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Abstract

In this paper we use stochastic Petri nets (SPNs) to study the interaction of multiple TCP sources that share one or two
buffers. No analytical nor numerical results have been presented for such cases yet. We use SPNs in an unconventional way:
the tokens in the SPN do not represent the packets being sent in the network, but merely model fractions of buffer occupancy and
the congestion window sizes. In this way, we use the SPNs to obtain a discretisation of a fluid model for TCP dynamics. Thus,
we pair the modelling flexibility of SPNs with the modelling efficiency of fluid models. In doing so, our approach also avoids the
(numerical) solution of partial differential equations; instead, just the steady-state solution of a (large) continuous-time Markov
chain is required.

We first consider two TCP sources sharing a single buffer and evaluate the consequences of two popular assumptions for the
loss process in terms of fairness and link utilization. The results obtained with this model are in agreement with existing analytic
models. A comparison with (more costly) simulations in ns2 shows that the real loss process is somewhere in between the two loss
models.

Secondly, we consider a network consisting of three sources and two buffers and study how the sources share the capacity of
the links. This leads to an interesting conjecture on fairness in large TCP networks.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and related work

Many models of the interaction between TCP sources and buffers have been developed over the last few years.
These models are used to obtain insight into how efficient and fair TCP sources use link and buffer capacity in the
Internet. Some of these models, e.g., [2,3], focus on these aspects in the setting of two sources that share a single
bottleneck link. Other models, e.g., [23,26], are concerned with the performance of large networks as a whole. The
latter models are, with respect to the analysis, completely deterministic.

* Corresponding author.
E-mail address: brh@cs.utwente.nl (B.R. Haverkort).

! Current position at Korteweg-de Vries Instituut, Universiteit van Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam,
The Netherlands.

0166-5316/$ - see front matter ©) 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.peva.2006.07.001


http://www.elsevier.com/locate/peva
mailto:brh@cs.utwente.nl
http://dx.doi.org/10.1016/j.peva.2006.07.001

508 N.D. van Foreest et al. / Performance Evaluation 64 (2007) 507-523

As yet, there is no model that applies well to networks of intermediate size, i.e., networks consisting of a few
sources and a few buffers (also called nodes), while retaining a stochastic flavour. This stochastic nature is arguably
not of much importance in large networks where the presence of a single flow is hardly noticeable, however, in
intermediately-sized networks this is important, since one connection can add considerably to congestion. Hence, it
is of importance to have a stochastic model of the source and buffer processes that, at the same time, can cope with
intermediately-sized networks.

The model developed in [18] for two TCP sources interacting with a buffer is simple, yet flexible, and can in
principle be extended to networks with a few sources and buffers. It has been formulated directly in terms of a
continuous-time Markov chain and allows the study of various stochastic aspects of the interaction. However, its
use is limited in practice since the generator matrix of the Markov chain has to be constructed manually. A suitable
framework to extend this model is provided by stochastic Petri nets (SPNs), see e.g., [1,11]. Note, however, that we do
not use SPNs in a conventional way. In our models, the SPN tokens do not coincide with packets (often called segments
in TCP context), but rather represent, in an abstract way, (partial) buffer occupancies and congestion window sizes.
Hence, we use the SPN to describe a stochastic approximation to a fluid model of TCP dynamics. This approach
has not been pursued before. Furthermore, it is very efficient, in that it resorts to a steady-state analysis of a finite
Markov chain to evaluate the TCP dynamics, instead of having to solve the system of partial differential equations for
the fluid model. It is noteworthy that similar discretisation approaches have recently also been applied successfully
for the evaluation of signal transduction pathways in biochemical systems [6]; it is interesting to observe that in this
(biochemical) context, similar advantages of the approach are reported.

In the current work we apply SPNs to study the interaction between multiple TCP sources and buffers in
intermediately-sized networks. With this approach we generalize the TCP models of [2,3] and [18] considerably
in that we handle larger buffers and multi-node networks. Especially the latter aspect seems difficult to incorporate
in the setting of [2,3]. In contrast to [26], in which the analysis is deterministic, our model is entirely stochastic
and, therefore, allows a more realistic modelling of workload and system modelling (and their interaction). Another
advantage of our approach is that we can easily compute higher moments of measures of interest.

The authors of [7] also use Markovian models of TCP. However, they develop a model of a single TCP Tahoe
source, and then consider a superposition of statistically independent sources that feed traffic into an M/M/1/K queue.
Using fixed-point methods, see, e.g., [19] or [4], they compute performance measures. In [8] and [9], the authors
consider TCP Reno instead of TCP Tahoe in the same framework. Our approach is different in that we take the source
and buffer process to be dependent, which is important in intermediately-sized networks.

As our approach shows considerable resemblance to the fluid model developed in [26], we start by summarizing
this approach in Section 2. Then, in Section 3, we specify an SPN of two TCP sources that share a buffer. With this
model we consider two popular models for the distribution of loss over the sources: synchronized and proportional
loss [3]. The results, as presented in Section 4, convincingly show that the key aspects of earlier models are captured
very well. In Section 5 we then present an important extension of the model, in that we consider a network consisting
of three sources and two nodes. We compare the sharing of link capacity to theoretical results. This provides us with
an interesting conjecture on how to estimate the fairness in more complicated network topologies.

Section 6 concludes the paper.

