
T .
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Figure 3: Schematic description of the BT/RT method in termsof the RT method and Algorithm

A of [25] and schematic description of the BT/BRT method in terms of the BRT method, the RT

method, and Algorithm A of [25].
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Since the RT method is numerically stable, the BT/RT and BT/BRT methods will be numer-

ically stable. In addition, since the computation error in RT is well-controlled, both BT/RT and

BT/BRT will compute the bounds with well-controlled error.The assumed conditions in the BT/RT

method for the rewarded CTMCX and the selection for the regenerative stater (conditions C1–

C10) guarantee that the CTMCsX lb andXub with subset of up statesΩmax and regenerative state

r will be covered by the RT method (see [2]). Similarly, the assumed conditions in the BT/BRT

method for the rewarded CTMCX and the regenerative stater (conditions C1–C11) guarantee that

the CTMCsX lb andXub with subset of up statesΩmax and regenerative stater will be covered by

the BRT method (see [3]).

A possible alternative would be to use Algorithm A of [25] to solve the CTMC modelsX lb and

Xub orX lb,lb andXub,ub. That alternative would be, however, expensive whenΛt is large and the

original rewarded CTMC modelX is large.

The transformation phases involving the scaling of transition rates yieldingX lb or Xub in

BT/RT andX lb,lb orXub,ub in BT/BRT have, in practice, negligible computational costcompared

with the computational costs of the transformation phase ofthe RT method and the application

of Algorithm A of [25] to the solution of the resulting transformed model. The flop count of the

transformation phase of the RT method is, for large CTMC models X andS′
max 6= ∅, CK(2T ′ +

M |Ω|) + IαS′>0CL(2T
′ +M |Ω|), whereT ′ is the number of transitions ofX, M = 11 if Ω =

S ∪ {f} andM = 9 if Ω = S, andC, K andL are truncation parameters defining the size of the

transformed CTMC model. The flop count of the application of Algorithm A of [25] to the solution

of the transformed model can be estimated as2NC ′T ′′, whereT ′′ is the number of transitions of the

randomized DTMC of the transformed model with randomization rate equal to the maximum output

rate of that model andN andC ′ are truncation parameters. An approximate estimate forT ′′ for the

caseS′
max 6= ∅ isM ′CK + IαS′>0M

′CL, whereM ′ = 9 if Ω = S ∪ {f} andM ′ = 7 if Ω = S.

Let ε be the absolute error with which the bounds have to be computed. The value of the truncation

parametersC,N andC ′ can be easily estimated. For the BT/RT method,C,N andC ′ have values2

C lb = min

{

c ≥ 1 :

∞
∑

k=c+1

e−Λlbxlb
max

(Λlbxlbmax)
k

k!
≤
ε

4

}

,

N lb = min

{

n ≥ 0 :
∞
∑

k=n+1

e−Λlbtmax
(Λlbtmax)

k

k!
≤
ε

4

}

,

C ′lb = min

{

c ≥ 0 :

∞
∑

k=c+1

e−Λlbxlb
max

(Λlbxlbmax)
k

k!
≤
ε

4

}

when the lower bound is computed and values

Cub = min

{

c ≥ 1 :

∞
∑

k=c+1

e−Λubxub
max

(Λubxubmax)
k

k!
≤
ε

4

}

,

Nub = min

{

n ≥ 0 :

∞
∑

k=n+1

e−Λubtmax
(Λubtmax)

k

k!
≤
ε

4

}

,

2Strictly speakingC′ could be slightly larger in some cases.
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C ′ub = min

{

c ≥ 0 :

∞
∑

k=c+1

e−Λubxub
max

(Λubxubmax)
k

k!
≤
ε

4

}

when the upper bound is computed, where, with(ti, si), 1 ≤ i ≤ n being the(t, s) pairs at which

the bounds forCRCD(t, s) have to be computed and withθ being a positive quantity≪ 1 (in our

implementations,10−4), Λlb andΛub, which are the maximum output rates of, respectively,X lb

andXub affected by the factor(1 + θ), have values

Λlb = (1 + θ)max

{

max
i∈Ωmax∪Ωmin

λi, max
i∈Ωfmax∪Ω

rmax − rmin

rmax − ri
λi

}

and

Λub = (1 + θ)max

{

max
i∈Ωmax∪Ωfmax

λi, max
i∈Ω∪Ωmin

rmax − rfmax

rmax − ri
λi

}

,

xlbmax = max
1≤i≤n

rmax ti − si
rmax − rmin

,

xubmax = max
1≤i≤n

rmax ti − si
rmax − rfmax

,

and

tmax = max
1≤i≤n

ti .

For the BT/BRT method,C, N andC ′ have the values given by the previous expressions with (we

remember,λmax = maxi∈S′
max

λi andλmin = mini∈S′
max

λi)

Λlb = (1 + θ)max

{

λmax, max
i∈S′

min

λi, max
i∈S′

fmax∪S
′

rmax − rmin

rmax − ri
λi,

Ir∈Smax∪Smin
λr + Ir∈Sfmax∪S

rmax − rmin

rmax − rr
λr

}

,

Λub = (1 + θ)max

{

DCλmin, max
i∈S′

fmax

λi, max
i∈S

′
∪S′

min

rmax − rfmax

rmax − ri
λi,

Ir∈Smax∪Sfmax
λr + Ir∈S∪Smin

rmax − rfmax

rmax − rr
λr

}

,

and same values forxlbmax, xubmax andtmax. The values ofΛlb andΛub for the BT/BRT method are

the maximum output rates of, respectively,X lb,lb andXub,ub, affected by the factor(1 + θ).

The truncation parametersK andL are known to be smooth functions oft (they areO(log(t/ε)),

but their actual values can be large, depending on the characteristics of the original rewarded CTMC

modelX and the selection for the regenerative state. Stronger results are available regarding

the values ofK andL for classC′′
1 and classC′′′

1 models with the natural selectionr = o for

the regenerative state. Assume thatX is a classC′′
1 model with3 |Smax| ≥ 2 and letRmax =

3For |Smax| = 1, with the selectionr = o S′
max = ∅ and [2] the RT method for computing the interval availability

complementary distributionIAVCD(t, p) will be highly efficient for, inX lb, p = (s/t − rmin)/(rmax − rmin) will be

close to 1 and, forXub, p = (s/t−rfmax)/(rmax−rfmax) will be close to 1, implying that BT/RT will be highly efficient

for s close tormaxt.
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maxi∈Smax λi/mini∈Smax−{o} λi. Then, since for classC′′
1 modelsX with |Smax| ≥ 2, bothX lb

andXub belong to the model classC1 defined in [2] with the sameo state, for classC′′
1 models with

|Smax| ≥ 2 and the natural selectionr = o, the truncation parametersK andL when BT/RT is used

to compute both the lower and the upper bound should increasewith Rmax and, forRmax ≫ 1, can

be roughly upper bounded by30Rmax. AssumeX is a classC′′′
1 model. Since for classC′′′

1 models

X, bothX lb andXub belong to the model classC′
1 defined in [3] with the sameo state, for classC′′′

1

models with the natural selectionr = o, the truncation parametersK andL when BT/BRT is used

to compute both the lower and the upper bound should be very small for DC = 1, should increase

with DC and, forDC ≫ 1, can be roughly upper bounded by30DC . Thus, for classC′′′
1 models

with the natural selectionr = o, in BT/BRT, theDC control parameter allows to trade-off bounds

tightness with computational cost. Since the truncation parametersC lb andCub will have moderate

values whens is close tormax t for every (t, s) pair of interest, for largeC′′′
1 models, we should

expect the BT/BRT method withr = o andDC = 1 to be relatively inexpensive whens is close to

rmax t for every(t, s) pair of interest. Whether the BT/RT withr = o is also relatively inexpensive

in that case depends on how largeRmax is.

4 Analysis

In this section we analyze the performances of the BT/RT and BT/BRT methods using a large per-

formability example. The example is a model of a fault-tolerant multiprocessor including 16 proces-

sors interconnected by a 8-node hypercube, as shown in Fig. 4. Processors fail with rateλP; nodes

of the hypercube fail with rateλN; links of the hypercube fail with rateλL. A fault of a processor

is covered with probabilityCP; a fault of a node of the hypercube is covered with probability CN.

Coverage to link faults is assumed perfect. There is an unlimited number of repairmen to repair com-

ponents in covered failure. The repair rate isµP for processors,µN for nodes, andµL for links. A

completely down system because there was an uncovered faultis brought to a fully operational state

without failed components at rateµG. Components do not fail when the system is completely down.

Unless otherwise stated, we will use the set of model parametersλP = 2×10−5h−1, λN = 10−5h−1,

λL = 5× 10−6 h−1, CP = 0.99, CN = 0.995, µP = 0.1 h−1, µN = 0.05 h−1, µL = 0.05 h−1, and

µG = 0.2 h−1. We assume the availability of diagnosis and reconfiguration procedures to determine

a subset of interconnected unfailed processors of maximal size and to reconfigure the multiprocessor

so that it works using such a maximal subset. As reward rates,we use the speedup function of the

number of connected processors in the healthy subset in which the system is configured described

by Table 1. Thus,rmax will be equal to12h−1. The cumulative reward will be then the accumulated

performance (normalized with respect to the performance rate of a single processor) and we should

expect it to be close to12 t with high probability.

An exact rewarded CTMC model of the multiprocessor system has an unmanageable state

space. Instead, we will use bounding models with state spaceS∪{f}, wheref is an absorbing state

in which the bounding models enter when the exact model wouldexit subsetS andS includes the

states with up to four covered faults and the state in which the system is down due to an uncovered
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Figure 4: Architecture of the fault-tolerant multiprocessor system.

fault. By assigning to the absorbing state a reward raterf = 0 we obtain a lower bounding model;

by assigning to the absorbing state a reward raterf = 12 h−1 we obtain an upper bounding model.

The bounding models have 213,055 states and 2,072,658 transitions. The bounds given by those

bounding models are very tight. This can be justified by the fact that the probability that the bounding

models have entered statef by timet = 20,000h (the largest time we will consider) is very small,

e.g., assuming that the initial state is the state without failed components, that probability is only

8.764× 10−10, implying that theCRCD(t, s) measures given by the bounding models would differ

in less than8.764× 10−10, for t ≤ 20,000h. We will use the methods to compute a lower bound for

the lower bounding model and an upper bound for the upper bounding model. Since the solutions

of the bounding models are extremely tight, virtually all the difference between the lower and upper

bounds for theCRCD(t, s) measure of the exact model thus obtained are attributable tothe limited

tightness of the bounds given by the BT/RT and BT/BRT methods. Both bounding models belong

to model classesC′′
1 andC′′′

1 , being stateo the state without failed components, which will be taken

as regenerative state in both BT/RT and BT/BRT. All methods are run with a single(t, s) target

and an error requirementε = 10−10. CPU times are measured/estimated in a workstation with a

Sun-Blade 1000 processor and 4 GB of memory (significantly larger than the memory consumption

for all methods). We will start assuming that initially the multiprocessor is in the state without failed

components.

