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Abstract

Modern Internet systems have evolved from simple monolithic systems to complex multi-

tiered architectures. For these systems, providing good response time performance is crucial

for the commercial success. In practice, the response-time performance of multi-tiered systems

is often degraded by severe synchronization problems, causing jobs to wait for responses from

different tiers. Synchronization between different tiers is a complicating factor in the optimal

control and analysis of the performance. In this paper, we study a generic multi-tier model

with synchronization. The system is able to share processing capacity between arriving jobs

that need to be sent to other tiers and the responses that have arrived after processing

from these tiers. We provide structural results on the optimal resource allocation policy and

provide a full characterization of the policy in the framework of Markov decision theory. We

also highlight important effects of synchronization in the model and discuss their implications

for practice. We validate our expressions through extensive experimentations for a wide range

of resource configurations.

Keywords: Markov decision processes, multi-tier Internet services, optimal control, queueing

networks, resource allocation, synchronization.

1 Introduction

The growing popularity of the Internet has driven the need for several businesses to open their

business processes to their Web clients. Many businesses, such as retailers, auctioneers, and

banks, offer significant portions of their services through the Internet. However, the computer

systems that are engineered to host these applications are highly complex. Modern Internet

applications have evolved from simple monolithic systems to complex multi-tiered systems. These

applications do not simply deliver pre-written content but dynamically generate content on the

fly using multi-tiered applications. Sometimes, these responses are generated by tens or hundreds

of such multi-tiered applications. For instance, a single request to amazon.com (a major online

retailer) is served by hundreds of applications operating in parallel [21]. Such elementary software

applications, designed to be composed with each other, are commonly referred to as services.

As shown in Figure 1, a service generates a response to each request by executing some

application-specific business logic, which in turn typically issues queries to its data store and/or
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Figure 1: Application Model of an Internet Service.

requests to other services. A service is exposed through well-defined client interfaces accessible

over the network. Examples of services include those for processing orders and maintaining shop-

ping carts. For online services, providing a good client experience is one of the primary concerns.

Human computer interaction studies have shown that users prefer response times of less than a

second for most tasks, and that human productivity improves more than linearly as computer

system response times fall in the sub-second range [17]. Hence, for such online services, the design

of such systems that provide low response times to their clients is a crucial business requirement.

To provide good client response times, the administrators of these systems must have the ability

to control its performance. In particular, one has control over the processing resources to handle

jobs at different tiers. The optimal allocation of these processing resources is not trivial as different

tiers are dependent on each other due to synchronization, i.e., a job cannot be further processed

because it awaits answers from different tiers. For such systems, synchronization between different

tiers is a complicating factor in the optimal control and analysis of the performance.

In the past few years, several groups have looked at modeling Internet applications. Most of

them focus on modeling single-tier applications such as Web servers [13, 8, 10, 1] and databases [5].

However, very few have studied models for multi-tier applications, like those given in Figure 1,

which are more commonplace in the Web. Applying simple single-tier models to multi-tiered

systems leads to poor solutions as different tiers have different characteristics. Moreover, the

single-tier models do not capture the dependence between different tiers due to synchronization.

In this paper we study a generic multi-tier model with synchronization in a methological

framework. We provide structural results on the optimal resource allocation policy and provide

a full characterization of the policy in the framework of Markov decision theory. A remarkable

result is that the optimal allocation policy does not depend on the state of the sub-services in

the system. We also highlight specific effects of synchronization in the model and discuss their

implications for practice. We validate our expressions through extensive experimentations for a

wide range of resource configurations. In contrast to most previous works on modeling Internet

systems, we do not restrict ourselves to multi-tier systems with independent tiers.

The rest of the paper is organized as follows. Section 2 presents the related work and Section 3

presents the system model. Section 4 presents the structural results for the optimal resource

allocation policy. Section 5 highlights important effects of synchronization in the model and
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discusses its implications for practice. Section 6 concludes the paper.

2 Related Work

2.1 Modeling Internet Systems

Various groups in the past have studied the problem of modeling Internet systems. Typical

models include modeling Web servers, database servers, and application servers [13, 8, 5, 10]. For

example, in [13], the authors use a queueing model for predicting the performance of Web servers by

explicitly modeling the CPU, memory, and disk bandwidth in addition to using the distribution

of file popularity. Bennani and Menasce [2] present an algorithm for allocating resources to a

single-tiered application by using simple analytical models. Villela et al. [20] use an M/G/1/PS

queueing model for business logic tiers and to provision the capacity of application servers. A

G/G/1 based queueing model for modeling replicated Web servers is proposed in [19], which is

to perform admission control during overloads. In contrast to these queueing based approaches,

a feedback control based model was proposed in [1]. In this work, the authors demonstrate that

by determining the right handles for sensors and actuators, the Web servers can provide stable

performance and be resilient to unpredictable traffic. A novel approach to modeling and predicting

the performance of a database is proposed in [5]. In this work, the authors employ machine learning

and use an K-nearest neighbor algorithm to predict the performance of database servers during

different workloads. However, the algorithm requires substantial input during the training period

to perform effective prediction.

All the aforementioned research efforts have been applied only to single-tiered applications

(Web servers, databases, or batch applications) and do not study complex synchronized multi-

tiered applications which is the focus of this paper. Some recent works have focused on modeling

multi-tier systems. In [10], the authors model a multi-tiered application as a single queue to

predict the performance of a 3-tiered Web site. As mentioned, Urgaonkar et al. [18] model multi-

tier applications as a network of queues and assume the request flows between queues to be

independent. This assumption enables them to assume a product-form network so that they can

apply a mean value analysis (MVA) to obtain the mean response time to process a request in the

system. Although this approach can be very effective, MVA approaches can be limiting in nature

as they do not allow us to get results for the synchronized system which is of crucial importance

in large scale enterprises [21].

2.2 Performance Analysis

There are few works that study the performance of Internet systems in the context of multi-tier

applications. Although the response time was made explicit for the first time in [12], a lot of

research on response times has already been done in other systems. Results for the business logic,

modeled as a processor sharing (PS) node, are given in [6], where the Laplace-Stieltjes Transform
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(LST) is obtained for the M/M/1/PS node. In [14] an integral representation for this distribution

is derived, and in [15] the distribution is derived for the more general M/G/1/PS system (in case

a representation of the service times is given). The individual services, behind the business logic,

are usually modeled as first-come-first-served (FCFS) queueing systems for which results are given

in [7].

The first important results for calculating response times in a queueing network are given

in [9], in which product-form networks are introduced. A multi-tier system modeled as a queueing

network is of product-form when the following three conditions are met. First, the arrival process

is a Poisson process and the arrival rate is independent of the number of requests in the network.

