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Neighbor Discovery for Wireless Networks via

Compressed Sensing
Lei Zhang, Jun Luo and Dongning Guo

Abstract

This paper studies the problem of neighbor discovery in wireless networks, namely, each node wishes

to discover and identify the network interface addresses (NIAs) of those nodes within a single hop. A novel

paradigm, called compressed neighbor discovery is proposed, which enables all nodes to simultaneously

discover their respective neighborhoods with a single frame of transmission, which is typically of a few

thousand symbol epochs. The key technique is to assign each node a unique on-off signature and let

all nodes simultaneously transmit their signatures. Despite that the radios are half-duplex, each node

observes a superposition of its neighbors’ signatures (partially) through its own off-slots. To identify

its neighbors out of a large network address space, each node solves a compressed sensing (or sparse

recovery) problem.

Two practical schemes are studied. The first employs random on-off signatures, and each node

discovers its neighbors using a noncoherent detection algorithm based on group testing. The second

scheme uses on-off signatures based on a deterministic second-order Reed-Muller code, and applies a

chirp decoding algorithm. The second scheme needs much lower signal-to-noise ratio (SNR) to achieve

the same error performance. The complexity of the chirp decoding algorithm is sub-linear, so that it

is in principle scalable to networks with billions of nodes with 48-bit IEEE 802.11 MAC addresses.

The compressed neighbor discovery schemes are much more efficient than conventional random-access

discovery, where nodes have to retransmit over many frames with random delays to be successfully

discovered.

Index Terms

Ad hoc networks, compressed sensing, group testing, peer discovery, random access, Reed-Muller

code.
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I. INTRODUCTION

In many wireless networks, each node has direct radio link to only a small number of other nodes, called

its neighbors (or peers). Before efficient routing or other network-level activities are possible, nodes have

to discover and identify the network interface addresses (NIAs) of their neighbors. This is called neighbor

discovery (or peer discovery). The problem is crucial in mobile ad hoc networks (MANETs), which

are self-organizing networks without pre-existing infrastructure. The problem is becoming important in

increasingly more heterogeneous cellular networks with the deployment of unsupervised picocells and

femtocells.

A node interested in its neighborhood, which is henceforth referred to as the query node, listens to

the wireless channel during the discovery period, and then decodes the NIAs of its neighbors. Neighbors

transmit signals which contain their identity information. It is fair to assume that non-neighbors either

do not transmit, or their signals are weak enough to be regarded as noise. We make two important

observations: 1) The physical channel is a multiaccess channel, where the observation made by the query

node is a (linear) superposition of transmissions from its neighbors, corrupted by noise; 2) The goal of

neighbor discovery is to identify, out of all valid NIAs, which ones are used by its neighbors.

State-of-the-art neighbor discovery protocols, such as that of the IETF MANET working group [1] and

the ad hoc mode of IEEE 802.11 standards, can be described as follows: The query node broadcasts a

probe request. Its neighbors then reply with probe response frames containing their respective NIAs. If a

response frame does not collide with any other frame, the corresponding NIA is correctly received. Due

to lack of coordination, each neighbor has to retransmit its NIA enough times with random delays, so

that it can be successfully received by the query node with high probability despite collisions. We refer

to such a scheme as random-access neighbor discovery. Several such algorithms which operate in or on

top of medium access control (MAC) layer have been proposed [2]–[7].

Random access assumes a specific signalling format, namely, a node’s response over the discovery

period basically consists of repetitions of its NIA interleaved with periods of silence. This signalling

format allows the NIA to be directly read out from a successfully received frame. Every node can

discover its neighborhood and also be discovered by neighbors given long-enough discovery period.

However, such signalling is far from optimal. To design the optimal signalling, we should remove all

unnecessary structural restrictions on the responses. Given the duration of the discovery period, the

problem is in general to assign each node a distinct response, or signature over that period, and to design

a decoding algorithm for a query node to identify the constituent signatures (or corresponding NIAs)
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based on the observed superposition. It would be ideal if all the signatures were orthogonal to each other,

but this is impossible in case the number of signatures far exceeds the signature length. A good design

should make the correlation between any pair of signatures as small as possible.

A crucial observation is that the number of actual neighbors is typically orders of magnitude smaller

than the node population, or more precisely, the size of the NIA space, so that neighbor discovery is by

nature a compressed sensing (or sparse recovery) problem [8], [9]. By the wisdom from the compressed

sensing literature, the required number of measurements (the signature length) is dramatically smaller

than the size of the NIA space.

Based on the preceding observations, this work provides a novel solution, referred to as compressed

neighbor discovery, which attains highly desirable trade-off between reliability and the length of the

discovery period, thus minimizing the neighbor discovery overhead in wireless networks. The defining

feature is to let nodes simultaneously transmit their signatures within a single frame interval. In order

to let each node discover its own neighborhood during the same frame interval it is transmitting, i.e.,

to achieve full-duplex neighbor discovery, the signatures consist of on- and off-slots, so that within the

discovery frame a node can make observations during its off-slots and also transmit during its on-slots.

Some sparse recovery algorithm is then carried out to decode the neighborhood.

The organization of the remaining sections of the paper and our key contributions are as follows.

After the system model is presented in Section II, two types of signatures with corresponding decoding

algorithms are proposed. The first scheme, which is studied in Section III, assigns each node a pseudo-

random on-off signature (i.e., a sequence of delayed pulses) over the (slotted) discovery frame. The

number of on-slots is a small fraction of the total number of slots, so that the signature is sparse. The

superposition of the signatures of all neighbors is a denser sequence of pulses, in which a pulse is seen

at a slot if at least one of the neighbors sent a pulse during the slot. A simple decoding procedure via

eliminating non-neighbors is developed based on algorithms originally introduced for group testing [10],

[11]. The complexity of the algorithm is linear in the address space, which is feasible for networks with

moderately large but not too large NIA spaces.

The second scheme, which is studied in Section IV, generates a set of deterministic signatures based

on a second-order Reed-Muller (RM) code. First- and second-order RM codes date back to 1950s and are

fundamental in the study of error-control codes and algorithms [12]. More recently, RM codes have been

shown to be excellent for sparse recovery [13]. The original RM code consists of quadrature phase-shift

keying (QPSK) symbols, with no off-slots. In order to achieve full-duplex discovery, we introduce off-

slots by replacing roughly a half of the QPSK symbols by zeros. The chirp decoding algorithm of [13]
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is modified to perform despite the erasures. The choice of modified RM codes for neighbor discovery

is not incidental: The algebraic structure allows unusually low decoding complexity (sublinear in the

number of codewords), so that the scheme is in principle scalable to 248 or more nodes or NIAs in the

network [14].

