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Abstract

By characterizing the worst case profile, which maximizes the content of a buffer
fed with leaky bucket regulated flows in packet telecommunication networks, we
derive a tight upper bound in the many-sources regime for the tail distribution of
the workload generated by these flows in a FIFO queue with constant service rate.
Furthermore, we compare this workload distribution with an M/G/1 queue and
get insights on the better-than-Poisson property of regulated flows. We conclude
that the superposition of independent regulated flows generates an asymptotically
smaller workload than a marked Poisson process whose service times and intensity
depend on the parameters of regulated sources.
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1 Introduction

In order to gain efficiency in bandwidth utilization in packet networks, stan-
dardization bodies like the IETF propose the characterization flows of infor-
mation not only by a single parameter describing the peak information rate
but also by means of additional parameters reflecting the random fluctuations
of a flow. One common method for characterizing flows is to regulate their out-
put profiles to conform to a specified envelope. The leaky bucket algorithm, is
one such method whereby in addition to the peak rate π, the long-term mean
rate ρ and the bucket size σ that is a measure of its burstiness are specified. A
source conforming to the parameters (σ, ρ, π) is said to be (σ, ρ, π)-regulated.

A formalism to study the performance of a network supporting regulated flows,
called network calculus, has been developed by Cruz [11,12] and more recently
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by Le Boudec [5] and Chang [7]. Network calculus provides a framework to
compute end-to-end worst case delay based on properties of the (min, +) al-
gebra. However, it is essentially a deterministic approach which gives conser-
vative worst-case bounds for network resource allocation.

In this paper, we exploit the statistical multiplexing features of regulated flows
to obtain tighter performance bounds at a single node, keeping in mind that
the ultimate goal is to derive end-to-end bounds. In particular, we address
the issue of estimating the workload distribution of a FIFO queue fed with
independent regulated sources. Our approach is based on asymptotic analysis
of the workload distribution.

In order to provide satisfactory statistical guarantees, workload distribution
of a queue with (σ, ρ, π)-regulated flows has been extensively studied. These
have focused on the overflow probability and/or delay distribution for an ar-
bitrary number of input flows. Kesidis and Konstantopoulos [22,23] studied
the problem via characterizing the extremal traffic shape, which maximizes
the fraction of time when the buffer content is above a threshold b. Chang et
al. [8] also derived an upper bound of the tail distribution of the workload but
via partitioning the busy period.

As pointed out by the authors of [32] (see also [15]), these approaches can be
regarded as applications of the Hoeffding bound given in [21] and they obtain
the upper bounds via majorizing the queue length by a sum of independent
processes and computing bounds based on these independent processes. An-
other approach to studying the superposition of regulated sources in a buffer
has been presented by Busson and Massoulié [29], where they used Hoeffd-
ing’s inequality based on the fact that the total number of packet arrivals in
a given time interval from a regulated source is bounded. This approach was
recently extended by Vojnovic and Le Boudec [32]. They also consider the
so-called many-sources asymptotic framework, which is a key regime when
the peak rate of sources is small compared with the server capacity and there
are many-sources; other results on many-sources asymptotics can be found
in [4,8,10,26]. See also [31] for generalizations and alternative proofs of the
results in [8,22,23].

In this paper we consider the problem of estimating buffer overflows in two dif-
ferent contexts of interest. The first is the many sources asymptotic mentioned
above but our approach is different in that we first characterize the extremal
traffic profile that maximizes the probability of buffer level exceedance. The
second issue we consider is that of deriving simple majorization results for
such flows that are valid even when the many sources context is no more
valid. This is with a view of characterizing the general properties of regulated
flows that might be useful to obtain buffer overflow estimates inside the net-
work. This, however, turns out to be a challenging problem since scheduling
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and multiplexing alter the initial statistical properties of traffic flows and in-
crease dependence between flows sharing common queues. This problem has
been addressed by many authors, see for instance [3,14,9,28,33,34]. In partic-
ular, Bonald et al. in [3] compare the workload distribution of general packet
arrival processes with that of an M/G/1 queue with Poisson/MTU arrivals
(i.e., when each packet has fixed size equal to MTU (Maximum Transmission
Unit)). They call flows “better than Poisson” (BTP) if the workload is larger
when these flows are replaced by Poisson streams. This property has an im-
portant implication to study overflow probabilities inside the network. Indeed,
Massoulié shows in [28] via a sample-path Large Deviations (sp-LD) ordering
that if point processes satisfy the sp-LD principles with a finite rate function,
the sp-LD dominance by the Poisson process is preserved in tandem FIFO
queues. These desirable results thus inspire us to explore the BTP property
of regulated flows.

Regulated flows do exemplify similar BTP properties. The authors of [19]
observed that as the number of sources increases with fixed total load, the
mean delay of regulated traffic tends to converge to that of an M/G/1 queue
fed with a marked Poisson process of parameters associated with the (σ, ρ, π)
values; see Cao et. al [6] for results in a more general setting. Intuitively,
when many of these essentially deterministic on-off processes are multiplexed
together, the workload they generate is smoother than that from a Poisson
process. However, Massoulié [28] also points out that deterministic processes
do not have a smaller sp-LD rate function than a Poisson process for each
sample path of their multiplexing. We thus need to define a weaker asymptotic
ordering in which deterministic regulated flows are BTP.

Thus, in the second part of this paper, we first fix the total input load of
regulated flows and study the asymptotic stochastic ordering between these
fluid processes with a marked Poisson process, when the number of sources
increases. With this scaling scheme, we find that the superposition of a large
number of independent regulated flows is asymptotically smaller than a well-
defined marked Poisson process. Furthermore, the workload generated by the
superposed flow is also asymptotically dominated by an M/G/1 queue fed with
the marked Poisson process. Besides this BTP property in terms of many-
sources with fixed load, we show that the large buffer decay rate and the
many-sources asymptotic rate of regulated flows are larger than those of the
M/G/1 queue. All these results establish the asymptotic BTP property of
regulated flows.

The organization of this paper is as follows: In Section 2, we formulate our
problem and present a preliminary upper bound for the freeze-out fraction
when a single regulated flow accesses the queue. The statistical multiplexing
of many streams are then considered in Section 3 where we obtain an upper
bound via many-sources asymptotics. Subsequently, we study the asymptotic
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BTP property of regulated flows in Section 4. Finally, Section 5 presents our
concluding remarks for the paper.