Second, the duration of the services (behind the business logic) should be exponentially distributed,

and is not allowed to depend on the number of requests present at that service. Finally, the

sequence in which the services are visited is not allowed to depend on the state of the system

except for the state of the node at which the request resides. Multi-tier systems that satisfy these

properties fall within the class of so-called Jackson networks and have nice properties.

In [3], the authors give an overview of results on response times in queueing networks. In

particular, they give expressions for the LST of the joint probability distribution for nodes which

are traversed by requests in a product-form network according to a pre-defined path. Response

times in a two-node network with feedback (such as at the business logic) were studied in [4].

The authors propose some solid approximations for the response times with iterative requests.

They show that the approximations perform very well for the first moment of the response times.

In [11], a single PS node is studied with several multi-server FCFS nodes. The authors derive

exact results for the mean response time but do not allow for synchronization.

3 Problem Formulation

Consider a service system at which jobs arrive according to a Poisson process with rate λ. Upon

arrival the job receives service, which has an exponentially distributed duration with parameter µa,

from a server that works in a PS manner. After finishing its service, the job forks into n subjobs,

and each subjob is sent to a backend server for further processing. The backend servers are modeled

as single-server FIFO queues for which the service duration of backend server i is exponentially

distributed with parameter µi for i = 1, . . . , n. We assume that after all subjobs of the same

job have finished their service, they join back to one job; we call this synchronization. Note that

jobs that have not synchronized yet, do not block the backend servers from processing other jobs,

neither do they use any processing capacity in the system. The unsynchronized jobs are stored

in a temporary infinitely-sized buffer until synchronization occurs. After synchronization the job

is then sent back to the first PS node for its final service, which has an exponentially distributed

duration with parameter µd. The system is depicted in Figure 2. The load of the PS node is

defined as ρps = λ( 1
µa

+ 1
µd

). For backend server i the load is defined as ρi = λ
µi

. For the backend

area the load is defined as the maximum load of all backend servers, thus ρsync = max{ρ1, ..., ρn}.
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Figure 2: Model of the system

In order to describe the system mathematically, we define the state space of the system as

S = Nn+2
0 = {0, 1, . . .}n+2. An element ~s ∈ S is given by ~s = (~x, ~y) = (xa, xd, y1, . . . , yn), where

xa and xd represent the number of jobs in the PS node for arrival and departure, respectively, and

yi represents the number of subjobs at backend node i for i = 1, . . . , n. Note that the backend

node with the highest number of subjobs determines the number of forked jobs that have not

synchronized yet, i.e., max{~y} = max{y1, . . . , yn} is the number of jobs that have forked and

are being processed at the backend nodes but have not synchronized yet (synchronized jobs are

counted in xd). With this description we have full information on all jobs and subjobs in the

system.

Based on the information ~s a controller can control the behavior of the PS node. Assuming

that the capacity of the PS node is set to 1, the controller can assign a fraction a ∈ A = [0, 1]

of the capacity to the xa arriving jobs and a fraction of 1 − a to the xd departing jobs. When

a = xa/(xa + xd), then the PS node shares the capacity equally among all jobs, and thus is a

pure processor-sharing node. However, when the control parameter a is chosen statically we get

the discriminatory processor-sharing regime. In our setting the control parameter is allowed to

be dynamically set and dependent not only on the jobs in the PS node, but also on the jobs in

the backend nodes. Since we want to minimize response time [17] of the multi-tier application

our goal is to minimize the expected sojourn time of jobs. Minimizing the expected sojourn time

corresponds to minimizing the long-run average number of jobs in the system and therefore the

aim of the controller is to minimize xa + xd + max{~y}.

With this description, we can fully describe the control problem as a Markov decision problem.

To this end we uniformize the system (see Section 11.5 of Puterman [16]) by defining γ = λ +

max{µa, µd}+
∑n

i=1 µi. Without loss of generality, we assume that γ = 1, since we can always get
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this by scaling. Uniformizing is equivalent to adding dummy transitions (from a state to itself)

such that the rate out of each state is equal to 1; then we can consider the rates to be transition

probabilities. Let ~1 denote the vector with a 1 at all entries. Then, the transition probabilities

p, are given by p
(

(~x, ~y), a, (xa + 1, xd, ~y)
)

= λ for arrivals, p
(

(~x, ~y), a, (xa − 1, xd, ~y + ~1)
)

= aµa if

xa > 0 for the forking of serviced arrivals, p
(

(~x, ~y), a, (xa, xd +max{~y}−max{~y−ei}, ~y−ei)
)

= µi

for a service completion at backend node i for i = 1, . . . , n (note that max{~y}−max{~y−ei} checks

if synchronization has taken place), and p
(

(~x, ~y), a, (xa, xd − 1, ~y)
)

= (1− a)xd for the departures.

Note that due to uniformization we have p
(

(~x, ~y), a, (~x, ~y)
)

= 1 − λ − aµa − (1 − a)µd −
∑n

i=1 µi.

Define the cost function c as c(~x, ~y) = xa + xd + max{~y}, i.e., the number of jobs in the system.

Then the tuple (S,A, p, c) fully specifies the average-cost Markov decision problem.

Define a deterministic policy π as a function from S to A, i.e., π(~s) ∈ A for all ~s ∈ S. Let

uπ
t (~s) denote the total expected costs up to time t when the system starts in state ~s under policy

π. Note that for any stable and work-conserving policy, the Markov chain satisfies the unichain

condition, so that the average expected costs g(π) = limt→∞ uπ
t (~s)/t is independent of the initial

state ~s (see Proposition 8.2.1 of Puterman [16]). The goal is to find a policy π∗ that minimizes

the long-term average costs, thus g = minπ g(π). To determine this policy, we define V (~s) to be

a real-valued function defined on the state space. This function will play the role of the relative

value function, i.e., the asymptotic difference in total costs that results from starting the process

in state ~s instead of some reference state. The long-term average optimal actions are a solution of

the optimality equation (in vector notation) g + V = TV , where T is the dynamic programming

operator acting on V defined as follows:

TV (~x, ~y) =
(

xa + xd + max{~y}
)

+ λV (xa + 1, xd, ~y)

+ min
a∈[0,1]

{

aµa1{xa>0}V (xa − 1, xd, ~y +~1) + aµa1{xa=0}V (xa, xd, ~y)

+ (1 − a)µdV
(

xa, (xd − 1)+, ~y
)

+
(

1 − λ − aµa − (1 − a)µd −

n
∑

i=1

µi

)

V (xa, xd, ~y)
}

+

n
∑

i=1

µiV
(

xa, xd + max{~y} − max{(~y − ei)
+}, (~y − ei)

+
)

.