In Section V, compressed neighbor discovery is compared with random-access schemes and shown to

require much fewer transmissions to achieve the same error performance. In addition, the new scheme

entails much less transmission overhead (such as preambles and parity checks), because it takes a single

frame of transmission, as opposed to many frame transmissions in random access.

We highlight some of the unique contributions of this work:

• It is the first to propose on-off signalling for achieving full-duplex neighbor discovery using half-

duplex radios, which departs from conventional schemes where the transmitting frames of a node

are scheduled away from its own receiving frames;

• This work is the first to use Reed-Muller codes for neighbor discovery, which enables highly efficient

discovery for networks of any practical size;

• Previous work [15], [16] only models the neighborhood of a single query node. This paper considers

a more realistic network modeled by a Poisson point process, and a more realistic propagation model

with path loss;

• The decoding algorithm for random on-off signatures significantly improves the performance of the

group-testing-based algorithms studied in [15] and [16] for noiseless and Rayleigh fading channels,

respectively;

• Previous work [16] only demonstrates reliable discovery at high signal-to-noise ratio (SNR) for a

rather sparse network in which the average number of neighbors is less than ten. Numerical results

in this paper demonstrate reliable and efficient discovery of 30 neighbors or more at fairly low SNR.

II. THE CHANNEL AND NETWORK MODELS

A. The Linear Channel

Consider a wireless network where each node is assigned a unique network interface address. Let

the address space be {0, 1, . . . , N} (e.g., N = 248 − 1 if the space consists of all IEEE 802.11 MAC

addresses). The actual number of nodes present in the network can be much smaller than N , but as far

as neighbor discovery is concerned, we shall assume that there are exactly N + 1 nodes.

We will later discuss the problem of having all nodes simultaneously discover their respective neigh-

borhoods, but for now let us assume that node 0 is the only query node and sends a probe signal to
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prompt a neighbor discovery period of M symbol intervals. Each node n in the neighborhood responds

by sending a signal Sn = [S1n, . . . , SMn]>. The signal identifies node n and is also referred to as the

signature of node n. In case a node only transmits over selected time instances, those symbols Smn

corresponding to non-transmissions are regarded as zero. For the time being let us ignore the variation of

the small propagation delays between the query node and its neighbors, and assume symbol-synchronous

transmissions from all nodes. We also assume that this discovery period is shorter than the channel

coherence time. The received signal of node 0 can thus be expressed as

Y =
√
γ
∑
n∈N0

UnSn + W (1)

where N0 denotes the set of NIAs in the neighborhood of node 0, Un denotes the complex-valued

coefficient of the wireless link from node n to node 0, γ denotes the average channel gain in the SNR,

and W consists of M independent unit circularly symmetric complex Gaussian random variables, with

each entry Wm ∼ CN (0, 1). For simplicity, transmissions from non-neighbors, if any, are accounted for

as part of the additive Gaussian noise.

The goal is to recover the set N0, given the observation Y , the SNR γ, and knowledge of the signatures

S1, . . . ,SN . The random coefficients Un are unknown except for its statistics. For convenience, we

introduce binary variables Bn, which is set to 1 if node n is a neighbor of node 0, and set to 0 otherwise.

Let X = [B1U1, . . . , BNUN ]> and S = [S1, . . . ,SN ]. Then model (1) can be rewritten as

Y =
√
γSX + W (2)

where we wish to determine which entries of X are nonzero, i.e., to recover the support of X .

Model (2) represents a familiar noisy linear measurement system. We shall refer to Y = [Y1, . . . , YM ]>

as the measurements, and SM×N as the known signature matrix. It is reasonable to assume that B1, . . . , BN

are independent and identically distributed (i.i.d.) Bernoulli random variables with P{B1 = 1} = c/N ,

where c denotes the average number of neighbors of node 0. Let us further assume that U1, . . . , UN are

i.i.d. with known distribution, and are independent of B1, . . . , BN and noise. To recover the support of

X is then a well-defined, familiar statistical inference problem.

The node population N+1 is typically much larger than the number of symbol epochs in one discovery

period M , so that the linear system (2) is under-determined even in the absence of noise. An important

observation is that the vector variable X is very sparse, so that neighbor discovery is fundamentally a

sparse recovery problem, which implies that very few measurements, which can be orders of magnitude

smaller than N , are sufficient for reconstructing the N -vector X or its support [17].
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B. Signatures and Their Distribution

In the case of random-access neighbor discovery, each Sn consists of repetitions of the NIA of node n

interleaved with random delays, sufficient synchronization flags, training symbols and parity check bits

are embedded so that the delays can be measured accurately (this constitutes substantial overhead).

In general, the signature of node n can be regarded as the n-th codeword from the codebook S. (In

case of delay uncertainty, we can use a larger codebook to include shifted versions of the signatures.) The

signatures of all nodes, i.e., the codebook, should be known input to the neighbor discovery algorithm

carried out by any query node.

To make the distribution of a large codebook to all nodes practical, some simple structure shall always

be introduced. For example, the signature of node n can be generated using a common pseudo-random

number generator with the seed equal to n. It then suffices to distribute the generator (e.g., as a built-in

software/hardware function) in lieu of the signatures. In principle, each node can construct the codebook

S by enumerating all valid NIAs, so that all signatures are known to all nodes in advance without any

communication overhead. It is also possible to design an inverse mapping to recover the index n given

any signature Sn. An alternative design is to let the signatures be codewords of an error-control code,

in which case it suffices to reveal the code to all nodes.

A key finding of this paper is that, in order for efficient neighbor discovery, the signatures Sn should

not merely consist of repetitions of the NIA. Discovery using cleverly designed signatures is not only

feasible, but can be significantly more efficient than random-access discovery.