Tables 2 and 3 summarize the performances of, respectively,BT/BRT with DC = 1 and

BT/RT in terms of bounds tightness and values of the truncation parametersC and K of the

model transformation step implicit to the RT method (the truncation controlled by the parame-

ter L is not performed because the initial probability distribution of the models inS is concen-

trated in the regenerative state) when both bounds are computed for increasing values oft and

s/t = 11.99, 11.999, both of which are reasonable choices, since the steady-state reward rate of

the exact model can be estimated to be equal to11.9966. That estimation was obtained by com-

puting the expected transient reward rates at timet of the bounding models, which bound the ex-

pected transient reward rate at timet of the exact model, for increasing values oft and taking the
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Table 1: Speedups of the multiprocessor as a function of the number of connected operational pro-

cessors.

processors speedup

1 1
2 1.96667
3 2.9
4 3.8
5 4.66667
6 5.5
7 6.3
8 7.06667
9 7.8
10 8.5
11 9.16667
12 9.8
13 10.4
14 10.96667
15 11.5
16 12

value at which they “stabilize” (before the probability of the absorbing state is significant). We

call C lb andK lb the values of the truncation parametersC andK corresponding to the applica-

tion of the RT method toX lb in BT/RT andX lb,lb in BT/BRT andCub andKub the values of

the truncation parametersC andK corresponding to the application of the RT method toXub

in BT/BRT and toXub,ub in BT/BRT. We can first note that the bounds obtained by the meth-

ods are quite tight for all values oft ands considered. For BT/RT we define the relative error as

max{(CRCDub(t, s)−CRCDlb(t, s))/2/((CRCDlb(t, s)+CRCDub(t, s))/2), (CRCDub(t, s)−

CRCDlb(t, s))/2/(1 − (CRCDlb(t, s) + CRCDub(t, s))/2)}, i.e. as the maximum of the relative

errors overCRCD(t, s) and1 − CRCD(t, s) when (CRCDlb(t, s) + CRCDub(t, s))/2 is taken

as estimate forCRCD(t, s). The relative error for BT/BRT is defined similarly. The relative error

varies from0.105 % to 2.97 % for the BT/BRT method withDC = 1 and from0.0808 % to 2.72 %

for the BT/RT method. The relative error is significantly smaller for s closer tormax t = 12 t.

Regarding the truncation parametersC andK, we can note that, as predicted theoretically,K is

always very small in the BT/BRT method withDC = 1. The value of the truncation parameterK is

significantly larger for the BT/RT method and is upper bounded by 30Rmax ≈ 120. In both cases,

the truncation parameterK increases logarithmically witht and is independent ofs. The truncation

parameterC increases witht and ass gets apart fromrmax t = 12 t.

Fig. 5 plots the CPU times consumed by the methods for the computation of the lower bound

for CRCD(t, s) (lb) and the upper bound forCRCD(t, s) (ub) as a function oft for s = 11.99 t

ands = 11.999 t. We can note that the CPU times increase ass gets apart fromrmax t = 12 t and

increase fast witht. The latter is due to two reasons. The first one is that the computational cost
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Table 2: Results for BT/BRT withDC = 1 when the initial state is the state without failed compo-

nents.

t (h) s/t CRCDlb,lb(t, s) CRCDub,ub(t, s) error (%) C lb K lb Cub Kub

1 11.99 0.99960102 0.99960874 0.977 4 5 4 4

10 11.99 0.99607366 0.99615272 1.02 5 7 5 6

100 11.99 0.96665320 0.96733703 1.04 10 9 10 9

1,000 11.99 0.90000197 0.90216084 1.09 26 10 26 10

10,000 11.99 0.95260672 0.95454693 2.09 103 11 103 11

20,000 11.99 0.98111980 0.98220912 2.97 173 11 173 11

1 11.999 0.99960011 0.99960095 0.105 2 5 2 4

10 11.999 0.99601099 0.99602264 0.146 4 7 4 6

100 11.999 0.96136877 0.96150542 0.177 5 9 5 9

1,000 11.999 0.71162283 0.71251906 0.156 10 10 10 10

10,000 11.999 0.19927493 0.20078590 0.378 26 11 26 11

20,000 11.999 0.08224490 0.08336233 0.675 37 11 37 11

Table 3: Results for BT/RT when the initial state is the statewithout failed components.

t (h) s/t CRCDlb(t, s) CRCDub(t, s) error (%) C lb K lb Cub Kub

1 11.99 0.99960108 0.99960874 0.969 4 7 4 7

10 11.99 0.99607762 0.99615272 0.967 5 13 5 13

100 11.99 0.96670875 0.96733698 0.953 10 38 10 38

1,000 11.99 0.90018604 0.90216058 0.999 26 79 26 79

10,000 11.99 0.95277489 0.95454669 1.91 103 88 103 88

20,000 11.99 0.98121513 0.98220898 2.72 173 91 173 91

1 11.999 0.99960018 0.99960095 0.0964 2 7 2 7

10 11.999 0.99601501 0.99602264 0.0958 4 13 4 13

100 11.999 0.96143288 0.96150536 0.0941 5 38 5 38

1,000 11.999 0.71205362 0.71251843 0.0808 10 79 10 79

10,000 11.999 0.20000281 0.20078479 0.195 26 88 26 88

20,000 11.999 0.08278256 0.08336150 0.348 37 91 37 91
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Figure 5: CPU times in seconds consumed by the BT/BRT method with DC = 1 and the BT/RT

method fors = 11.99 t (left) ands = 11.999 t (right) as a function oft.

of the transformation step implicit to the RT method is approximately proportional to the truncation

parametersC andK, andC increases considerably witht. The second one is that the computational

cost of Algorithm A of [25] is approximately proportional toC andK (since the size of truncated

transformed model which is solved by the algorithm is proportional toC andK) and, for larget,

increases, approximately quadratically witht, since, for larget, the truncation parameterN increases

approximately linearly witht and, for larget (typically much larger), the truncation parameterC ′

also increases approximately linearly witht. The higher computational cost of the lower bound

is due to the fact that the maximum output rate,Λlb, of the model (X lb in BT/RT andX lb,lb in

BT/BRT) built during the computation of the lower bound is significantly larger than the maximum

output rate,Λub, of the model (Xub in BT/RT andXub,ub in BT/BRT) built during the computation

of the upper bound and this makes the computational cost of the application of Algorithm A of

[25] substantially higher. For the largestt considered (t = 20,000 h) the resulting CPU times are

considerable, specially when the lower bound is computed and s = 11.99 t. Thus, for thoset and

s, computation of the lower bound consumed 231,000 s (about 64hours) under the BT/RT method

and 14,500 s (about 4.0 hours) under the BT/BRT method withDC = 1. Since the bounds achieved

by BT/BRT with DC = 1 are only slightly less tight than the bounds achieved by BT/RT, the

significantly smaller computational cost of the BT/BRT method withDC = 1 makes that method

more attractive than the BT/RT method, when both are applicable. For classC′′
1 models withSmax =

{o} only the BT/RT method is applicable and, since for those models BT/RT with r = o will be

relatively inexpensive fors close tormax t, that method should be used.

To illustrate the relative importance of the two componentsof the computational cost of the

methods: model transformation (up toV lb
T and V ub

T in BT/RT and up toV lb,lb
T and V ub,ub

T in

BT/BRT) and application of Algorithm A of [25], Fig. 6 displays the breakdown into these two

components of the CPU times consumed by the methods when the lower bound is computed for

s = 11.99 t ands = 11.999 t, as a function oft. We label the CPU times consumed in the model

transformation phase by “trans”, the CPU times consumed in the application of Algorithm A of [25]

to the transformed model by “sol”, and the total CPU times by “tot”. We remember that the model
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Figure 6: Breakdown of the CPU times consumed by the BT/BRT method withDC = 1 and the

BT/RT method when the lower bound is computed fors = 11.99 t (left) ands = 11.999 t (right) as

a function oft.

transformation phases involving scaling of transition rates (up toX lb andXub in BT/BRT and up

toX lb,lb andXub,ub in BT/BRT) have negligible relative computational cost and, then, virtually all

CPU times labeled by “trans” are due to the transformation phase implicit to the RT method. We

can note that for larget ands = 11.99 t, almost all the computational cost of the methods is due

to the application of Algorithm A. Fors = 11.999 t, the computational cost due to the application

of Algorithm A is relatively smaller but also dominant for large t. The computational cost of the

application of Algorithm A is approximately proportional to the size of the transformed model han-

dled by the method (V lb
T in BT/RT andV lb,lb

T in BT/BRT) and the truncation parametersN andC ′

of the method. Table 4 gives the size of the truncated transformed model and the truncation param-

etersN andC ′ corresponding to the application of the methods for computing the lower bound,

for increasingt and the two values considered fors/t. The approximately linear dependence ofN

on t and the increase of the size of the transformed model andC ′ with t explain the fast growth

of the computational cost of the application of Algorithm A with t and the fast growth for large

t of the computational cost of the BT/RT and BT/BRT methods. The relative importance of that

second component of the computational cost (application ofAlgorithm A) decreases as the size of

the original model increases and, for large enoughX, the second component should be negligible.

The experiments seem to indicate, however, thatX has to be extremely large for that to happen.

We compare next the computational costs of the methods developed in this paper with that of the

method described in [16, 17]. The considered values fors satisfys ≥ rfmaxt and, then, the method

described in [16, 17] works in its most favorable case. The CPU times consumed by the method

described in [16, 17] fort = 20,000 h are very large and we estimated them based on measured

CPU times fort = 1,000 h and the rule, that we found accurate, that, for a given, large model and

s ≥ rfmaxt, the CPU times are proportional toC(N − C) +mC2/2, wherem + 1 is the number

of different reward rates andN andC are the truncation parameters of the method. Table 5 gives

actual speedups and potential speedups (neglecting for BT/RT and BT/BRT the computational cost

of the application of Algorithm A of [25]). Potential speedups reflect the speedups which would be
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Table 4: Sizes of the transformed models in terms of numbers of states and numbers of transitions

and truncation parameters of their solution by Algorithm A of [25] when computing the lower bound

using the BT/BRT method withDC = 1 and the BT/RT method.