The first term in the expression TV (x) models the direct costs that are occurred per time unit. The

second term deals with the arriving jobs to the system. The terms between the brackets represent

the control in which the tradeoff between services of newly arrived jobs and the departing jobs

is made (the fourth term between the brackets is the uniformization constant). The last term

models the departures of the subjobs in the backend nodes. The optimality equation g + V = TV

is usually hard to solve analytically in practice. Alternatively, the optimal actions can also be

obtained by recursively defining Vl+1 = TVl for arbitrary V0. For l → ∞, the maximizing actions

converge to the optimal ones (for existence and convergence of solutions and optimal policies we

refer to Chapter 8 of Puterman [16]). This procedure is also called value iteration. We shall use

this in Section 5 for the illustration of our numerical experiments.
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4 Structural Results

In the previous section, we described the model and a solution technique to obtain the optimal

policy. However, the optimal policy also possesses structural properties, which give insight into

the system behaviour. In fact, in this section, we fully characterize the optimal policy as a function

of the state. In order to derive these results, we reformulate the dynamic programming backward

recursion equations as follows.

Vn+1(~x, ~y) =
(

xa + xd + max{~y}
)

+ λVn(xa + 1, xd, ~y) + min
a∈[0,1]

T a
n (~x, ~y)

+

n
∑

i=1

µiVn

(

xa, xd + max{~y} − max{(~y − ei)
+}, (~y − ei)

+
)

,

with

T a
n (~x, ~y) = aµa1{xa>0}Vn(xa − 1, xd, ~y +~1) + aµa1{xa=0}Vn(xa, xd, ~y)

+ (1 − a)µdVn(xa, (xd − 1)+, ~y) +
(

1 − λ − aµa − (1 − a)µd −

n
∑

i=1

µi

)

Vn(xa, xd, ~y).

We first turn our attention to the stage a job find itself in. It is intuitive to conjecture that the

further a job is in its processing, the better the system is. The stages of a job can be split up into

four parts (from last stage to first stage); last service by the processor-sharing node, service by

the backend nodes, first service by the processor-sharing node, and arrival of a new job. In order

to show that the first in the list is the best state of the system and the last in the list is the least

profitable, we need to show that for arbitrary (~x, ~y) ∈ S we have the following properties.

1. V (xa, xd, ~y) > V (xa, xd − 1, ~y) for xd > 0,

2. V (xa, xd, ~y) ≥ V
(

xa, xd + max{~y} − max{(~y − ei)
+}, (~y − ei)

+
)

for i = 1, . . . , N ,

3. V (xa, xd, ~y) ≥ V (xa − 1, xd, ~y +~1) for xa > 0,

4. V (xa + 1, xd, ~y) > V (xa, xd, ~y).

Note that combining the four properties above is the formalized statement of ‘the further a job

is in its processing, the better the state of the system is’. In the next four lemmas, we prove the

properties that are listed above. We first start with the departure of a job in the last stage: the

last service by the processor-sharing node.

Lemma 4.1: V (xa, xd, ~y) > V (xa, xd − 1, ~y) for all (~x, ~y) ∈ S with xd > 0.

Proof : The proof is by induction on n in Vn. Define V0(~x, ~y) = xa + xd + max{~y}. Then, clearly

the statement holds. Now, assume that Vn(xa, xd, ~y) > Vn(xa, xd − 1, ~y) for some n ∈ N. Now, we

prove that Vn+1(xa, xd, ~y) satisfies the increasingness property as well. Then, for (~x, ~y) ∈ S with
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xd > 0

Vn+1(xa, xd, ~y) − Vn+1(xa, xd − 1, ~y) = 1 + λ
[

Vn(xa + 1, xd, ~y) − Vn(xa + 1, xd − 1, ~y)
]

+ min
a∈[0,1]

T a
n (xa, xd, ~y) − min

b∈[0,1]
T b

n(xa, xd − 1, ~y)

+

n
∑

i=1

µi

[

Vn

(

xa, xd + max{~y} − max{(~y − ei)
+}, (~y − ei)

+
)

− Vn

(

xa, xd + max{~y} − max{(~y − ei)
+} − 1, (~y − ei)

+
)]

> min
a∈[0,1]

T a
n (xa, xd, ~y) − min

b∈[0,1]
T b

n(xa, xd − 1, ~y).

The equality follows by expanding Vn+1 into Vn. The inequality follows by using the induction

hypothesis. Let a∗ ∈ argmina∈[0,1] T
a
nVn(xa, xd, ~y). Then, for xa > 0

min
a∈[0,1]

T a
n (xa, xd, ~y) − min

b∈[0,1]
T b

n(xa, xd − 1, ~y) ≥ T a∗

n (xa, xd, ~y) − T a∗

n (xa, xd − 1, ~y)

= a∗µa

[

Vn(xa − 1, xd, ~y +~1) − Vn(xa − 1, xd − 1, ~y +~1)
]

+ (1 − a∗)µd

[

Vn(xa, xd − 1, ~y) − Vn

(

xa, (xd − 2)+, ~y
)]

+
(

1 − λ − a∗µa − (1 − a∗)µd −
n

∑

i=1

µi

)[

Vn(xa, xd, ~y) − Vn(xa, xd − 1, ~y)
]

≥ 0.

The first inequality follows from taking a potentially suboptimal action in minb∈[0,1] T
b
n(xa, xd −

1, ~y). The equality follows from the definition of T a
n . The second inequality follows from the

induction hypothesis. When xa = 0, we get a∗µa

[

Vn(xa, xd, ~y) − Vn(xa, xd − 1, ~y)
]

for which the

induction hypothesis applies as well.

The lemma shows that a departure of the system leads to a better state of the system. This is

quite intuitive since we have a job fewer in the system. We now turn our attention to the services

at the backend nodes. Here, the number of jobs in the system remains the same, however, a job

is closer to departure from the system. The next lemma shows that this leads to a better state as

well.

Lemma 4.2: V (xa, xd, ~y) ≥ V
(

xa, xd + max{~y} − max{(~y − ei)
+}, (~y − ei)

+
)

for all (~x, ~y) ∈ S

and i = 1, . . . , N .