C. Propagation Delay and Synchronicity

In general, a receiver has to resolve the timing uncertainty of its neighbors in order to recover their

identities. By including sufficient synchronization flags, random-access schemes are robust with respect

to random delays. Since it is costly to add enough redundancy to allow accurate estimation of the delays

in a multiuser environment, it can be beneficial to let nodes transmit their signatures simultaneously

and synchronously. Some common clock, such as access to the global positioning system (GPS) can

provide the timing needed. In our scheme, it suffices to have all communicating peers be approximately

symbol-synchronized, as long as the timing difference (including the propagation delay) is much smaller

than the symbol interval. This can be achieved by using distributed algorithms for reaching average

consensus [18].

By definition neighbors should be physically close to the query node, so that the radio propagation

delay is much smaller compared to a symbol epoch. For instance, if neighbors are within 300 meters,

May 30, 2018 DRAFT



7

the propagation delay is at most 1 microsecond, which is much smaller than the bit or pulse interval of

a typical MANET. More pronounced propagation delays can also be explicitly addressed in the physical

model, but this is out of the scope of this paper.

Admittedly, synchronizing nodes requires an upfront cost in the operation of a wireless network. The

benefit, however, is not limited to the ease of neighbor discovery, but improved efficiency in many other

network functions. Whether synchronizing the nodes is worthwhile is a challenging question, which is

not discussed further in this paper.

D. Propagation Loss and Near-Far Problem

In previous work [16], we considered a single query node and neighbors of the same distance, and

simply assumed the channel gains Un to be Rayleigh fading random variables. In this paper, we incorporate

the effect of network topology and propagation loss in the channel model. Suppose all nodes transmit at

the same power, large-scale attenuation follows power law with path loss exponent α, and small-scale

attenuation follows i.i.d. fading. Due to reciprocity, the gains of the two directional links between any

pair of nodes are identical.

From the viewpoint of a query node, it suffices to describe the statistics of Un of neighboring nodes in

model (1) as follows. Suppose all nodes are distributed in a plane according to a homogeneous Poisson

point process with intensity λ. Consider a uniformly and randomly selected pair of nodes. The channel

power gain between them is GR−α, where G denotes small-scale fading and r stands for the distance

between them. The nodes are called neighbors of each other if the channel gain between them exceeds a

certain threshold, i.e., GR−α > η for some fixed threshold η. We choose not to define the neighborhood

purely based on the geometrical closeness because: 1) connectivity between a pair of nodes is determined

by the channel gain; and 2) a receiver cannot separate the attenuations due to path loss and Rayleigh

fading in one discovery period.

Consider an arbitrary neighbor, n, of the query node, where the distance between them is R, and the

random attenuation of the channel is G. By definition of a neighbor, G and R must satisfy GR−α ≥ η,

i.e., R ≤ (G/η)1/α. Under the assumption that all nodes form a Poisson point process, for given G, this

arbitrary neighbor n is uniformly distributed in a disc centered at the query node with radius (G/η)1/α.

Therefore, the conditional distribution of R given G can be expressed as

P(R ≤ r
∣∣G) =

 r2
( η
G

) 2

α , r ≤
(
G
η

) 1

α

;

0, otherwise.
(3)
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Now for every u ≥ √η, by (3) we have

P(GR−α ≥ u2) = EG

{
P

(
R ≤

(
G

u2

) 1

α

∣∣∣∣G
)}

= EG

{( η
u2

) 2

α

}
=
η

2

α

u
4

α

. (4)

Hence the probability density function (pdf) of |Un| of neighbor n is

p(u) =

 4
α

η2/α

u4/α+1 , u ≥ √η;

0, otherwise.
(5)

Interestingly, the distribution does not depend on the fading statistics (of G). Moreover, it is fair to assume

that the coefficients are circularly symmetric, i.e., the phase of Un is uniform on [0, 2π).

Without loss of generality, we assume that the query node locates at the origin. Denote Φ = {Xi}i
as the point process consisting of all nodes excluding the query node. By Slivnyak-Meche theorem [19],

Φ is a Poisson point process with intensity λ. Fading coefficients can be regarded as independent marks

of the point process, so that Φ̃ = {(Xi, Gi)}i is an independently marked Poisson point process. By

Campbell’s theorem [19], the average number of the query node can be obtained as:

c = EΦ̃

 ∑
(Xi,Gi)∈Φ̃

11
(
GiR

−α
i ≥ η

)
= 2πλ

∫ ∞
0

∫ ∞
0

11
(
GR−α ≥ η

)
Re−GdRdG

=
2

α
πλη−2/αΓ(

2

α
) (6)

where 11 (·) is the indicator function and Γ(·) is the Gamma function.

The near-far situation, namely that some neighbors can be much stronger than others is inherently

modeled in (1)-(5). The proposed sparse recovery algorithms are highly resilient to the near-far problem.

In particular, in the case of deterministic signatures, the gain of strong neighbors can be estimated quite

accurately so that their interference to weaker neighbors can be removed.

E. Network-wide Discovery

Unlike in previous work [15], [16], this paper also considers the problem that many or all nodes in

the network need to discover their respective neighborhoods at the same time. A major challenge is

posed by the half-duplex constraint, i.e., that a wireless node cannot receive any useful signal at the same
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time and over the same frequency band on which it is transmitting [20], [21]. This is due to the limited

dynamic range of affordable radio frequency circuits. Standard designs of wireless networks use time-

or frequency-division duplex to schedule transmissions of a node away from the time-frequency slots the

node employs for reception [22].

A random-access scheme naturally supports network-wide discovery. This is because each node trans-

mits its NIA intermittently, so that it can listen to the channel to collect neighbors’ NIAs during its own

epochs of non-transmission. Collision is inevitable, but if each node repeats its NIA a sufficient number

of times with enough (random) spacing, then with high probability it can be received by every neighbor

once without collision.

As we shall see in Sections III and IV, the proposed compressed neighbor discovery schemes employ

on-off signatures, so that a node can make observations during its own off-slots. All nodes broadcast

their signatures and discover their respective neighbors at the same time. Thus network-wide discovery

is achieved within a single frame interval.

III. RANDOM SIGNATURES AND GROUP TESTING

In this section, we consider using random on-off signatures. Specifically, the measurement matrix S

consists of i.i.d. Bernoulli random variables, with P(Smn = 1) = 1− P(Smn = 0) = q for all m,n. As

aforementioned, the signatures can be generated using a common pseudo-random number generator so

that S is known to all query nodes.

