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a b s t r a c t

Themethod of stochastic state classes approaches the analysis of Generalised SemiMarkov
Processes (GSMPs) through the symbolic derivation of probability density functions over
supports described by Difference Bounds Matrix (DBM) zones. This makes steady state
analysis viable, provided that at least one regeneration point is visited by every cyclic
behaviour of the model.

We extend the approach providing a way to derive transient probabilities. To this end,
stochastic state classes are extendedwith a supplementary timer that enables the symbolic
derivation of the distribution of time at which a class can be entered. The approach is
amenable to efficient implementation when model timings are given by expolynomial
distributions, and it can be applied to perform transient analysis of GSMPs within any
given time bound. In the special case of models underlying a Markov Regenerative Process
(MRGP), the method can also be applied to the symbolic derivation of local and global
kernels, which in turn provide transient probabilities through numerical integration of
generalised renewal equations. Since much of the complexity of this analysis is due to
the local kernel, we propose a selective derivation of its entries depending on the specific
transient measure targeted by the analysis.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Discrete event systems encountered in real-time applications usually involve multiple concurrent generally distributed
timers, often supported over finite time domains. Quantitative modelling of this kind of systems is conveniently supported
by non-Markovian Stochastic Petri Nets but, in the general case, the underlying stochastic behaviour is described by a
Generalised Semi-Markov Process (GSMP) [1,2] and simulation is the only viable approach to quantitative evaluation [3].

Analytical treatment becomes viable under restrictions on the degree of concurrency of non-exponential timers. In
particular, most existing techniques develop on the so-called enabling restriction, which assumes that at most one generally-
distributed transition is enabled in any reachable tangiblemarking, so that activity cycles of generally distributed transitions
never overlap. In this case, the model underlies a Markov Regenerative Process (MRGP) which regenerates at every change
in the enabling status of non-exponential timed transitions and behaves as a (subordinated) continuous time Markov chain
(CTMC) between any two regeneration points [4,2,5,6]. Conditional probabilities evolve according to a set of generalised
Markov renewal equations, formulated as a systemof Volterra integral equations of the second kind [7] defined by a local and
a global kernel which capture the transient probability of the states before the first regeneration point and the cumulative
distribution of the time to reach the states at the first regeneration point, respectively. Under enabling restriction, both
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kernels can be expressed in closed-form in terms of the exponential of thematrix describing the subordinated CTMC [8] and
evaluated numerically through uniformisation. Generalised Markov renewal equations can then be solved by numerical
approaches in the time domain or through Laplace–Stieltjes transform.

In principle, the analysis of a model with multiple concurrent generally distributed timers can be formulated through
the theory of supplementary variables [9,6,10], extending the logical state (the marking) with the vector of ages of generally
distributed enabled transitions. However, this results in a set of integro-differential equations whose practical solution is
limited to one or two concurrently enabled non-exponential distributions, thus falling againwithin the limits of the enabling
restriction [11]. The limit of the enabling restriction is overcome in [12,13] but only in the case that all timed transitions
are either exponential or deterministic. In this case, sampling the process at equidistant time points yields a General State
SpaceMarkov Chainwhose kernel of transition probabilities is derived throughnumerical integration. Limiting and transient
probabilities of tangible markings are derived by numerical integration of steady-state and transient equations taking the
form of a set of Volterra differential equations [12] and a set of Fredholm integral equations [13], respectively.

More recently, [14–16] proposed a new analytical approach that manages the case of multiple concurrent generally
distributed timers with possibly overlapping activity cycles, provided that every cyclic behaviour that changes the enabling
status of generally distributed transitions visits at least one regeneration point [15]. The approach relies on the stochastic
expansion of non-deterministic state-classes described by Difference Bounds Matrix (DBM) zones [17–19] which are
commonly employed in qualitative verification tools. This yields so-called stochastic state classes characterising sojourn
time distributions which are then organised in a graph that explicitly describes transitions among classes. The stochastic
state class graph abstracts the behaviour of a GSMP into an embedded Discrete TimeMarkov Chain (DTMC) that samples the
process after each transition and thus allows the evaluation of discrete time transient and steady state measures referred
to the number of fired transitions. In addition, the distribution associated with stochastic classes allows the derivation of
average sojourn times between subsequent transitions and thus enables the evaluation of steady state probabilities of the
overall continuous time process [16]. However, for what pertains to continuous time transient behaviour, the approach
only supports the derivation of the cumulative distribution of the time elapsed along a selected firing sequence that starts
from a regenerative class where the process looses memory of its past history [15,20]. This comprises a major limit for the
application in design and verification of real time systems where non-functional requirements are natively concerned with
the behaviour within the short-term of deadlines or periods.

In this paper, we extend the approach of stochastic state classes so as to support the derivation of continuous time
transient probabilities. To this end, stochastic state classes are extended with a supplementary timer that keeps track
of the time elapsed from the initial state class. This makes class density functions dependent upon the entering time,
and thus enables a symbolic derivation of the distribution of times at which the states of a zone can be reached. The
approach is amenable to efficient implementation when temporal parameters in the model are given by expolynomial
distributions, and it can be applied to the transient analysis of GSMPs within any given time bound and regardless of the
existence of regeneration points. In the special case of models underlyingMRGPs that always reach a regeneration in a finite
number of steps, the method can be applied to the symbolic derivation of local and global kernels, even when regeneration
periods break the limit of a subordinated CTMC and rather evolve according to complex stochastic structures with multiple
concurrent non-exponential transitions. Transient probabilities can thus be derived through numerical integration of
classical generalised Markov renewal equations. In doing so, the local kernel turns out to be the major source of complexity,
both for the number of non-null entries and for the fact that its entries are derived frommultivariate distributionswhenever
multiple generally distributed transitions are concurrently enabled. We show that this complexity can be reduced through
a structured approach to the derivation of transient probabilities of specific states, minimising the size of the local kernel for
the specific transientmeasure targeted by the analysis. Finally, we introduce an approximation technique, based on a partial
enumeration of regeneration periods, attaining a twofold result: on the one hand, it enables the analysis of MRGP processes
that include infinite series of transitions without regeneration points; on the other hand, it simplifies the enumeration for
complexmodels whose dimensionwouldmake an exact analysis computationally prohibitive. The impact of approximation
on the evaluated transient probabilities is estimated and a solution for its mitigation is devised.

The rest of the paper is organised as follows. In Section 2, we recall syntax and semantics of a variant of non-Markovian
Stochastic Petri Nets, which we call stochastic Time Petri Nets (sTPNs) to emphasise the interest on concurrent generally
distributed transitionswith possibly bounded supports. In Section 3, we introduce transient stochastic state classes, develop
the calculus for their derivation and showhow they support the derivation of transient probabilities. In Section 4, we discuss
the application of the approach to MRGPs showing how the symbolic forms of local and global kernels can be derived.
We illustrate how the complexity of the local kernel can be reduced considering the desired transient measure and how
the analysis can be simplified, or in some cases even made viable, by means of approximation. Conclusions are drawn in
Section 5.

2. Stochastic Time Petri Nets

We formulate the analysis problemwith reference to a variant of (non-Markovian) Stochastic Petri Nets (SPNs), whichwe
call stochastic Time Petri Nets (sTPNs) [15,16]. As suggested by the name, an sTPN is here regarded as a non-deterministic
Time Petri Net (TPN) [21,18,17] extended with a stochastic characterisation of timers and choices: while the TPN identifies
a set of feasible behaviours, the stochastic extension associates them with a measure of probability.
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2.1. Syntax

A stochastic Time Petri Net [15,16] is a tuple:

sTPN = ⟨P, T , A−, A+, A•,m0, EFT , LFT ,F ,C⟩. (1)

As in Time Petri Nets [21,18,17]: P is a set of places; T a set of transitions; A−
⊆ P × T , A+

⊆ T × P and A•
⊆ P × T are

the usual pre-condition, post-condition, and inhibitor arc sets, respectively; m0 is the initial marking. EFT : T → Q≥0 and
LFT : T → Q≥0 ∪ {+∞} associate each transition with a firing interval [EFT (t), LFT (t)] defined by an earliest firing time and
a latest firing time. Note that earliest and latest firing times are restrained to be rational values, which takes some theoretical
relevance for the termination of the analysis process, as explained in Section 3.1.

In addition, C: T → R>0 associates each transition t ∈ T with a positive weight C(t) and F : T → CDF associates each
t ∈ T with a Cumulative Distribution Function (CDF) Ft : [EFT (t), LFT (t)] → [0, 1].