Proof : The proof is by induction on n in Vn. Define V0(~x, ~y) = 0. Then, clearly the statement

holds. Now, assume that Vn(xa, xd, ~y) ≥ Vn

(

xa, xd + max{~y} − max{(~y − ei)
+}, (~y − ei)

+
)

for all

i for some n ∈ N. Now, we prove that Vn+1(xa, xd, ~y) satisfies the property as well. Let i such
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that yi > 0, then

Vn+1(xa, xd, ~y) − Vn+1(xa, xd + max{~y} − max{~y − ei}, ~y − ei)

= λ
[

Vn(xa + 1, xd, ~y) − Vn(xa + 1, xd + max{~y} − max{~y − ei}, ~y − ei)
]

+ min
a∈[0,1]

T a
n (xa, xd, ~y) − min

b∈[0,1]
T b

n(xa, xd + max{~y} − max{~y − ei}, ~y − ei)

+

n
∑

j=1

µj

[

Vn

(

xa, xd + max{~y} − max{(~y − ej)
+}, (~y − ej)

+
)

− Vn

(

xa, xd + max{~y − ei} − max{(~y − ei − ej)
+}, (~y − ei − ej)

+
)]

≥ min
a∈[0,1]

T a
n (xa, xd, ~y) − min

b∈[0,1]
T b

n(xa, xd + max{~y} − max{~y − ei}, ~y − ei).

The equality follows from expanding Vn+1 into Vn. The inequality follows by using the induction

hypothesis. Let a∗ ∈ argmina∈[0,1] T
a
nVn(xa, xd, ~y). Then, for xa > 0

min
a∈[0,1]

T a
n (xa, xd, ~y) − min

b∈[0,1]
T b

n(xa, xd + max{~y} − max{~y − ei}, ~y − ei)

≥ T a∗

n (xa, xd, ~y) − T b∗

n (xa, xd + max{~y} − max{~y − ei}, ~y − ei)

= a∗µa

[

Vn(xa − 1, xd, ~y +~1) − Vn(xa − 1, xd + max{~y} − max{~y − ei}, ~y − ei +~1)
]

+ (1 − a∗)µd

[

Vn

(

xa, (xd − 1)+, ~y) − Vn

(

xa, (xd + max{~y} − max{~y − ei} − 1)+, ~y − ei

)]

+
(

1 − λ − a∗µa − (1 − a∗)µd −

n
∑

i=1

µi

)[

Vn(xa, xd, ~y)

− Vn(xa, xd + max{~y} − max{~y − ei}, ~y − ei)
]

.

The first inequality follows from taking a potentially suboptimal action in minb∈[0,1] T
b
n(xa, xd +

max{~y}−max{~y−ei}, ~y−ei). The equality follows from the definition of T a
n . The second inequality

follows from the induction hypothesis. Note that we used that Vn(xa − 1, xd, ~y + ~1) ≥ Vn(xa −

1, xd+max{~y+~1}−max{~y+~1−ei}, ~y−ei +~1) = Vn(xa−1, xd+max{~y}−max{~y−ei}, ~y−ei+~1).

When xa = 0, we get a∗µa

[

Vn(xa, xd, ~y) − Vn(xa, xd + max{~y} − max{~y − ei}, ~y − ei)
]

for which

the induction hypothesis directly applies.

The proof of the lemma is somewhat more complicated, because of the max operator to count

the number of jobs finished in the backend nodes. Note that the number of queues N does not

play an essential role in the proof. A similar remark holds when a job is finished processing the

first time at the processor-sharing node. The following lemma formalizes this.

Lemma 4.3: V (xa, xd, ~y) ≥ V (xa − 1, xd, ~y +~1) for all (~x, ~y) ∈ S with xa > 0.

Proof : The proof is by induction on n in Vn. Define V0(~x, ~y) = 0. Then, clearly the statement

holds. Now, assume that Vn(xa, xd, ~y) ≥ Vn(xa −1, xd, ~y +~1) for some n ∈ N. Now, we prove that
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Vn+1(xa, xd, ~y) satisfies the property as well. Then, for (~x, ~y) ∈ S with xa > 0

Vn+1(xa, xd, ~y) − Vn+1(xa − 1, xd, ~y +~1) = λ
[

Vn(xa + 1, xd, ~y) − Vn(xa, xd, ~y +~1)
]

+ min
a∈[0,1]

T a
n (xa, xd, ~y) − min

b∈[0,1]
T b

n(xa − 1, xd, ~y +~1)

+

n
∑

i=1

µi

[

Vn

(

xa, xd + max{~y} − max{(~y − ei)
+}, (~y − ei)

+
)

− Vn

(

xa − 1, xd + max{~y +~1} − max{~y +~1 − ei}, ~y +~1 − ei

)]

≥ min
a∈[0,1]

T a
n (xa, xd, ~y) − min

b∈[0,1]
T b

n(xa − 1, xd, ~y +~1)

+

n
∑

i=1

µi

[

Vn

(

xa, xd + max{~y} − max{(~y − ei)
+}, (~y − ei)

+
)

− Vn

(

xa − 1, xd + max{~y} − max{(~y − ei)
+}, ~y +~1 − ei

)]

≥ min
a∈[0,1]

T a
n (xa, xd, ~y) − min

b∈[0,1]
T b

n(xa − 1, xd, ~y +~1).

The equality follows by expanding Vn+1 into Vn. The first inequality follows by using the induction

hypothesis on the terms with the arrivals. Note that we also have used the fact that max{~y +

~1} − max{~y + ~1 − ei} is equal to max{~y} − max{(~y − ei)
+} for all i. The second inequality then

follows by the induction hypothesis again. Let a∗ ∈ argmina∈[0,1] T
a
n (xa, xd, ~y). Then, for xa > 1

min
a∈[0,1]

T a
n (xa, xd, ~y) − min

b∈[0,1]
T b

n(xa − 1, xd, ~y +~1) ≥ T a∗

n (xa, xd, ~y) − T a∗

n (xa − 1, xd, ~y +~1)

= a∗µa

[

Vn(xa − 1, xd, ~y +~1) − Vn(xa − 2, xd, ~y +~2)
]

+ (1 − a∗)µd

[

Vn

(

xa, (xd − 1)+, ~y
)

− Vn

(

xa − 1, (xd − 1)+, ~y +~1
)]

+
(

1 − λ − a∗µa − (1 − a∗)µd −

n
∑

i=1

µi

)[

Vn(xa, xd, ~y) − Vn(xa − 1, xd, ~y +~1)
]

≥ 0.

The first inequality follows from taking a potentially suboptimal action in minb∈[0,1] T
b
n(xa −

1, xd, ~y+~1). The equality follows from the definition of T a
n . The second inequality follows from the

induction hypothesis. When xa = 1, we get a∗µa

[

Vn(xa−1, xd, ~y+~1)−Vn(xa−1, xd, ~y+~1)
]

= 0.