2. Background: A fluid model for TCP

Here we summarize the fluid model [26] for a network of J greedy TCP sources that share a buffer of size B and
a link with capacity (or speed) L. The buffer uses a Random Early Detection (RED) packet dropping scheme [15]. At
the end of this section we point out two shortcomings of this model and clarify how our approach circumvents these.
Let us first concentrate on the dynamics of the sources. Suppose that 7; is the round-trip time for source i when the
buffer is empty. Then,
- 01
T;(Q) =T + I (1)
is the round-trip time of source i when the buffer content is Q(t) at time ¢; the addend 7; accounts for the propagation
delay in an otherwise empty system, and Q(t)/L accounts for the transmission delay at the node.
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Source i maintains a window variable Wi (t), supposed to be continuous, and sends fluid at the rate
MSS; W; (1)/ T; (Q(1)), where MSS; is the message segment size (or packet size) into the RED buffer. The window
dynamics behaves according to the Additive-Increase/Multiplicative-Decrease (AIMD) scheme as described in [10].
More specifically, the change to the window size is governed by the differential equation

e Wi (1)
T;(Q(1)) 2

that can be explained as follows. The first term of the right-hand side of this equation corresponds to the Additive-
Increase behavior of a source; if 7;(Q(t)) is the round-trip delay, its reciprocal value is the frequency with which
acknowledgments are received, hence, the window is increased. The second term implements the Multiplicative-
Decrease at a loss epoch, where M;(¢#) models the losses as a point process, so that dM;(t) = 1 when a loss occurs
and O elsewhere. Hence, whenever a loss occurs, the window size is halved.

The evolution of the queue length itself depends on the rates of the J sources through the differential equation

dW; (1) = dM; (1), (1b)

dO() _ -~ MSSiWi() _
&t M)

L, (Io)

with Q(t) € (0, B), otherwise dQ () /dt = 0.

The RED buffer operates as follows; consult, for instance, [27] for a more detailed description. The RED buffer
maintains an estimate x of the average queue length. At each packet arrival this estimate is updated according to an
exponentially weighted moving average with weight € € (0, 1). If ¢; is the queue length observed at the arrival of
packet i, then the ith estimate for x is obtained as

x;i = (1 —€)xi_1 + €qi. (2

The RED buffer drops packet i with probability p(x;), where p(x) has the form

0, 0 <x < xXmin
; X — Xmin
L / P(x) =49 —————Pm>» Xmin <X = Xmax 3)
Xmax — Xmin
i X, x 1, Xmax < X.

“min max

In other words, the buffer drops a fraction p(x;) of the arriving packets whenever x = x;.

To analyze the differential equation system (1) and (2), the authors of [26] take expectations at both sides of (1) and
(2) and make a number of simplifying assumptions to obtain a numerically tractable system of differential equations,
which they solve using Matlab to obtain the expected transient behavior of, for instance, the queue.

The main advantages of the above approach are its flexibility and scalability. Still, two fundamental problems do
exist with it. In the first place, the entire analysis is set up in terms of averages of connections. Thus, it does not
include any knowledge of individual connections. This is, however, an important point to incorporate if the behavior
of a source depends on its actual state. For instance, the rate at which file transfers stop, depends on the actual
transmission rates of the sources; the higher the rate, the sooner the transfer is ready. Thus, the rate at which a source
changes from an on-state to an off-state may depend on the source’s actual transmission rate. The second problem
relates to a more technical aspect of the analysis. In [26] there is no mention of how to compute the expectations that
are taken. Technically speaking, the probability space is not provided.

Our model does not suffer from these problems. More specifically, with regard to the first point, our stochastic
model maintains a notion of the momentary window size and buffer content so that the momentary (fluid) transmission
rate is known. With respect to the second point, we also take expectations, but with respect to a stationary distribution
of a Markov chain, so that no problems about the interpretation remain. Loosely speaking, we first solve the system
and then take expectations, whereas the authors of [26] take expectations first and then solve the system. Reversing this
ordering is not a mere technicality, due to the fact that the expectation operator is a non-linear operator. A disadvantage
of our approach as compared to [23,26] is that our model does not scale as well as theirs does.
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3. An SPN-based TCP fluid model

In this section we introduce our SPN-based model; we assume familiarity with SPNs. Our key idea is to discretise
the source window and queue processes, which is described in Section 3.1. In Section 3.2 we then present a two
source, single buffer model as an SPN, where we assume a so-called proportional loss model. In Section 3.3 we then
define the measures of interest (throughputs and utilization). Then, in Section 3.4 we extend our model to the so-called
synchronized loss case. We briefly touch upon issues of computational complexity in Section 3.5.

To keep the model concise we reduce the RED buffer of Section 2 to a drop-tail buffer by choosing xmin = Xmax =
B in (3) and € = 1 in (2). We assume that the sources use a TCP version, such as TCP New-Reno [14] or TCP
Sack [25], that does not (frequently) resort to timeouts and slow starts when multiple losses occur in one window.