2.2. Semantics

The state of an sTPN is a pair s = ⟨m, τ ⟩, wherem: P → N is a marking and τ : T → R≥0 associates each transition with a
real-valued time to fire (remaining time). A transition t0 ∈ T is enabled if each of its input places contains at least one token
and none of its inhibiting places contains any token, and it is firable if it is enabled and its time to fire τ(t0) is not higher than
that of any other enabled transition. When multiple transitions are firable, the choice is resolved through a random switch
determined by the weights C:

Prob {t0 is selected} =
C(t0)

ti∈T f (s)
C(ti)

where T f (s) is the set of transitions that are firable in the state s.

When a transition t0 fires, the state s = ⟨m, τ ⟩ is replaced by s′ = ⟨m′, τ ′
⟩, which we write as s

to
→ s′. Marking m′ is

derived from m by removing a token from each input place of t0 and by adding a token to each output place of t0, as usual
in Petri Nets:

mtmp(p) =


m(p)− 1 if ⟨p, t0⟩ ∈ A−

m(p) otherwise,

m′(p) =


mtmp(p)+ 1 if ⟨t0, p⟩ ∈ A+

mtmp(p) otherwise.

(2)

Transitions that are enabled both by the intermediate marking mtmp and by the final marking m′ are said persistent, while
those that are enabled by m′ but not by mtmp are said newly enabled. A transition t0 enabled after its own firing is always
regarded as newly enabled, as usual in Time Petri Nets [18,17]. After the firing of t0, the time to fire τ ′(ti) of each persistent
transition ti is reduced by the time elapsed in the previous state, i.e.

τ ′(ti) = τ(ti)− τ(t0), (3)

whereas the time to fire τ ′(ta) of each newly enabled transition ta is sampled in the firing interval according to the CDF
F (ta) = Fta :

EFT (ta) ≤ τ ′(ta) ≤ LFT (ta),

Prob {τ ′(ta) ≤ x} = Fta(x).
(4)

For every transition t ∈ T with EFT (t) < LFT (t), we assume that the CDF Ft can be expressed as the integral function of
a Probability Density Function ft (PDF):

Ft(x) =

 x

0
ft(y) dy. (5)

Following the usual terminology of quantitative evaluation, a transition t is called immediate (IMM) if EFT (t) = LFT (t) = 0 or
timed if it is not immediate. A timed transition is generally distributed (GEN) if it is not distributed as a negative exponential
over [0,∞) (EXP). As a special case, a GEN transition t is deterministic (DET) if EFT (t) = LFT (t) > 0. For simplicity, we
maintain the notation of Eq. (5) also for IMM and DET transitions, using the Dirac δ function as a PDF. This abuse of notation
could be avoided by resorting to a (more tedious) formulation based on the partitioned form described in [15].
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2.3. Underlying stochastic process

The evolution over time of themarking of an sTPN identifies an underlying continuous time stochastic process [2]. Due to
transitions with GEN distribution, the process can accumulate memory over time, producing different classes of stochastic
processes depending on the presence of regeneration points, i.e. states where all GEN timers lose their memory [2,4]. This
basically depends on the conditions of persistence of GEN transitions.

If GEN transitions never persist at any firing, the process regenerates at each step, and thus falls in the class of Semi
Markov Processes (SMPs) [22].

If GEN transitions never persist at the firing or newly enabling of other GEN transitions (enabling restriction), then the
process is a special case of Markov regenerative process [22] that behaves as a sequence of continuous time Markov chains
subordinated to the activity periods of GEN transitions. Analysismethods for this class ofmodels have been finely developed
relying on Markov renewal theory [4,5] and on the method of supplementary variables [9,6,10].

When a GEN transition can persist at changes of the enabling status of other GEN transitions, GEN activity periods can
overlap. If this occurs in a cycle, the model can exhibit infinite behaviours without a regeneration point. If the set of such
behaviours has a null measure, the process always guarantees with probability 1 to reach a next regeneration and still
belongs to the class of MRGPs [22].Whereas, when there is a non-null probability that a regeneration point is never reached,
then the process becomes a generalised semi-Markov process.

In principle, the overlap of GEN activity periods can occur in any model with at least two GEN transitions, e.g. in the
parallel composition of two (possibly interacting) sTPNs each behaving as an SMP. However, the most complex and general
case occurs when two GEN transitions persist at the firing of a third GEN transition, so that their remaining times to fire
become mutually dependent variables, possibly distributed over a non-rectangular support.

3. Transient analysis through stochastic state classes

Themethod of stochastic state classes [14,15] approaches the analysis of an sTPNmodel (with any number of concurrent
generally distributed transitions) through the construction of an embedded chain that samples the state of the underlying
stochastic process after each transition firing. Each state in the embedded chain is called stochastic state class, and it is
encoded as a triple made up of the marking, the support of times to fire and their distribution. A succession relation among
stochastic classes identifies a so-called stochastic class graph which captures the relation of reachability among subsequent
samples in the embedded chain.

Since times to fire are real-valued, the embedded chain is a Discrete Time Continuous Space Stochastic Process. However,
the set of reachable stochastic state classes is countable and turns out to be finite under fairly general conditions. The
stochastic class graph can thus be enumerated and managed as a finite Discrete Time Markov Chain, opening the way
to discrete time evaluation, both in transient and in steady state regime [15]. In addition, the distribution of times to fire
observed at the entrance in a class supports the derivation of the average sojourn time within each class, thus enabling the
reconstruction of continuous time steady state probabilities [16].

Transient stochastic classes extend stochastic state classes through the introduction of an additional timer accumulating
the time elapsed since the initial state of the process [23]. The distribution of the elapsed time provides a means to recover
the distribution of probability of the absolute time at which the class can be reached, thus opening theway to the evaluation
of transient probabilities also in continuous time.

3.1. Non-deterministic state classes and DBM zones

We recall here the concepts of state class, state class graph, and Difference BoundsMatrix (DBM) zone, which are usually
employed in symbolic state space analysis of non-deterministic models [18,19,17,24], and which will here comprise the
ground for the identification of supports of multi-variate distributions of times to fire of persistent GEN transitions.
A state class is a set of states with the same marking, the same set of newly enabled transitions, and different values for the
vector of times to fire of enabled transitions.

Definition 3.1 (State Class). A state class is a triple S = ⟨m,New,D⟩ where m is a marking; D ⊆ (R≥0)
N is a time domain,

i.e. a set of values for the vector τ = ⟨τ0, τ1, . . . , τN−1⟩ of times to fire of transitions enabled bym, with τi denoting the time
to fire of transition ti; New is the set of transitions that are newly enabled when the class is entered.

Definition 3.1 extends the usual definition of state class [18,19,17,24] with the addition of the set New, which distinguishes
two classes with the same marking and the same time domain but different conditions of newly-enabling and persistence.
This is in fact not relevant for the identification of feasible behaviours in non-deterministic analysis, but it takes a major
relevance in stochastic evaluation, particularly for what concerns the identification of regeneration points.

Definition 3.2 (State Class Succession). The state class S2 = ⟨m2,New2,D2⟩ is the successor of the state class S1 = ⟨m1,

New1,D1⟩ through the firing of a transition t0, which we write as S1
t0
→ S2, iff: t0 is firable in some state contained in S1;

S2 contains all and only the states that can be reached from some state in S1; New2 is the set of transitions that are newly
enabled when markingm2 is reached from marking m1 through the firing of t0.
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Definition 3.3 (State Class Graph). Given an initial state class S0, the relation
t0
→ identifies a state class graph ⟨V , E⟩ where

the set of vertices V is the set of state classes reachable from S0 through the transitive closure of
t0
→ and the set of edges is

E = {⟨S1, t0, S2⟩ ∈ V × T × V | S1
t0
→ S2}.

As in most exploitations, we address here the case that time domains in the state class graph are DBM zones.

Definition 3.4 (DBM Zone). ADifference BoundsMatrix zone for a vector ⟨τ0, τ1, . . . , τN−1⟩ is the setD ⊆ (R≥0)
N of solutions

of a set of linear inequalities of the form:

D =


τi − τj ≤ bij
τ∗ = 0
∀i ≠ j ∈ {∗, 0, 1, . . . ,N − 1}

where coefficients bij ∈ R∪{+∞} determine the boundaries of variation of the vector ⟨τ0, τ1, . . . , τN−1⟩, and τ∗ is a fictitious
ground variable which permits to encompass simple inequalities of the form τi ≤ bi∗ or −τj ≤ b∗j.