A. A Previous Algorithm Based on Group Testing

In the absence of noise, neighbor discovery with on-off signatures is equivalent to the classical problem

of group testing. In fact, group testing has been used to solve a related RFID problem [23] and a multiple

access problem [11], [24]. For every m = 1, . . . ,M , the measurement Ym =
√
γ
∑N

n=1 SmnXn is nonzero

if any node from the group {n : n = 1, . . . , N, and Smn 6= 0} is a neighbor. Algorithm 1 visits every

measurement Ym with its power below a threshold T to eliminate all nodes who would have transmitted

energy at time m from the neighbor list. Those nodes which survive the elimination process are regarded

as neighbors.

Two types of errors are possible: If an actual neighbor is eliminated by the algorithm, it is called a

miss. On the other hand, if a non-neighbor survives the algorithm and is thus declared a neighbor, it is

called a false alarm. The rate of miss (resp. rate of false alarm) is defined as the average number of
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Algorithm 1 Simple group testing
1: Input: Y , S and T

2: Initialize: V ← {1, . . . , N}

3: for i = 1 to M do

4: if |Ym|2 < T then

5: V ← V \ {n : Smn = 1}

6: end if

7: end for

8: Output: mark all nodes in V as neighbors

misses (resp. false alarms) in one node’s neighborhood divided by the average number of neighbors a

node has.

Algorithm 1 requires only noncoherent energy detection and is remarkably simple. However, discovery

is reliably only if the SNR is high and the average number of neighbors a node has is very small, whereas

the error performance is unacceptable for many practical scenarios [16].

B. Improvements: t-Tolerance Test and Phase Randomization

The improved scheme proposed in this section is based on Algorithm 1 and includes two major changes.

First, instead of eliminating a node as soon as it disagrees with one measurement, multiple disagreements

are needed to eliminate a node. Secondly, to decouple the measurements, we randomize the phase of the

samples of each signature.

It is instructive to examine the events which trigger elimination. To this end, we record, for each node

eliminated, the number of near-zero measurements which point to its elimination, which are referred to

as strikes. Fig. 1 illustrates the average number of nodes (out of 10,000 total) which receive 0,1,2,. . .

strikes as neighbors or non-neighbors, respectively. It turns out that most of the time a neighbor agrees

with all measurements and hence receives no strike, but occasionally a neighbor may receive 1, 2 or

3 strikes due to noise or mutual cancellation. In contrast, most non-neighbors receive dozens of strikes

because they disagree with many measurements, whereas a small number of non-neighbors receive fewer

than 5 strikes. Algorithm 2, which is referred to as the t-tolerance test [25], allows a node receiving

up to t strikes to survive, and requires that a node be eliminated only if it receives strictly more than t

strikes. By tuning the number t, one can select the most desirable trade-off between the rate of miss and

the rate of false alarm.
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Fig. 1. Histograms: The average number of nodes versus the number of strikes they receive as a neighbor (the left plot) or

non-neighbor (the right plot). The inlet plot amplifies the left-side tail. SNR = 20 dB, c = 5.

Algorithm 2 t-tolerance group testing
1: Input: Y , S and T

2: Initialize: vn ← t+ 1, n = 1, . . . , N

3: for i = 1 to M do

4: if |Ym|2 < T then

5: vn ← vn − Smn, n = 1, . . . , N

6: end if

7: end for

8: Output: {n : vn > 0, n = 1, . . . , N}

We further examine one of the major causes of misses, which is that the pulses of two or more

neighbors cancel at the receiver, so that the measurement Ym is below the threshold at multiple intervals.

This takes place for two neighbors n1 and n2 if their channel coefficients are similar in amplitude but

opposite in phase, so that Smn1
Un1

+ Smn2
Un2
≈ 0 for every interval m where both nodes transmit a

pulse, which implies the neighbors will be eliminated erroneously with a number of strikes wherever

their pulses coincide.
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A simple trick can be used to reduce misses with essentially no impact on false alarm. The idea is to let

each node randomize the phases of its signature at different slots independently, i.e., use SmnejΘmn in lieu

of Smn where Θmn are i.i.d. uniform on [0, 2π). In this case, if Smn1
ejΘmn1Un1

+ Smn2
ejΘmn2Un2

≈ 0

for some slot m, it is unlikely that this is still true for other slots. We note that the randomization is easy

to implement at transmitters and requires no change at the receivers, because knowledge of the phases

is not needed by the noncoherent detection algorithm.

C. Design Optimization

The simple group testing algorithm and the improved t-tolerance algorithm are in general difficult to

analyze. In the absence of noise, there have been asymptotic results (see, e.g., [11], [15]) where it is shown

that the error probabilities vanish as the problem size increases as long as the number of measurements

exceed a certain level, which depends typically logarithmically on the node population. Under a discrete

model with noisy measurements, asymptotic performance bounds for the algorithm have been developed

in [25]. Other studies of the theoretical limits of noisy measurement models with 0-tolerance test [26]–

[29] assume the active signatures to be transmitted at equal power, and thus do not apply to the current

model (1) with fading and path loss.

No existing analytical results or techniques for group testing yields a good approximation of the

performance of Algorithm 2. Therefore, we resort to numerical methods to find the optimal design trade-

off between cost and error performance. The cost here refers to the signature length (i.e., the neighbor

discovery overhead) and the SNR. We assume that the node population and density, the SNR, as well as

the fading characteristics are given, which are not controlled by the designer.

For a given signature length M , a good indicator of the rate of miss is Mq, i.e., the average number

of active pulses in the signature. Intuitively, for an actual neighbor, the larger Mq is, the more likely its

symbols get canceled by other nodes, thus causing unwanted strikes and misses. On the other hand, if q

is too small, some non-neighbors may not receive enough strikes to be eliminated, thereby causing false

alarms. Similar qualitative statements can be made about the threshold T used in Algorithms 1 and 2. It

is not difficult to see that T should be above the noise variance, but perhaps not too much higher than

that.

In this work, we assume the signature length M is given and fixed. We then numerically search the

optimal choice of the sparsity q and threshold T as those that minimize the total rate of miss and false

alarm. Since using identical signatures under all channel conditions is preferable in practice, the numerical

search is carried out under a specific SNR. The same parameters q and T are then used at all other SNRs.
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Fig. 2. Rates of miss and false alarm versus SNR. In all 1,000 trials, N = 10,000, c = 30, M = 2,048, and q = 0.0176.