BT/BRT BT/RT

t (h) s/t states trans. N lb C ′lb states trans. N lb C ′lb

1 11.99 39 109 28 4 57 180 28 4

10 11.99 69 224 118 5 135 488 118 5

100 11.99 171 612 769 10 780 3,048 769 10

1,000 11.99 480 1,784 6,529 26 4,137 16,412 6,529 26

10,000 11.99 2,073 7,848 61,741 104 18,012 71,604 61,741 104

20,000 11.99 3,473 13,168 122,530 17431,233 124,208 122,530 174

1 11.999 23 55 28 2 33 94 28 2

10 11.999 57 180 118 4 111 396 118 4

100 11.999 91 312 769 5 410 1,588 769 5

1,000 11.999 192 696 6,529 10 1,641 6,492 6,529 10

10,000 11.999 533 1,996 61,741 26 4,614 18,320 61,741 26

20,000 11.999 753 2,832 122,530 37 6,753 26,832 122,530 37

obtained for large enoughX. They also reflect the speedups which would be achieved if Algorithm

A of [25] were replaced by a substantially more efficient back-end, a direction we are pursuing. We

can note that, for larget, the actual speedups are important for the BT/BRT method with DC = 1

and significant for the BT/RT method. In practical terms, thespeedups achieved by the BT/BRT

method withDC = 1 make affordable the computation of bounds for very large classC′′′
1 models

out of hand for “exact” available methods (the method described in [16, 17] can be considered the

state-of-the-art exact general-purpose method for rewarded CTMC modelsX for values oft and

s for which maxi∈Ω λit is large ands is ≥ rfmaxt). To illustrate the point, fort = 20,000h and

s = 11.99 t, the CPU time of the BT/BRT method withDC = 1 is 14,500 s (about 4.0 hours) for

the lower bound and 1440 s (about 24 minutes) for the upper bound, implying that both bounds

are obtained in 15,940 s (about 4.4 hours), while our estimate for the CPU time for the method

described in [16, 17] is 1,083,000 s (about 13 days). If Algorithm A of [25] could be replaced by a

substantially more efficient back-end, the CPU times of the BT/BRT method withDC = 1 would

be reduced up to 858 s (about 14 minutes) for the lower bound and up to 841 s (about 14 minutes)

for the upper bound, implying that both bounds would be obtained in 1699 s (about 28 minutes).

For larget, the tightness of the bounds obtained by BT/RT and BT/BRT canbe, intuitively,

explained by the fact that most of the time spent by allX,X lb,Xub,X lb,lb andXub,ub in S is spent

in stateo and the rewarded CTMC models only differ in that the holding times in states inS − {o}

are different (the reward lost with respect to the reward that would have been earned had the state

a reward ratermax in each visit to statesi ∈ Smax − {o} ∪ Sfmax ∪ S ∪ Smin is, by construction,
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Table 5: Actual/potential speedups of the BT/BRT method with DC = 1 and the BT/RT method

over the method described in [16, 17].

method t (h) s/t lower bound upper bound

BT/BRT 1,000 11.99 36.6/38.1 39.3/39.5

BT/BRT 20,000 11.99 74.7/1,261 753/1,287

BT/BRT 1,000 11.999 17.0/17.2 17.5/17.5

BT/BRT 20,000 11.999 242/636 619/666

BT/RT 1,000 11.99 9.07/10.4 10.5/10.6

BT/RT 20,000 11.99 4.69/187 69.6/190

BT/RT 1,000 11.999 7.15/7.50 7.49/7.51

BT/RT 20,000 11.999 26.9/145 121/145

identical in all models and the reward rate associated with the absorbing statef in the bounding

models is identical to the reward rate associated with statef in X). This will be the case for any

classC′′
1 or any classC′′′

1 model for which the following additional conditions are satisfied:

C15. The partitionS0 ∪S1 ∪ · · · ∪SNC
for Smax can be extended to a partitionS′

0 ∪S
′
1∪

· · · ∪ S′
N ′

C
for S satisfying the properties:

P10. S′
0 = S0 = {o}.

P11. For eachi ∈ S′
k, 0 < k ≤ N ′

C , λi,S′
k
−{i}∪S′

k+1∪···∪S
′
N′
C

if Ω = S or

λi,S′
k
−{i}∪S′

k+1∪···∪S
′
N′
C

∪{f} if Ω = S ∪ {f} is significantly smaller than

λi,S′
0∪···∪S

′
k−1

.

P12. λo ≪ min{mini∈Smax−{o}∪Sfmax
λi,mini∈S∪Smin

((rmax−rfmax)/(rmax−ri))λi}.

C16. If Ω = S ∪ {f}, f ∈ Ωmax ∪ Ωmin if the lower bound has to be computed and

f ∈ Ωmax ∪ Ωfmax if the upper bound has to be computed.

The reasons are that P10 and P11 imply that from any statei ∈ S − {o} the embedded DTMC

of all X, X lb, Xub, X lb,lb, andXub,ub will go towards stateo with almost 1 probability, P12

implies that the holding time in each visit to a statei ∈ S − {o} will be much smaller than the

holding time in each visit to stateo in all X, X lb, Xub, X lb,lb, andXub,ub, and C16 implies that,

in the caseΩ = S ∪ {f}, the reward rate of statef will not be modified by the model trans-

formation. ClassC′′
1 andC′′′

1 models with the additional conditions include typical failure/repair

performability models of fault-tolerant systems with exponential failure and repair time distribu-

tions and repair in every state with failed components and a reward rate structure which is a non-

increasing function of the collection of failed components. Partitions for, respectively,Smax and

S showing that would beSk = {states with maximum reward rate andk failed components} and

S′
k = {states withk failed components}. Then, properties P5 and P8 of the partition forSmax
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would follow from the fact thatλi,Sk−{i}∪Sk+1∪···∪SNC
∪Sfmax∪S∪Smin

, i ∈ Sk, 0 ≤ k ≤ NC , only

collects failure transitions whileλi,S0∪···∪Sk−1
, i ∈ Sk, 0 < k ≤ NC , only collects repair transitions;

similarly, property P11 of the partition forS would follow from the fact thatλi,S′
k
−{i}∪S′

k+1∪···∪S
′
N′
C

,

0 < k ≤ N ′
C , only collects failure transitions whileλi,S′

0∪···∪S
′
k−1

, 0 < k ≤ N ′
C , only collects

repair transitions; finally, property P12 of the partition for S would follow from the fact thatλo
only collects failure transitions while everyλi, i ∈ Smax − {o} ∪ Sfmax ∪ S ∪ Smin, collects repair

transitions. Bounding models of that type would also be covered, since in those models the absorb-

ing state would be entered following failure transitions, implying that property P11 of the partition

for S would continue to follow, a lower bounding model of that typewould naturally assign to the

absorbing state capturing the pruned behavior the minimum reward rate of the exact model, and an

upper bounding model of that type would naturally assign to that state the maximum reward rate of

the exact model. Then, since when a lower bounding model is used only the lower bound would

be typically computed, condition C16 would be satisfied; similarly, since when an upper bounding

model is used only the upper bound would be typically computed, condition C16 would also be

satisfied. As will be illustrated next using the example, uncovered faults taking the system to down

states with null reward rate which are recovered into up states by fast recovery activities are not a

problem: it suffices to consider a partition forS in which every down state is after every state from

which the down state can be reached and after the up state to which the system is recovered from

that down state.

The bounding rewarded CTMC models under consideration satisfy conditions C15 and C16.

A partition for S showing that isS′
0 ∪ S′

1 ∪ S′
2 ∪ S′

3 ∪ S′
4 ∪ S′

5, whereS′
0 includes the single

stateo, S′
k, 1 ≤ k ≤ 4 includes the states withk covered faults andS′

5 includes the state in

which the multiprocessor is completely down due to an uncovered fault. The induced partition

on Smax, S0 ∪ S1 ∪ S2 ∪ S3 ∪ S4, S0 = S′
0, S1 = S′

1 ∩ Smax 6= ∅, S2 = S′
2 ∩ Smax 6= ∅,

S3 = S′
3 ∩ Smax 6= ∅, S4 = S′

4 ∩ Smax 6= ∅ shows that the bounding rewarded CTMC models

belong to model classesC′′
1 andC′′′

1 . Properties P11 and P12 of the partition are satisfied moderately

by the bounding rewarded CTMC models sincemax0<k≤5maxi∈S′
k
λi,S′

k
−{i}∪S′

k+1∪···∪S
′
5∪{f}

=

5.15 × 10−4 h−1, min0<k≤5mini∈S′
k
λi,S′

0∪···S
′
k−1

= 0.05 h−1, λo = 5.2 × 10−4 h−1, and

min{mini∈Smax−{o}∪Sfmax
λi,mini∈S∪Smin

((rmax − rfmax)/(rmax − ri))λi} ≈ 0.0227 h−1. We

should expect the bounds to be tighter were these propertiessatisfied more strongly. The fact that

the bounds in BT/BRT are also tight for smallt has to do with the fact that all the initial probability

distribution ofX in Smax is concentrated in stateo. Table 6 gives the bounds obtained by BT/BRT

with DC = 1 when the initial state is the state in which the link from nodeN0 to node N1 is in

covered fault (which belongs toSmax − {o}). We can note that, in that case, the bounds are not

tight for small values oft. Having some initial probability distribution inSmax −{o} does not seem

to degrade the quality of the bounds obtained by BT/RT for small values oft as Table 7 illustrates.

We should, however, expect a degradation of the quality of the bounds obtained by BT/RT for small

values oft when the model has some initial probability distribution inSfmax ∪ S ∪ Smin. This is

because transition rates fromSfmax ∪ S are scaled when constructingX lb and transition rates from

S ∪ Smin are scaled when constructingXub.
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Table 6: Results for BT/BRT withDC = 1 when the initial state is the state in which the link from

node N0 to node N1 is in covered fault.

t (h) s/t CRCDlb,lb(t, s) CRCDub,ub(t, s) error (%)

1 11.99 0.99852766 0.99960875 58.0

10 11.99 0.99104228 0.99615350 39.9

100 11.99 0.96177512 0.96734418 7.86

1,000 11.99 0.89846302 0.90216318 1.86

10,000 11.99 0.95246687 0.95454714 2.24

20,000 11.99 0.98108013 0.98220917 3.08

1 11.999 0.99852441 0.99960096 57.4

10 11.999 0.99090241 0.99602346 39.2

100 11.999 0.95574350 0.96151370 6.97

1,000 11.999 0.70801574 0.71252460 0.778

10,000 11.999 0.19866954 0.20078683 0.530

20,000 11.999 0.08202169 0.08336267 0.811

Table 7: Results for BT/RT when the initial state is the statein which the link from node N0 to node

N1 is in covered fault.

t (h) s/t CRCDlb(t, s) CRCDub(t, s) error (%)

1 11.99 0.99960108 0.99960874 0.969

10 11.99 0.99607762 0.99615272 0.967

100 11.99 0.96670875 0.96733698 0.952

1,000 11.99 0.90018604 0.90216058 0.999

10,000 11.99 0.95277489 0.95454669 1.91

20,000 11.99 0.98121513 0.98220898 2.72

1 11.999 0.99960018 0.99960095 0.0964

10 11.999 0.99601501 0.99602264 0.0958

100 11.999 0.96143288 0.96150536 0.0941

1,000 11.999 0.71205362 0.71251843 0.0808

10,000 11.999 0.20000281 0.20078479 0.195

20,000 11.999 0.08278256 0.08336150 0.348
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Figure 7:CRCD(t, (12 − p)t) as a function ofp for several values oft (h).