When someof the inequalities in the setD are not effective (i.e. they define constraints that are implied by other inequalities),
different values of coefficients bij may yield the same set of solutions, and thus encode the same DBM zone. To disambiguate
the representation, and also to support efficient manipulation, a DBM is said to be in normal form when each coefficient bij
is equal to the maximum value attained by the difference τi − τj in any solution of the set. For any non-empty DBM zone,
the normal form exists, is unique, it is univocally identified by the triangular inequality

bij ≤ bih + bhj ∀i, j, h ∈ {∗, 0, 1, . . . ,N − 1} with i ≠ j, i ≠ h, h ≠ j,

and it can be derived in polynomial time as the solution of an all-shortest-path problem [17].
Given the normal form of a time domain for a state class S1, the normal form of the time domain of the class S2 reached

from S1 through the firing of t0 can be derived in timeO(N2), withN denoting the number of transitions enabled in S1, using a
warm-restart reduction of the Floyd–Warshall algorithm [17]. As an immediate consequence of the steps of that derivation,
the DBM encoding can be shown to enjoy various relevant closure properties.

Lemma 3.1 (DBM Closure). If the time domain of the initial class is a DBM zone, then (i) time domains of all classes in the state
class graph are DBM zones; (ii) finite coefficients in the normal form of the DBM of any reachable class can be expressed as
summation over the elements of a finite set B composed of the coefficients bij in the normal form of the initial class, the zero value,
and the latest firing time and opposite of the earliest firing time of any transition in the sTPN model; (iii) finite coefficients in the
normal form of the DBM of any reachable class are bounded to fall within the minimum and the maximum value in B.

By relying on these results, the state class graph can be shown to be finite, provided that the sTPN can reach a finite number
of markings, that finite coefficients in the normal form of the initial class are rational values, and that this also holds for the
endpoints of firing intervals of transitions in the sTPN model:

Lemma 3.2 (State Class Graph Finiteness). If the number of markings that the sTPN model can reach is finite, if EFT (t) ∈ Q≥0
and LFT (t) ∈ Q≥0 ∪{+∞} for every transition t, if the time domain of the initial class is a DBM and every coefficient of its normal
form belongs to Q ∪ {+∞}, then the state class graph is finite.

Proof. If ab absurdo the state class graph is not finite, then it includes an infinite path ρ that visits an unbounded number
of classes with the same marking m∗ but with always different firing domains. Since these classes share the same marking,
their time domains are built on the same set of enabled transitions. There must thus be at least some coefficient, say b∗

ij , that
takes an infinite number of different finite values in the classes visited by ρ.

Let B be the set composed of the finite values of the coefficients b0ij in the initial class, the latest firing times and the
opposite of earliest firing times of transitions in the model, plus the value 0:

B =


i,j,t


b0ij, LFT (t),−EFT (t), 0


.

Since all the elements of B are rational values, they can be represented as:

B =


i,j,t


β0
ij

β
,
λ(t)
β
,−
ϵ(t)
β
, 0


where β , β0

ij , λ(t), and ϵ(t) are natural values.
By Lemma 3.1, any finite value for b∗

ij can be expressed as a summation over values in B, and it is constrained to fall within

a bounded interval

−

M
β
, M
β


withM = maxi,j,t


β0
ij , λ(t), ϵ(t), 0


, which implies that the number of different values for b∗

ij

is finite. �
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3.2. Transient stochastic state classes

Transient stochastic state classes extend non-deterministic state classes in a twofold manner.
On the one hand, they add a timer, called hereinafter age, that accounts for the time elapsed since the beginning of the

behaviour at the entrance in the initial class. Actually, for a subtle yet not conceptual reason, the age timer represents the
opposite of the elapsed time: it starts from 0 in the initial class and decreases towards negative values as time passes; in
doing so, the age variable evolves with the same slope as that of times to fire, so that the joint domain of times to fire and
age is maintained in the shape of a DBM zone.

On the other hand, transient stochastic state classes add a joint probability density function for the age and the vector
of times to fire of enabled transitions, that accounts for the measure of probability induced by the stochastic ingredients, F
and C, of the sTPN model over the space of feasible behaviours.

Definition 3.5 (Transient Stochastic State Class). A transient stochastic state class (transient class for short) is a quadruple
⟨m,New,D, f⟨τage,τ ⟩⟩wherem is amarking;New identifies the set of newly enabled transitions; ⟨τage, τ ⟩ is a random variable
called time vector made up of the scalar variable τage representing the opposite of the elapsed time together with the vector
τ = ⟨τ0, τ1, . . . , τN−1⟩ representing the times to fire of transitions enabled by m; f⟨τage,τ ⟩ is the PDF of ⟨τage, τ ⟩ over the
support D.

Definition 3.6 (Transient Stochastic State Class Succession). Given two transient stochastic classes Σ = ⟨m,New,D,
f⟨τage,τ ⟩⟩ and Σ ′

= ⟨m′,New′,D′, f⟨τ ′
age,τ

′⟩⟩, we say that Σ ′ is the successor of Σ through the firing of a transition t0, and

we writeΣ
t0

H⇒Σ ′, iff the following property holds: if the marking of the net ism and the time vector is a random variable
⟨τage, τ ⟩ with support D and probability density function f⟨τage,τ ⟩, then t0 has a non-null probability µ0 to fire, and if it fires
then the model reaches a new marking m′ and a new time vector ⟨τ ′

age, τ
′
⟩ with newly enabled transitions identified by

New′, support D′, and probability density function f⟨τ ′
age,τ

′⟩.

3.3. Calculus of successor classes

The transient stochastic classΣ ′
= ⟨m′,New′,D′, f⟨τ ′

age,τ
′⟩⟩ reached fromΣ = ⟨m,New,D, f⟨τage,τ ⟩⟩ through the firing of

t0 can be derived by following the steps of [15], with slight changes accounting for the special role played by τage: such a
variable is decreased in the same way as that of all the other variables as time passes, but it does not restrict the firability
of transitions and is never reset after a firing. In the derivation, we use the two following notational conventions: (i) given
a vector x = ⟨x0, . . . , xN−1⟩ ∈ RN and a scalar δ ∈ R, x + δ denotes the vector ⟨x0 + δ, . . . , xN−1 + δ⟩; (ii) if D ⊆ RN and
n ∈ {0, . . . ,N − 1}, then D↓τn denotes the projection of D that eliminates τn:

D↓τn = {⟨x0, . . . , xn−1, xn+1, . . . , xN−1⟩ ∈ RN−1
| ∃xn ∈ R such that ⟨x0, . . . , xn−1, xn, xn+1, . . . , xN−1⟩ ∈ D}.

(0) Successor detection and probability µ0: Let ⟨τage, τ ⟩ = ⟨τage, τ0, τ1, . . . , τN−1⟩ be the time vector in the class Σ , and let
it be distributed over D ⊆ R≤0 × RN

≥0 according to the PDF f⟨τage,τ ⟩(xage, x) with x = ⟨x0, x1, . . . , xN−1⟩. According to the
semantics of sTPNs, the firing of a transition t0 ∈ T is possible iff the restricted domainD0

= D∩{τ0 ≤ τn, n = 1, . . . ,N−1}
is not empty and the integral of f⟨τage,τ ⟩ over D

0 is non-null:

µ0
def
=


D0

f⟨τage,τ ⟩(xage, x) dxage dx > 0. (6)

Note that in the restricted domain D0 the variable τ0 is required to be less than or equal to any other time to fire variable
(except for the τage variable) and that the integral of f⟨τage,τ ⟩ over D

0 corresponds to the probability µ0 that the transition t0
will be the one that fires inΣ .
If µ0 > 0, the marking m′ and the set of newly enabled transitions New′ are derived according to the semantics of the
underlying PN model. Besides, the support D of the time vector after the firing of t0 is derived according to the underlying
TPN model regarding τage as a persistent time to fire. Finally, the PDF f⟨τ ′

age,τ
′⟩ is derived through the following four steps.

(1) Precedence conditioning: The assumption that t0 fires before any other transition conditions the time vector and thus
yields a new random variable ⟨τ aage, τ

a
⟩ = ⟨τage, τ | τ0 ≤ τn, n = 1, . . . ,N − 1⟩ distributed over D0 according to:

f⟨τage,τ a⟩(xage, x) =
f⟨τage,τ ⟩(xage, x)

µ0
. (7)

(2) Time advancement and projection: When t0 fires, the age and the times to fire of all the other transitions are reduced
by the time to fire value of t0 given by τ a0 , and τ

a
0 itself is eliminated through a projection. This yields a variable ⟨τ bage, τ

b
⟩ =

⟨τ aage − τ a0 , τ
a
1 − τ a0 , . . . , τ

a
N−1 − τ a0 ⟩, distributed over Db

= D0
↓τ0

according to:

f
⟨τbage,τ

b⟩(xage, x) =

 Max0(xage,x)

Min0(xage,x)
f⟨τ aage,τ a⟩(xage + x0, x0, x + x0) dx0 (8)
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where x = ⟨x1, . . . , xN−1⟩, and the interval [Min0(xage, x),Max0(xage, x)] provides the support representing all possible
values of τ0.