2 Preliminary Results

We consider the scenario where M classes of independent regulated flows are
multiplexed into a single FIFO queue with infinite buffer and server rate C.
Each flow is leaky-bucket regulated; a flow of class i is characterized by the
(σi, ρi, πi) traffic descriptor, representing bucket size, average rate and peak
rate, respectively. Let Ai(s, t) denote the amount of data generated by a flow of
class i in the time interval (s, t]. The quantity Ai(s, t) satisfies for all 0 ≤ s ≤ t

Ai(s, t) ≤ min(πi(t − s), σi + ρi(t − s)).

There are Nni flows of class i and the total input rate ρ =
∑M

i=1 Nniρi < C
such that the system is stable and a stationary regime exists. Also we need∑M

i=1 Nniπi > C since otherwise the buffer would always be empty. Through-
out this paper, we use a fluid model for input flows so that the processes
(Ai(0, t)) are continuous and piecewise differentiable. We also assume these
processes are with ergodic and stationary increments.

To study the tail distribution of the workload in this queue, we first define the
freeze-out fraction P above a given threshold b as

P def
= lim

t→∞

1

AN (t)

∫ t

0
1{W N (s)≥b}A

N(ds),

where W N(t) is the amount of fluid in the buffer at time t and

AN (t) =
M∑

i=1

Nni∑

j=1

Ai,j(0, t) (1)

is the total amount of fluid which arrives at the buffer in the time interval
[0, t]. The quantity P is the fraction of bits which enter the infinite buffer
while the workload exceeds the threshold b. This quantity is a bound for the
loss probability when the buffer capacity is finite and equal to b. With the
knowledge of Palm theory [25] and the ergodicity of (AN(t)), we know that
P = CP(W N(0) ≥ b)/ρ = P(W N(0) ≥ b | W N(0) > 0), where P(W N(0) ≥ b)
is the probability that the workload in the queue exceeds b in the stationary
regime. It is well known in the queueing literature that the evolution of the
workload process (W N(t)) is governed by the following differential equation:

dW N(t) = −C1{W N (t)>0}dt + AN (dt).
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In the following, we begin with exhibiting an extremal traffic pattern for a
single regulated source (A(t)), which maximizes the freeze-out fraction of the
queue. This traffic profile later facilitates the study of the overflow probability
of a queue when many flows are multiplexed together. The workload process
in the queue is denoted by (W (t)) in the single input case.

Let us consider a busy period of the buffer and let τ denote the length of this
busy period starting, say, at time 0. The freeze-out fraction P(τ) over this
busy period can be written as

P(τ) =
1

A(τ)

∫ τ

0
1{W (s)≥b}A(ds) =

1

Cτ

∫ τ

0
1{W (s)≥b}A(ds).

We clearly have P = E(P(τ)). Our aim is to find the traffic profile which max-
imizes the quantity P(τ) generated over the busy period considered. Instead
of deriving the extremal traffic profile only for P(τ), we can formulate this
problem in a more general setting. For a given input process (A(t)), we define
a functional J(A) by

J(A)
def
=

1

A(τ)

∫ τ

0
f(W (s))A(ds),

where f is a monotonically increasing function. Our objective is to find a
profile of (A(t)) such that the maximum of J(A) is obtained over the given
active period [0, τ ] while the workload process (W (t)) is in the set Y where

Y =
{
W ∈ C1

p [0, τ ] : W (0) = W (τ) = 0
}

,

with C1
p [0, τ ] denoting the set of functions which are continuous in [0, τ ] and

piecewise differentiable in (0, τ).

Lemma 1 The traffic pattern of the single source process (A(t)) which max-
imizes J(A) is independent of the function f and is defined as follows:

• If τ ≤ (πσ)/(C(π−ρ)), the extremal traffic pattern is periodic and composed
of a burst at the peak rate with duration Cτ/π, followed by a silence period
with duration (C − π)τ/π.

• If πσ/(C(π − ρ)) ≤ τ ≤ τmax
def
= σ/(C − ρ), the extremal traffic is periodic

and composed of a burst at the peak rate π with length σ/(π − ρ), followed

by an activity period at rate ρ with length C
(
τ − πσ

C(π−ρ)

)
/ρ, and followed

in turn by a silence period with length (C − ρ)
(

σ
C−ρ

− τ
)

/ρ.

Remark 1 The traffic pattern obtained in Lemma 1 maximizes a number of
quantities related to queueing performances. When f(x) = 1{x≥b}, J(A) =
P(τ) and the freeze-out fraction is maximized. Taking f(x) = x/C, it can
be computed as in [19] and J(A) is associated with the average delay seen
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by arrivals. Other quantities such as the moment generating functions of the
workload can be studied by taking appropriate functions f .

Proof. First we define on Y a partial order � by

W � V iff W (t) ≤ V (t) for all 0 ≤ t ≤ τ.

Since f is an increasing function, it is readily seen that if (A(t)) and (B(t)) are
two arrival process giving rise to the workload processes (W (t)) and (V (t)),
respectively such that W � V , then J(A) ≤ J(B). Thus we need to find
the extremal element W ∗ ∈ Y such that for all W ∈ Y , W � W ∗. We can
construct the following function W ∗(t),

• if τ ≤ πσ/(C(π − ρ)),

W ∗(t) =





(π − C)t, 0 ≤ t ≤ t′1
def
= Cτ/π,

C(τ − t), t′1 ≤ t ≤ τ.

• if τ ≥ πσ/(C(π − ρ)),

W ∗(t) =





(π − C)t, 0 ≤ t ≤ t1
def
= σ

π−ρ
,

σ + (ρ − C)t, t1 ≤ t ≤ t2
def
= (Cτ−σ)

ρ
,

σ + ρt2 − Ct, t2 ≤ t ≤ τ.

Indeed, in the case τ ≤ πσ/(C(π − ρ)) (resp. τ ≥ πσ/(C(π − ρ))), owing
to the (σ, ρ, π) constraint, W (t) ≤ W ∗(t) for all t ∈ [0, t′1] (resp. t ∈ [0, t2]).
Now, assume that there exists some t0 ∈ [t′1, τ ] (resp. t0 ∈ [t2, τ ]) such that
W (t0) > W ∗(t0). Then,

−
∫ τ

t0
W ′(s)ds > W ∗(t0) = C(τ − t0),

which implies that there exists a t′0 ∈ [t0, τ ] such that W ′(t′0) < −C. This
latter inequality is not possible since the drain rate from the queue cannot
exceed C. As a consequence, for every W ∈ Y , we have W � W ∗.