3.1. Discretising source and buffer model

The buffer process as determined by (1c¢) can take any value in the range [0, B]. In the sequel we modify this process
to a corresponding discrete process {Q(t),t > 0} with state space {0, 1, ..., K}; notationally, we have removed the
bar. Observe that K in general does not correspond to the maximum number of packets the buffer can contain, rather
it is a discretisation parameter of the buffer. When Q(¢) = k, 0 < k < K, the corresponding buffer content in the fluid
model, i.e., Q(t), would then equal Q(¢)B/K. Thus, in this case the round-trip time for source i becomes (compare

(1)):

Q@) B
Li(Q1) =T, = I “4)
Similarly, we discretise the window process of source i to obtain the discrete process {W;(¢), ¢ > 0} (again, we have
removed the bar) with state space {0, 1,2, ..., N;}, where N; denotes the maximum window of source i, which is an

important parameter in characterizing the performance of TCP. When the window process at time ¢ for source i takes
the value n;, that is, W;(¢#) = n; and similarly Q(¢) = k, the source sends traffic at the rate MSS;n;/T; (k). In the
sequel we often use the shorthand

ri(k) = —— (5)

so as to write the source rate in that state as n;r; (k). Note that the source peak rate is given as N;r; (0).
Observe that if the buffer content were a continuous variable, the net input rate at times ¢ when (W1 (t), Wa(¢)) =
(n1,n2) and Q(t) = k would be given as

r(k)-n—LEZri(k)ni—L, (6)
i
withn = (ny, ..., ny); we use boldface for vectors.
Finally, we introduce the processes {/;(t),t > 0}, i = 1,...,J, as indicators for those sources that have

experienced a loss but still need to adapt their rate. When [; (#) = 0, source i is allowed to increase its rate, while
when /; (#) = 1 it should decrease its rate. The next section provides further clarification for these processes.

3.2. Two sources and one buffer with proportional loss

In this section we provide a specification of an SPN consisting of two TCP sources sharing one buffer, as shown
in Fig. 1. The SPN contains three “subnets” indicated by dashed boxes. The subnets S and S, represent the sources,
whereas the subnet B represents the buffer. We first describe these subnets, before we focus on the dynamics of the
complete SPN.

3.2.1. The subnets S, S>» and B

Subnet S contains three places: winl, winF1 and loss1; one immediate transition: tLoss1; and two timed
transitions: tIncrl and tDecrl. Subnet S, is, except for the naming, identical; as such the rest of the discussion
applies equally well to source 2.
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Fig. 1. An SPN model of two TCP sources sharing a buffer. The loss model is taken according to the proportional loss scheme. We indicate guards
by means of dashed boxes around strings, such as 8 < 0 appearing immediately below tDecrB.

Table 1

The correspondence between the stochastic processes of Section 3.1 and the markings of places in Fig. 1

Wi(t) <> winl Ws(t) <> win2 Q(t) <> bFill
[1(t) <> lossl I>(t) <> loss2

The state of the window in source 1 is given by the markings of winl, winF1 and loss1, respectively. Here, the
number of tokens in winl, models the momentary congestion window of source 1, that is, it describes Wi (z). The
marking of winF1 denotes how much further the window can increase. Initially, we put N tokens in this place, so that
at all times during the evolution of the SPN the sum of tokens in winl and winF1 equals N;. The “loss state” of source
1 is indicated by place loss1 being marked or not: when there is no token in loss1 the source is allowed to increase
the window size (that is, increase the number of tokens in win1), whereas a token in 1oss1 means that the source has
to reduce its window size by a factor 2. Thus, the number of tokens in 1oss1 describes the process {l1(¢), t > 0}. The
relation to the places in subnets S and S and the discretised stochastic process is summarized in Table 1.

The buffer subnet B contains three places: bFill, bFree, and lossB; and two timed transitions: tDecrB and
tIncrB. The marking of the place bFill is the fill level of the buffer, i.e., Q(¢). The place bFree initially contains K
tokens. Its marking corresponds to the free space, i.e., the maximum buffer level K minus the fill level bFill; thus,
the sum of the number of tokens in bFill and bFree always equals K. Finally, when there is no token in 1ossB the
buffer is congested; when there is a token in 1ossB the buffer is not congested.

The marking-dependent firing rates and guards associated with all transitions are summarized in Table 2. Here
T; (k) is given by (4). When positive, the function

K
Bni,na, k) = 2 (r(k) -m— L), )

is the transition rate at which increments of the buffer level process occur. This expression can be understood by
noting that ,3_1 (n1, na, k), the expected time that the process {Q(t), t = 0} remains in state k before moving to k + 1,
should equal the expected time that the real fluid content Q(¢) takes to move from kB/K to (k + 1)B/K, which is
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Table 2
Rate functions and guards for the transitions in Fig. 1
Transition Rate Guard
tIncrB B(ny,no, k) B(ny,ny, k) >0
tDecrB —B(ny,ny, k) B(ny,ny, k) <0
tLoss1 - B(ny,ny, k) >0
tLoss2 - B(ny,ny, k) >0
tIncri Tl_1 (k) -
tDecril Tl_l(k) -
tIncr2 T{l (k) -
tDecr2 T{l (k) -
Table 3
Firing probability p; of tLoss1 in four possible cases
Case ri(K)yw; <L ri(K)W; > L

K)W
R(K)Wy < L =2 p=1

K)W

ry(K)Wy > L p1=0 p1= rr'((K)).wl

approximately B/K divided by the fluid rate in (6). A similar argument holds for states in which the rate is negative,
leading to “downward transitions” at rate —f(n1, na, k).