(3) Disabling: If a single transition, say t1, is disabled at the firing of t0, its elimination yields a new variable ⟨τ cage, τ
c
⟩ =

⟨τ bage, τ
b
2 , . . . , τ

b
N−1⟩, distributed over Dc

= Db
↓τ1

according to:

f⟨τ cage,τ c ⟩(xage, x) =

 Max1(xage,x)

Min1(xage,x)
f
⟨τbage,τ

b⟩(xage, x1, x)dx1 (9)

where x = ⟨x2, . . . , xN−1⟩. When multiple transitions are disabled at the firing of t0, the same step is repeated for each one
of them.

(4)Newly enabling: If a single transition tN with static firing density function fN(xN) over the support [EFTN , LFTN ] is newly
enabled at the firing of t0, then the time vector ⟨τ ′

age, τ
′
⟩ = ⟨τ cage, τ

c
2 , . . . , τ

c
N−1, τN⟩ of the successor class Σ ′ is distributed

over D′
= Dc

× [EFTN , LFTN ] according to:

f
⟨τdage,τ

d⟩(xage, x, xN) = f⟨τ cage,τ c ⟩(xage, x) · fN(xN) (10)

where x = ⟨x2, . . . , xN−1⟩. Whenmultiple transitions are newly enabled, the product form is extendedwith a factor for each
one of them.

If the vector of times to fire τ in the initial classΣ0 is supported over a DBM domain D, then by Lemma 3.1 the domains
of all reached classes are still in DBM form. Moreover, in the special case that the static density function ft associated with
each timed transition t in the model is a truncated expolynomial function, i.e.

ft(y) =


K

k=1

ckyake−λky EFT (t) ≤ y ≤ LFT (t)

0 otherwise

with ak ∈ N, ck ∈ R, and λk ∈ R≥0 [15,2,25], then density functions of reachable transient classes accept a closed-form,
which is efficiently computed in the Oris tool [26,27] through repeated application of the calculus within a conventional
forward enumeration (semi-)algorithm. Note that this class of functions includes uniform, deterministic and phase type
distributions.

Finally note that, according to the use intended in this paper, in the initial classΣ0, the age τage is a deterministic variable
with value 0. However, the calculus also accepts the case that τage is associated with any type of distribution supported over
a subinterval of the set of non-positive real numbers. This can take relevance when the analysis technique is embedded in
some compositional or incremental approach.

3.4. Transient analysis through enumeration of classes

The succession relation
t0
⇒ identifies a transient stochastic graph, which extends the state class graph by associating each

vertex with a joint probability distribution of the age and the times to fire of enabled transitions. The extension is one-to-
many, as the same state class can be reached with different joint distributions of age and times to fire.

For the purposes of the present treatment, the stochastic graph is more conveniently encoded into a tree: since the age
is never reset, the graph includes a limited number of confluences, so that the size of the tree is basically the same as that
of the graph; besides, the tree associates each node with a univocal history, which becomes useful in the evaluation of the
probability that a node is reached.

Definition 3.7 (Transient Stochastic Tree). Given an initial transient classΣ0, the relation
t0
⇒ identifies a transient stochastic

tree ⟨V , E⟩ where each node v ∈ V is associated with a transient stochastic class Σ(v) and each arc is associated with
a transition of the sTPN model; the root node is associated with the initial class Σ0; the node v1 has a child v2 reached
through an arc associated with t0 iffΣ(v1)

t0
⇒Σ(v2).

For any node v in the transient stochastic tree, the path ρv = ⟨u0, u1, . . . , uK ⟩ from the root u0 to v = uK univocally
identifies a feasible execution sequence for the sTPN model. The transient class Σ(v) samples the state of the underlying
process of the sTPN model at the time when such sequence is completed and allows a direct reconstruction of transient
behaviour of the sTPN model in both discrete and continuous time.

For any transition ti associated with an arc connecting a node ui with its successor ui+1 on the path ρv , the probabilityµi
that ti fires inΣ(ui) = ⟨m,New,D, f ⟩ before any other enabled transition can be computed as the measure of the restricted
time domain Di according to the probability density function f , as shown in Eq. (6).

The probability ηv that the execution proceeds along ρv can thus be derived as the product of transition probabilities of
the arcs traversed by ρv:

ηv =

K−1
i=0

µi. (11)
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The probability that the node v is reached within some time t can be derived from the probability ηv and the transient
stochastic state classΣ(v) = ⟨mv,Dv,Newv, fv⟩ as

ψv(t) = ηv ·


Dv∩{0≤−xage≤t}

fv(xage, x) dxage dx. (12)

Similarly, the probability πv(t) that v is the last node reached within some time t can be expressed as the probability that
v has been reached at some time τ ∈ [0, t] and the sojourn time in v is higher than t − τ :

πv(t) = ηv ·


Dv∩{0≤−xage≤t}∩{min(x)>t+xage}

fv(xage, x) dxage dx. (13)

Finally, the probability density function fin,v of the entering time for the node v can be computed as

fin,v(t) =


Dv↓τage

fv(−t, x) dx, (14)

i.e. from the marginalisation of fv(xage, x) with respect to the vector x of times to fire of all enabled transitions. Note that
measures obtained from the transient stochastic state classΣ(v) are conditioned to the assumption that v has been reached,
which justifies the factor ηv in Eqs. (12) and (13).

Probabilities πv(t) can be aggregated according to different abstractions attaining different levels of granularity. Each
such abstraction results in a different concept of state to which the analysis can be referred.

In the usual approach, the analysis refers to the marking process M = {M(t), t ≥ 0}, and transient probabilities are
obtained by adding up the probabilities of nodes that share a common marking:

Prob {M(t) = m} =


v|Σ(v) has markingm

πv(t). (15)

While directly connected to the model interpretation, this level of aggregation neglects much of the inherent structure of
the state space, as the same marking can be reached with different supports and distributions for times to fire of enabled
transitions. A finer abstraction distinguishing also the condition of newly enabling will be later considered in Section 4.

3.5. Termination

The results of Section 3.4 enable a straight approach to the evaluation of transient probabilities of any sTPN, regardless
of the class of its underlying stochastic process, provided that the number of transient classes that can be reached within
the time horizon of interest is bounded.

The following result provides the basis that permits to characterise the problem of termination with reference to the
state class graph of the underlying TPN model.

Lemma 3.3. If the transient stochastic tree includes a vertex v with Σ(v) = ⟨Mv,Newv,Dv, fv⟩, then the class graph
includes a vertex S = ⟨Mv,Newv,Dv↓τage⟩. Moreover, if Σ(v) t

⇒Σ ′ with Σ ′
= ⟨M ′,New′,D′, f ′

⟩, then S
t

→ S ′ with S ′
=

⟨M ′,New′,D′
↓τage⟩.

Proof. The first part of the statement is satisfied by construction for the root node of the transient stochastic tree and the
initial class of the state class graph. By induction, it will thus be sufficient showing the second part of the statement.

According to Eq. (6), Σ(v) t
⇒Σ ′ implies that D0

v↓τage is not empty, which in turn implies that t is a feasible outgoing

event from S. Let then Ŝ = ⟨M̂, ˆNew, D̂⟩ be the state class reached from S through t (i.e. S
t

→ Ŝ). The marking M̂ and the set
of newly enabled transitions ˆNew are equal to those of Σ ′, since they are derived through the same steps defined by the
semantics of the underlying TPN. Besides, D̂ = D′

↓τage can be proven by resorting to the general properties of the normal
form of DBM zones by leveraging on the assumption that τage is not considered in the restriction that determines D0. �

Lemma 3.3 permits to regard the state class graph as a kind of non-deterministic projection of the transient stochastic
tree, or, vice versa, regard the transient stochastic tree as a stochastic and aged expansion of the class graph. Note that,
while Lemma 3.3 guarantees that each transient stochastic class has a unique projection in the state class graph, the inverse
relation is one-to-many as each state class can be the projection of multiple (and possibly infinite) transient stochastic
classes. If the state class graph is finite (which is guaranteed under fairly general conditions by Lemma 3.2), the number
of transient classes reached within any predefined time is certainly finite provided that the age is advanced by a positive
quantity in every cyclic behaviour:

Lemma 3.4. If the state class graph is finite, and every cycle that it contains traverses at least one edge labelled by a transition t
with non-null static earliest firing time (i.e. EFT (t) > 0), then, for any time bound x ∈ R>0, the number of transient stochastic
classes including states with (−τage) ≤ x is finite.
Proof. Ab absurdo, let ρ be an infinite path in the transient stochastic tree and let each class visited by ρ include at least one
state satisfying (−τage) ≤ x. By transitive closure of Definition 3.6, a transient class includes a state s satisfying (−τage) ≤ x
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Fig. 1. The pseudo-code describes the construction of the transient stochastic tree rooted inΣ0 with approximation ϵ ≥ 0 within time x. The next node
added to the tree is the one with highest reaching probability.

iff the model accepts a behaviour that can reach swithin a time not higher than x. According to this, ρ accepts a timing that
never exceeds the bound x.