We will end this section using the BT/BRT method withDC = 1 to analyze the performability

of the fault-tolerant multiprocessor. We plot in all figures(CRCDlb,lb(t, s) + CRCDub,ub(t, s))/2

and do not plot explicitly the bounds, since they are close enough to consider the estimate

(CRCDlb,lb(t, s) + CRCDub,ub(t, s))/2 almost exact at the plot resolution. Fig. 7 analyzes how

the shape ofCRCD(t, s), as a function ofs, depends ont. Let SSRR = limt→∞E[rXexact(t)],

whereXexact is the rewarded CTMC modeling exactly the multiprocessor system (with state space

of unmanageable size).SSRR has a value approximately equal to11.9966. Using renewal reward

process and regenerative process theories (see, for instance, [24]),CRCD(t, s) for the exact re-

warded CTMC modelXexact has an asymptotic shape withCRCD(t, s) = 1 for s/t < SSRR and

CRCD(t, s) = 0 for s/t > SSRR. However, that asymptotic shape is reached very slowly, im-

plying that theCRCD(t, s) measure could be of interest for very large values oft and stressing the

need for efficient methods to compute the measure for larget. In Fig. 8 we perform a sensitivity

analysis. More specifically, we analyze howCRCD(t, s) for t = 2 years is improved when we

improve the repair actions in three different ways: (1) faster repair of processors (µP = 0.2h−1), (2)

faster repair of components of the hypercube (µN = µL = 0.1 h−1), and (3) faster repair of down

systems due to an uncovered fault (µG = 0.4 h−1). In all cases, we double the corresponding repair

rates with respect to the baseline values. We can note that the most efficient way of improving the

performability depends on the required probability level.When the accumulated performance has to

be guaranteed with very high probability, improving the repair of down systems due to an uncovered

fault is the most efficient alternative; when the accumulated performance has to be guaranteed with

moderate probability, the most efficient alternative is to improve the repair of processors; for inter-

mediate values of the probability with which the accumulated performance has to be guaranteed,

the most efficient alternative is to improve the repair of components of the hypercube. Using the

simplerEARR(t) = E[(1/t)
∫ t

0 rX(τ) dτ ] measure would have led to the conclusion that the most

efficient alternative is to improve the repair of componentsof the hypercube, as Table 8 illustrates.

Thus, use of the more detailedCRCD(t, s) measure provides interesting information to guide the

maintenance of the fault-tolerant multiprocessor system.
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Figure 8:CRCD(t, (12 − p)t) as a function ofp for t = 2 years and the baseline repair rates, a set

of repair rates withµP = 0.2 h−1, a set of repair rates withµN = µL = 0.1 h−1, and a set of repair

rates withµG = 0.4 h−1.

Table 8: EARR(t) measure fort = 2 years and the baseline repair rates, a set of repair rates

with µP = 0.2 h−1, a set of repair rates withµN = µL = 0.1 h−1, and a set of repair rates with

µG = 0.4 h−1.

case EARR(t)

baseline 11.996558

µP = 0.2 h−1 11.997350

µN = µL = 0.1 h−1 11.997379

µG = 0.4 h−1 11.996666
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5 Conclusions

We have developed two methods, BT/RT and BT/BRT, for the computation of bounds for the cumu-

lative reward complementary distribution measureCRCD(t, s) for CTMC models with reward rates

associated with states. Both methods require the selectionof a regenerative state, are numerically

stable and compute the bounds with well-controlled error. For a class of rewarded CTMC models,

classC′′′
1 , and a particular, natural selection for the regenerative state the BT/BRT method allows

to trade off bounds tightness with computational cost and will provide bounds at moderate compu-

tational costs fors close tormax t, wherermax is the largest reward rate of the model, allowing in

such a case a rigorous analysis, with error bounds, of some large models which were beyond the

scope of previously proposed “exact” methods. For a class ofrewarded CTMC models, classC′′
1,

slightly wider than classC′′′
1 , and a particular, natural selection for the regenerative state, the BT/RT

method will yield tighter bounds at a higher computational cost. When the rewarded CTMC model

satisfies additional conditions, the bounds obtained by theless expensive version of the BT/BRT

method seem to be tight for any value oft or not small values oft, depending on whether the ini-

tial probability distribution of the CTMC model in the subset of states with maximum reward rate

different, if existing, from the absorbing state is concentrated in the natural selection for the regen-

erative state or not, and the bounds obtained by the BT/RT method seem to be tight for any value

of t or not small values oft, depending on whether the initial probability distribution of the CTMC

model in the subset of states different, if existing, from the absorbing state is concentrated in the

states with maximum reward rate or not. ClassC′′
1 and classC′′′

1 models with those additional condi-

tions include both exact and bounding typical failure/repair performability models of fault-tolerant

systems with exponential failure and repair time distributions and repair in every state with failed

components and a reward rate structure which is a non-increasing function of the collection of failed

components. Combined with bounding techniques, the methods developed in the paper should allow

the analysis of performability models of quite complex degradable and repairable fault-tolerant par-

allel and distributed systems in affordable CPU times, withthe obvious implications. In the future,

we are planning to develop more efficient methods than Algorithm A of [25] to act as a back-ends of

BT/RT and BT/BRT. For larget, this would yield significant reductions in the CPU times of those

methods.

In Section 1, we concentrated our review of numerical methods for computing theCRCD(t, s)

measure to general purpose methods which, besides (possibly) Ω being finite, do not impose any

restrictions onX. None of those methods is able to handle in reasonable CPU times whenΛt is large

large rewarded CTMC models of the type for which BT/RT and BT/BRT seem to give tight bounds

at a relatively moderate computational cost whens is close tormaxt. Numerical methods exist which

can be (are) more efficient than the method described in [16, 17] for rewarded acyclic CTMC models

[18] (rewarded block acyclic CTMC models [19]). Rewarded acyclic and rewarded block acyclic

CTMC models naturally arise when modeling, respectively, non-repairable fault-tolerant systems

and fault-tolerant systems in which some components are repairable and some are not.
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Appendix

Lemma 1. LetW = {W (t); t ≥ 0} be a CTMC with finite state spaceΩ and uniformly bounded

reward rate structureri, i ∈ Ω with |ri| < ∞, i ∈ Ω and letW ′ = {W ′(t); t ≥ 0} be

a rewarded CTMC differing fromW only in that the transition rate ofW from some statei to

some statej has been increased byλ > 0. Let CRCD(t, s) = P [
∫ t

0 rW (τ) dτ > s] be the

cumulative reward complementary distribution ofW in the time interval[0, t], t > 0 and let

CRCD′(t, s) = P [
∫ t

0 rW ′(τ) dτ > s] be the cumulative reward complementary distribution ofW ′

in the time interval[0, t], t > 0. Then|CRCD′(t, s)− CRCD(t, s)| ≤ 2λt.

Proof. The proof is based on the formulation forCRCD(t, s) used in the algorithm described in

[16, 17]. Letααα denote the initial probability distribution row vector ofW , let rm > rm−1 >

· · · > r0 be them + 1 different reward rates ofW , and assume4 m ≥ 1. Let Ω be partitioned as

B0 ∪ B1 ∪ · · · ∪ Bm, whereBj = {i ∈ Ω : ri = rj}. LetΛ ≥ maxi∈Ω λi + λ, whereλi, i ∈ Ω

are the output rates ofW , and letP be the transition probability matrix of the randomized DTMC

of W with randomization rateΛ: P = I+A/Λ, whereA is the transition rate matrix (infinitesimal

generator) ofW andI is an identity matrix. LetPBi,Bj
denote the subblock ofP including the

elements with subindices(l,m) ∈ Bi × Bj (transition probabilities from states inBi to states in

Bj), given a (row or column) vectorx with subindices inΩ, let xBi
denote the restriction ofx to

the subindices inBi, and let0Bi
and1Bi

denote a vector of size|Bi| with all its elements equal to,

respectively, 0 and 1. The following formulation forCRCD(t, s) has been obtained in [16, 17]:

CRCD(t, s) =

∞
∑

n=0

e−Λt (Λt)
n

n!

n
∑

k=0

m
∑

j=1

Irj−1t≤s<rjt

(

n
k

)

skj (1− sj)
n−kb(j)(n, k) , (1)

whereIc denotes the indicator function with value 1 when conditionc is satisfied and value 0 other-

wise,

sj =
s− rj−1t

(rj − rj−1)t
,

the coefficientsb(j)(n, k) are given by

b(j)(n, k) = αααb(j)(n, k) ,

4In the casem = 0, the cumulative reward is equal tor0t with probability 1 and the result is trivial.
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and the column vectorsb(j)
Bl

(n, k) satisfy the following set of recursive expressions:

b
(1)
Bl

(n, 0) = 1Bl
, 1 ≤ l ≤ m, (2)

b
(m)
Bl

(n, n) = 0Bl
, 0 ≤ l < m , (3)

b
(j)
Bl

(n, 0) = b
(j−1)
Bl

(n, n) , 1 < j ≤ l ≤ m, (4)

b
(j)
Bl

(n, n) = b
(j+1)
Bl

(n, 0) , 0 ≤ l < j < m , (5)

b
(j)
Bl

(n, k) =
rl − rj

rl − rj−1
b
(j)
Bl

(n, k − 1) +
rj − rj−1

rl − rj−1

m
∑

i=0

PBl,Bi
b
(j)
Bi

(n− 1, k − 1) ,

j ≤ l ≤ m, 1 ≤ k ≤ n , (6)

b
(j)
Bl

(n, k) =
rj−1 − rl

rj − rl
b
(j)
Bl

(n, k + 1) +
rj − rj−1

rj − rl

m
∑

i=0

PBl,Bi
b
(j)
Bi

(n− 1, k) ,

0 ≤ l < j, 0 ≤ k < n . (7)

It is also proved in [16, 17] that0Bl
≤ b

(j)
Bl

(n, k) ≤ 1Bl
, where the inequality among the vectors

means that the inequality stands element by element.

In the following we will denote using a prime the quantities referred to the CTMCW ′, i.e. P′

will denote the transition probability matrix of the randomized DTMC ofW ′ with randomization

rateΛ.