3.2.2. From initial state to congestion (congestion avoidance)

The initial marking of the SPN is as shown in Fig. 1. Sources 1 and 2 are not active (their window size is zero)
but are allowed to increase their rate. In the initial state only tIncrl and tIncr?2 are enabled and fire at rate 1/7
and 1/ 7>, respectively. Each firing increases Wi (¢) or W»(¢) by one, which models the Additive-Increase phase of
TCP. Note that on average source i spends an amount of time 7; (k) in state n;, given Q(¢t) = k. In this way the SPN
incorporates feedback delay.

When W () and W5 (¢) increase, the scaled net input rate (7) increases as well. After a number of firings of tIncril
and tIncr2, Wi(¢) and W;(¢) are so large, i.e., winl and win2 contain so many tokens, that B(W;, W, 0) becomes
positive. This will set the guard at tIncrB to true, so that t IncrB becomes enabled. Each firing of tIncrB increments
Q(t) (number of tokens in bfill) by one. After K firings of tIncrB, the buffer is completely filled, i.e., Q(¢) = K.
As a result, the inhibitor arcs from bFree to tLoss1 and tLoss2 are now no longer active, so that the random switch
consisting of the immediate transitions tLoss1 and tLoss2 becomes enabled.

Suppose tLoss1 fires first, so that source 1 receives the loss token. As such, the loss token represents the congestion
signal that the buffer sends to a source. Clearly, in this case the inhibitor from loss1 to tIncrl will prevent further
increments of the window of source 1. Note that, as source 1 receives the loss token, 1oss2 does not become marked
(unlike in the synchronous case, to be discussed later), and consequently, tIncr2 can still fire.

It is evident that whenever source i is inactive, i.e., when W;(¢) = 0, it should not suffer from loss. To prevent the
loss token from being sent to a quiet source there is a multiple inhibitor arc from winF1 (winF2) to tLoss1 (tLoss2)
with multiplicity N;(N2), as indicated in Fig. 1.

3.2.3. The proportional loss model

In a proportional loss model, only one connection suffers from loss during overload. The probability of selecting
a particular connection is proportional to its momentary transmission rate. We implement this behavior by means of
the random switch consisting of tLoss1 and tLoss2 in the following way. The marking-dependent weights of the
random switch are chosen such that tLoss1 fires with probability pi, and tLoss2 fires with probability p, = 1 — py.
Table 3 shows the values of p; when r{(K)W; > L and ro(K)W> > L, etc. The motivation behind this loss model is
based on the following insight. If 7| (K)W; > L and r,(K)W, < L, connection 1 certainly loses traffic. Thus, in this
case connection 1 should surely receive the loss token. Due to the proportional loss model there is just one loss token,



N.D. van Foreest et al. / Performance Evaluation 64 (2007) 507-523 513

so that connection 2 will not receive a loss token in this case. Therefore, in this case, p; = 1 and p, = 0. However,
in case r1(K)W; < L and r(K) < L (but r(K) - W > L) both sources can perceive a loss, with a probability
proportional to their sending rates. Finally, in the (very) rare case that r{ (K)W; > L and r»(K)W; > L both sources
should reduce their rate. However, as 1ossB contains just one token, it cannot simultaneously send both sources a loss
token. Therefore, we again take the loss probabilities proportional to the sending rates. We emphasize that the impact
of this inconsistency will be small in nearly all relevant parameter settings.

3.2.4. Removing the congestion (multiplicative-decrease)

Whenever loss1 is marked, the timed transition tDecr1 (with variable arc multiplicity, cf. the zig-zag symbol) is
enabled. Once it fires, it moves the loss token from loss1 to 1lossB, removes half of the tokens from win1, and adds
these to winF1. In other words, Wy (¢) (winl) is reduced by a factor two, reflecting the Multiplicative-Decrease after
the detection of loss. If, with the new marking, still B(W1, W», K) > 0 either tLoss1 or tLoss2 will immediately
fire again. After a sufficient number of multiplicative decrements of Wi(¢) and W>(t), the net input rate becomes
negative. When this is the case, firings of tDecrB decrement the buffer content. Note that another consequence of
B(W1, Wa, C) < 0 is that the guards at tLoss1 and tLoss2 prevent the loss token from being passed on to either of
the sources. Thus, their windows cannot decrease any further.

We finally have to address two arcs: the inhibitors from loss1 and loss2 to tLoss1 and tLoss2 respectively.
Their role will be clarified in the synchronous loss model presented in Section 3.4. In the proportional model they
have no function, and do not influence the performance measures in any way.

3.3. Performance measures

We now express four performance measures of interest as reward-based measures: a connection’s expected
transmission rate, the connection throughput, the connection fairness and the utilization of the link.
The expected transmission rate for connection i is expressed as

u =Eri(QWi} =YY ri(kon Pr{Q =k, Wi = n;},
k ni

where k ranges over all possible discretised buffer filling levels, and n; over all possible window sizes. Furthermore, Q
and W; are the random variables that are (jointly) distributed according to the steady-state distribution of the process
underlying Markov chain; the probabilities Pr{Q = k, W; = n;} follows directly from the numerical evaluation of the
steady-state probability vector of this Markov chain.