Now, returning to the input process, when τ ≤ πσ/(C(π − ρ)), the input
process, which maximizes the freeze-out fraction in the busy period with length
τ is the classical on-off process; during the on period the arrival rate is equal
to the peak rate and the length of the on period is equal to t′1 = Cτ/π.

In the case when τ ≥ πσ/(C(π − ρ)), the input process, which realizes the
optimal trajectory W ∗(t) over a busy period, is composed of a burst at the
peak rate π and with duration t1, followed by an activity period at rate ρ with
length (t2−t1), and then by a silence period with length S given by S = τ−t2.
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Note that S is positive if and only if τ < σ/(C − ρ). The length of the busy
period of a queue with an input process satisfying a (σ, ρ, π)-constraint is thus
necessarily upper-bounded by σ/(C − ρ). 2

As a consequence of Lemma 1, the maximum freeze-out fraction P∗(τ) is
obtained from the extremal function W ∗ as

P∗(τ) =





0 τ ≤ πb/(C(π − C))

1 − πb

Cτ(π − C)
πb/(C(π − C)) ≤ τ ≤ τ ∗

b

P(τ ∗
b )τ ∗

b /τ τ ∗
b ≤ τ ≤ τmax,

and the maximum of P(τ) is obtained at the critical length of the busy period
τ ∗
b = (Cσ − ρb)/(C(C − ρ)) with the value P∗(τ ∗

b ) = (σ − π−ρ
π−C

b)/(σ − ρ
C
b).

Hence we obtain the upper bound for the freeze-out fraction over an arbitrary
busy period of a queue fed with a single regulated input flow, which agrees
with the conclusion in [22]. Since P = E(P(τ)), we obtain the following result.

Proposition 1 (Kesidis and Konstantopoulos [22]) Under the assump-
tions π > C > ρ and (π − C)σ/(π − ρ) > b, the freeze-out fraction P in the
single server queue fed with a (σ, ρ, π)-regulated fluid traffic source is upper
bounded as

P ≤
σ − π−ρ

π−C
b

σ − ρ
C
b

def
= Pmax. (2)

The upper bound for the overflow probability in the stationary regime when the
buffer capacity is finite and equal to b is then P(W (0) > b) ≤ ρPmax/C.

As noted in [22,23], the worst case traffic pattern is not unique. However,
our worst-case profile also turns out to be natural in the subsequent analysis
involving many sources, as discussed in Section 3.

To conclude this section, we establish the dominance of an M/G/1 queue over
the queue fed with a (σ, ρ, π)-regulated flow. Let W̃ denote the content in the
stationary regime of a buffer drained at constant rate C and fed with batches
with size σ arriving according to a Poisson process with intensity ρ/σ. The
following proposition states that W̃ is stochastically greater than W .

Proposition 2 We have W ≤st W̃ , i.e., for all b ≥ 0, P(W ≥ b) ≤ P(w̃ ≥ b).

Proof. From Proposition 1, we know that for b ≤ σ,

P(W ≥ b | W > 0} ≤
σ − π−ρ

π−C
b

σ − ρ
C
b

≤ σ − b

σ − ρ
C
b
,

where the last inequality is obtained by letting π → ∞. Now, by using a
classical result by Erlang [30], we know that over the interval [jσ, (j +1)σ] for
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j ≥ 0,

P(W̃ ≤ x) =
(
1 − ρ

C

) j∑

i=0

(i − x/σ)i

i!

(
ρ

C

)i

e−
ρ
C

(i−x/σ).

For b ∈ [0, σ], it is easily checked that

σ − b

σ − ρ
C
b
≤ C

ρ

(
1 −

(
1 − ρ

C

)
exp

(
ρb

Cσ

))
,

since ρb
Cσ

< 1 and then, exp( ρb
Cσ

) ≤ σ/(σ − b ρ
C

). Hence, for all b ≥ 0, P(W ≥
b | w > 0) ≤ P(W̃ ≥ b | W̃ > 0) and the result follows. 2

Proposition 2 implies that a single regulated flow is “better-than-Poisson”.
We will extend this result in Section 4 to the better-than-Poisson property of
regulated flows when many of them are multiplexed in a queue.

3 Many-Sources Asymptotics

We now consider the problem of estimating the freeze-out fraction when a
large number of independent traffic streams are fed into a queue. When the
transmission capacity C is large, and in particular, C/π = O(N), we are in the
regime of the many-sources asymptotics, which have been studied by many
authors, see for instance [4,10,26]. In this section, we extend the results and
formalism developed in Likhanov and Mazumdar [26] to the continuous-time
case by a discretization argument. Such extensions are similarly discussed in
papers by Mandjes and Kim [27] and Guibert and Simonian [17], where they
assume a local convex behavior of a rate function (see Equation (3) below).

When a superposition of independent flows (AN(t)) as defined by Equation (1)
enters a queue with server rate C = Nc, the stationary workload (W N(t)) in

the queue satisfies Reich’s formula: W N(0) = supt≥0

(
AN (−t, 0) − Nct

)
. Let

φi,t(h) = E(ehAi(0,t)) denote the moment generating function associated with
a flow of class i where h > 0 and define the rate function associated with
AN(0, t) by

It(a) = sup
h>0

(
ah −

M∑

i=1

ni ln(φi,t(h))

)
.

We now state the main result regarding the stationary tail distribution shown
in [26] for the discrete-time case. This result can be extended to the continuous-
time case by using the continuity of It(a) with respect to a.
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Proposition 3 Assume that there exists a unique t0 < ∞ such that

It0(ct0 + b) = min
t≥0

It(ct + b) > 0. (3)

Suppose that lim inft→∞ It(ct + b)/log t > 0 and that It(x) is continuous in x.
Then, as N → ∞,

P(W N(0) > Nb) =
e−NIt0

(ct0+b)

τ
√

2πκ2N

(
1 + O

(
1

N

))
, (4)

where τ is the unique solution to the equation

M∑

i=1

ni

φ′
i,t0

(τ)

φi,t0(τ)
= ct0 + b

and

κ2 =




M∑

i=1

ni

φ
′′

i,t(τ)

φi,t(τ)
−
(

M∑

i=1

ni

φ′
i,t(τ)

φi,t(τ)

)2

 .

It is important to note the existence of t0, which denotes the critical or most
likely time-scale to overflow. Proposition 3 can be used to derive the worst-
case traffic pattern for (σj , ρj , πj)-regulated flows in the case of many sources
as follows.