We will start by showing‖b′(j)(n, k) − b
(j)(n, k)‖∞ ≤ n(2λ)/Λ, 1 ≤ j ≤ m, n ≥ 0,

0 ≤ k ≤ n. The proof is by induction onn.

Forn = 0, (2)–(5) implyb(j)
Bl

(0, 0) = 1Bl
for 1 ≤ j ≤ m, j ≤ l ≤ m andb(j)

Bl
(0, 0) = 0Bl

for 1 ≤ j ≤ m, 0 ≤ l < j; similarly, we haveb′(j)
Bl

(0, 0) = 1Bl
for 1 ≤ j ≤ m, j ≤ l ≤ m and

b
′(j)
B1

(0, 0) = 0Bl
for 1 ≤ j ≤ m, 0 ≤ l < j, implying ‖b′(j)(0, 0)−b

(j)(0, 0)‖∞ = 0, 1 ≤ j ≤ m.

This shows the base casen = 0.

Consider now that the result holds forn = ν−1 and let us show that the result holds forn = ν,

ν ≥ 1. Since‖b′(j)(ν, k)− b
(j)(ν, k)‖∞ = max0≤l≤m ‖b

′(j)
Bl

(ν, k)− b
(j)
Bl

(ν, k)‖∞, it is enough to

show: (1)‖b′(j)
Bl

(ν, k) − b
(j)
Bl

(ν, k)‖∞ ≤ ν(2λ)/Λ, 1 ≤ j ≤ m, 0 ≤ k ≤ ν, j ≤ l ≤ m, and (2)

‖b
′(j)
Bl

(ν, k) − b
(j)
Bl

(ν, k)‖∞ ≤ ν(2λ)/Λ, 1 ≤ j ≤ m, 0 ≤ k ≤ ν, 0 ≤ l < j. To that end we can

use‖b′(j)
Bl

(ν − 1, k)− b
(j)
Bl

(ν − 1, k)‖∞ ≤ ‖b′(j)(ν − 1, k)− b
(j)(ν − 1, k)‖∞ ≤ (ν − 1)(2λ)/Λ,

1 ≤ j ≤ m, 0 ≤ k ≤ ν − 1, 0 ≤ l ≤ m. The proof of both (1) and (2) will be done by complete

induction. For (1), the base case will bej = 1, k = 0 and the induction step will prove that the

result for1 ≤ j ≤ ι − 1, 0 ≤ k ≤ ν andj = ι, 0 ≤ k ≤ κ − 1 implies the result forj = ι and

k = κ, with ι = 1, 0 < κ ≤ ν or 1 < ι ≤ m, 0 ≤ κ ≤ ν. For (2), the base case will bej = m,

k = ν and the induction step will prove that the result forι + 1 ≤ j ≤ m, 0 ≤ k ≤ ν andj = ι,

κ + 1 ≤ k ≤ ν implies the result forj = ι andk = κ, with ι = m, 0 ≤ κ < ν or 0 ≤ ι < m,
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0 ≤ κ ≤ ν. Let sf be the state “from” and letst be the state “to” of the transition whose rate has

been increased byλ in W ′. Letnf andnt such thatsf ∈ Bnf
andst ∈ Bnt.

Proof of (1): The base case (j = 1, k = 0) follows immediately from (2). For the induction step,

we will consider two cases: (a)1 < ι ≤ m, κ = 0, (b) 1 ≤ ι ≤ m, 0 < κ ≤ ν. In case (a), from (4):

b
′(ι)
Bl

(ν, 0) − b
(ι)
Bl
(ν, 0) = b

′(ι−1)
Bl

(ν, ν)− b
(ι−1)
Bl

(ν, ν) ,

and using the (inner) induction hypothesis:

‖b
′(ι)
Bl

(ν, 0)− b
(ι)
Bl
(ν, 0)‖∞ = ‖b

′(ι−1)
Bl

(ν, ν)− b
(ι−1)
Bl

(ν, ν)‖∞ ≤ ν(2λ)/Λ .

In case (b), we will consider three subcases: (b1)l 6= nf , (b2) l = nf 6= nt, and (b3)l = nf = nt.

In case (b1), from (6), noting thatP′
Bl,Bi

= PBl,Bi
for all i:

b
′(ι)
Bl

(ν, κ)− b
(ι)
Bl
(ν, κ) =

rl − rι

rl − rι−1

(

b
′(ι)
Bl

(ν, κ− 1)− b
(ι)
Bl
(ν, κ− 1)

)

+
rι − rι−1

rl − rι−1

m
∑

i=0

PBl,Bi

(

b
′(ι)
Bi

(ν − 1, κ− 1)− b
(ι)
Bi
(ν − 1, κ − 1)

)

,

and using the induction hypotheses and the fact that the rowsof the matrixP add up 1:

‖b
′(ι)
Bl

(ν, κ) − b
(ι)
Bl
(ν, κ)‖∞ ≤

rl − rι

rl − rι−1
‖b

′(ι)
Bl

(ν, κ− 1)− b
(ι)
Bl
(ν, κ− 1)‖∞

+
rι − rι−1

rl − rι−1
‖b′(ι)(ν − 1, κ − 1)− b

(ι)(ν − 1, κ− 1)‖∞

≤
rl − rι

rl − rι−1
ν
2λ

Λ
+
rι − rι−1

rl − rι−1
(ν − 1)

2λ

Λ
< ν

2λ

Λ
.

In case (b2), using (6), noting that in that case the blocksP
′
Bl,Bi

which are different fromPBl,Bi

are the blocksP′
Bnf

,Bnf
andP′

Bnf
,Bnt

:

b
′(ι)
Bnf

(ν, κ)− b
(ι)
Bnf

(ν, κ) =
rnf − rι

rnf − rι−1

(

b
′(ι)
Bnf

(ν, κ− 1)− b
(ι)
Bnf

(ν, κ− 1)
)

+
rι − rι−1

rnf − rι−1

m
∑

i=0

P
′
Bnf

,Bi

(

b
′(ι)
Bi

(ν − 1, κ− 1)− b
(ι)
Bi
(ν − 1, κ − 1)

)

+
rι − rι−1

rnf − rι−1

(

P
′
Bnf

,Bnf
−PBnf

,Bnf

)

b
(ι)
Bnf

(ν − 1, κ − 1)

+
rι − rι−1

rnf − rι−1

(

P
′
Bnf

,Bnt
−PBnf

,Bnt

)

b
(ι)
Bnt

(ν − 1, κ− 1) ,

and using the induction hypotheses, the fact that the rows ofP
′ add up 1,‖P′

Bnf
,Bnf

−PBnf
,Bnf

‖∞ =

λ/Λ, ‖P′
Bnf

,Bnt
−PBnf

,Bnt
‖∞ = λ/Λ, and0 ≤ ‖b

(ι)
Bl
(ν − 1, κ− 1)‖∞ ≤ 1:

‖b
′(ι)
Bnf

(ν, κ)− b
(ι)
Bnf

(ν, κ)‖∞ ≤
rnf − rι

rnf − rι−1
‖b

′(ι)
Bnf

(ν, κ− 1)− b
(ι)
Bnf

(ν, κ− 1)‖∞

+
rι − rι−1

rnf − rι−1
‖b′(ι)(ν − 1, κ − 1)− b

(ι)(ν − 1, κ− 1)‖∞

+
rι − rι−1

rnf − rι−1
‖P′

Bnf
,Bnf

−PBnf
,Bnf

‖∞ ‖b
(ι)
Bnf

(ν − 1, κ − 1)‖∞
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+
rι − rι−1

rnf − rι−1
‖P′

Bnf
,Bnt

−PBnf
,Bnt

‖∞ ‖b
(ι)
Bnt

(ν − 1, κ− 1)‖∞

≤
rnf − rι

rnf − rι−1
ν
2λ

Λ
+

rι − rι−1

rnf − rι−1
(ν − 1)

2λ

Λ
+

rι − rι−1

rnf − rι−1

λ

Λ
+

rι − rι−1

rnf − rι−1

λ

Λ

= ν
2λ

Λ
.

In case (b3), using (6), noting that in that case the only block P
′
Bl,Bi

which is different fromPBl,Bi

is the blockP′
Bnf

,Bnf
:

b
′(ι)
Bnf

(ν, κ)− b
(ι)
Bnf

(ν, κ) =
rnf − rι

rnf − rι−1

(

b
′(ι)
Bnf

(ν, κ− 1)− b
(ι)
Bnf

(ν, κ− 1)
)

+
rι − rι−1

rnf − rι−1

m
∑

i=0

P
′
Bnf

,Bi

(

b
′(ι)
Bi

(ν − 1, κ− 1)− b
(ι)
Bi
(ν − 1, κ − 1)

)

+
rι − rι−1

rnf − rι−1

(

P
′
Bnf

,Bnf
−PBnf

,Bnf

)

b
(ι)
Bnf

(ν − 1, κ − 1) ,

and using the induction hypotheses, the fact that the rows ofP
′ add up 1,‖P′

Bnf
,Bnf

−PBnf
,Bnf

‖∞ =

(2λ)/Λ, and0 ≤ ‖b
(ι)
Bl
(ν − 1, κ − 1)‖∞ ≤ 1:

‖b
′(ι)
Bnf

(ν, κ)− b
(ι)
Bnf

(ν, κ)‖∞ ≤
rnf − rι

rnf − rι−1
‖b

′(ι)
Bnf

(ν, κ− 1)− b
(ι)
Bnf

(ν, κ− 1)‖∞

+
rι − rι−1

rnf − rι−1
‖b′(ι)(ν − 1, κ − 1)− b

(ι)(ν − 1, κ− 1)‖∞

+
rι − rι−1

rnf − rι−1
‖P′

Bnf
,Bnf

−PBnf
,Bnf

‖∞ ‖b
(ι)
Bnf

(ν − 1, κ − 1)‖∞

≤
rnf − rι

rnf − rι−1
ν
2λ

Λ
+

rι − rι−1

rnf − rι−1
(ν − 1)

2λ

Λ
+

rι − rι−1

rnf − rι−1

2λ

Λ

= ν
2λ

Λ
.

This completes the proof of (1).

Proof of (2): The base case (j = m, k = ν) follows immediately from (3). For the induction step,

we will consider two cases: (a)1 ≤ ι < m, κ = ν, (b) 1 ≤ ι ≤ m, 0 ≤ κ < ν. In case (a), from (5):

b
′(ι)
Bl

(ν, ν)− b
(ι)
Bl
(ν, ν) = b

′(ι+1)
Bl

(ν, 0)− b
(ι+1)
Bl

(ν, 0) ,

and using the (inner) induction hypothesis:

‖b
′(ι)
Bl

(ν, ν)− b
(ι)
Bl
(ν, ν)‖∞ = ‖b

′(ι+1)
Bl

(ν, 0) − b
(ι+1)
Bl

(ν, 0)‖∞ ≤ ν(2λ)/Λ .