Since the state class graph is finite, some state class S∗ is visited infinitely often by the projection of ρ. The trace ρ can thus
be decomposed into an infinite sequence of sub-traces {ρi}

∞

i=0, and the projection of each sub-trace ρi on the class graph is a
cycle that starts and terminates on class S∗. By hypothesis, each such cycle includes the firing of at least one transition with
non-null static earliest firing time. Since transitions are finite, there is at least one transition with a non-null earliest firing
time which is fired infinitely often along ρ, which contradicts the assumption that ρ accepts a timing that never diverges
beyond x. �

Lemma 3.4 does not manage the (frequent) case of models allowing cyclic behaviours that can be completed in zero time.
In this case, termination can be guaranteed in probability, provided that the model does not include cycles that must be
completed in zero time.

Lemma 3.5. If the class graph is finite and every cycle that it contains traverses at least one non-immediate transition, then for
every time limit x ∈ R>0 and every probability threshold ϵ ∈ R>0 there exists N̄x,ϵ ∈ N such that ∀N > N̄x,ϵ , the probability
that after N steps the age has not yet exceeded x is lower than ϵ.

Proof. Assume, ab absurdo, that such N̄x,ϵ ∈ N does not exist. This implies that there exists an infinite sequence r for which
Prob {r performed in [0, x]} > 0. By the assumptions on the class graph, such r has to contain an infinite number of non-
immediate transitions. Since there are a finite number of non-immediate transitions in the model, there must be in r at
least one non-immediate transition t that is fired infinitely many times. Denote by Xi, i = 1, 2, . . . , the consecutive firing
times of t in r . Then, in order to have Prob {r performed in [0, x]} > 0, we must have Prob {


∞

i=1 Xi < x} > 0, which is
absurd. �

Fig. 1 reports a high level pseudo-code of a possible algorithm that builds up a finite subset of the transient stochastic
tree that, with probability not lower than 1− ϵ, includes every behaviour within time x. The set Q contains arcs (u, v) each
representing a feasible successor v of a leaf node u. The next node added to the tree is the successor v with highest reaching
probability η(v). The enumeration is halted when the total reaching probability (within x) of the discarded successors in Q
is lower than the error threshold ϵ.

Table 1 summarises the symbols and notation adopted in the introduction of transient stochastic state classes.

3.6. Computational experience

Fig. 2 depicts the sTPN model of the G/G/1/2/2 preemptive queue. This is a closed queue with two clients, GEN arrival
times (transitions t1 and t3) and GEN service times (transitions t2 and t4). Service follows a Preemptive Repeat Different
policy: the service of client 1 is interrupted by the arrival of client 2 and restarted from crash when the service of client 2 is
completed. All transitions have firing times distributed uniformly on the interval [1, 2].

The simpler case of the M/G/1/2/2 preemptive queue has been analysed in several papers, by leveraging on the fact
that the model never shows a GEN transition that persists at the change of the enabling status of other GEN transitions,
so that the underlying stochastic process can always be characterised as a CTMC subordinated to a GEN activity period. On
the contrary, in the G/G/1/2/2 preemptive queue, activity cycles of GEN transitions can overlap. Due to the specific firing
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Table 1
Symbols and notation of transient stochastic state classes.

Ft ,ft CDF and PDF of the time to fire of transition t ∈ T
S = ⟨m,New,D⟩ State class
m Marking of the sTPN
New Set of newly enabled transitions
D ⊆ (R≥0)

N Time domain for the vector τ = ⟨τ0, τ1, . . . , τN−1⟩ of times to fire

S1
t0
→ S2 The state class S2 is the successor of S1 through the firing of t0 ∈ T

Σ = ⟨m,New,D, f⟨τage,τ ⟩⟩ Transient stochastic state class
τage Opposite of the elapsed time
f⟨τage,τ ⟩ PDF of the random variable ⟨τage, τ ⟩

D ⊆ R≤0 × RN
≥0 Time domain over which the random variable ⟨τage, τ ⟩ is distributed

Σ
t0

H⇒Σ ′ Σ ′ is the successor ofΣ through the firing of t0 ∈ T
D0 Time domain D restricted to the hypothesis τ0 ≤ τn for

n = 1, . . . ,N − 1
µ0 Probability that transition t0 ∈ T will fire in the transient classΣ
⟨V , E⟩ Transient stochastic tree
Σ(v) Transient stochastic class associated with node v ∈ V
ρv Path from the root to node v ∈ V in the transient stochastic tree
ηv Probability that the execution proceeds along the path ρv
ψv(t) Probability that node v ∈ V is reached within time t
πv(t) Probability that node v ∈ V is the last node reached within time t
fin,v(t) PDF of the entering time for node v ∈ V

Fig. 2. Petri net representation of the preemptive G/G/1/2/2 queue. All transitions have firing times distributed uniformly on the interval [1, 2].

intervals assumed, overlaps can produce behaviours with unbounded duration and unbounded number of events between
subsequent regeneration points, casting the model in a class for which no analysis approach has been proposed yet.

Using the proposed method, transient analysis in the interval [0, x] is reduced to the enumeration of transient classes
whose support D has a non-null intersection with the constraint (−τage) > x. Termination is guaranteed by Lemma 3.4:
since the queue is closed, the number of reachable markings is finite and thus, according to Lemma 3.2, the graph of non-
deterministic classes is finite; in addition, each cycle in the state class graph includes the firing of at least one transitionwith
EFT > 0 (actually, in the model, all transitions have EFT = 1). The lapse of time up to x = 8 is completely covered with 125
classes and the calculations require about fourminutes with a standard portable computer. Resulting transient probabilities
are depicted in Fig. 3.

If the temporal parameters of the model are changed by enlarging all firing intervals to [0, 2], then the state class graph
is still finite but includes cycles that can be executed in arbitrarily short time. In this case, the number of classes satisfying
the constraint (−τage) > x is unbounded. Termination can be guaranteed in probability according to Lemma 3.5 under the
assumption of some approximation threshold on the total unallocated probability.

Fig. 4 shows transient probabilities of the 4 reachable markings within x = 8 using threshold ϵ = 0.1, while Fig. 5 shows
transient probability of marking p1p3 for different values of allowed approximation, along with the number of enumerated
classes required to complete the analysis. Note that, by construction, truncation yields under-approximated probabilities
and the threshold ϵ comprises an upper bound of the approximation error. The number of enumerated classes and the
computational time depend on the error threshold ϵ, and correspond to 5689 enumerated classes and 13 h for ϵ = 0.1,
2592 enumerated classes and 4 h for ϵ = 0.2, 1512 enumerated classes and 2.5 h for ϵ = 0.3.

4. Exploiting regeneration points

Straight enumeration of transient state classes provides a terminating algorithm for the transient analysis of any sTPN
model within a bounded transient horizon and with a given limit of approximation. In principle, this allows the transient
analysis of any generalised semi-Markov process with timers progressing with equal speed [3]. However, a practical
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Fig. 3. Transient probabilities of the 4 markings reachable in the preemptive G/G/1/2/2 queue.

Fig. 4. Transient probabilities of the 4 markings reachable in the preemptive G/G/1/2/2 queue with firing intervals enlarged to [0, 2], using threshold
ϵ = 0.1.

Fig. 5. Transient probabilities of marking p2p4 in the preemptive G/G/1/2/2 queue with firing intervals enlarged to [0, 2] using thresholds 0.1, 0.2
and 0.3.

limitation may arise from the number of classes needed for the analysis when the transient horizon grows with respect
to the average sojourn time in each class.

When the process underlying the sTPN model exhibits regeneration points, this complexity may be circumvented by
leveraging on the theory ofMarkov regenerative processes. Following this approach, the enumeration of transient stochastic
classes can be limited to the first epoch before a regeneration and repeated from every regenerative state, deriving the local
and global kernels that fully characterise the behaviour of the MRGP. Transient probabilities at any given time can then be
computed as the numerical solution of a set of generalised Markov renewal equations [22].