We define the throughput by considering the fluid that leaves the buffer. When the buffer is empty the departure
rate at time ¢ is equal to the arrival rate; this case corresponds to the first additive term below. When at time ¢ the
buffer contains k > 0 units of fluid, the departure rate of source i at time ¢ equals the link speed L times the fraction
of traffic of source i that arrived at time + — kB/(K L). However, since the Markov chain we are considering does
not maintain the history of the source states as supplementary variables, the source rates at time t — kB/(K L) are
(principally) unknown. Hence, we cannot exactly incorporate this effect of buffering delay on the throughput. We
therefore approximate the output process by the arrival process and neglect the impact of the delay; this results in the
second additive term below. This yields the following throughput for source i:

ri(Q)W;
r(Q)-w

where 1{condition} is the indicator that evaluates to 1 when the given condition is true, and 0 otherwise. To see that
this approximation is acceptable we reason as follows. Observe that the round-trip times of all sources include the
buffering delays along the route. Hence, it always takes less time to refresh the buffer content than it takes for a source
to change its rate. Consequently, while the buffer content is refreshed the input rates are nearly constant. We conclude
that neglecting the delay merely shifts the output process backward in time, but does not substantially change its shape
or the ratio of fluid of the sources.

As an alternative to the above throughput measure, we can also define the throughput as the amount of fluid
entering the buffer. A comparison of this throughput measure with the one defined above, reveals that in practice both
throughput measures do equally well; see also the technical report [16].

ViZE{ri(Q)Wi'l{Q=0}+L' '1{Q>0}}, ®)
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Next to the absolute throughput measure defined above, we also will study the so-called fairness, being the ratio of
throughputs of different connections. Such a measure expresses how fair the AIMD mechanism allocates capacity to
competing connections.

Finally, we define the link utilization as the ratio of the connection throughputs and the link capacity, both per
connection and overall, as follows:

:ﬁ i=1,2, and u=_)/1~|—)/2

Ui L i3 =ur+uj.

3.4. The synchronous loss model

We now show how to adapt the SPN model such that it describes a synchronized loss strategy, that is, a loss model
according to which all sources react to congestion by all reducing their rate simultaneously.

First of all, it is clear that to signal both sources about congestion it is necessary to have two loss tokens initially
present at lossB. Furthermore, in the new setting the transitions tLoss1 and tLoss2 will no longer form a random
switch. Instead, each will fire with probability 1, when enabled.

Suppose that once bFree becomes empty, tLoss1 is the first to fire. This results in one of the loss tokens to move
to loss1. The inhibitor from loss1 to tLoss1 prevents this transition to fire again. Consequently, the immediate
transition tLoss2 fires so that both sources receive a loss token at the same instant. As long as lossl (loss2) is
marked, source 1 (source 2) cannot receive a loss token which becomes available after a firing of tDecr2 (tDecrl)
due to the inhibitor arcs from loss1 (loss2) to tLossl (tLoss2). The throughput as defined in (8) does not need
any modification.

3.5. Computational complexity

It is of interest to estimate the size |.#| of the Markov chain as this gives insight into the time required to solve for
the steady-state distribution. We have not been able to find an accurate, yet simple, expression for |.# |, mainly due to
the fact that the actual number of states depends critically on the values of the system parameters and the presence of
guards.

To obtain an upper bound on |.Z |, observe that the number of different markings of bFill is, obviously, K + 1,
and that the loss token can reside in three places: lossB, tLoss1, and tLoss2. Furthermore, the number of different
markings in place winFi in subnet S; equals N; + 1. Thus we obtain

|.#| = 0K + (N1 + D(N2 + 1)). €))

Observe that as the SPN contains only six timed transitions the number of non-zero entries per row in the generator
matrix is bounded by six (excluding the diagonal). Consequently, the generator is very sparse.

Clearly, from a computational point of view it is of interest to choose N1, N; and K as small as possible without
significantly affecting the performance measures. First of all, it is plausible that for K — oo, {C(¢), t > 0} becomes
a continuous process; see e.g., [17] for an application of such fluid queues to TCP modelling. Thus, we infer that the
performance measures hardly change for increasing K beyond a certain number. It turns out that K = 5, a relatively
small number, is already large enough for the parameter ranges we investigate in this paper; setting K to larger values
makes practically no difference. We can even set K = 1 in the large bandwidth-delay product regime, i.e., when the
maximum buffering delay dp is small in comparison to the propagation delays. In this case the time it takes for an
AIMD source to “fill the pipe” is much longer than the buffer filling time. Then, approximately, the buffer is either
empty or congested.

Finally, we remark that in case of the synchronized loss model, the above upper bound on the state space size
remains valid; due to the increased number of possibilities with respect to the loss tokens, the number of states
increases by at most a factor %.

4. A comparison with analytic models and NS2

In this section we compare the numerical results of our model to other analytic work and simulations with the
network simulator NS2, see [28]. We specify the investigated scenarios in Section 4.1 and present the results in
Section 4.2.
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Fig. 2. The network configuration and some parameters.

Table 4

SPN parameter values

Scenario L dp (ms) K
25s 25.7 16 1
80s 80.7 16 1
251 25.7 160 5
801 80.7 160 5

We use mnemonics such as 25s to denote the scenario in which the link rate is 25.7 and the maximum buffering delay dp is small. A buffering
delay of 16 ms corresponds to a buffer size of 5 packets in the NS2 simulation.

4.1. Traffic scenarios

Fig. 2 shows the network we used for the numerical analysis and NS2 simulations. To facilitate the comparison
with [2] we use the same parameters. Two greedy TCP sources S1 and S, communicate with destinations D and D5,
respectively, via router Ry with buffer size B = dp L. We investigate two different values for both the link rate L and
the maximum buffering delay dp, thus leading to four scenarios. Table 4 shows the particular values of L and dg we
used. For each scenario we vary the propagation delay d; of the link connecting S; and R; in 10 steps from 40 ms to
240 ms.