In case (b), we will consider three subcases: (b1)l 6= nf , (b2) l = nf 6= nt, and (b3)l = nf = nt.

In case (b1), from (7), noting thatP′
Bl,Bi

= PBl,Bi
for all i:

b
′(ι)
Bl

(ν, κ)− b
(ι)
Bl
(ν, κ) =

rι−1 − rl

rι − rl

(

b
′(ι)
Bl

(ν, κ+ 1)− b
(ι)
Bl
(ν, κ+ 1)

)

+
rι − rι−1

rι − rl

m
∑

i=0

PBl,Bi

(

b
′(ι)
Bi

(ν − 1, κ) − b
(ι)
Bi
(ν − 1, κ)

)

,
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and using the induction hypotheses and the fact that the rowsof the matrixP add up 1:

‖b
′(ι)
Bl

(ν, κ) − b
(ι)
Bl
(ν, κ)‖∞ ≤

rι−1 − rl

rι − rl
‖b

′(ι)
Bl

(ν, κ+ 1)− b
(ι)
Bl
(ν, κ+ 1)‖∞

+
rι − rι−1

rι − rl
‖b′(ι)(ν − 1, κ) − b

(ι)(ν − 1, κ)‖∞

≤
rι−1 − rl

rι − rl
ν
2λ

Λ
+
rι − rι−1

rι − rl
(ν − 1)

2λ

Λ
< ν

2λ

Λ
.

In case (b2), using (7), noting that in that case the blocksP
′
Bl,Bi

which are different fromPBl,Bi

are the blocksP′
Bnf

,Bnf
andP′

Bnf
,Bnt

:

b
′(ι)
Bnf

(ν, κ) − b
(ι)
Bnf

(ν, κ) =
rι−1 − rnf

rι − rnf

(

b
′(ι)
Bnf

(ν, κ+ 1)− b
(ι)
Bnf

(ν, κ+ 1)
)

+
rι − rι−1

rι − rnf

m
∑

i=0

P
′
Bnf

,Bi

(

b
′(ι)
Bi

(ν − 1, κ)− b
(ι)
Bi
(ν − 1, κ)

)

+
rι − rι−1

rι − rnf

(

P
′
Bnf

,Bnf
−PBnf

,Bnf

)

b
(ι)
Bnf

(ν − 1, κ)

+
rι − rι−1

rι − rnf

(

P
′
Bnf

,Bnt
−PBnf

,Bnt

)

b
(ι)
Bnt

(ν − 1, κ) ,

and using the induction hypotheses, the fact that the rows ofP
′ add up 1,‖P′

Bnf
,Bnf

−PBnf
,Bnf

‖∞ =

λ/Λ, ‖P′
Bnf

,Bnt
−PBnf

,Bnt
‖∞ = λ/Λ, and0 ≤ ‖b

(ι)
Bl
(ν − 1, κ)‖∞ ≤ 1:

‖b
′(ι)
Bnf

(ν, κ)− b
(ι)
Bnf

(ν, κ)‖∞ ≤
rι−1 − rnf

rι − rnf
‖b

′(ι)
Bnf

(ν, κ+ 1)− b
(ι)
Bnf

(ν, κ+ 1)‖∞

+
rι − rι−1

rι − rnf
‖b′(ι)(ν − 1, κ) − b

(ι)(ν − 1, κ)‖∞

+
rι − rι−1

rι − rnf
‖P′

Bnf
,Bnf

−PBnf
,Bnf

‖∞ ‖b
(ι)
Bnf

(ν − 1, κ)‖∞

+
rι − rι−1

rι − rnf
‖P′

Bnf
,Bnt

−PBnf
,Bnt

‖∞ ‖b
(ι)
Bnt

(ν − 1, κ)‖∞

≤
rι−1 − rnf

rι − rnf
ν
2λ

Λ
+
rι − rι−1

rι − rnf
(ν − 1)

2λ

Λ
+
rι − rι−1

rι − rnf

λ

Λ
+
rι − rι−1

rι − rnf

λ

Λ

= ν
2λ

Λ
.

In case (b3), using (7), noting that in that case the only block P
′
Bl,Bi

which is different fromPBl,Bi

is the blockP′
Bnf

,Bnf
:

b
′(ι)
Bnf

(ν, κ) − b
(ι)
Bnf

(ν, κ) =
rι−1 − rnf

rι − rnf

(

b
′(ι)
Bnf

(ν, κ+ 1)− b
(ι)
Bnf

(ν, κ+ 1)
)

+
rι − rι−1

rι − rnf

m
∑

i=0

P
′
Bnf

,Bi

(

b
′(ι)
Bi

(ν − 1, κ)− b
(ι)
Bi
(ν − 1, κ)

)

+
rι − rι−1

rι − rnf

(

P
′
Bnf

,Bnf
−PBnf

,Bnf

)

b
(ι)
Bnf

(ν − 1, κ) ,

and using the induction hypotheses, the fact that the rows ofP
′ add up 1,‖P′

Bnf
,Bnf

−PBnf
,Bnf

‖∞ =

(2λ)/Λ, and0 ≤ ‖b
(ι)
Bl
(ν − 1, κ)‖∞ ≤ 1:

‖b
′(ι)
Bnf

(ν, κ)− b
(ι)
Bnf

(ν, κ)‖∞ ≤
rι−1 − rnf

rι − rnf
‖b

′(ι)
Bnf

(ν, κ+ 1)− b
(ι)
Bnf

(ν, κ+ 1)‖∞
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+
rι − rι−1

rι − rnf
‖b′(ι)(ν − 1, κ) − b

(ι)(ν − 1, κ)‖∞

+
rι − rι−1

rι − rnf
‖P′

Bnf
,Bnf

−PBnf
,Bnf

‖∞ ‖b
(ι)
Bnf

(ν − 1, κ)‖∞

≤
rι−1 − rnf

rι − rnf
ν
2λ

Λ
+
rι − rι−1

rι − rnf
(ν − 1)

2λ

Λ
+
rι − rι−1

rι − rnf

2λ

Λ

= ν
2λ

Λ
.

This completes the proof of (2) and, therefore, the proof of‖b′(j)(n, k)−b
(j)(n, k)‖∞ ≤ n(2λ)/Λ,

1 ≤ j ≤ m, n ≥ 0, 0 ≤ k ≤ n.

But

b′(j)(n, k)− b(j)(n, k) = αααb′(j)(n, k)−αααb(j)(n, k) = ααα
(

b
′(j)(n, k)− b

(j)(n, k)
)

.

Then, using‖ααα‖∞ = 1, we have

|b′(j)(n, k)− b(j)(n, k)| ≤ ‖ααα‖∞ ‖b′(j)(n, k)− b
(j)(n, k)‖∞

= ‖b′(j)(n, k)− b
(j)(n, k)‖∞ ≤ n

2λ

Λ
, 1 ≤ j ≤ m,n ≥ 0, 0 ≤ k ≤ n .

Let l be thej such thatrj−1t ≤ s < rjt, we can write (1) as

CRCD(t, s) =

∞
∑

n=0

e−Λt (Λt)
n

n!

n
∑

k=0

(

n
k

)

skl (1− sl)
n−kb(l)(n, k) .

Then, noting that0 ≤ sl < 1:

|CRCD′(t, s)− CRCD(t, s)| ≤
∞
∑

n=0

e−Λt (Λt)
n

n!

n
∑

k=0

(

n
k

)

skl (1− sl)
n−k|b′(l)(n, k)− b(l)(n, k)|

≤
∞
∑

n=0

e−Λt (Λt)
n

n!

n
∑

k=0

(

n
k

)

skl (1− sl)
n−kn

2λ

Λ
=

2λ

Λ

∞
∑

n=0

ne−Λt (Λt)
n

n!

=
2λ

Λ

∞
∑

n=1

e−Λt (Λt)n

(n − 1)!
=

2λ

Λ
Λt

∞
∑

n=0

e−Λt (Λt)
n

n!
= 2λt .

Proof of Theorem 1. As theoretical background for measure theory and Lebesgue integration we

use [10]. The characterization of the probability space underlying a discrete time Markov chain with

denumerable state space is discussed in [5]. A recent short proof of the existence of arbitrary product

probability measures can be found in [26]. Letλi =
∑

j∈Ω−{i} λi,j denote the output rate ofW from

statei. LetΠ = {Πn;n = 0, 1, 2, . . .} be the embedded discrete-time Markov chain ofW (see, for

instance, [12])).Π has the same state space and initial probability distribution asW and transition

probabilitiesψi,j = P [Πn+1 = j | Πn = i] = λi,j/λi, j 6= i, ψi,i = P [Πn+1 = i | Πn = i] = 0

for the statesi with λi =
∑

j∈Ω−{i} λi,j > 0 andψi,j = P [Πn+1 = j | Πn = i] = 0, j 6= i,

ψi,i = P [Πn+1 = i | Πn = i] = 1 for the statesi with λi = 0. The embedded DTMC ofW ′

has same state space, initial probability distribution andtransition probabilities asΠ and, therefore,

is probabilistically identical toΠ. BothW andW ′ can be interpreted in terms ofΠ: Π gives the
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sequence of states visited byW (W ′) and each state visit has a duration given by an independent

holding time variable with exponential distribution with parameter equal to the output rate from the

visited state.

We start by constructing a common probability space(E ,A, Q) in terms of which bothW

andW ′ can be defined. This is done by combining the probability space underlyingΠ with the

probability space underlying a set of exponentially distributed independent random variables which

will account (with scaling in the case ofW ′) for the holding times. To simplify the proof, we

will associate with absorbing states exponentially distributed holding times with finite parameter.