12 A. Horváth et al. / Performance Evaluation ( ) –

4.1. Regenerative classes

Definition 4.1 (Regenerative Class). We call regenerative a transient stochastic class where all times to fire are either newly
enabled, or exponentially distributed, or deterministic, or bounded to take a deterministic delay with respect to a time to
fire satisfying any of the previous conditions.

In a regenerative class, the distribution of times to fire of enabled transitions is uniquely determined, so that it is not possible
that two different regenerative classes have the same underlying non-deterministic class. In a different perspective, this
means thatwhen a regenerative class is entered, the future behaviour of the process is not conditioned by the history through
which the class has been reached. The state reachedwhen the class is entered is thus a regenerative state, as usually intended
in Markov renewal theory.

It is relevant to note here that the same marking can be reached both in regenerative and non-regenerative classes. This
is for instance the case of the marking p2p4 in the G/G/1/2/2 queue of Fig. 3: the marking determines that t4 is the only
enabled transition; however, t4 is newly enabled and the state is regenerative if and only if the marking is reached through
the firing of t3.

According to this remark, in order to exploit regeneration conditions, a proper abstraction of the state shall distinguish
not only the marking but also the condition of regeneration. We will thus refer the analysis to a refinement of the marking
process that associates each marking m with two different states distinguishing whether m is reached under a condition
of regeneration: M̄ = {M̄(t), t ∈ R≥0}, with M̄(t) = ⟨m, reg⟩ and reg ∈ {restart, continue} meaning that at time t the
marking ism and it has been reached in a condition of regeneration (reg = restart) or not (reg = continue). For example, in
the G/G/1/2/2 queue, the marking p1p3 identifies a single non-regenerative state ⟨p1p3, continue⟩, while the marking p2p4
identifies a regenerative state ⟨p2p4, restart⟩ and a non-regenerative state ⟨p2p4, continue⟩.

4.2. Analysis based on regeneration points

If M̄ embeds an infinite sequence of regeneration points at times S0, S1, . . .with S0 = 0 and limn→∞ Sn = ∞, then M̄ is
an MRGP and can be completely characterised through a local kernel Lij(t) and a global kernel Gij(t) [22].

The local kernel captures the evolution in the period between two subsequent regeneration points, providing the
probability that, starting from state i at time 0, no regeneration occurs within t and the state at time t is j:

Lij(t) = Prob

M̄(t) = j, S1 > t | M̄(S0) = i


. (16)

The global kernel characterises the state where the process ends up at the first regeneration, providing the probability
that, starting from state i at time 0, the first regeneration occurs at some state j within time t:

Gij(t) = Prob

S1 ≤ t, M̄(S1) = j | M̄(S0) = i


. (17)

Note that
j

Lij(t)+ Gij(t) = 1, ∀i, t. (18)

For any pair of states i and j, conditional transient probabilities πij(t) can be expressed as the solution of a set of generalised
Markov renewal equations [7]:

πij(t)
def
= Prob


M̄(t) = j | M̄(0) = i


(19)

= Lij(t)+


k

 t

0

dGik(x)
dx

πkj(t − x) dx. (20)

Eq. (19) has the form of a set of Volterra integral equations of the second kind, which can be solved through various
numerical techniques widely experimented in both transient and steady state analysis of MRGPs [28]. Derivation of
transition probabilities πij(t) can thus be reduced to the computation of the local and global kernels Lij(t) and Gij(t).

For each state i, the kernels can be derived from the stochastic classes of the transient tree constructed from i in such a
way that successors of regenerative classes are not enumerated. In this tree, the leaf nodes represent regenerative classes
(characterising the global kernel) and non-leaf nodes represent non-regenerative classes (characterising the local kernel).

Specifically, for any node v associated with state j and reached through regeneration, let ηv be the probability that v is
eventually reached, let fv(xage, x) be the PDF of the class in the node, and let fin,v(t) be probability density function of the
entering time conditioned to the assumption that the node is eventually reached. The analytical form of the derivative of
the ij entry of the global kernel can thus be obtained as:

dGij(x)
dx

=


v|M̄(v)=j

ηv · fin,v(x). (21)

Note that, since j is a regeneration class, fv(xage, x) is in product form and thus permits a straightforward derivation of the
analytical form of fin,v(t).

Besides, for any node v with a non-regenerative class associated with state l, the probability that at time t the process
is in the node v is expressed according to Eq. (13). The derivation of πv(t) requires a multidimensional integral over a DBM
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Fig. 6. The pseudo-code describes the computation of local and global kernel from an initial classΣ0 with approximation ϵ ≥ 0 within time x.

domain that depends on t . Derivation of the analytical form of πv(t) is thus quite hard and results in a complex piecewise
representation; however, its computation can be effectively accomplished for any selected value of t , which is sufficient for
the numerical integration of Volterra equations. The numerical value of the il entry of the local kernel can thus be obtained
as:

Lil(x) =


v|M̄(v)=l

ηv · πv(x). (22)

All the entries of the local and global kernels are thus truncated expolynomial functions, provided that the static density
functions associated with timed transitions are also truncated expolynomial functions.

Fig. 6 reports a high level pseudo-code of a possible algorithm computing the global and local kernels through the
construction of the transient stochastic trees rooted in every different regenerative class and limited to the first regenerative
epoch (with an error threshold ϵ for behaviours within time x). In Appendix, we use a simple model to illustrate the
calculations step by step.

4.3. Limiting the complexity of the local kernel

As mentioned above, derivation of the entries of the local and global kernels present different levels of difficulty. We
discuss here two different general cases where the number of entries of the local kernel needed for the analysis can be
limited.

In the first case, assume that we want to compute the distribution of the time to reach a given marking for the first time,
i.e., our goal is to determine a first passage time distribution. This problem can be faced without computing any entry of the
local kernel as follows. We modify the model in such a way that the considered marking becomes absorbing, i.e., the model
gets blocked as soon as the marking is reached. This way, when the marking is reached the process is in a regeneration
point. Consequently, it is not necessary to describe what happens within a regeneration period and the global kernel of the
modified model is sufficient to characterise the desired first passage time distribution. Having computed the entries of the
global kernel, Gij(t), the fact that the process is not described inside a regeneration period can be formally introduced by
setting the entries of the local kernel as

Lij(t) =


1 −


k

Gik(t) i = j

0 i ≠ j
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which implies that the process remains in the same marking for the whole regeneration period. Note that this way we
simplified the original MRGP into a semi-Markov process and hence the computation itself can be carried out through
techniques for SMPs.

In the second case, assume that we are interested in the transient probabilities of a single marking, in particular,
marking 1. In order to compute the desired probability, we need to compute all entries of the global kernel, Gij(t), and
those entries of the local kernel that lead to marking 1, Li1(t). The remaining entries of the local kernel can be simply set to

Lij(t) =


1 −


k

Gik(t)− Li1(t) i = j

0 i ≠ j
j ≠ 1

because inside a regeneration period all we have to know is if the process is in marking 1 or somewhere else.
By performing the analysis in the above describedmanner we decrease the number of local kernel entries that have to be

computed. The size of the kernels can also be reduced if there exist markings that are not involved in the analysis objectives
and do not play a role in the global kernel.

4.4. Termination

A condition sufficient for guaranteeing termination in the enumeration of transient stochastic classes reachedwithin the
first regeneration period can be conveniently characterised in terms of cyclic behaviours occurring in the graph of underlying
state classes.

Lemma 4.1. If the class graph is finite and every cycle that it contains visits at least one regenerative state class, then the number
of transient classes visited before reaching the first regenerative transient stochastic class is finite.

Proof. Ab absurdo, let ρ be an infinite path in the transient stochastic tree that never reaches a node associated with a
regeneration class. Following the same steps of the proof of Lemma 3.4, ρ includes a finite prefix ρpre → ρcycle such that
the projection of ρcycle on the class graph is a cycle. By hypothesis, this cycle visits a regeneration state class Sr , which
implies that within the (finite) termination of ρpre → ρcycle the enumeration has visited a transient stochastic regeneration
class. �

Following an aggregation approach such as that proposed for steady state analysis in [16], this condition can be relaxed
so as to encompass cycles of immediate or exponential transitions that do not change the enabling status of generally
distributed transitions. However, when the state class graph accepts cyclic behaviours that always maintain some GEN
transition persistent, then the model accepts behaviours that never reach a regeneration and thus results in an unbounded
number of transient stochastic classes. In this case, termination can still be guaranteed by Lemma 3.5 under the assumption
of some non-null threshold ϵ and upper time bound x.