D. Numerical Results

We next show some numerical results obtained based on the design described in Section III-C.

Suppose there are N = 10,000 valid NIAs which belong to nodes uniformly distributed in a square

centered at the origin. Let the path loss exponent be α = 3. Assume Rayleigh fading and that a node is

regarded as a neighbor if the channel gain exceeds η = 0.05. In each network realization, we consider

the average neighbor discovery performance of the 100 nearest nodes to the origin.

Let the density of the network be that there are on average c = 30 nodes in each neighborhood. Each

signature consists of M = 2,048 symbols. At 28 dB SNR, the optimal sparsity and threshold are found to

be q = 0.0176 and T = 2.0, respectively, for a 2-tolerance test. The random signature matrix is generated

with this fixed sparsity, so that there are on average Mq = 36 pulses in a signature. The same signature

matrices and threshold are then used at all SNRs in all tests.

The receiver carries out Algorithm 2 and the resulting rates of miss and false alarm are plotted against

the SNR in Fig. 2. The rate of false alarm is plotted in dotted lines, the rates of miss with and without
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Fig. 3. Rates of miss and false alarm versus SNR. In all 1,000 trials, N = 10,000, c = 10, M = 1,024, and q = 0.0371.

random-phase improvement are plotted in dash-dotted lines and solid lines, respectively. The performance

of the 2-tolerance test is marked with ’+’ and that of the 3-tolerance test is marked with ’∆.’

In case of the 2-tolerance test, missed neighbors are the dominant source of error. Using random phases

improves the rate of miss significantly. The rate of miss decreases with the SNR and drops to 0.1% at 29

dB (with random phases). The rate of false alarm is not sensitive to the SNR and stays around 0.05%.

Using the 3-tolerance test improves the rate of miss significantly (about 4 dB at the error rate of 0.1%),

because actual neighbors are less likely to be eliminated. The rate of false alarm, however, becomes

higher with higher tolerance. If the total error rate is of concern, then the 2-tolerance test is preferable

if the SNR is above 27 dB, whereas the 3-tolerance test is preferable otherwise.

Fig. 3 repeats the preceding experiment, except for a sparser network, where the average number

of neighbors a node has is c = 10, out of N = 10,000 nodes, and that shorter signatures are used:

M = 1,024. The parameters q = 0.0371 and T = 3.0 are optimized for 26 dB for the 2-tolerance test

and then used at all SNRs and tests. On average 38 pulses are found in a signature.
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Fig. 3 shows that using the 3-tolerance test yields better error rates at high SNRs. At 26 dB, the total

error rate is just below 0.1%.

It appears that the improvement from using phase randomization is more pronounced with higher

tolerance. In case of 2-tolerance test, the rate of miss can be reduced by about 10 fold at high SNRs.

E. Network-wide Neighbor Discovery

Although the preceding development assumes a single query node in the network, it is easy to extend

the algorithms to network-wide neighbor discovery, where all or any subset of nodes acquire their

neighborhoods simultaneously. This is an advantage of using on-off signatures, because a node can

receive useful signal during its own off-slots despite of the half-duplex constraint. In fact the signatures

are often very sparse (e.g., q < 0.04 in the preceding numerical examples), so that “erased” received

symbols due to one’s own transmission are few. This also implies that even if the energy of a pulse leaks

into neighboring symbol intervals, there are still enough off-slots for making observations.

The impact of the half-duplex constraint is in effect a reduction of the length of the signatures. From

the viewpoint of any query node, once the erasures are purged, models (1) and (2) still apply, if the

number of measurements M is replaced by a random variable of binomial distribution with parameters

(M, 1− q). For large M , the number of useful measurements is approximately M(1− q). The discovery

algorithm can be carried out by all nodes simultaneously. If we increase M by a factor of 1/(1 − q),

then the performance of network-wide neighbor discovery is roughly the same as in the case of a single

query node with the original signature length.

F. Computational Complexity

After turning the measurements Y into a binary N -vector by comparing it with a threshold, all

computations carried out by Algorithms 1 and 2 are binary or counting down by 1. The computational

complexity is O(NM q) if implemented in a clever way using the sparsity of the signature matrix. If

network-wide neighbor discovery is carried out, the complexity at each decoder is increased by a factor

of 1/(1−q) ≈ 1+q, since q is typically a very small number. A general purpose processor may handle up

to N = 105 NIAs in real time (where M is typically a few thousand). Hardware implementation using,

for example, a programmable gate array, may take advantage of the fact that the elimination procedure

can be carried out in parallel. In this case, it is conceivable to carry out compressed neighbor discovery

for a large address space including all 32-bit Internet Protocol (IP) addresses.
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An alternative, more scalable approach proposed in [15] is to divide the address into smaller segments

(e.g., a 32-bit address consists of three overlapping 16-bit subaddresses), and discover the subaddresses

of all neighbors separately using the preceding algorithms. The subaddresses can then be pieced together

to form full addresses by matching their overlaps.

A natural question to ask is why noncoherent group testing algorithms are proposed in this paper in

lieu of coherent detection, such as matched filtering followed by thresholding, which should perform

better. The reason is that even simple matched filtering entails a much higher complexity with O(NM)

additions over the precision of the measurements.

The problem of inferring about the inputs to a noisy linear system from the outputs have been studied in

many contexts. One important area relevant to the model (2) is multiuser detection. References [30], [31]

considers a related user activity detection problem in cellular networks, and suggest the use of coherent

multiuser detection techniques. Such techniques do not apply here because they require knowledge of

the channel coefficients Un of all neighbors, which is clearly unavailable before the neighbors are even

known. Reference [32] considers channel estimation, but the algorithm is more complex than matched

filtering, and thus does not scale well with the network size.

The idea of using a t-tolerance test in Algorithm 2 is related to the wisdom of belief propagation,

where the decision for each node at question is made using beliefs provided by all relevant measurements.

One can in fact carry out belief propagation fully and iteratively [33], but we suspect the performance

gain does not justify the additional complexity here.

As long as random signatures are used, any good decoding algorithm needs to visit every signature, so

that the complexity is at least linear in the address space N . This prohibits scaling to a very large space,

say N = 248. Although random signatures perform as good as any signatures according to Shannon’s

random coding argument, it is well-known that structures need to be introduced in the codebook in order

for low-complexity decoding. This is the subject of the next section.