Proposition 4 Let ri(t) be the rate function of the arrival process (Ai(t)) of
a flow of class i, which is continuous and piecewise differentiable, such that
Ai(0, t) =

∫ t
0 ri(s)ds ≤ min(πit, ρit + σi) with

∑M
i=1 niρi < c. The extremal

sources which maximize the tail distribution of the queue are periodic on-off
processes with random phases. In each period, the rate function ri(t) of source
class i is given by

ri(t) =





πi , 0 ≤ t ≤ t1i
def
= σi/(πi − ρi),

ρi, t1i < t ≤ t1i + t0i
def
= t0,

0, t0 < t ≤ t0 + σi/ρi,

(5)

where t0 is the most-likely time-scale to overflow in Equation (3) for the input
process (AN (t)) and t0i denotes the duration of transmission at rate ρi which
is determined by t0.

Proof. Note that AN(−t, 0)
d
= AN(0, t) due to stationarity. From the proof of

the many-sources asymptotics in [26], it follows that for some ε > 0

P(W N(0) > Nb) = P

(
AN (t0) > N(ct0 + b)

)
×
(
1 + O(e−εN)

)
.
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In the following, we take t0 to be fixed and investigate the contribution of the
class i sources to the bound. Define ANi

i (t) =
∑Nni

j=1 Ai,j(0, t) and ANi−(t) =

AN(t)−ANi
i (t). In other words, we consider all inputs except the class i inputs.

Then, denoting by ct = ct + b, we have

P(AN(t0) > Nct0) =
∫ ∞

0
P(ANi−(t0) > Nct0 − y) × dP(ANi

i (t0) ≤ y).

From the theorem of Bahadur-Rao [1], we obtain

P

(
ANi−(t0) > Nct − y

)
= K(N)eτy

(
1 + O(

1

N
)
)

,

where K(N) = e−NIt0
(ct0)/(τ

√
2πκ2N) as in Equation (4) and does not depend

on y, and τ is solution to the equation

M∑

j=1,j 6=i

φ′
j,t0(τ)

φj,t0(τ)
= ct0 + b.

Hence, up to an error factor of
(
1 + O( 1

N
)
)
, we obtain

P

(
W N(0) > Nb

)
= K(N)

∫ ∞

0
eτydP(ANi

i (0, t0) ≤ y))

and then,

P

(
W N(0) > Nb

)
= K(N)

(
E

(
eτAi(0,t0)

))Nni

= K(N) (φi,t0(τ))Nni . (6)

From the ergodicity of the source, we have

φi,t0(τ) = lim
T→∞

1

T

∫ T

0
eτAi(s,s+t0)ds.

Hence it is clear that in order to bound the quantity P{W N(0) > Nb}, it is
sufficient to maximize the right hand side of Equation (6). We need determine
the extremal traffic pattern which maximizes E(eτAi(0,t0)). With fixed t0 and
τ , since Ai(0, t) is (σi, ρi, πi)-regulated with piecewise rate function, it is clear
to see that Equation (5) gives the extremal rate function which maximizes the
quantity of information over a given period [0, t0] (see Remark 1). 2

With the above result, we can state the main result for the overflow probability.

Theorem 1 Consider a fluid queueing system with server rate C = Nc and
an infinite buffer which is accessed by

∑M
i=1 Nni independent regulated sources.
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Assume that E(Ai(0, 1)) = ρi and
∑M

i=1 niρi < c. Then, as N → ∞

P(W N(0) > Nb) =
e−NIt0

(ct0+b)

τ
√

2πκ2N

(
1 + O

(
1

N

))
, (7)

where the quantities It0(ct0 + b), τ and κ are calculated as follows:

• Define

φi,t(τ) =
1

t + σi

ρi

∫ t+
σi
ρi

0
eτ
∫ u+t

u
ri(s)dsdu,

where ri(t) is the function defined in Proposition 4.
• Compute:

It0(ct0 + b) = inf
t

sup
h

(
(ct + b)h −

M∑

i=1

ni ln(φi,t(h))

)
. (8)

• Compute τ as the solution to the equation

M∑

i=1

ni

φ′
i,t0

(τ)

φi,t0(τ)
= ct0 + b.

• Finally compute

κ2 =
M∑

i=1

ni

φ
′′

i,t0
(τ)

φi,t0(τ)
−
(

M∑

i=1

ni

φ′
i,t0

(τ)

φi,t0(τ)

)2

.

Remark 2 The validity of our many-sources asymptotic holds when Nc
π

=
O(N), i.e., when a large number of regulated flows are multiplexed in the
queue and the buffer grows correspondingly. If the peak rates of some flows are
comparable with the capacity C of the server, the Gaussian approximation in
the theorem of Bahadur-Rao [1] does not hold. In this case, we can however use
an upper bound for the overflow probability obtained via similar worst traffic
profiles and Chernoff’s inequality as

P(W N(0) > b) ≤ e−NIt0
(Ct0+b), (9)

where the rate function It0 can be computed as in Equation (8); see also [32].

The principal difference with [32] is that in our approach, we explicitly take
into account the many sources effect and determine the rate function for the
source, which is extremal for the overflow asymptotics, rather than a priori
first bounding the probability and then trying to make the bound small [8,32].
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4 Better-than-Poisson Asymptotics

Besides analyzing the tail distribution of a single queue with independent reg-
ulated input flows, as mentioned in the Introduction it is more interesting
to characterize additional statistical properties of these flows such that their
queueing performance inside a large network are numerically computable. Mo-
tivated by the Better than Poisson conjecture studied in [3], in this section we
compare the asymptotic workload distribution generated by regulated flows
with that of an M/G/1 queue.

4.1 Many Sources with Fixed Load

We begin with a scenario similar to that defined in Section 2 except that as
N increases, the average rate of the total aggregate (AN (t)) defined by Equa-
tion (1) is fixed and equal to ρ =

∑M
i=1 Nniρi < C. Our goal is to identify the

stochastic ordering between the workload (W N(t)) generated by the superpo-
sition of regulated flows and the workload (W p(t)) in the M/G/1 queue fed
with a marked Poisson process (Ap(t)) with arrival rate λp =

∑M
j=1 Nniρi/σi

and with marks Bp such that P(Bp = σi) = (Nniρi)/(σiλp).