In the simulations with NS2 we use a RED buffer and consider a small buffer case and a large buffer case. In the
small (large) buffer case, the buffer’s total size is 20 (200) packets. The RED parameters in (2) and (3) are taken as
follows. The minimum threshold xp;, is 5 (50) packets, and the maximum threshold xpax is 10 (55) packets, resp.
for the above two cases. The maximum drop probability p,, = 0.1 and the weight € = 0.002. The packet size is,
including IP header, 576 Bytes. (The RED parameter values for the small buffer are also identical to the values chosen
in [2].)

Note that the buffer in the SPN is a drop-tail type buffer instead of a RED buffer, which, on the face of it, is
inconsistent with the simulated network. As a motivation for using RED in NS2 we follow an argument of [2]. It is
commonly seen in simulations with two sources sharing a drop-tail buffer that sometimes one and sometimes both
sources lose packets during a congested period. Thus, at least in simulations, bursts at the packet level determine
which source(s) lose(s) traffic in case a drop-tail buffer overflows. However, such rapid fluctuations at the packet
level are absent in the context of fluid sources. Thus, a fluid source never perceives a true drop-tail buffer. As such,
comparing fluid models to simulations with (small) drop-tail buffers will not be appropriate. As RED is a queue
management technique that can effectively absorb these rapid queue-length fluctuations, it is apt to use RED buffers
in the simulations even when the modelled fluid buffer is a drop-tail buffer.

We remark here that a consequence of using RED in the simulations is that packets will be dropped with a
probability proportional to the sending rate of a source. Thus, our proportional loss model is the more appropriate
to compare against the simulations.

4.2. Performance results

Below we present results for the fairness, the total utilization of the link and the normalized throughput for each of
the connections for the network described in the previous subsection.
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Fig. 3. Throughput ratios as a function of s = T /T for the proportional loss model.
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Fig. 4. Throughput ratios as a function of s = T/ T» for the synchronous loss model.

To investigate the issue of fairness, we consider the ratio of throughputs y;/y>, where y; is the throughput of
connection i. Both for the proportional loss model and the synchronous loss model we study how this ratio depends
on s = T1/T>, the ratio of propagation delays. As comparison we mention that the authors of [2] present a model
with proportional loss in which the throughput ratio behaves as s~%-3%, while in [21] it has been derived that in case of
synchronous loss and a small buffer the throughput ratio behaves as s ~2. We also analyze the impact of the buffering
delay, i.e., we present our results for both the small and large buffer cases introduced in the previous subsection.

In Fig. 3 we plot the throughput ratio for the model with proportional loss as a function of s for the scenarios of
Table 4. We also plot s~ for some values of «. The left and right panel present the results for the small and large
buffer case, respectively, as will be the case in all figures of this section.

Notice that the throughput ratio is relatively insensitive to the link rate L. In the small buffer case, the ratio
converges approximately to s %87 as L increases, which is close to the result of [2]. Observe also that the sharing of
the link becomes more fair when the buffer size increases (« drops to approximately 0.65). This is in accordance with
intuition, since a large buffer will lead to larger delays, so that the total round-trip times of both connections will differ
less than in the case of a small buffer, cf. (4).

In Fig. 4 we plot similar results but now for the synchronous loss model. For small buffers we see that the ratio
according to our model behaves like 5722 instead of s~2 as obtained by [21]. When the buffer size increases, the
power decreases to a value smaller than 2, in line with the results of [21].

In Fig. 5 we plot the total utilization of the link, given by (y; + y2)/L, as computed by our model, and compare
it with a simulation of two New-Reno sources and two TCP Sack sources. We see from the graphs that our models
overestimate the utilization in comparison to simulation, but correctly capture the trend that the utilization decreases
as a function of s. Although this result is not as strong as one would hope, it is in some respects better than those
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Fig. 6. The normalized throughput of source 1 as a function of s = T/ T5.

obtained earlier: in [21] (for synchronous loss and small buffers) the utilization is estimated as 0.75, independent
of the ratio 5. The analytic estimate from [3] in our (proportional loss) scenario also leads to an overestimation of
the utilization, which actually increases from 0.79 to 0.875 as s grows from 0.1 to 1. Note that the proportional loss
model is the more appropriate model to compare with the RED queue used in the simulations; we include the results
for the synchronous case mainly for reference. Interestingly, in line with an observation in [2], the utilization in case
of proportional loss is indeed higher than the utilization in case of synchronized loss. Finally, we mention that the
results of the TCP New-Reno simulation in the large buffer case seem a bit odd, but, although they are not understood
properly, they are correct. The oscillating behavior did not disappear by slight changes of the parameters of the RED
buffer and as larger changes would introduce considerable differences between the model and the simulation, we did
not investigate this further.