IV. ON-OFF REED-MULLER SIGNATURES AND CHIRP DECODING

In this section, we propose to use deterministic signatures obtained from second-order Reed-Muller

codes with erasures, where the complexity of the corresponding chirp decoding algorithm is sub-linear

in N . We first discuss the original RM code without erasure. Such a code is sufficient for a single

silent query node to acquire its neighborhood. The construction of the RM code is described in detail

in [34]. We provide a sketch of the construction in Section IV-A. The signatures consist of QPSK entries,

which prevent a transmitting node from simultaneously discovering its neighborhood. In Section IV-B,
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zero entries are introduced by erasing about 50% of the symbols in each signature, so that full-duplex

neighbor discovery is enabled. The chirp decoding algorithm is discussed in Section IV-C. As we shall

see in Section IV-D, using the Reed-Muller code enables more reliable and efficient discovery in networks

which are many orders of magnitude larger than allowed by using random on-off signatures.

For the reader’s convenience, the signature generation and chirp decoding procedures are summarized

as Algorithms 3 and 4. Examples in the case of very small systems are given to illustrate the encoding

and decoding procedures.

A. The Reed-Muller Code (without Erasure)

RM codes are a family of linear error-control codes. A formal description of RM codes requires a

substantial amount of preparation in finite fields. In a general form, RM codes are based on evaluating

certain primitive polynomials in finite fields. Due to space limitations, we briefly describe the second-

order RM codes used in this paper using the minimum amount of formalisms. The reader is referred

to [34] for a more detailed discussion.

Given a positive integer m, we show how to generate up to 2m(m+3)/2 distinct codewords, each of

length 2m. For example, in the case of m = 10, there are up to 265 codewords of length 1,024.

Let eil = (0, . . . , 0, 1, 0, . . . , 0) be a row vector of length l in which the i-th entry is equal to 1 whereas

all other entries are zeros. Let P (eil) be the l× l symmetric matrix in which the top row is eil and each

of the remaining reverse diagonals (a diagonal from upper right to lower left) is computed from a fixed

linear combination of the entries in the top row. The reader is referred to [34] for a detailed description

of the construction, which is based on evaluating some primitive polynomials in GF(2m). For example,

P (e1
1) = 1 and

P (e1
2) =

1 0

0 1

 , P (e2
2) =

0 1

1 1

 . (7)

Given m, we form a linear space of m×m symmetric matrices with a set B of m(m + 1)/2 bases

constructed using
{
P (eil), i ≤ l, l = 1, . . . ,m

}
, where for l < m, P (eil) is padded to an m×m matrix,

where the lower right l× l submatrix is P (eil) and all remaining entries are zeros. In the simple case of

m = 2, B consists of m(m + 1)/2 = 3 bases, which are P (e1
2), P (e2

2) given by (7) and an additional

matrix obtained from P (e1
1) = 1 by padding zeros:

B =


1 0

0 1

 ,
0 1

1 1

 ,
0 0

0 1

 . (8)
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Let B(i) denote the i-th basis in B ordered as P (e1
m), . . . ,P (emm) and then those obtained from

P (e1
m−1), . . . ,P (em−1

m−1) and so on.

Let the NIA consist of n = n1 + n2 bits, where n1 ≤ m and n2 ≤ m(m + 1)/2. Each n-bit NIA is

divided into two binary vectors: b′ ∈ Zn1

2 and c ∈ Zn2

2 , where Z2 = {0, 1}. Let b ∈ Zm2 be formed by

appending m−n1 zeros after b′ (b = b′ if n1 = m). We map c to an m×m symmetric matrix according

to

P (c) =

n2∑
i=1

ciB(i) mod 2 (9)

where ci denotes the i-th bit of c. The corresponding codeword is of 2m symbols, whose entry indexed

by a ∈ Zm2 is given by

φb,c(a) = exp

[
jπ

(
1

2
aTP (c)a + bTa

)]
. (10)

For example, in case m = 2, there are up to 2m(m+3)/2 = 32 codewords of length 2m = 4. Moreover, if

the number of nodes is 16, i.e., n = 4, only 16 codewords are generated as functions of (b, c) and given

as column vectors in Table I, where only the first two bases in (8) are used as n1 = n2 = 2.

TABLE I

16 REED-MULLER CODEWORDS.

b 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

c 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

φb,c 1 -1 1 -1 j -j j -j j -j j -j 1 -1 1 -1

1 1 -1 -1 1 1 -1 -1 j j -j -j 1 j -1 -j

1 -1 -1 1 -j j j -j -1 1 1 -1 -1 j 1 -j

B. Generation of On-Off Signatures

The drawback of using the original RM code is that the codewords defined by (10) consist of QPSK

symbols, so that a node cannot simultaneously receive useful signals while transmitting its own codeword.

In order to achieve full-duplex neighbor discovery, we propose to erase about 50% of the entries of each

codeword to obtain an on-off signature, so that nodes can listen during their own off-slots. The signature

of each node consists of roughly as many off-slots as on-slots, thus two nodes can receive pulses from

each other over about 25% of the slots.
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For reasons to be explained shortly in conjunction with the chirp decoding algorithm, we apply random

erasures to the signatures in the following simple manner: Suppose n2 is chosen such that the m ×m

symmetric matrix generated by each node is determined by its first m0 ≤ m/2 rows. For node k, the

erasure pattern rk of length 2m is constructed as follows: Divide rk into 2m0 segments with equal

length 2m−m0 , let the first segment consist of i.i.d. Bernoulli random variables with parameter 1/2 and

all remaining segments be identical copies of the first segment. It is easy to see that after introducing

erasures in the signatures, the network can still accommodate 2m(3m+10)/8 nodes. For example, if m = 10,

we have up to 250 signatures of length 1,024.

The procedure for generating the on-off signatures based on the RM code is summarized as Algorithm 3.

Algorithm 3 Signature Generation Algorithm
1: Input: n-bit NIA

2: Choose m such that n = n1 + n2 with n1 ≤ m and n2 ≤ m0

2 (2m−m0 + 1) where m0 ≤ m/2.

3: Divide n-bit NIA into two vectors b′ ∈ Zn1

2 and c ∈ Zn2

2 . Form b ∈ Zm2 by appending m−n1 zeros

after b′.