Theorem 2 Let each of the regulated flows (Ai,j(t)) assume the rate function
given in (5) with

lim
ρi→0

ρit
0
i = 0, (10)

then when the load ρi
0 of each class i = 1, . . . , M , is fixed (ρi

0 = Nniρi for class
i), we have for all x ≥ 0,

lim
N→∞

P(AN(t) > x) ≤ P(Ap(t) > x) (11)

and with regard to workload processes,

lim
N→∞

P{W N(0) > x} ≤ P{W p(0) > x}. (12)

Indeed, when the input load ρ is fixed, as N increases, the load of individual
regulated sources decreases, which results in the bursts of a given source being
more and more spread out. This intuitively explains why regulated flows tend
to converge to a marked Poisson process from the viewpoint of the Poisson
convergence theorem. Our main theorem rigorously shows that the multiplex-
ing of independent regulated flows is asymptotically smaller than a marked
Poisson process and the corresponding workload distribution is asymptoti-
cally dominated by an M/G/1 queue explicitly known. In the following, we
first set up the ordering using the extremal profile constructed in Equation (5)
in Section 3.
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The stochastic ordering between regulated flows (Ai(t)) and a marked Poisson
process (Ap

i (t)) is set up via the construction of the following two marked
point processes (Xi(t)) and (X ′

i(t)). As illustrated in Figure 1, for each class
i, the process (Xi(t)) has batch arrivals of size Bi = σi +ρit

′
0i and inter-arrival

time τi = t′0i + σi

ρi
, where t′0i (see Equation (5)) is the length of the on period

of (Ai(t)), with t′0i = σi/(πi−ρi)+ t0i . In addition, let the process (X ′
i(t)) have

the same batch size Bi but inter-arrival time τ ′
i = 1

N
τi. Hence, the process

(Xi(t)) is a replica of the process (X ′
i(t)) but the time scale is dilated by N ,

i.e., (Xi(t)) and (X ′
i(

t
N

)) have the same distribution.

ri(t)

πi

ρi
σi

πi−ρi

t0i
σi

ρi

t

t

t

Xi(t)

τ i = t′0i + σi

ρi

X ′
i(t)

σi + ρit
′
0i

σi + ρit
′
0i

τ ′
i = 1

N τi

· · ·

· · ·

Fig. 1. Constructed Processes for Ordering

From the construction of (Xi(t)), it is clear to see that the process (Xi(t))
dominates the regulated input (Ai(t)) for each sample path and thus for the
corresponding workload distributions. Therefore, Theorem 2 holds if

(1) the process (XN(t)), which is the superposition of Nni independent copies
of the processes ((Xi(t) for i = 1, . . . , M , converges to (Ap(t))) in distri-
bution,

(2) if (2) the workload (Ŵ N
t ) generated by (XN(t)) has a stationary distri-

bution which converges to the workload (W p
t ) of the M/G/1 queue with

input (Ap(t)).

In the next sections, we show these properties, which in turn proves Theorem 2.

4.1.1 Convergence of (XN(t)) to (Ap(t))

The convergence of (XN(t)) to (Ap(t)) is stated in the following proposition.

Proposition 5 When the load ρi
0 = Nniρi of each class i = 1, . . . , M is fixed,

the process (XN(t)) weakly converges to the process (Ap(t)) when N tends to
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infinity; this is denoted, for short, by (XN(t)) ⇒ (Ap(t)).

Proof. Let us first consider the point process (X̂i(t)) counting the jumps of pro-
cess (Xi(t)). This process has mean intensity ρi/(σi + ρit

′
0i) = ρi

0/(Nni(σi +
ρit

′
0i)), where ρi

0 is fixed. If we superpose Nni independent copies (X̂i,j(t)),

j = 1, . . . , Nni, of the point process (X̂i(t)), then we are almost in the same
situation as in [13, Proposition 9.2.IV] and we can conclude that the super-
posed process (X̂Nni

i (t)) such that X̂Nni
i (t) =

∑Nni
j=1 X̂i,j(t) weakly converges

to the Poisson process with intensity ρi
0/σi. The present situation, however,

is slightly different from [13, Proposition 9.2.IV] since the average intensity
of the point process (X̂i(t)) is not exactly equal to ρi

0/(Nniσi) but there is a
correcting term, which tends to 0 when N goes to infinity owing to Assump-
tion (10). The proof of [13, Proposition 9.2.IV] can then be readily adapted
to give convergence of the superposed process to the corresponding Poisson
process.

With regard to the marks, the jumps size of the process (Xi(t)) is equal to
Bi = σi + ρit

′
0i → σi when N → ∞ thanks to Assumption (10). Hence, when

we consider the superposed process (XNni
i (t)) of Nni independent copies of

the individual process (Xi(t)), we immediately deduce that (XNni

i (t)) weakly
converges to the marked Poisson process with intensity ρi

0/σi and marks equal
to σi.

When M classes of independent regulated flows (XNni

i ), i = 1, . . . , M are
multiplexed together as XN(t) =

∑M
i=1 XNni

i (t), we obtain the Poisson con-
vergence of the process (XN(t)) by independence of the processes (XNni(t))
and the infinite divisibility of the Poisson process. As a matter of fact, for all
x > 0, we have

lim
N→∞

P{XN(t) ≤ x} = lim
N→∞

∑

(k1,...,kM )∈NM

P

(
XNi

i = kiBi,
m∑

i=1

kiBi ≤ x

)

=
∑

(k1,...,kM )∈NM :
∑

kiBi≤x

M∏

i=1

lim
N→∞

P(XNni
i (t) = kiBi)

=
∑

(k1,...,kM )∈NM :
∑

kiBi≤x

M∏

i=1

P(Xp
i (t) = kiBi) = P(Xp(t) ≤ x)

by infinite divisibility of the Poisson process. 2

4.1.2 Convergence of (Ŵ N(t)) to (W p(t))

Define the marked point process X ′(t)
def
=

∑M
i=1

∑ni
j=1 X ′

i,j(t), which corre-
sponds to the superposition of ni independent copies of the processes (X ′

i(t))
for i = 1, . . . , M . If we consider N independent copies of the process (X ′(t)),
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denoted by (Xj(t)) for j = 1, . . . , N , then we have XN(t)
d
=
∑N

j=1 Xj( t
N

).
In the following, we will first study the properties of X ′(t) which lead to the
convergence result on the workload (Ŵ N(t)) of a queue fed with (XN(t)).

We apply the same technique as in the paper by Cao and Ramanan [6]. For
this purpose, we check preliminary properties for the processes under consider-
ation. We first note that the process (X̂ ′(t)) counting the jumps of the process
(X ′(t)) is a simple stationary point process with finite intensity

λ′ =
M∑

i=1

Nniρi

σi + ρit
′
0i

≤ λp.

In addition, we clearly have for all θ > 0 and t > 0, E(eθX′(t)) < ∞.