4.5. Approximate regenerative analysis

If an MRGP can exhibit an infinite sequence of transitions without regeneration points, then the enumeration of the
classes that are needed to characterise a regeneration period does not terminate. Even in this case, however, it is possible
to perform an analysis based on an approximate description of the regeneration periods. This approximate approach can be
also applied to MRGPs with regeneration periods characterised by finite transient stochastic trees to reduce the number of
nodes needed for the analysis.

The approximate analysis is based on a partial characterisation of the regeneration periods which can be obtained by a
partial enumeration of those classes that can appear in the regeneration periods. The resulting transient tree, unlike the tree
resulting from a complete enumeration, contains leaves representing non-regenerative classes. Let us denote by L̂ij(t) and
Ĝij(t) the entries of the kernels calculated from the classes contained in this partial tree according to Eqs. (21)–(22). It is easy
to show that the following relations hold between L̂ij(t), Ĝij(t) and the exact kernels Lij(t),Gij(t) of the MRGP:

L̂ij(t) ≤ Lij(t), Ĝij(t) ≤ Gij(t).

Moreover, as opposed to (18), we have

lim
t→∞


j

L̂ij(t)+ Ĝij(t) < 1.

It follows that calculating π̂ij(t) from the defective kernels L̂ij(t) and Ĝij(t) in the fashion of (19) leads to probabilities

π̂ij(t) ≤ πij(t)
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Fig. 7. Petri net representation of the modified G/G/1/2/2 preemptive queue.

providing a lower bound of the real transient probabilities. A generally less tight upper bound can also be given based on
π̂ij(t) as

πij(t) ≤ 1 −


j|j≠i

π̂ij(t).

In general, less defective kernels result in more precise approximated probabilities π̂ij(t). Unfortunately, however, the error
due to defective kernels grows as time advances and if all states are recurrent we have

lim
t→∞

π̂ij(t) = 0.

Consequently, the above approach can provide useful bounds of the transient probabilities only for a finite time horizon.
In order to obtain an approximation for a long time horizon or for steady state probabilities, one can apply the following
renormalised kernels

Ľij(t) = L̂ij(t), Ǧij(t) = Ĝij(t)


1 −


k
L̂ij(t)



k
Ĝik(t)

which satisfy Eq. (18). In Section 4.6, we will illustrate the use of both L̂ij(t), Ĝij(t) and Ľij(t), Ǧij(t).

4.6. Computational experience

In principle, the original G/G/1/2/2 preemptive queue of Fig. 2 cannot be analysed through the method based on
regenerative points as the underlying process can visit an infinite sequence of non-regenerative classes. We consider here
a simplified version of the G/G/1/2/2 queue in which an additional inhibitor arc is added from place p4 to transition
t1, so that the arrival of client 2 entails both service interruption and arrival inhibition of client 1 (Fig. 7). This way, the
corresponding process always reaches a regeneration in a finite number of steps and becomes amenable to the exact analysis
based on regeneration points. Solving for x = 100 requires the construction of 4 transient stochastic trees limited to the
first regeneration epoch, for a total of 12 enumerated classes (1 s computation); results are shown in Fig. 8 for two different
time scales.

The original G/G/1/2/2 preemptive queue of Fig. 2 can be analysed through the approximated approach of Section 4.5.
Fig. 9 depicts the results for different values of the approximation threshold ϵ. Marking probabilities are defective and
the curve denoted as ‘‘error’’ shows the missing probability which grows with the approximation threshold and with the
transient time. It is worth noting that, unlike the approach of Section 3, in this case the approximation threshold does
not represent an upper bound for the defectiveness of the actual evaluated solution. The computation requires about four
minutes with ϵ = 0.01 and about 17 min with ϵ = 0.0001.

In Fig. 10, we illustrate the results obtained with the non-defective approximate kernels, Ľij(t) and Ǧij(t). In particular,
the figures report the transient probabilities of two markings calculated with defective and non-defective kernels (using
the same approximation threshold, ϵ = 0.01) and the exact transient probabilities. The exact values were obtained by
the supplementary variable approach [9] which requires for this model to memorise vectors with a total of about 107

entries and took about 30 h of computation. We performed the calculations with several values of ϵ and found that for
this model the maximal absolute error of the transient probabilities obtained by the non-defective kernels is smaller than
the approximation threshold ϵ, but this cannot be guaranteed in general. It is worth to note that the approach leads to very
good approximation of the steady state probabilities.

Fig. 11 depicts a more complex model, introduced in [15] to illustrate steady state analysis of stochastic state classes;
although the distribution of the length of the regeneration periods still has finite support, the intrinsic complexity of its
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Fig. 8. Transient probabilities of the 4 markings reachable in the modified G/G/1/2/2 queue for two different time scales.

a b

Fig. 9. Transientmarking probabilities of G/G/1/2/2 preemptive queue, computedwith approximate kernels, L̂ij(t) and Ĝij(t), for different approximation
thresholds: (a) ϵ = 0.01, 25 enumerated classes; (b) ϵ = 0.0001, 36 enumerated classes.

Fig. 10. Transient probabilities of markings p1p3 (left) and p2p3 (right): exact values, approximation with non-defective kernels (ϵ = 0.01) and
approximation with defective kernels (ϵ = 0.01).

structure makes it more suitable than the previous simpler examples for a real benchmark of the proposed approach. This
model represents a system composed of two production cells alternating through the passage of control to each other (tran-
sitions start1 and start2). The two cells are identicalwith the single exception that transitions start1 and start2 have different
earliest firing times. Both cells are composed of two parallel activities, named JobA and JobB, which are associated with uni-
form duration. In both cells, JobA requires a resource called reswhich may fail during the usage according to an exponential
distribution with rate parameter 0.3. If failure occurs then JobA is interrupted and a recovery activity (recA) together with a
repair action is started. The recovery and the repair actions both require a duration with uniform distribution.
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Fig. 11. Petri netmodelling a systemwith two production cells. E(0.3) denotes an exponential transitionwith rate 0.3 and all other transitions are uniform
on the indicated interval.

Fig. 12. Probability of having reached double failure at least once as function of time for two different time scales.

Weconcentrate on the situationwhen both resources are in the failed state (i.e. both places failed1 and failed2 aremarked)
and compute two related performance indices.

First, we consider the distribution of the time to reach such double failure for the first time. As described in Section 4.3,
this kind of measure can be computed without computing any entry of the local kernel. Originally there are 6 markings in
the model that can be reached through regeneration. We stop the model as soon as double failure is reached and this adds
a 7th regenerative marking (an absorbing one) to the model. Accordingly, the global kernel is 7 by 7. The enumeration of
the classes has to be performed starting from the 6 different non-absorbing markings. In total, the 6 enumerations result in
93 classes. About 30 classes are regenerative and the global kernel is built based on these classes. Once the global kernel is
defined, MRGP or SMP transient analysis techniques can be used to compute the desired probability. The computation takes
about one hour and the results are depicted in Fig. 12.

Second, we consider the probability that at time t the system is in such a marking that both resources are failed. As
we are interested in a particular situation only, once again we can perform the computations based on a selective analysis
of the kernels as described in Section 4.3. The enumeration has to be performed for the 6 different regenerative markings
which results in a total of about 130 classes. The number is higher than before because the model is not stopped anymore
when double failure is reached. About 40 of the classes are regenerative and these are needed to construct the global kernel.
For what concerns the local kernel, we need only those entries that corresponds to double failure. There are only 3 such non
regenerative classes in which both failed places are marked. The resulting kernels are 7 by 7 as before because we need the
6 markings that can be reached through regeneration and a 7th state where we keep track of being in double failed state.
This 7th state is reached only by the local kernel. The results of the computation (obtained in about one hour), which were
validated by simulation, are depicted in Fig. 13.

As a measure of comparison between standard and regenerative analysis of this example, while the former needs to
enumerate about 200 classes to cover the transient interval up to T = 8, the latter obtains global and local kernels performing
partial enumerations from 6 different regenerative markings, for a total of about 130 classes.
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Fig. 13. Probability of being in double failure as function of time for two different time scales.

Fig. 14. A trivial model to illustrate the calculations.

5. Conclusions

In this paper, a technique for the transient analysis of generalised semi-Markov processes has been proposed. This
technique, which is an extension of the method of stochastic state classes, is based on keeping track of the elapsed time
in the state density function of the classes. The approach is applicable, in principle, to any generalised semi-Markov process
where all the active timers proceed with the same speed, and it results in the possibility of symbolic derivation of transient
measures in the case when all timings are expolynomial.