The lemma shows that when a job forks after finishing its processing at the first time it visits

the processor-sharing node, the state of the system improves. It remains to show that an arrival

of a job leads to a less good state of the system. The following lemma formalizes this statement.

Lemma 4.4: V (xa + 1, xd, ~y) > V (xa, xd, ~y) for all (~x, ~y) ∈ S.

Proof : The proof is by induction on n in Vn. Define V0(~x, ~y) = xa + xd + max{~y}. Then, clearly

the statement holds. Now, assume that Vn(xa +1, xd, ~y) ≥ Vn(xa, xd, ~y) for some n ∈ N. Now, we

10



prove that Vn+1(~x, ~y) satisfies the increasingness property as well. Then,

Vn+1(xa + 1, xd, ~y) − Vn+1(xa, xd, ~y) = 1 + λ
[

Vn(xa + 2, xd, ~y) − Vn(xa + 1, xd, ~y)
]

+ min
a∈[0,1]

T a
n (xa + 1, xd, ~y) − min

b∈[0,1]
T b

n(xa, xd, ~y)

+

n
∑

i=1

µi

[

Vn

(

xa + 1, xd + max{~y} − max{(~y − ei)
+}, (~y − ei)

+
)

− Vn

(

xa, xd + max{~y} − max{(~y − ei)
+}, (~y − ei)

+
)]

> min
a∈[0,1]

T a
n (xa + 1, xd, ~y) − min

b∈[0,1]
T b

n(xa, xd, ~y).

The equality follows by expanding Vn+1 into Vn. The inequality follows by using the induction

hypothesis. Let a∗ ∈ argmina∈[0,1] T
a
n (xa + 1, xd, ~y). Then, for xa > 0

min
a∈[0,1]

T a
n (xa + 1, xd, ~y) − min

b∈[0,1]
T b

n(xa, xd, ~y) ≥ T a∗

n (xa + 1, xd, ~y) − T a∗

n (xa, xd, ~y)

= a∗µa

[

Vn(~x, ~y +~1) − Vn(xa − 1, xd, ~y +~1)
]

+ (1 − a∗)µd

[

Vn

(

xa + 1, (xd − 1)+, ~y
)

− Vn

(

xa, (xd − 1)+, ~y
)]

+
(

1 − λ − a∗µa − (1 − a∗)µd −

n
∑

i=1

µi

)[

Vn(xa + 1, xd, ~y) − Vn(xa, xd, ~y)
]

≥ 0.

The first inequality follows from taking a potentially suboptimal action in minb∈[0,1] T
b
n(xa, xd, ~y).

The equality follows from the definition of T a
n . The second inequality follows from the induction

hypothesis. When xa = 0, we get a∗µa

[

Vn(xa, xd, ~y + ~1) − Vn(xa, xd, ~y)
]

as first term in the

equality. By applying Lemma 4.2 to Vn(xa, xd, ~y + ~1) for all i we derive that Vn(xa, xd, ~y + ~1) ≥

Vn(xa, xd + 1, ~y). By applying Lemma 4.1 subsequently, we have Vn(xa, xd, ~y + ~1) ≥ Vn(xa, xd +

1, ~y) > Vn(xa, xd, ~y), which finishes the proof.

Lemmas 4.1–4.4 show that it is better to have a job further in its processing stages. This

observation also suggests that the resources should be allocated such that the better stages are

reached as quickly as possible. Before we turn our attention to this question, we first observe

that the optimal policy allocates all resources to either the incoming or the outgoing jobs at the

processor node.

Lemma 4.5: The optimal policy assigns all resources to either the incoming or the outgoing jobs,

i.e., argmina∈[0,1] T
a(xa, xd, ~y) ∈ {0, 1} for all (~x, ~y) ∈ S.

11



Proof : Note that

min
a∈[0,1]

T a(xa, xd, ~y) = min
a∈[0,1]

{

aµa1{xa>0}V (xa − 1, xd, ~y +~1) + aµa1{xa=0}V (xa, xd, ~y)

+ (1 − a)µdV
(

xa, (xd − 1)+, ~y
)

+
(

1 − λ − aµa − (1 − a)µd −

n
∑

i=1

µi

)

V (xa, xd, ~y)
}

= min
a∈[0,1]

{

a
[

µa

(1{xa>0}V (xa − 1, xd, ~y +~1) + 1{xa=0}V (xa, xd, ~y) − V (xa, xd, ~y)
)

+ µd

(

V (xa, xd, ~y) − V
(

xa, (xd − 1)+, ~y
))]

}

.

Now it is clear that the sign of the terms between the square brackets determines if a∗ = 0 or

a∗ = 1. In particular, if xa > 0 and xd = 0, we have that V (xa − 1, xd, ~y + ~1) − V (xa, xd, ~y) ≤ 0

(see Lemma 4.3). Hence, we have a∗ = 1. On the other, if xa = 0 and xd > 0, we have that

V (xa, xd, ~y) − V (xa, xd − 1, ~y) > 0 (see Lemma 4.1). Hence, a∗ = 0.

We are now ready to prove our main theorem based on the insights obtained so far. We have

already seen that based on Lemmas 4.1–4.4, the further a job is in the stage of service in the

system, the better the state of the system is. Hence, based on these insights, one could conjecture

that assigning all resources to the job furthest in the system might be optimal. The next theorem

shows that this is indeed true and fully characterizes the optimal policy.

Theorem 4.1: The optimal policy in state (~x, ~y) ∈ S is given by a∗ = 1{xd=0}, i.e., assign all

resources to the outgoing jobs if any (a∗ = 0 when xd > 0), and assign all resources to arriving

jobs otherwise (a∗ = 1 when xd = 0).

Proof : In the proof of Lemma 4.5, we have already seen that if xa > 0 and xd = 0, we have that

a∗ = 1. In addition, it was also shown that if xa = 0 and xd > 0, we have that a∗ = 0. Clearly,

when xa = 0 and xd = 0, then a∗ = 1 is optimal (as is any other value for a∗). Hence, we need

to show that for xa > 0 and xd > 0 we have a∗ = 0, which translates to (cf. see the proof of

Lemma 4.5) showing that

µd

[

V (xa, xd, ~y) − V (xa, xd − 1, ~y)
]

> µa

[

V (xa, xd, ~y) − V (xa − 1, xd, ~y +~1)
]

for all (~x, ~y) ∈ S with xa > 0 and xd > 0. The proof is by induction on n in Vn. Define V0(~x, ~y) = 0.