Lemma 2 For all x ≥ C > ρ, the function

Λ1(x)
def
= lim inf

t→0
sup

θ∈[0,∞)

(
xθ − 1

t
log E

(
eθX′(t)

))

is such that Λ1(x) > 0.

Proof. From the independence of the different processes X ′
i,j(t) we have for all

θ > 0
1

t
log E

(
eθX′(t)

)
=

1

t

M∑

i=1

ni log E(eBiθX̂′
i
(t)).

Since X̂i(t) = λ′
it − αi + 1{T i

1
≤αiτ ′

i
}, where λ′

i = 1/τ ′
i , αi = t/τ ′

i − ⌊t/τ ′
i⌋, and

T i
1 is the time of the first point of (X̂ ′

i(t)) after 0, we have

1

t
log E

(
eθX′(t)

)
=

1

t

M∑

i=1

ni log E(e
Biθ(λ′

i
t+1

{Ti
1
≤αiτ ′

i
}
−αi)

)

=
1

t

M∑

i=1

ni(Bi(λ
′
it − αi)θ + log(eBiθαi + 1 − αi))

= ρθ − 1

t

M∑

i=1

ni(Biαiθ − log(eBiθαi + 1 − αi)).

Since αi = t/τ ′
i − ⌊t/τ ′

i⌋, we have limt→0
1
t

∑M
i=1 niBiαiθ/τ

′
i = ρθ and

lim
t→0

M∑

i=1

ni
1

t
log(eBiθαi + 1 − αi) =

M∑

i=1

niλ
′
i(e

Biθ − 1).

Therefore, for any θ > 0

Λ1(x) ≥ lim inf
t→0

(
xθ − 1

t
log E(eθX′(t))

)
= xθ −

M∑

i=1

niλ
′
i(e

Biθ − 1)
def
= f(θ).
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The derivative of the function f(θ) is equal to f ′(θ) = x−∑M
i=1 niλ

′
iBie

Biθ and
we note that f(0) = 0 and f ′(0) = x − ρ > 0 for x > ρ. Hence for sufficiently
small θ, f(θ) > 0 and we deduce that Λ1(x) > 0. 2

Lemma 3 We have

Λ2(C)
def
= lim inf

t→∞

t

log t
sup
θ≥0

(
Cθ − 1

t
log E(eθX′(t))

)
> 0.

Proof. Take θt = β log t
t

for some β > 0. We have

Λ2(C) ≥ lim inf
t→∞

(
t

log t
Cθt −

1

log t
log E(eθtX′(t))

)

= Cβ − lim sup
t→∞

1

log t
log E(eθtX′(t)).

As in the proof of Lemma 2, we have

log E[eθtX′(t)] =
M∑

i=1

ni log eBiθt(λ′
i
t−αi)E

(
e

Biθt1{Ti
1
≤αiτ ′

i
}

)

≤
M∑

i=1

ni log eBiθt(λ′
it+1) = ρβ log t +

M∑

i=1

niBiθt.

Hence,

Λ2(C) ≥ Cβ − lim sup
t→∞

(
1

log t
log E(eθtX′(t)))

≥ Cβ − lim sup
t→∞

1

log t

(
ρβ log t +

M∑

i=1

niBiβ
log t

t

)
= (C − ρ)β > 0.

2

With the above properties of process (X ′(t)), we are now able to prove the
main result of this section.

Proposition 6 For all x ≥ 0, the stationary workloads (Ŵ N(t)) and (W p(t))
are such that

lim
N→∞

P

(
Ŵ N(0) > x

)
= P(W p(0) > x).

Proof. The stationary workload Ŵ N(0)
d
= supt≥0(X

N(t) − Ct). Given T ∈
[0,∞), we can define the functional

FT (f)
def
= sup

t∈[0,T ]
[ft − Ct]
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such that when ft = XN(t) we have for any finite T > 0,

P(Ŵ N(0) > x) ≤ P

(
FT (XN(t)) > x

)
+ P

(
sup

t∈[T,∞)
(XN(t) − Ct) > x

)
.

Then, using the continuous mapping theorem, the P-a.s. continuity of the
projection operator f → fT ([2, Theorems 5.1 and 15.1]), and Proposition 5,
we know that for all T ≥ 0, FT (XN(.)) ⇒ FT (Ap(.)) as N → ∞. This implies
that for any ε, x > 0, there exists N0(ε) > 0 such that for all N > N0(ε),

∣∣∣∣∣P
(

sup
t∈[0,T ]

(XN(t) − Ct) > x

)
− P

(
sup

t∈[0,T ]
(Ap(t) − Ct)) > x

)∣∣∣∣∣ < ε/3. (13)

Using Lemmas 2 and 3, and similar techniques as in [6, Section III], we can
show that for all x > 0 and ε > 0, there exist finite TX(ε) and NX(ε) > 0 such
that for T > TX(ε) and N > NX(ε),

P

(
sup

t∈[T,∞)
(XN(t) − Ct) > x

)
< ε/3. (14)

From the infinite divisibility of the Poisson process, similar results hold when
marked Poisson process (Ap(t)) is the input, i.e., for all x > 0 and ε > 0, there
exist finite Tp(ε) and Np(ε) > 0 such that for T > Tp(ǫ) and N > Np(ǫ),

P

(
sup

t∈[T,∞)
(Xp(t) − Ct) > x

)
< ε/3. (15)

We then obtain for all x > 0 and ε > 0, by taking T ≥ max(TX(ε), Tp(ε)) and
N > max(N0(ε), NX(ε), Np(ε))

|P(Ŵ N(0) > x) − P(W p(0) > x)|
≤ |P(Ŵ N(0) > x)−P(FT (XN(t)) > x)|+ |P(W p(0) > x)−P(FT (Ap(t)) > x)|

+ |P(FT (XN(t)) > x) − P(FT (Ap(t)) > x)|,

which implies that

|P(Ŵ N(0) > x) − P(W p(0) > x)|

≤ P

(
sup

t∈[T,∞)
(XN(t) − Ct) > x

)
+ P

(
sup

t∈[T,∞)
(Xp(t) − Ct) > x

)
+ ε/3 < ε,

and the result the follows. 2

Remark 3 We have so far established the asymptotic better-than-Poisson
properties for traffic flows which have fixed (σi, ρi, πi) parameters and extremal
profiles given in (5). In fact, from the construction of processes (Xi(t)) and
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(X ′
i(t)), it is clear to see that these properties can be extended to multiplex-

ing regulated flows (Ai(t)) with general deterministic on-off profiles. Changing
peak rate constraint and/or on period profiles does not affect the convergence
results. All that matters is that each flow (Ai(t)) has sustainable average rate
ρi = limt→∞ Ai(t)/t and its burstiness is confined as supt>0(Ai(s, t+s)−ρit) ≤
σi. The dominant marked Poisson process can be constructed with these (σi, ρi)
parameters as given in Theorem 2.