The time and memory complexity of the approach depend on many factors: the number of states of the model, the level
of concurrency of the timers, and the time to fire distributions. A detailed complexity analysis was out of scope for this paper
and will be studied in the future. It has been shown however that, if the model always visits regeneration points within a
finite number of steps, the approach can be used to characterise the regeneration period even if the involved stochastic
process contains multiple concurrent non-exponential activities; moreover, an approximation method has been developed
in order to enable the analysis also for those processes allowing infinite sequences of steps without regeneration points and
to limit the computational complexity when dealing with large and complexmodels. Based on a Java implementation in the
Oris tool, the method has been tested and resulted to be applicable to models whose transient analysis has not been carried
out before.

Appendix

We consider the model depicted in Fig. 14 and assume that the firing time distribution of transitions t1 and t2 is uniform
with support interval [0, 3] and the firing time distribution of t3 is given by the PDF f3(x) = 0.5x on the support [0, 2]. We
perform the calculations that lead to the description of a regeneration period starting in the marking p1p2. Accordingly, the
enumeration of the transient classes has to be started in the class corresponding to this marking and carried out in such a
way that successors of classes corresponding to regeneration points are not generated. Once the enumeration is finished,
the entries of the local and global kernel are derived from the transient classes.

A transient class is given by a marking and the joint PDF of the opposite of the elapsed time and the time to fire values of
the enabled transitions. In the initial marking the elapsed time is zero and the time to fire values are determined simply by
the static firing time distribution of the enabled transitions. Therefore, the density associated with the initial classΣ0 is

f0(a, x1, x2) =


1
9
δ(a) 0 ≤ x1 ≤ 3, 0 ≤ x2 ≤ 3

0 otherwise

where δ() denotes the Dirac delta function. (Both in the expression above and in the following we provide the domain
explicitly together with the state density function.) We consider first the firing of t1 leading to classΣ1 where the marking
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is p2p3. As the firing time distributions of t1 and t2 are identical the integral in the denominator of (7) corresponding to the
probability that t1 fires first yields 1/2. Next we have to perform the time advancement and projection step according to (8)
as  x2

0
2f0(a + x1, x1, x2 + x1)dx1 =


2
9

−3 ≤ a ≤ 0, 0 ≤ x2 ≤ 3, 0 ≤ x2 − a ≤ 3

0 otherwise

where the constraint 0 ≤ x2 − a ≤ 3 is due to the fact that the elapsed time, −a, plus the time to fire of t2, x2, has to be
between 0 and 3. As no disabling happens by the firing of t1, the last step in computing the density associated with classΣ1
is to consider the enabling of t3 applying (10). This leads to

f1(a, x2, x3) =


1
9
x3 −3 ≤ a ≤ 0, 0 ≤ x2 ≤ 3,

0 ≤ x3 ≤ 2, 0 ≤ x2 − a ≤ 3
0 otherwise.

The firing of t2 in class Σ0 can be considered the same way with the difference that no enabling takes place. The resulting
class,Σ2, where the marking is p1p4 has associated density

f2(a, x1) =


2
9

−3 ≤ a ≤ 0, 0 ≤ x1 ≤ 3, 0 ≤ x1 − a ≤ 3

0 otherwise.

Next we consider the firing of transition t2 leaving class Σ1 leading to the new class Σ3 with marking p3p4. This happens
with probability

∞

a=0


∞

x3=0

 x3

x2=0
f1(a, x2, x3)dx2dx3da = 2/3.

Since neither enabling nor disabling happens due to the firing of t2, the time advancement and projection step according to
(8) yields directly the density of the classΣ3

f3(a, x3) =

 x3

x2=0

3
2
f1(a + x2, x2, x3 + x2)dx2 =


1
12

a(a − 2x3) 0 ≤ x3 ≤ 2,−2 ≤ a ≤ 0, 0 ≤ x3 − a ≤ 2

1
12
(4 − x23) 0 ≤ x3 ≤ 2,−3 ≤ a ≤ 0, 2 ≤ x3 − a ≤ 5

0 otherwise

where once again we have inequalities regarding the sum of the elapsed time, −a, and the time to fire of x3. The other
possibility in Σ1 is the firing of t3 which happens with probability 1/3. The resulting class Σ4 is with marking p3p4 and its
density can be computed by time advancement and projection (8) which leads to

f4(a, x2) =

 x2

x3=0
3f1(a + x3, x2 + x3, x3)dx3 =


2
3

0 ≤ x2 ≤ 1,−3 ≤ a ≤ −2, 0 ≤ x2 − a ≤ 3

a2

6
0 ≤ x2 ≤ 3,−2 ≤ a ≤ 0, 0 ≤ x2 − a ≤ 3

0 otherwise.

FromΣ2, by the firing of the only enabled transition t1, a new class,Σ5, is reachedwith probability 1. Due to the firing of t1, t3
would get enabled but, as the firing of t1 constitutes a regeneration point and our aim is to characterise only the regeneration
period, the enabling step given in (10) is not performed. Accordingly, the density associatedwithΣ5 is obtained by the usual
time advancement and projection step according to (8) which yields

f5(a) =


∞

0
f2(a + x1, x1)dx1 =

−
2a
9

−3 ≤ a ≤ 0

0 otherwise

where the inequality −3 ≤ a ≤ 0 means that the elapsed time having reached this class is between 0 and 3. From Σ3 as
well a single outgoing event is possible, namely, the firing of t3 which leads to a new class,Σ6, through a regeneration point.
Accordingly, the enabling of t4 is not performed and the time advancement and projection step according to (8) is enough
to characteriseΣ6 where the marking is p4p5. We have

f6(a) =


∞

0
f3(a + x3, x3)dx3 =



−
(−1 + a)(5 + a)2

36
−5 ≤ a ≤ −3

4
9

−3 ≤ a ≤ −2

−
a3

18
−2 ≤ a ≤ 0

0 otherwise
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where the inequalities indicate that the elapsed time having reached this class is between 0 and 5. The last outgoing event
to consider is the firing of t2 in class Σ4 which leads to a new class, Σ7, by regeneration where the marking is p2p5. The
density associated withΣ7 is

f7(a) =


∞

0
f2(a + x2, x2)dx2 =


−

2
9
(4 + 3a) −3 ≤ a ≤ −2

−
a3

18
−2 ≤ a ≤ 0

0 otherwise.
Having enumerated the classes from the initial marking p1p2 up to the regeneration points, the entries of the kernels can

be determined by the application of (13). Classes reached by regeneration contribute to the global kernel while the others
to the local kernel. Note that even in this simple example there is a marking, namely, p3p4 that can be reached both through
a regenerative and a non-regenerative event. It is also possible that the same marking appears in different regenerative
(non-regenerative) classes; in this case these classes have to be aggregated to the same global (local) kernel entry.

Hereinafter, we compute some entries of the local and global kernels. The states in the kernels will be referred to
according to the table

marking p1p2 p2p3 p1p4 p3p4 p2p5 p4p5
state 0 1 2 3 4 5

As an example for a local kernel entry, we consider L12(t)which corresponds to the probability that the regeneration period
started at time 0 in state 0 (marking p1p2), it is not yet finished at time t and the process is in state 1 (marking p2p3) at time
t . This probability can be calculated by (13) considering the density in classΣ1 and the fact that this class is passed through
with probability 1/2. As a result we have

L12(t) =
1
2

 t

a=0


∞

x2=t−a


∞

x3=t−a
f1(−a, x2, x3)dadx2dx3 =


1

108
t(36 − 12t − 3t2 + t3) 0 ≤ t ≤ 2

4
27
(3 − t) 2 ≤ t ≤ 3

0 otherwise.

Next we calculate the global kernel entry, G05(t), which gives the probability that the regeneration period started at time 0
in state 0 (marking p1p2), it has been finished before time t and the regeneration leads to state 5 (marking p4p5). Both Σ6
andΣ7 are with marking p4p5 and hence they will both contribute to G05(t). ClassΣ6 is reached with probability 1/3 while
Σ7 with probability 1/6. Applying (13) we have

G05(t) =
1
3

 t

0
f6(−a)da +

1
6

 t

0
f7(−a)da =



t4

144
0 ≤ t ≤ 2

−2 + t2

18
2 ≤ t ≤ 3

−159 + 100t + 30t2 − 12t3 + t4

432
3 ≤ t ≤ 5

1
2

5 ≤ t.

It can be seen that the entry of the local kernel requires to deal with a more complicated integral than the one used for the
global kernel.

Several of the functions derived above have different symbolic forms in different intervals. None of these have however
jump discontinuities.
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