Then, clearly the statement holds. Now, assume that the statement holds for some n ∈ N. Now,

12



we prove that the statement also holds for n + 1. Thus,

µd

[

Vn+1(xa, xd, ~y) − Vn+1(xa, xd − 1, ~y)
]

− µa

[

Vn+1(xa, xd, ~y) − Vn+1(xa − 1, xd, ~y +~1)
]

= µd

[

(xa + xd + max{~y}) − (xa + xd + 1 + max{~y})
]

+ µdλ
[

Vn(xa + 1, xd, ~y) − Vn(xa + 1, xd − 1, ~y)
]

+ µd

[

T ∗
n(xa, xd, ~y) − T ∗

n(xa, xd − 1, ~y)
]

+ µd

n
∑

i=1

µi

[

Vn

(

xa, xd + max{~y} − max{(~y − ei)
+}, (~y − ei)

+
)

− Vn

(

xa, xd + max{~y} − max{(~y − ei)
+} − 1, (~y − ei)

+
)]

− µa

[

(xa + xd + max{~y}) − (xa − 1 + xd + max{~y +~1})
]

− µaλ
[

Vn(xa + 1, xd, ~y) − Vn(xa, xd, ~y +~1)
]

− µa

[

T ∗
n(xa, xd, ~y) − T ∗

n(xa − 1, xd, ~y +~1)
]

− µa

n
∑

i=1

µi

[

Vn

(

xa, xd + max{~y} − max{(~y − ei)
+}, (~y − ei)

+
)

− Vn(xa − 1, xd + max{~y + 1} − max{~y +~1 − ei}, ~y +~1 − ei)
]

.

The equality follows from expanding Vn+1 into Vn. By rearranging terms, we find

µd

[

Vn+1(xa, xd, ~y) − Vn+1(xa, xd − 1, ~y)
]

− µa

[

Vn+1(xa, xd, ~y) − Vn+1(xa − 1, xd, ~y +~1)
]

= µd + λ
[

µd

(

Vn(xa + 1, xd, ~y) − Vn(xa + 1, xd − 1, ~y)
)

− µa

(

Vn(xa + 1, xd, ~y) − Vn(xa, xd, ~y +~1)
)]

+ µd

[

T ∗
n(xa, xd, ~y) − T ∗

n(xa, xd − 1, ~y)
]

− µa

[

T ∗
n(xa, xd, ~y) − T ∗

n(xa − 1, xd, ~y +~1)
]

+
n

∑

i=1

µi

[

µd

(

Vn

(

xa, xd + max{~y} − max{(~y − ei)
+}, (~y − ei)

+
)

− Vn

(

xa, xd + max{~y} − max{(~y − ei)
+} − 1, (~y − ei)

+
))

− µa

(

Vn

(

xa, xd + max{~y} − max{(~y − ei)
+}, (~y − ei)

+
)

− Vn(xa − 1, xd + max{~y +~1} − max{~y +~1 − ei}, ~y +~1 − ei)
)]

> µd

[

T ∗
n(xa, xd, ~y) − T ∗

n(xa, xd − 1, ~y)
]

− µa

[

T ∗
n(xa, xd, ~y) − T ∗

n(xa − 1, xd, ~y +~1)
]

.

The inequality follows by using the induction hypothesis. Note that we also have used the fact

that max{~y +~1} −max{~y +~1− ei} is equal to max{~y} −max{(~y − ei)
+} for all i. First, consider
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the case xd ≥ 2, then

µd

[

T ∗
n(xa, xd, ~y) − T ∗

n(xa, xd − 1, ~y)
]

− µa

[

T ∗
n(xa, xd, ~y) − T ∗

n(xa − 1, xd, ~y +~1)
]

= µdµd

[

Vn(xa, xd − 1, ~y) − Vn(xa, xd − 2, ~y)
]

− µdµa

[

Vn(xa, xd − 1, ~y) − Vn(xa − 1, xd − 1, ~y +~1)
]

+ µd

(

1 − λ − µd −
n

∑

i=1

µi

)[

Vn(xa, xd, ~y) − Vn(xa, xd − 1, ~y)
]

− µa

(

1 − λ − µd −

n
∑

i=1

µi

)[

Vn(xa, xd, ~y) − Vn(xa − 1, xd, ~y +~1)
]

= µd

[

µd

(

Vn(xa, xd − 1, ~y) − Vn(xa, xd − 2, ~y)
)

− µa

(

Vn(xa, xd − 1, ~y) − Vn(xa − 1, xd − 1, ~y +~1)
)]

+
(

1 − λ − µd −

n
∑

i=1

µi

)[

µd

(

Vn(xa, xd, ~y) − Vn(xa, xd − 1, ~y)
)

− µa

(

Vn(xa, xd, ~y) − Vn(xa − 1, xd, ~y +~1)
)]

≥ 0.

The first equality follows by expanding T ∗
n(~x, ~y) by taking the optimal action a∗ = 0 in the expan-

sion. The second equality follows by rearranging the terms so that the induction hypothesis can

be applied, which yields the inequality. Now, suppose that xd = 1. Recall that the uniformization

constant γ was defined as γ = λ + µa + µd +
∑n

i=1 µi = 1. Then,

µd

[

T ∗
n(xa, xd, ~y) − T ∗

n(xa, xd − 1, ~y)
]

− µa

[

T ∗
n(xa, xd, ~y) − T ∗

n(xa − 1, xd, ~y +~1)
]

= µd

[

µdVn(xa, 0, ~y) +
(

1 − λ − µd −
n

∑

i=1

µi

)

Vn(xa, 1, ~y)
]

− µd

[

µaVn(xa − 1, 0, ~y +~1) +
(

1 − λ − µa −

n
∑

i=1

µi

)

Vn(xa, 0, ~y)
]

− µa

[

µaVn(xa − 1, 1, ~y +~1) +
(

1 − λ − µa −

n
∑

i=1

µi

)

Vn(xa, 1, ~y)
]

+ µa

[

µdVn(xa − 1, 0, ~y +~1) +
(

1 − λ − µd −

n
∑

i=1

µi

)

Vn(xa − 1, 1, ~y +~1)
]

= µdµdVn(xa, 0, ~y) + µdµaVn(xa, 1, ~y)

− µdµaVn(xa − 1, 0, ~y +~1) − µdµdVn(xa, 0, ~y)

− µaµaVn(xa − 1, 1, ~y +~1) − µaµdVn(xa, 1, ~y)

+ µaµdVn(xa − 1, 0, ~y +~1) + µaµaVn(xa − 1, 1, ~y +~1)

= 0.

The first equality follows from taking the optimal actions in the first, second and fourth term, and

a suboptimal action in the third term. By rewriting all uniformization constants, we obtain the
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Figure 3: Expected total number of jobs for different values of ρps.

second equality.