4: Generate the original RM code φb,c of length 2m according to (10).

5: Generate the erasure pattern r of length 2m as follows: Let the first segment of 2m−m0 bits be i.i.d.

Bernoulli random variables with parameter 1/2 and repeat the segment 2m0 times to form the 2m

bits of r.

6: Output: The on-off signature of length 2m is the element-wise product of φb,c and r.

C. The Chirp Decoding Algorithm

We recall that each node makes observations via the multiaccess channel (1), which is a superposition

of its neighbors’ signatures subject to fading and noise. An iterative chirp decoding algorithm has been

developed in [13] to identify the codewords of the RM code based on their noisy superposition. The

general idea is to take the Hadamard transform of the auto-correlation of the signal in each iteration to

expose the coefficient of the digital chirps and then cancel the discovered signatures from the signal.

In case of full-duplex discovery, the original chirp decoding algorithm with some modifications can be

applied here for any node (say, node 0) to recover its neighborhood based on the observations through

its own off-slots (denoted as Ỹ ). The details are provided in Algorithm 4.
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Algorithm 4 The chirp decoding algorithm
1: Input: received signal Y in (2), signatures of all other nodes S and its own erasure pattern r.

2: Choose the maximum iteration number Tmax, the threshold η0 and the maximum number n0 of weak

nodes discovered till termination.

3: Initialize the residual signal Y r to the pointwise product of Y and 1− r.

4: Initialize the iteration number t to 0, the neighbor set N = ∅ and the coefficient vector C = ∅.

5: Main iterations:

6: while t ≤ Tmax do

7: for i = 1, 2, . . . ,m0 do

8: Compute the pointwise multiplication of the conjugate of Y r and the shift of Y r in the amount

of 2m−i.

9: Compute the fast Walsh-Hadamard transform of the computed auto-correlation.

10: Find the position of the highest peak in the frequency domain and decode the i-th row of an

m×m matrix P (ck), which corresponds to a certain node k.

11: end for

12: Use the first m0 rows of the preceding P (ck) to determine its remaining rows.

13: Compute S0
k(a) = exp

[
jπ
(

1
2a
>P (ck)a

)]
for all a ∈ Zm2 and apply Hadamard transform to the

pointwise product of Y r and the conjugate of S0
k;

14: Recover bk by finding the highest peak in the frequency domain.

15: Compute φbk,ck according to (10) and recover Sk by pointwise product of φbk,ck and rk.

16: Add node k to the neighbor set N and add a corresponding 0 to the coefficient vector C.

17: Put together all signatures of nodes in N to form a matrix SN . Construct S̃ by pointwise

multiplying each column in SN with 1− r.

18: Determine the value of vector X which minimizes ‖Y r − S̃X‖2. Update the coefficient vector

C by C + X .

19: Update the residual signal Y r by Y r − S̃X .

20: if N contains more than n0 nodes with coefficients less than η0 then

21: Stop the main iteration.

22: end if

23: end while

24: Output: All elements in N whose corresponding coefficients in C are no less than η0.
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In the following, we provide a simple example to illustrate the key steps of Algorithm 4. Consider

a network of N = 2n = 1,024 nodes. Let the parameters in Algorithm 3 be n1 = 5, n2 = 5, m = 5,

m0 = 1, so that we have 1,024 signatures of length 2m = 32. Suppose for simplicity node 0 has only

two neighbors, whose on-off signatures are S1 and S2, respectively:

S1 = [0, j, 0, 0, 1, 0, 0, 0,−1,−j, 0, 1, 1, 0, 0, 0,

0,−j, 0, 0,−1, 0, 0, 0, 1, j, 0, 1,−1, 0, 0, 0] (11)

S2 = [1, j, 0,−j, 0, 0, 1, 0, 1, 0,−1, 0, 0, j,−1,−j,

−1,−j, 0,−j, 0, 0, 1, 0, 1, 0, 1, 0, 0, j, 1, j] (12)

where the zeros in the signatures are due to erasures. Suppose the channel gains are U1 = 3 and U2 = 2j.

In absence of noise, node 0 observes the signal U1S1 + U2S2 through its own off-slots as:

Ỹ = [2j, 0, 0, 2, 0, 0, 0, 0, 0, 0,−2j, 3, 0,−2,−2j, 2,

−2j, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2j, 3, 0,−2, 2j,−2]. (13)

Given Y r is initialized to Ỹ , the key steps of Algorithm 4 leading to the discovery of the first neighbor

is described as follows:

1) Steps 7 to 12:

Note that m0 = 1 in this case. Take the Hadamard transform of the auto-correlation function of Y r

and its shift by 2m−1 to expose the chirps in the frequency domain, so that the first row of P (c)

can be recovered, and then the entire matrix can be determined. Using Ỹ given by (13), the index

of the highest peak is the 21st. Therefore, the first row of P (c) is the binary representation of 20,

i.e., the binary string of 10100. The matrix P (c) can then be uniquely determined.

2) Steps 13 and 14:

Compute S0(a) = exp
[
jπ
(

1
2a
>P (c)a

)]
for all a ∈ Zm2 and apply Hadamard transform to the

pointwise product of Y r and the conjugate of S0 to recover b. In the example, the index of the

highest peak is the 19-th in the first iteration, hence b = 10010.

3) Steps 15 to 18:

Recover the erased signature S by pointwise product of φb,c and r, then put together all signatures

already recovered to form a matrix S̃, where all rows of S̃ corresponding to the on-slots of node

0 are set to zero. Determine the value of X which minimizes ‖Y r − S̃X‖2. In the example, the

reconstructed signature in the first iteration corresponds to the signature of the first neighbor (S1)

and the corresponding coefficient X1 is estimated to be 3.17 + 0.17j, which is close to U1.
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The preceding steps are repeated to discover more nodes. The algorithm terminates if either the total

number of iterations reaches the maximum number of iterations as one desire, or among the discovered

nodes, enough of them correspond to very weak coefficients, which implies that the algorithm starts to

produce non-neighbors.

We now justify the special scheme for generating the erasures in Algorithm 3. In order to recover the

i-th row of the m×m symmetric matrix corresponding to the largest energy component in the residual

signal, the auto-correlation is computed between the residual signal of length 2m and its shift by 2m−i.