The last results of this section are in Fig. 6 and show the normalized throughput of the first connection, given
by y1/(y1 + y2), in comparison to the simulations; the results for the second connection follow immediately, as
y2 = 1 — y1/(y1 + y2). Clearly, for the small buffer case the proportional loss models are ‘too fair’, while the
synchronous models are ‘too unfair’. One explanation for these observations could be as follows. In the proportional
loss model just one source loses traffic during periods with congestion, whereas in the synchronous model both sources
always lose packets. However, in the simulation sometimes just one suffers from loss, and sometimes both. Hence, the
loss process of a RED buffer is neither strictly proportional nor strictly synchronized, so that the utilization obtained
by simulation should be in between the results of the two models, which is the case. We therefore infer that a more
detailed model of the loss process might yield better resemblance to the simulation results.

We mention that the theoretical ratio from [3] is in nearly perfect agreement with our proportional loss curve for
the small buffer case.
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Fig. 7. A network of three sources sharing the links between routers Ry, R», and R3.

Our main conclusion from this section is that our model captures the proportional sharing of the bandwidth
between the two connections quite well, although the absolute values of the throughputs (or utilization) tend to be
too optimistic.

5. An extended model: Three TCP sources sharing two buffers

The SPN framework allows for an easy extension of the model in various directions. We consider an extension
of the model to include multiple sources, as well as an extension to include on/off-behavior of the sources; for
conciseness, they are not presented here, but can be found in the technical report [16]. Instead, we focus on a network
consisting of three sources and two links. Such a model appears difficult to tackle by other means.

5.1. Scenario and model

The scenario we investigate is depicted in Fig. 7 and consists of two links with link rates L and L,. Routers R
and R; are located before these links, with buffers of sizes B and B; respectively. Three connections are using the
network, each consisting of a source and destination (S; and D;,i = 0, 1, 2), where connection 0 uses both links,
and connection 1 (respectively 2) only uses link 1 (2). Throughout this section it is assumed that the proportional loss
scenario applies.

We first describe the SPN that corresponds to the setting above, then define the performance measures and finally
present some results.

The SPN for the network is shown in Fig. 8. The subnets for sources 1 and 2 and the buffers B; and B are identical
to their counterparts of Section 3.2. Source 0, as shown by the middle, lower subnet in Fig. 7, is different in that its
connection uses both buffers. We elaborate on this now, generalizing the setting in Section 3.1.

We define the joint window process as W(r) = (Wy(r), Wi(t), Wa(t)), where W;(¢) is the state of the window
of sender i, taking values in {0, 1, ..., N;} as before, N; being the maximum window size of source i. A typical
state of the joint process can then be written as a vector n = (ng, n1, n2). Similarly, the joint buffer process is
Q@) = (Q1(8), O2(t)) where Q;(t) is the discrete buffer process for buffer j, taking values in {0, 1, ..., K;}; a
typical state of this process is written as a vector k = (k1, k7).

Defining 7; as the round-trip time of source i with empty buffer(s), it is now clear that the round-trip times of
sources 1 and 2 when the joint buffer state is k can be expressed as

Tk =T, + <L B d B =1+ 28 (10)
= ——, an = —_— =,
1 1 KL 2 2 X, L
similar to (4), and the analog of (5) is immediate for these sources, e.g.,
MSS;
ry (k) = .
T (k)
Note that this is in fact a function of k1 alone, independent of k. The round-trip time of source 0 then equals
ki Bl ka By
Tvkky=Tp+ ——+ ——,
o(k) 0+K1L1+K2L2

and the analog of (5) now becomes
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which does depend on both ki and k;. The analogue of (6) for the first buffer at times when W(#) = nand Q(¢r) = k
is then given by

ro(k) =

ro&)ng + ri(kny — Ly,

leading to
K
Bi1(n, k) = B, (ro(K)ng + ri(kpny — Ly)

for the transition rate at which increments and decrements of the first buffer level process occur, cf. (7).
To obtain a similar expression for 8> we should account for the fact that the first buffer shapes the output process
of source 0. We approximate the output rate, §y say, of source 0 at the first buffer similarly to (8):

ro(K)no, ifky =0,
bomKy =1, ro®no itk > 0.
ro(K)ng + ri(kp)ny’

Now we can define 8, as

K
Ba(n, k) = B—j Gom, k) + ra(ka)ny — Lo) .

With respect to the loss model we see that source O can receive a loss token from both buffers. A consequence of
this is that source 0 can have both loss tokens in possession simultaneously. As such it suffers from loss twice within
one round-trip time, i.e., within one window of data, and reduces its rate twice accordingly. This is inconsistent with
the behavior of TCP New-Reno or TCP Sack which mostly decrease only once even when more than one packet of a
window of data is lost. However, we contend that this undesirable side effect has small impact, as follows. First, for
this event to happen, congested periods of both buffers have to overlap. Second, once the congested periods overlap,
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source 0 should receive the loss tokens of both buffers. As source 0 will typically send at a lower rate than sources 1
and 2, both conditions will not often be satisfied simultaneously.

5.2. Performance measures

We are now ready to define the performance measures of interest, starting with the current throughputs at times ¢
when W(#) = n and Q(¢) = k as follows,

S0, if ky =0,
yo(n, k) = o .
Ly, ifky >0,
So+ Ay 2
A, ifky =0,
nmk =y A, )
AO+A1 17 1 9
A, ifky = 0,
nmk =y A o
80+A2 27 2 9

where § is as before and A; is the current rate of source i, i.e.,

Ao = ro(K)no, Ay = ri(ky)ny,
Ay = ra(ko)ng, 8o = do(m, k).