The previous theorem shows that the policy has a remarkably simple structure: only serve

departing jobs first, and if none are available serve the newly arrived jobs first. This policy is does

not take the states of the backend nodes into account. This is quite surprising, because one could

expect that jobs in the backend nodes provide information to the decision maker. However, the

theorem clearly shows that this intuition does not hold.

5 Numerical experiments

In the previous section, we derived structural properties of the optimal policy. The main purpose

of this section is to get insight in the performance gain of the optimal policy. We numerically

validate the structural results obtained in Section 4 with a broad range of parameter settings.

In the following experiments we study the model as described in Section 3 with n = 2, thus

we investigate the system with two backend servers in the synchronizing area. We focus on the

expected total number of jobs in the system (Ltot). For computational tractability, we truncate

the state-space to 50 jobs for each dimension. This truncation at 50 jobs is high enough to obtain

results that are accurate to 10−6.

In our first experiment, we study the performance of the system under different workload

utilizations. We do this, by changing the parameter µa of the PS-node while keeping µd fixed, and

in a different experiment, we change µd while keeping µa fixed. For both the optimal dynamic

policy and under the pure processor-sharing (pps) regime (i.e., the allocation fraction a = xa/(xa+

xd)), we calculate the expected total number of jobs Ltot in the system. For this purpose, let λ = 1

and µ1 = µ2 = 5
4 , so that ρsync = 0.8 in all cases. Figure 3 shows the results for these experiments

for load values ρps that range from 0.1 to 0.95. The figure depicts four curves; the two lower curves

are for the optimal policy and two upper curves are for the processor-sharing regime. For each

policy, one curve depicts Ltot when µa is varied (note that µd is kept constant). For the other
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Figure 4: Expected total number of jobs, ρ = 0.2.
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Figure 5: Expected total number of jobs, ρ = 0.6.

curve, the parameter µd is varied in a similar manner. The first observation is that the dynamic

policy performs better in all cases, in particular, for higher load values. The second observation,

is that the system performance seems to be asymmetric, i.e., the performance of the system for a

fixed (µa, µd) is different than the performance for (µd, µa) even though the load is the same.

In order to understand the previous results more in-depth, we continue with a series of exper-

iments in which we keep the load constant, thus we vary the parameters µa and µd such that the

offered load to the system remains equal. We show that the asymmetric behavior becomes more

apparent for both the optimal dynamic policy as well as the pure processor-sharing regime. The

parameters for these experiments are λ = 1 and µ1 = µ2 = 10
9 , and done under low, medium, and

high loads, i.e., ρ = 0.2, 0.6, and 0.9.
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Figure 6: Expected total number of jobs, ρ = 0.9.

The results are shown in Figures 4–6. The figures depicts the four curves as in the previous

graph; the two lower curves are for the optimal policy and two upper curves are for the processor-

sharing regime. For each policy, one curve depicts Ltot when µa is varied (note that µd is then

completely determined, since the load is kept constant). For the other curve, the parameter

µd is varied in a similar manner. In case of symmetric behaviour, the two curves should be

indistinguishable from each other. However, the results show that this indeed is not the case.

Under the pure processor-sharing regime this is clear for all different values of the load. In case

of the optimal policy, we see that the two curves become more similar as the load increases.

Next, we observe that the dynamic policy has a better performance, as predicted by our theorem,

than the pure processor-sharing regime, especially under high loads. Finally, we observe that the

performance is not monotone under the dynamic policy at low loads. This can be seen by the

‘W’-shape of Ltot in Figure 4. The effect diminishes as the load increases.

In order to gain more insight into the performance gains of the dynamic policy versus the pure

processor-sharing regime, we calculate the gain explicitly for our experiments. Table 1 shows the

percentage gain ∆ =
(

Ltot(PPS) − Ltot(dynamic)
)

/Ltot(PPS) for the three load cases. We can

see that one can achieve gains of 1% for low loads and almost 12% for high loads. The results in

the table also suggest that when µa << µd or µd << µa, the pure processor-sharing regime will

mimic the 0 − 1 control of the optimal policy. Hence, the performance gains in this case as less

than in other cases. We give an extremal case in which this effect becomes clear. Let λ = 0.87,

µa = 10, µd = 1.0, and µ1 = µ2 = 1.0, yielding a very high load of ρ = 0.957. The optimal strategy

gives Ltot = 17.061, where the pure processor-sharing regime gives Ltot = 17.153. This is merely

a gain of only 0.54%, whereas one would expect much higher gains due to the high load.
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ρ = 0.2 ρ = 0.6 ρ = 0.9
(µa; µd) Ltot pps Ltot opt ∆% gain (µa; µd) Ltot pps Ltot opt ∆% gain (µa; µd) Ltot pps Ltot opt ∆% gain
(55; 5.5) 0.6168 0.6142 0.4236 (10; 2) 3.6037 3.5110 2.5714 (1.2; 15) 20.7990 20.2703 2.5420
(30; 6) 0.6169 0.6129 0.6587 (6.875; 2.2) 3.6046 3.4835 3.3600 (1.4; 5.385) 20.8279 19.2007 7.8127

(21.667; 6.5) 0.6170 0.6123 0.7732 (5.455; 2.4) 3.6060 3.4682 3.8235 (1.6; 3.636) 20.8113 18.5939 10.6549
(17.5; 7) 0.6171 0.6120 0.8240 (4.643; 2.6) 3.6076 3.4605 4.0771 (1.8; 2.903) 20.7802 18.3537 11.6770
(15; 7.5) 0.6172 0.6121 0.8362 (4.118; 2.8) 3.6093 3.4574 4.2070 (2; 2.5) 20.7470 18.2655 11.9604

(13.333; 8) 0.6173 0.6123 0.8127 (3.75; 3) 3.6109 3.4571 4.2600 (2.2; 2.245) 20.7129 18.2496 11.8925
(12.143; 8.5) 0.6174 0.6127 0.7652 (3.478; 3.2) 3.6124 3.4586 4.2584 (2.4; 2.069) 20.6803 18.2719 11.6460
(11.25; 9) 0.6175 0.6132 0.7000 (3.269; 3.4) 3.6139 3.4614 4.2194 (2.6; 1.94) 20.6514 18.3148 11.3147

(10.556; 9.5) 0.6176 0.6136 0.6479 (3.103; 3.6) 3.6152 3.4643 4.1737 (2.8; 1.842) 20.6260 18.3685 10.9450
(10; 10) 0.6176 0.6140 0.5852 (2.969; 3.8) 3.6164 3.4675 4.1188 (3; 1.765) 20.6036 18.4275 10.5618