Let (EΠ,AΠ, QΠ) be the probability space underlyingΠ: EΠ is the set of infinite sequencesπ =

(sπ0 , s
π
1 , . . .), s

π
i ∈ Ω, AΠ is theσ-algebra generated by the collection of subsetsEs0,...,sn

Π = {π =

(sπ0 , s
π
1 , . . .) : sπ0 = s0 ∧ sπ1 = s1 ∧ · · · ∧ sπn = sn}, (s0, . . . , sn) ∈ Ωn+1, n = 0, 1, . . .,

andQΠ[E
s0,...,sn
Π ] = P [Π0 = s0]ψs0,s1 · · ·ψsn−1,sn . LetHn,s, n = 0, 1, . . ., s ∈ Ω be independent

exponential random variables with parameterΛs, whereΛs = λs if λs > 0 andΛs = Λ∗ > 0 if λs =

0. For each random variableHn,s, n = 0, 1, . . ., s ∈ Ω let ([0,∞),B[0,∞), µn,s) be the underlying

probability space:B[0,∞) is the Borelσ-algebra on[0,∞) andµn,s is the Borel probability measure

defined by the distribution function of the random variableHn,s. Let (EH ,AH , µ) be the product of

the probability spaces([0,∞),B[0,∞), µn,s), n = 0, 1, . . ., s ∈ Ω. The probability space(E ,A, Q)

is the product of the probability spaces(EΠ,AΠ, QΠ) and(EH ,AH , µ). With respect toEH , given

aω ∈ EH , hn,s(ω) will denote the coordinate ofω equal to the realization of the random variable

Hn,s. With respect toE , given aω ∈ E , π(ω) = (s
π(ω)
0 , s

π(ω)
1 , . . .) will denote theEΠ coordinate of

ω andhn,s(ω) will denote the coordinate ofω equal to the realization of the random variableHn,s,

n = 0, 1, . . ., s ∈ Ω.

The CTMCW can be defined in terms of(E ,A, Q) as follows. Eachω ∈ E gives a realization,

W (ω, t), ofW :

W (ω, t) = s
π(ω)
0 , 0 ≤ t < h

0,s
π(ω)
0

(ω) ,

W (ω, t) = s
π(ω)
1 , h

0,s
π(ω)
0

(ω) ≤ t < h
0,s

π(ω)
0

(ω) + h
1,s

π(ω)
1

(ω) ,

...

W (ω, t) = sπ(ω)m ,
m−1
∑

n=0

h
n,s

π(ω)
n

(ω) ≤ t <
m
∑

n=0

h
n,s

π(ω)
n

(ω) ,

...

LetL(ω), ω ∈ E be the random variable defined asL(ω) = min{l ≥ 0 :
∑l

n=0 hn,sπ(ω)
n

(ω) > t}.

It is well known (see, for instance, [12]) that,H0,H1, . . . being independent exponential random

variables with parametersλ0, λ1, . . . such thatsupi≥0 λi <∞, limn→∞H0 +H1 + · · ·+Hn = ∞

with probability 1, implying thatmin{n ≥ 0 : H0+H1+ · · ·+Hn > t} is defined with probability

1. Then:

Q[L is defined] = Q

[{

ω ∈ E : min

{

l ≥ 0 :
l
∑

n=0

h
n,s

π(ω)
n

(ω) > t

}

is defined

}]
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=

∫

EΠ

µ

[{

ω′ ∈ EH : min

{

l ≥ 0 :

l
∑

n=0

hn,sπn(ω
′) > t

}

is defined

}]

dQΠ(π)

=

∫

EΠ

dQΠ(π) = 1 .

LetA be the subset ofE :

A =







ω ∈ E : L(ω) is defined∧
L(ω)−1
∑

n=0

r
s
π(ω)
n

h
n,s

π(ω)
n

(ω)

+ r
s
π(ω)
L(ω)



t−

L(ω)−1
∑

n=0

h
n,s

π(ω)
n

(ω)



 > s







.

SinceA collects, except for a subset with probability 0, all realizations ofW for which the cumu-

lative reward in the time interval[0, t] is> s,

CRCD(t, s) = Q[A] .

Since, givenβ > 0 and beingH an exponential random variable with parameterλ > 0, H/β

is an exponential random variable with parameterβλ, the CTMCW ′ can be defined in terms of

(E ,A, Q) as follows. Eachω ∈ E gives a realization,W ′(ω, t), ofW ′:

W ′(ω, t) = s
π(ω)
0 , 0 ≤ t < I

s
π(ω)
0 =x

h
0,s

π(ω)
0

(ω)

β
+ I

s
π(ω)
0 6=x

h
0,s

π(ω)
0

(ω) ,

W ′(ω, t) = s
π(ω)
1 , I

s
π(ω)
0 =x

h
0,s

π(ω)
0

(ω)

β
+ I

s
π(ω)
0 6=x

h
0,s

π(ω)
0

(ω)

≤ t < I
s
π(ω)
0 =x

h
0,s

π(ω)
0

(ω)

β
+ I

s
π(ω)
0 6=x

h
0,s

π(ω)
0

(ω)

+ I
s
π(ω)
1 =x

h
1,s

π(ω)
1

(ω)

β
+ I

s
π(ω)
1 6=x

h
1,s

π(ω)
1

(ω)

...

W ′(ω, t) = sπ(ω)m ,

m−1
∑

n=0

(

I
s
π(ω)
n =x

h
n,s

π(ω)
n

(ω)

β
+ I

s
π(ω)
n 6=x

h
n,s

π(ω)
n

)

≤ t <

m
∑

n=0

(

I
s
π(ω)
n =x

h
n,s

π(ω)
n

(ω)

β
+ I

s
π(ω)
n 6=x

h
n,s

π(ω)
n

)

.

...

Let L′(ω), ω ∈ E be the random variable defined asL′(ω) = min{l ≥ 0 :
∑l

n=0

(

I
s
π(ω)
n =x

h
n,s

π(ω)
n

(ω)/β + I
s
π(ω)
n 6=x

h
n,s

π(ω)
n

(ω)

)

> t}. It can be proved thatL′ is defined

with probability 1 as it was proved thatL was defined with 1. LetA′ be the subset ofE :

A′ =

{

ω ∈ E : L′(ω) is defined∧
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L′(ω)−1
∑

n=0

(

I
s
π(ω)
n =x

r′x
h
n,s

π(ω)
n

(ω)

β
+ I

s
π(ω)
n 6=x

r
s
π(ω)
n

h
n,s

π(ω)
n

(ω)

)

+

(

I
s
π(ω)

L′(ω)
=x
r′x + I

s
π(ω)

L′(ω)
6=x
r
s
π(ω)

L′(ω)

)



t−

L′(ω)−1
∑

n=0

(

I
s
π(ω)
n =x

h
n,s

π(ω)
n

(ω)

β
+ I

s
π(ω)
n 6=x

h
n,s

π(ω)
n

(ω)

)



 > s

}

.

SinceA′ collects, except for a subset with probability 0, all realizations ofW ′ for which the cumu-

lative reward in the time interval[0, t] is> s,

CRCD′(t, s) = Q[A′] .

To prove the theorem it suffices to show thatA ⊂ A′. In that proof, we will use the shorthandhπ(ω)n

for h
n,s

π(ω)
n

(ω).

First note that, as0 < β ≤ 1,
∑l

n=0

(

I
s
π(ω)
n =x

h
π(ω)
n /β + I

s
π(ω)
n 6=x

h
π(ω)
n

)

≥
∑l

n=0 h
π(ω)
n ,

implying thatL′(ω) is defined whenL(ω) is and that, in that case,L′(ω) ≤ L(ω). AssumingL(ω)

andL′(ω) defined, let

B(ω) =

L(ω)−1
∑

n=0

r
s
π(ω)
n

hπ(ω)n + r
s
π(ω)
L(ω)



t−

L(ω)−1
∑

n=0

hπ(ω)n





and let

B′(ω) =

L′(ω)−1
∑

n=0

(

I
s
π(ω)
n =x

r′x
h
π(ω)
n

β
+ I

s
π(ω)
n 6=x

r
s
π(ω)
n

hπ(ω)n

)

+

(

I
s
π(ω)

L′(ω)
=x
r′x + I

s
π(ω)

L′(ω)
6=x
r
s
π(ω)

L′(ω)

)



t−

L′(ω)−1
∑

n=0

(

I
s
π(ω)
n =x

h
π(ω)
n

β
+ I

s
π(ω)
n 6=x

hπ(ω)n

)



 .

It suffices to showB′(ω) ≥ B(ω). Since

B(ω) = rsup t− C(ω)

with

C(ω) =

L(ω)−1
∑

n=0

(

rsup − r
s
π(ω)
n

)

hπ(ω)n +

(

rsup − r
s
π(ω)
L(ω)

)



t−

L(ω)−1
∑

n=0

hπ(ω)n



 (8)

and, it can be checked usingβ = (rsup − r′x)/(rsup − rx) that

B′(ω) = rsup t− C ′(ω)

with

C ′(ω) =

L′(ω)−1
∑

n=0

(

rsup − r
s
π(ω)
n

)

hπ(ω)n

+

(

I
s
π(ω)

L′(ω)
=x

(rsup − r′x) + I
s
π(ω)

L′(ω)
6=x

(

rsup − r
s
π(ω)

L′(ω)

))



t−

L′(ω)−1
∑

n=0

(

I
s
π(ω)
n =x

h
π(ω)
n

β
+ I

s
π(ω)
n 6=x

hπ(ω)n

)



 , (9)
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it suffices to show that, assumingL(ω) andL′(ω) defined andL′(ω) ≤ L(ω), C ′(ω) ≤ C(ω). Two

cases will be considered: (a)L′(ω) = L(ω), and (b)L′(ω) < L(ω).

In case (a), using (8), (9),rsup − r′x ≤ rsup − rx, andhπ(ω)n /β ≥ h
π(ω)
n :

C ′(ω) =

L(ω)−1
∑

n=0

(

rsup − r
s
π(ω)
n

)

hπ(ω)n

+

(

I
s
π(ω)
L(ω)

=x
(rsup − r′x) + I

s
π(ω)
L(ω)

6=x

(

rsup − r
s
π(ω)
L(ω)

))



t−

L(ω)−1
∑

n=0

(

I
s
π(ω)
n =x

h
π(ω)
n

β
+ I

s
π(ω)
n 6=x

hπ(ω)n

)





≤

L(ω)−1
∑

n=0

(

rsup − r
s
π(ω)
n

)

hπ(ω)n +

(

rsup − r
s
π(ω)
L(ω)

)



t−

L(ω)−1
∑

n=0

hπ(ω)n





= C(ω) .