With this we find the expected throughputs as
i =E{yy(W,Q)}, i=0,1,2, (11)

where W and Q are the steady-state vectors describing the joint window state and joint buffer state respectively. The
utilization of the first and second link can now also be found as

_YTtn Yo+ V2

, and up =
L L,

ui

5.3. Performance results

To present the numerical results we compute the y; and u; for this model. In the scenario that we consider, both
buffers are identical, i.e., L, = Ly = 25.7 and dp, = dp, = 16 ms, i.e., the small buffer case as in Scenario
1 of Table 4. We vary the propagation delay d; of the links connecting sources 1 and 2 to the routers R; and R»,
respectively, from 40 ms to 250 ms simultaneously in ten steps. Since 7o = 520 ms and 71 = T> = 2d; + 20 ms, this
means that s = 71/ Ty = T»/ Ty varies between 0.2 and 1.

The left panel of Fig. 9 shows the ratios of the throughputs y,/y, and y,/y, as functions of s. We see that the
throughputs of source 1 and 2 are nearly the same. This is to be expected when the fraction of lost traffic at the first
buffer is small. Indeed, in that case the rate of the ‘thinned connection 0’, i.e., the traffic of connection O minus the loss
incurred at the first buffer, is nearly the same as the transmission rate of source 0. Hence, connection 1 and connection
2 have to compete with approximately the same connection. The fact that y, is just slightly larger than y, shows, in
accordance with the above, that the rate of the thinned connection O is a bit smaller than its initial rate.

In the right panel of Fig. 9, we show the total utilization u#; of the first link as a function of s. The graph is quite sim-
ilar to that of the single buffer case, see the left panel of Fig. 5. We also show how the utilization is shared by the con-
nections 0 and 1. Clearly connection O suffers from the fact that it also has to compete with connection 2 for using the
second link. As the difference between y; and y» is small, we did not plot the corresponding graphs for the second link.

When Ty = T = T, we can make a comparison of our value of the throughput ratio y, /¥, to some theoretical
fairness results for networks: the so-called minimum-potential-delay fairness scheme as defined in [24] and which,
according to the authors of [22], is the most appropriate for TCP networks.

When we apply the theoretical analysis to our network as shown in Fig. 7 we obtain that y, /y, = V2. Our SPN

model, on the other hand, gives for s = 1 that y,/y, = 1.50, which is quite near to V2. In Fig. 9 we plotted as a
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Fig. 9. The throughput ratios for connections 1 and 2 w.r.t. connection O (left panel) and the utilization of the first link (right panel) as functions of
s=T1/To =T/ Tp.

reference the function /2585, This shows considerable agreement to the numerical results. Hence it seems that the
function c¢s ™ is a good approximation for the throughput fraction when comparing two connections. The value of «
is then dictated by the loss model, while the pre-factor is determined by the topology and can be computed according
to the methods in [24]. We defer an investigation of this interesting conjecture to future research.

6. Summary and conclusions

We have used stochastic Petri nets to specify, in a versatile way, stochastic models of TCP New-Reno or Sack
(more specifically, AIMD) sources that share one or two buffers.

Our modelling approach is new, in that we use SPNs to specify discretised fluid models. This is different from so-
called fluid SPNs (FSPNs), in which indeed “fluid places” and true fluid tokens are used [29,20]. For such FSPNs
the numerical algorithms require the solution of partial differential equation systems, which are solved using a
discretisation approach. Alternatively, a special scheme toward discrete-event simulation has to be used [12]. One
could argue that in our approach, we also take care of a discretisation, however, we do so already at the modelling
level, so that we can resort to the much simpler numerical evaluation of the steady-state probabilities of an ordinary
CTMC. Furthermore, our approach does not suffer from the modelling restrictions of FSPNs.

Our new methodology is flexible, extendable, and enables us to obtain qualitative insight into the impact of various
source and network parameters on transient and long-term performance properties such as source throughput, link
utilization and fairness. With respect to parameters as packet size, round-trip time, and buffer size, the results of our
model are consistent with those of earlier models, e.g. [5,18], and therefore not reported here.

In our first model (two sources, one buffer) we implement two popular assumptions about the loss process at
the buffer, proportional loss and synchronized loss. We validate our stochastic models for both cases by comparing
the resulting fairness and utilization on the one hand to simulations with NS2, and on the other hand to the theory
developed in [2], [3] and [21]. Our models provide results that are consistent with these theoretical results, and
sometimes even improve these, in the sense that better resemblance is found to the simulation results. Moreover,
our approach shows that the loss process is somewhere in between the proportional and synchronized loss model.

For our second model (three sources, two buffers) we are also able to show satisfying and insightful performance
results. In particular when the round-trip times of all connections are equal and the buffers are small, the computed
fairness is in line with the theoretical results in [24]. It would be interesting to investigate the type of fairness in case
buffer sizes are not small or when the round-trip times differ. To the best of our knowledge, our approach based on
SPNs is one of the few theoretical approaches that enables such quantitative analysis. In [24] the impact of round-trip
time differences is considered, but the window control is non-adaptive, contrary to our source model.

We finally mention that specifying the Markovian models by means of SPNs, so that the generator of Markov
chain and the performance measures are computed automatically, has noteworthy advantages over implementing the
generator by hand, as done in [18]. It is easy to include complex behavior of the application layer, or modify aspects
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of TCP in the model. For instance, in a recent master thesis project, we studied various active queue management
algorithms in the context of our models [13].
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