The dominance performance of the M/G/1 queue is illustrated in Figure 2. We
also compare against simulation the other performance upper bounds obtained
via the many sources asymptotic approach in Section 3 and the Bernoulli
approach [8] which bounds the moment generating function of regulated flows
by a Hoeffding inequality. In the simulations, we fixed the capacity C = 1,
the threshold b = 0.3 and the offered load ρ = 0.7 as the number of sources
increases. We simulated the overflow probability of the queue when multiple
homogeneous independent regulated flows are multiplexed together. Note that
the peak rate (π = 0.5, 2) of each flow is comparable with the capacity in our
scenarios, so we chose Equation (9) in Section 3 as the many-sources upper
bound. The overflow probability of the corresponding M/G/1 queue can be
computed via the inversion of its Laplace transform which has a well-known
explicit form [24].

Figure 2 clearly shows that our M/G/1 bound is comparable to the bounds
from many-sources asymptotics. It becomes more accurate as the peak rate of
each flow or the number of sources grows, i.e., when the regulated flows con-
verge to the constructed marked point processes (XN(t)). Moreover, although
it is only the asymptotic ordering that we can show between regulated flows
and Poisson, the numerical evaluation indicates that the workload increases
as N increases, and the better-than-Poisson property holds for any N .

M/G/1 bound
Bernoulli Chernoff

simulation
equation (9)
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(a) π = 0.5, σ = 0.05, ρ = 0.7

M/G/1 bound
Bernoulli Chernoff
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(b) π = 2, σ = 0.05, ρ = 0.7

Fig. 2. Comparison of many sources bound, Bernoulli bound, and M/G/1 bound
vs. simulation for independent homogeneous regulated sources
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4.2 Discussions on Other Asymptotics

Besides the better-than-Poisson asymptotics for many regulated flows with
their total load fixed, we have also studied in [18] that regulated flows are
better-than-Poisson in the large buffer asymptotics. We specifically have the
following result.

Proposition 7 Let the server rate be C = Nc and the buffer threshold be
B = Nb. Then the workload W N(0) in the queue with regulated inputs (AN (t))
defined by Equation (1) decays at a faster rate than the workload W p(0) of the
M/G/1 queue, i.e.,

lim
b→∞

1

Nb
log P(W N ≥ Nb) ≤ −ξ. (16)

where ξ is the Kingman’s exponent of the M/G/1 queue, defined by −ξ =
limx→∞

1
x

log P(W p(0) ≥ x).

Proof. We consider a partition {ci}, i = 1, . . . , M , of the server capacity C =
Nc such that

∑M
i=1 nici = c and ci > ρi for i = 1, . . . , M . From Reich’s formula,

we have

W N(0)
d
= sup

t≥0

M∑

i=1

Nni∑

j=1

(Ai,j(0, t) − cit) ≤
M∑

i=1

Nni∑

j=1

Wi,j(0),

where Wi,j(0) is the content in the stationary regime of a buffer drained at
constant rate ci and fed with a source of class i, which is (σi, ρi, πi)-regulated.
Hence, for all b ≥ 0, we have from Proposition 2

P(W ≥ Nb) ≤ P




M∑

i=1

Nni∑

j=1

Wi,j ≥ Nb


 ≤ P




M∑

i=1

Nni∑

j=1

W̃i,j(0) ≥ Nb


 ,

where W̃i,j(0) is the stationary content in a fluid buffer drained at constant
rate ci and fed with batches of fluid with size σi arriving according to a Poisson

process with rate ρi/σi. Its Laplace transform E(e−sW̃i,j(0)) is given by

E

(
e−sW̃i,j

)
=

(ci − ρi)s

cis + ρi

σi
e−σis − ρi

σi

.

Let s̃i(ci) denote the module of the pole with the smallest module of the above
Laplace transform. (The positive real number s̃i(ci) is called the Kingman’s
exponent of the corresponding M/G/1 queue.) We have s̃i = 1

σi
η( ci

ρi
), where

for x = ci/ρi > 1, η(x) is the non-zero root with the smallest module of the
equation

−xη + eη − 1 = 0.
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Note that η(x) is an increasing positive function of x and satisfies η > 1−1/x
and ηeη > 2(eη − x).

Now with independent inputs, the different random variables W̃i,j(0) are in-
dependent and the Laplace transform

E

(
e
−s
∑M

i=1

∑Nni
j=1

W̃i,j(0)
)

=
M∏

i=1

(
E

(
e−sW̃i

))Nni

, (17)

where for fixed i, W̃i is distributed as the random variables W̃i,j(0). The tail of

the probability distribution function of the random variable
∑M

i=1

∑Nni

j=1 W̃i,j(0)
is governed by the root with the smallest module of the above Laplace trans-
form; this root is − inf i(s̃i(ci)). This property holds for any partition {ci} of
the server capacity such that ci > ρi for all i = 1, . . . , M .

To determine the exact tail behavior of the probability distribution of the
random variable W , we are led to determine the maximum value of inf{s̃i(ci)}
over all the partitions of the server capacity C. Since s(ci) = 1

σi
η( ci

ρi
) and

η(x) is an increasing function of x, the optimal values c∗i are such that all the

values 1
σi

η(
c∗i
ρi

) for i = 1, . . . , M are equal to some constant, say s∗. Indeed,

if all the si(ci) were not equal, it would always be possible to increase the
maximum value of the minimum by decreasing the largest value. Hence, s∗

satisfies − c∗i
ρi

σis
∗ = e−σis∗ − 1, for i = 1, · · · , M . With C =

∑M
i=1 Nnic

∗
i , s∗

turns out to be the solution with the smallest module to the equation

Cs∗ +
M∑

i=1

Nni
ρi

σi
(e−s∗σi − 1) = 0.

Note that the Laplace transform for the workload W p(0) of the M/G/1 queue
is

E(e−sW̃ ) =
(C − ρ)s

Cs +
∑M

i=1 Nni
ρi

σi
(e−σis − 1)

.

Therefore, s∗ = ξ is the Kingman’s exponent of this M/G/1 queue with Pois-
son input with intensity λ =

∑M
i=1 Nniρi/σi.