(9.545; 10.5) 0.6177 0.6145 0.5119 (2.857; 4) 3.6176 3.4700 4.0785 (3.2; 1.702) 20.5836 18.4882 10.1799
(9.167; 11) 0.6177 0.6141 0.5884 (2.763; 4.2) 3.6186 3.4730 4.0234 (3.4; 1.65) 20.5655 18.5485 9.8076

(8.846; 11.5) 0.6178 0.6137 0.6636 (2.683; 4.4) 3.6195 3.4764 3.9560 (3.6; 1.607) 20.5492 18.6074 9.4494
(8.571; 12) 0.6178 0.6134 0.7224 (2.614; 4.6) 3.6204 3.4793 3.8986 (3.8; 1.57) 20.5343 18.6641 9.1077

(8.333; 12.5) 0.6179 0.6131 0.7679 (2.553; 4.8) 3.6212 3.4824 3.8343 (4; 1.538) 20.5206 18.7182 8.7834
(8.125; 13) 0.6179 0.6130 0.8029 (2.5; 5) 3.6219 3.4854 3.7687 (4.2; 1.511) 20.5080 18.7696 8.4766

(7.941; 13.5) 0.6180 0.6127 0.8484 (2.453; 5.2) 3.6226 3.4883 3.7082 (4.4; 1.486) 20.4963 18.8183 8.1870
(7.778; 14) 0.6180 0.6125 0.8879 (2.411; 5.4) 3.6232 3.4913 3.6419 (4.6; 1.465) 20.4855 18.8643 7.9138

(7.632; 14.5) 0.6180 0.6123 0.9199 (2.373; 5.6) 3.6238 3.4933 3.6031 (4.8; 1.446) 20.4754 18.9078 7.6561
(5.5; 55) 0.6186 0.6149 0.6044 (2; 10) 3.6304 3.5274 2.8376 (15; 1.2) 20.2934 19.7228 2.8114
(6; 30) 0.6185 0.6129 0.9086 (2.2; 6.875) 3.6267 3.5047 3.3636 (5.385; 1.4) 20.4494 19.0214 6.9834

(6.5; 21.667) 0.6183 0.6120 1.0242 (2.4; 5.455) 3.6234 3.4921 3.6237 (3.636; 1.6) 20.5464 18.6179 9.3860
(7; 17.5) 0.6182 0.6119 1.0211 (2.6; 4.643) 3.6206 3.4799 3.8860 (2.903; 1.8) 20.6141 18.3986 10.7478
(7.5; 15) 0.6181 0.6122 0.9455 (2.8; 4.118) 3.6182 3.4717 4.0483 (2.5; 2) 20.6654 18.2915 11.4874

(8; 13.333) 0.6179 0.6128 0.8333 (3; 3.75) 3.6161 3.4669 4.1268 (2.245; 2.2) 20.7053 18.2521 11.8482
(8.5; 12.143) 0.6178 0.6133 0.7367 (3.2; 3.478) 3.6144 3.4624 4.2053 (2.069; 2.4) 20.7353 18.2541 11.9659
(9; 11.25) 0.6178 0.6139 0.6282 (3.4; 3.269) 3.6129 3.4597 4.2423 (1.94; 2.6) 20.7569 18.2820 11.9235

(9.5; 10.556) 0.6177 0.6146 0.5073 (3.6; 3.103) 3.6117 3.4576 4.2673 (1.842; 2.8) 20.7732 18.3263 11.7793
(10; 10) 0.6176 0.6140 0.5852 (3.8; 2.969) 3.6106 3.4570 4.2561 (1.765; 3) 20.7860 18.3814 11.5682

(10.5; 9.545) 0.6176 0.6136 0.6427 (4; 2.857) 3.6097 3.4570 4.2314 (1.702; 3.2) 20.7961 18.4436 11.3122
(11; 9.167) 0.6175 0.6133 0.6821 (4.2; 2.763) 3.6090 3.4578 4.1893 (1.65; 3.4) 20.8041 18.5108 11.0234

(11.5; 8.846) 0.6175 0.6130 0.7217 (4.4; 2.683) 3.6083 3.4588 4.1424 (1.607; 3.6) 20.7961 18.5809 10.6520
(12; 8.571) 0.6174 0.6127 0.7569 (4.6; 2.614) 3.6077 3.4602 4.0888 (1.57; 3.8) 20.8041 18.6527 10.3410

(12.5; 8.333) 0.6174 0.6125 0.7828 (4.8; 2.553) 3.6072 3.4618 4.0332 (1.538; 4) 20.8103 18.7253 10.0192
(13; 8.125) 0.6173 0.6124 0.8022 (5; 2.5) 3.6068 3.4635 3.9738 (1.511; 4.2) 20.8218 18.7980 9.7200

(13.5; 7.941) 0.6173 0.6123 0.8171 (5.2; 2.453) 3.6064 3.4654 3.9099 (1.486; 4.4) 20.8240 18.8699 9.3838
(14; 7.778) 0.6173 0.6122 0.8268 (5.4; 2.411) 3.6061 3.4676 3.8424 (1.465; 4.6) 20.8256 18.9407 9.0506

(14.5; 7.632) 0.6173 0.6121 0.8323 (5.6; 2.373) 3.6058 3.4698 3.7732 (1.446; 4.8) 20.8267 19.0097 8.7241

Table 1: ∆% gain for all parameters settings.
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6 Conclusion

In this paper, we have explored the optimal dynamic policy for a generic multi-tier model with

synchronization. We derived structural results on the optimal resource allocation policy and we

fully characterized the policy in the framework of Markov decision theory. A remarkable conclusion

is that for the optimal policy the information about the status of jobs in the backend nodes is not

needed, only information about current jobs in the PS-node is of importance. We have furthermore

shown that the gain of using the optimal policy compared to the standard pure processing-sharing

regime is significant. Especially, in cases of high load utilization. Moreover, the optimal policy is

easy to implement making it a very strong addition to traffic policing algorithms.

There are some interesting avenues for further research. First, in the paper it is assumed

that the service times at each of the nodes are exponentially distributed. In practice, however,

processing times in this type of settings are often far from exponential. Extension of the results

toward phase-type service times is an interesting topic for further research. This becomes especially

relevant when the system is subjected to jobs of multiple classes. Second, the assumptions of

Poisson arrivals may be unrealistic, because the job arrival processes may be autocorrelated. It is

a challenging topic for follow-up research to investigate the (near-)optimality of the control policies

under non-Poisson arrival streams. Finally, our control policy does not depend on the information

in the backend nodes. This is a remarkable result that significantly simplifies the structure of the

optimal policy and makes in tractable enough for implementation. It remains to be investigated

under which conditions such results hold in more general systems.
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