In case (b), assumingsπ(ω)
L′(ω) 6= x,

∑L′(ω)−1
n=0

(

I
s
π(ω)
n =x

h
π(ω)
n /β + I

s
π(ω)
n 6=x

h
π(ω)
n

)

+ h
π(ω)
L′(ω) >

t implies

(

t −
∑L′(ω)−1

n=0

(

I
s
π(ω)
n =x

h
π(ω)
n /β + I

s
π(ω)
n 6=x

h
π(ω)
n

))

< h
π(ω)
L′(ω) and

(

rsup −

r
s
π(ω)

L′(ω)

)(

t −
∑L′(ω)−1

n=0

(

I
s
π(ω)
n =x

h
π(ω)
n /β + I

s
π(ω)
n 6=x

h
π(ω)
n

))

≤

(

rsup − r
s
π(ω)

L′(ω)

)

h
π(ω)
L′(ω). As-

suming s
π(ω)
L′(ω) = x,

∑L′(ω)−1
n=0

(

I
s
π(ω)
n =x

h
π(ω)
n /β + I

s
π(ω)
n 6=x

h
π(ω)
n

)

+ h
π(ω)
L′(ω)/β > t im-

plies

(

t −
∑L′(ω)−1

n=0

(

I
s
π(ω)
n =x

h
π(ω)
n /β + I

s
π(ω)
n 6=x

h
π(ω)
n

))

< h
π(ω)
L′(ω)/β and (rsup − r′x)

(

t −

∑L′(ω)−1
n=0

(

I
s
π(ω)
n =x

h
π(ω)
n /β+I

s
π(ω)
n 6=x

h
π(ω)
n

))

≤ (rsup−r
′
x)h

π(ω)
L′(ω)/β = (rsup−rx)h

π(ω)
L′(ω). Thus,

we always have
(

I
s
π(ω)

L′(ω)
=x

(rsup − r′x) + I
s
π(ω)

L′(ω)
6=x

(

rsup − r
s
π(ω)

L′(ω)

))



t−

L′(ω)−1
∑

n=0

(

I
s
π(ω)
n =x

h
π(ω)
n

β
+ I

s
π(ω)
n 6=x

hπ(ω)n

)





≤

(

rsup − r
s
π(ω)

L′(ω)

)

h
π(ω)
L′(ω) .

Using that result, (8) and (9), for the case (b),

C ′(ω) ≤

L′(ω)−1
∑

n=0

(

rsup − r
s
π(ω)
n

)

hπ(ω)n +

(

rsup − r
s
π(ω)

L′(ω)

)

h
π(ω)
L′(ω)

≤

L(ω)−1
∑

n=0

(

rsup − r
s
π(ω)
n

)

hπ(ω)n

≤

L(ω)−1
∑

n=0

(

rsup − r
s
π(ω)
n

)

hπ(ω)n +

(

rsup − r
s
π(ω)
L(ω)

)



t−

L(ω)−1
∑

n=0

hπ(ω)n





= C(ω) .
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It remains to check thatEn, E
′
n ∈ A, n = 0, 1, . . ., whereEn = {ω ∈ E : L(ω) = n} and

E′
n = {ω ∈ E : L′(ω) = n}, and thatA,A′ ∈ A.

We start by checking thatEn ∈ A, n = 0, 1, . . .. LetFn = {ω ∈ E :
∑n

m=0 hm,s
π(ω)
m

(ω) >

t}, n = 0, 1, . . .. SinceE0 = F0 and, forn ≥ 1, En = Fn ∩ F c
n−1, it suffices to check that

Fn ∈ A, n = 0, 1, . . .. Let F s0,...,sn = {ω ∈ EH :
∑n

m=0 hm,sm(ω) > t}. SinceFn =

∪(s0,...,sn)∈Ωn+1Es0,...,sn
Π × F s0,...,sn , Ωn+1 is denumerable andEs0,...,sn

Π ∈ AΠ, it suffices to check

thatF s0,...,sn ∈ AH , (s0, . . . , sn) ∈ Ωn+1, n = 0, 1, . . .. This follows ifHn = {(h0, . . . , hn) ∈

[0,∞)n+1 :
∑n

m=0 hn > t} ∈
⊗n

m=0 B[0,∞) = B[0,∞)n+1, n = 0, 1, . . ., which can be proved

by induction onn as follows. The casen = 0 is trivial sinceH0 = (t,∞) ∈ B[0,∞). Assume the

result holds forn = i ≥ 0. We haveHi+1 = Gi+1 ∪ ∪i+1
j=0Jj , whereGi+1 = {(h0, . . . , hi+1) ∈

[0,∞)i+2 : h0 > 0 ∧ · · · ∧ hi+1 > 0 ∧
∑i+1

m=0 hm > t} andJj = {(h0, . . . , hi+1) ∈ [0,∞)i+2 :

hj = 0 ∧
∑i+1

m=0
m6=j

hm > t}. But Gi+1 ∈ B[0,∞)i+2, sinceGi+1 is an open subset of[0,∞)i+2

andJj ∈ B[0,∞)i+2 = B[0,∞) ⊗ B[0,∞)i+1, since{0} ∈ B[0,∞) and, by the induction hypothesis,

Hi ∈ B[0,∞)i+1. ThatE′
n ∈ A, n = 0, 1, . . . can be checked similarly, the only difference being that

Hn has to be replaced byH ′
n = {(h0, . . . , hn) ∈ [0,∞)n+1 :

∑n
m=0 hm/αm > t}, 0 < αm ≤ 1,

which can be easily shown to belong toB[0,∞)n+1.

Let us check now thatA ∈ A. Let

An=

{

ω ∈ E :
n−1
∑

m=0

r
s
π(ω)
m

h
m,s

π(ω)
m

(ω) + r
s
π(ω)
n

(

t−
n−1
∑

m=0

h
m,s

π(ω)
m

(ω)

)

> s

}

.

SinceA = ∪∞
n=0(En ∩An), it suffices to check thatAn ∈ A, n = 0, 1, . . .. Let

As0,...,sn =

{

ω ∈ EH :

n−1
∑

m=0

rsmhm,sm(ω) + rsn

(

t−
n−1
∑

m=0

hm,sm(ω)

)

> s

}

.

SinceAn = ∪(s0,...,sn)∈Ωn+1Es0,...,sn
Π × As0,...,sn , Ωn+1 is denumerable andEs0,...,sn

Π ∈ AΠ, it

suffices to check thatAs0,...,sn ∈ AH , (s0, . . . , sn) ∈ Ωn+1, n = 0, 1, . . .. SinceAs0,...,sn can be

expressed as

As0,...,sn =

{

ω ∈ EH :
n−1
∑

m=0

(rsm − rsn)hm,sm(ω) > s− rsnt

}

,

it suffices to check thatKn(γ0, . . . , γn, δ) = {(h0, . . . , hn) ∈ [0,∞)n+1 :
∑n

m=0 γmhm > δ} ∈
⊗n

m=0 B[0,∞) = B[0,∞)n+1, −∞ < γm < ∞, γm 6= 0, 0 ≤ m ≤ n, −∞ < δ < ∞, n = 0, 1, . . .,

which can be proved by induction onn as follows. The base casen = 0 is trivial, sinceK0(γ0, δ) =

(δ/γ0,∞) if γ0 > 0 and δ ≥ 0, K0(γ0, δ) = [0,∞) if γ0 > 0 and δ < 0, K0(γ0, δ) = ∅ if

γ0 < 0 and δ ≥ 0, andK0(γ0, δ) = [0, δ/γ0) if γ0 < 0 and δ < 0 and ∅, [0,∞) ∈ B[0,∞)

and, fora ≥ 0, [0, a), (a,∞) ∈ B[0,∞). Assume the result holds forn = i ≥ 0 and let us prove

that the result holds forn = i + 1. We haveKi+1(γ0, . . . , γi+1, δ) = Mi+1(γ0, . . . , γi+1, δ) ∪

∪i+1
j=0Nj(γ0, . . . , γi+1, δ), whereMi+1(γ0, . . . , γi+1, δ) = {(h0, . . . , hi+1) ∈ [0,∞)i+2 : h0 >

0 ∧ · · · ∧ hi+1 > 0 ∧
∑i+1

m=0 γmhm > δ} andNj(γ0, . . . , γi+1, δ) = {(h0, . . . , hi+1) ∈ [0,∞)i+2 :

hj = 0 ∧
∑i+1

m=0
m6=j

γmhm > δ}. ButMi+1(γ0, . . . , γi+1, δ) ∈ B[0,∞)i+2, sinceMi+1(γ0, . . . , γi+1, δ)
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is an open subset of[0,∞)i+2 andNj(γ0, . . . , γi+1, δ) ∈ B[0,∞)i+2 = B[0,∞)

⊗

B[0,∞)i+1, since

{0} ∈ B[0,∞) and, by the induction hypothesis,Ki(γ0, . . . , γj−1, γj+1, . . . , γi+1, δ) ∈ B[0,∞)i+1.

To prove thatA′ ∈ A, let

A′
n =

{

ω ∈ E :

n−1
∑

m=0

(

I
s
π(ω)
m =x

r′x
h
m,s

π(ω)
m

(ω)

β
+ I

s
π(ω)
m 6=x

r
s
π(ω)
m

h
m,s

π(ω)
m

(ω)

)

+
(

I
s
π(ω)
n =x

r′x + I
s
π(ω)
n 6=x

r
s
π(ω)
n

)

(

t−
n−1
∑

m=0

(

I
s
π(ω)
m =x

h
m,s

π(ω)
m

(ω)

β
+ I

s
π(ω)
m 6=x

h
m,s

π(ω)
m

(ω)

))

> s

}

.

SinceA′ = ∪∞
n=0(E

′
n ∩A′

n), it suffices to check thatA′
n ∈ A, n = 0, 1, . . .. Let

A′s0,...,sn =

{

ω ∈ EH :
n−1
∑

m=0

(

Ism=xr
′
x

hm,sm(ω)

β
+ Ism 6=xrsmhm,sm(ω)

)

+
(

Isn=xr
′
x + Isn 6=xrsn

)

(

t−
n−1
∑

m=0

(

Ism=x

hm,sm(ω)

β
+ Ism 6=xhm,sm(ω)

)

)

> s

}

.

SinceA′
n = ∪(s0,...,sn)∈Ωn+1Es0,...,sn

Π × A′s0,...,sn , Ωn+1 is denumerable andEs0,...,sn
Π ∈ AΠ, it

suffices to check thatA′s0,...,sn ∈ AH , (s0, . . . , sn) ∈ Ωn+1, n = 0, 1, . . .. SinceA′s0,...,sn can be

expressed as

A′s0,...,sn =

{

ω ∈ EH :
n−1
∑

m=0

(

Ism=x ∧ sn 6=x(r
′
x − rsn)

hm,sm(ω)

β

+ Ism 6=x ∧ sn=x(rsm − r′x)hm,sm(ω)

+ Ism 6=x ∧ sn 6=x(rsm − rsn)hm,sm(ω)

)

> s−
(

Isn=xr
′
x + Isn 6=xrsn

)

t

}

,

the result follows fromKn(γ0, . . . , γn, δ) = {(h0, . . . , hn) ∈ [0,∞)n+1 :
∑n

m=0 γmhm > δ} ∈
⊗n

m=0 B[0,∞) = B[0,∞)n+1, −∞ < γm < ∞, γm 6= 0, 0 ≤ m ≤ n, −∞ < δ < ∞, n = 0, 1, . . .,

which was proved previously.
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[31] M. Telek and S. Rácz, “Numerical Analysis of Large Markov Reward Models,”Performance Evalua-

tion, no. 36–37, 1999, pp. 95–114.

41