Going back to Equation (17), since all the parameters s̃i(c
∗
i ) are equal to ξ, the

point −ξ is a pole with order L
def
= N

∑M
i=1 ni for the Laplace transform (17).

The Laplace transform E(e−sw̃i) can specifically be written as

E

(
e−sW̃i

)
= ai

(
ξ

s + ξ
− fi(s)

)
,
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with ai = (c∗i − ρi)/(ρie
σiξ − c∗i ) and

fi(s) =
c∗i − ρie

σiξ + ξ ρi

σi

∑∞
n=2

(−σi)
n

n!
(s + ξ)n−2eσiξ

c∗i − ρieσiξ + ρi

σi

∑∞
n=2

(−σi)n

n!
(s + ξ)n−1eσiξ

.

It then follows that the Laplace transform (17) can be written as

E

(
e
−s
∑M

i=1

∑Nni
j=1

W̃i,j(0)
)

=

(
M∏

i=1

aNni

i

)


L∑

j=1

κj

(
ξ

s + ξ

)j

+ g(s)


 ,

where and function g has poles with modules greater than −ξ and κj is the
coefficient of Y j in the product

∏L
j=1(Y + bj), with bj = ξρiσie

σiξ/2(ρie
σiξ −

c∗i ) − 1. Note that bj > 0 and ai > 0 from the properties of η.

By using [20, Theorem 10.7], it follows that

P




M∑

i=1

Nni∑

j=1

W̃i,j(0) ≥ x


 ∼

(
M∏

i=1

aNni
i

)


L∑

j=1

κj

(j − 1)!
Γ(j, xξ)


 ,

where we have used the incomplete Gamma function Γ(a, x)
def
=
∫∞
x ta−1e−tdt.

By using the asymptotic equivalent Γ(a, z) ∼ za−1e−z for large z > 0, we
obtain

P




M∑

i=1

Nni∑

j=1

W̃i,j(0) ≥ x


 ∼ κL

(L − 1)!

(
M∏

i=1

aNni

i

)
(Nbξ)L−1e−Nbξ. (18)

Take logarithms and divide by Nb, Equation (16) then follows by letting b →
∞ . 2

By presenting Proposition 7 in a similar scaling setting as the many-sources
asymptotics in Section 3, we make it easier to study the relationship between
the Kingman’s exponent ξ and the many-sources asymptotic rate It0(ct+b). In
fact, authors in [4,10] have studied the connections between the many-sources
asymptotic rate It0(ct + b) and the large buffer asymptotic decay rate H(c),
defined as in [4]

H(c)
def
= − lim

b→∞

1

Nb
log P{W N(0) ≥ Nb}.

They show that for the multiplexing of general independent traffic flows, as
the buffer level b becomes large, these two asymptotics in our setting are
equivalent in the limit sense, i.e.,

lim
b→∞

1

b
It0(ct + b) = H(c).
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In addition, the authors of [4,10] also indicated that Poisson arrivals do not
gain scale economies, i.e., 1

b
Ip
t0(ct+ b) = ξ. Therefore we can conclude that the

many-sources asymptotic rate of regulated flows Ir
t0(ct+ b) also dominates the

Kingman’s exponent of the M/G/1 queue when the buffer size goes large, i.e.,

lim
b→∞

1

b
Ir
t0(ct + b) ≥ ξ. (19)

In fact, numerical computations show that Ir
t0
(ct+b) ≥ Ip

t0(ct+b) = ξb for any
buffer level b, as seen in Figure 3. However a rigorous proof of this ordering
property requires explicit and accurate characterization of the moment gener-
ating function of the regulated flows, which demands further investigations.
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Fig. 3. Comparison of many sources rate functions for homogeneous sources (i.e.,
M = 1) with parameters σ = 16, ρ = 1, C = N × 2, and π = 9 -K&K rate function
is the rate function obtained by Kesidis and Konstantopoulos [22].

All these better-than-Poisson discussions indicate that an appropriate M/G/1
queue can well estimate the workload distribution of regulated flows in a large
network system. The performance bound given by this M/G/1 queue is more
accurate when the peak rate of each regulated flow is comparable to the service
capacity, i.e., when the many-sources asymptotic bound in Theorem 1 does
not hold.

5 Conclusion

In this paper we have studied the tail distribution of the buffer content
when independent heterogeneous (σi, ρi, πi)-regulated traffic streams are mul-
tiplexed in a FIFO manner. We obtained two types of upper bounds via many-
sources asymptotic and the asymptotic dominance property of an M/G/1
queue respectively. Numerical results indicate that these bounds function quite
well and that substantial multiplexing gains are achievable although the input
flows are simply characterized with three leaky bucket parameters.
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Our many-sources asymptotic bound is obtained via identifying the worst
case traffic profiles of regulated flows. It is much tighter than the approxima-
tions given in the literature. Moreover, since the bound is achieved via the
extremal sources for a (σ, ρ, π) envelope, it is unlikely that we can do much
better without more information about the moment generating function of
the sources. Meanwhile, the bound via the “asymptotic better-than-Poisson”
property provides insights in understanding the workload distribution from
another perspective. It implies that the workload generated by fluid regulated
flows can be stochastically dominated by some M/G/1 queue. Both of these
results complement those reported in [19] in that we can compute bounds for
both the mean buffer occupancy as well as the asymptotic. It is also interest-
ing to note that the extremal sources for both results have the same behavior.
We can utilize the mean delay results for network design when the traffic is
best effort while the results reported in this paper are better for tight quality
of service constraints [16].

As claimed in [3], we expect to analyze the performance of regulated flows in-
side a network via constructing proper M/G/1 queues for performance upper
bounds. Indeed, in [34], the authors found that in a large network, each inter-
nal flow with initially fixed burst size σi can be regulated by the same pair of
(σi, ρi) parameters. Thus each aggregate flow consisting of multiple individual
flows from the same previous queues is regulated by (

∑
σi,
∑

ρi). In addition,
since flows from different previous routes can be regarded independent, these
flows to an internal queue can thus be asymptotically dominated by a marked
Poisson process constructed according to the (σi, ρi) parameters. This is a
simplest way to construct an M/G/1 queue to dominate the workload distri-
bution of internal queues with regulated inputs. However, this type of M/G/1
queue gives conservative estimates since it ignores the possible multiplexing
gains in aggregate flows. One extension of this work is to find proper bursti-
ness characteristics of aggregate flows inside the network, which should also
be practical to compute for engineering purposes.
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