It is advisable to guarantee that the positions of erasures in the received signal and its shift are perfectly

aligned as designed in Algorithm 3.

D. A Numerical Example

We illustrate the performance of discovery using RM codes through the following example. The same

network model is assumed as in Section III-D, where there are 220 valid NIAs.

First let the density of the nodes be such that each node has on average c = 10 neighbors. Choose

m = n1 = n2 = 10, then the signature length is 2m = 1,024. Averaged over 10 network realizations of

the large network, the rate of miss and the rate of false alarm of a total 10 × 100 = 1,000 nodes (with

approximately 10,000 neighbors in total) are plotted in Fig. 4 against the SNR. Note that there are no

false alarms registered during the simulation when SNR is larger than 12 dB. We find that the total error

rate can be lower than 0.2% at 13 dB SNR. In contrast, if random on-off 1,024-bit signatures are used

instead (see Fig. 3), at least 26 dB SNR is needed to achieve the same error rate, even if the size of the

address space is only 10,000.

We repeat the simulation with the number of average neighbors changed to c = 30 and the parameters

changed to m = n2 = 12, and n1 = 8. In this case, the signature length is 2m = 4,096. During all 10

network realizations, there are no false alarms and the total error rate can be lower than 0.2% at 11 dB

SNR.

In order to show that the chirp decoding algorithm is highly resilient to the near-far problem, we

demonstrate in Fig. 5 that strong neighbors will be detected with very high probability so that their

interference to weaker neighbors can be removed. In the case of average c = 10 neighbors, when the

signature length is 1,024 and SNR is 10 dB, we can see that the rate of miss decreases as the neighbors

become stronger, and the rate of miss is below 0.1% at −6 dB attenuation. The simulation is repeated

with the number of average neighbors changed to c = 30, the length of signature changed to 4,096 and

SNR changed to 7 dB. We can see that all neighbors with attenuation less than −6 dB are successfully
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Miss, c=10, M=1,024

False Alarm, c=10, M=1,024

Fig. 4. The rates of miss and the rate of false alarm versus SNR.

discovered with miss rate less than 0.2%.

V. COMPARISON WITH RANDOM ACCESS

We compare the performance of the compressed neighbor discovery schemes described in Sections III

and IV with that of conventional random-access discovery schemes. Only one frame interval is needed

by compressed neighbor discovery, as opposed to many frames (often in the hundreds) in case of random

access. Thus compressed neighbor discovery also offers significant reduction of synchronization and

error-control overhead embedded in every frame.

A. Comparison with Generic Random-Access Discovery

Suppose a random-access discovery scheme is used, such as the “birthday” algorithm in [2]. Nodes

contend to announce their NIAs over a sequence of k contention periods. In each period, each neighbor

independently chooses to either transmit (with probability θ) or listen (with probability 1 − θ). Let
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Fig. 5. The rate of miss versus attenuation.

ρ = c/N . The error rate is equal to the probability of one given neighbor being missed, which is given

by
N∑
z=1

(
N

z

)
ρz (1− ρ)N−z

[
1− θ (1− θ)z−1

]k
. (14)

Consider a network with 10,000 nodes, so in each contention period, the number of bits transmitted

is at least dlog2(104)e = 14 just to carry the NIA. For fair comparison with compressed neighbor

discovery schemes, we assume time is slotted and QPSK modulation is used. Table II lists the amount of

transmissions needed by random access discovery according to (14) and by compressed discovery based

on 2-tolerance group testing (see Figs. 2 and 3) in order to achieve the target error rate of 0.002 in cases

of 10 and 30 neighbors.

Evidently, random-access discovery requires hundreds of 14-bit frame transmissions to guarantee the

same performance achieved by compressed discovery using a single frame transmission. The latter

scheme uses much longer frames. Still, the total number of symbols required by compressed discovery

is substantially smaller, and in fact the advantage is greater in case of more neighbors.
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TABLE II

COMPARISON BETWEEN RANDOM-ACCESS DISCOVERY AND COMPRESSED NEIGHBOR DISCOVERY BASED ON GROUP

TESTING.

random access group testing

c = 10 194 frames 1 frame

1,358 symbols 1,024 symbols

c = 30 534 frames 1 frame

3,738 symbols 2,048 symbols

TABLE III

COMPARISON BETWEEN RANDOM-ACCESS DISCOVERY AND COMPRESSED DISCOVERY BASED ON RM CODES.

random access RM codes

c = 10 194 frames 1 frame

1,940 symbols 1,024 symbols

c = 30 534 frames 1 frame

5,340 symbols 4,096 symbols

Similar comparison can be made between random-access discovery and compressed discovery based

on RM codes. Consider a network with 220 nodes. To achieve the target rate of 0.002 in case of 10 or

30 neighbors, Table III lists the amount of transmissions needed by random-access discovery according

to (14) and by compressed discovery based on RM codes with chirp decoding (see Fig. 4). Again,

compressed discovery significantly outperforms random-access discovery.

The efficiency of compressed neighbor discovery can be significantly higher than that of random

access if all overhead is accounted for. This is because that sending a 14-bit or 20-bit NIA reliably over a

fading channel may require up to a hundred symbol transmissions or more. We believe using compressed

discovery can reduce the amount of total discovery overhead by an order of magnitude.

B. Comparison with IEEE 802.11g

It is also instructive to compare compressed neighbor discovery with the popular IEEE 802.11g

technology. Consider the ad hoc mode of 802.11g with active scan, which is basically a random-access

discovery scheme. The signaling rate is 4 µs per orthogonal frequency division multiplexing (OFDM)

symbol. One probe response frame takes about 850 µs. (The response frame includes additional bits but

is dominated by the NIA.) Thus it takes at least 850 µs× 194 ≈ 165 ms for a query node to discovery
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10 neighbors with error rate 0.002 or lower. If compressed neighbor discovery with on-off signature is

used, 1,024 symbol transmissions suffice to achieve the same error rate. Using 802.11g symbol interval

(4 µs), reliable discovery takes merely 4.1 ms. A highly conservative choice of the symbol interval is

30 µs, which includes carrier (on-off) ramp period (say 10 µs) and the propagation time (less than 1

microsecond for 802.11 range). Compressed neighbor discovery then takes a total of 30 ms, less than

1/5 of that required by 802.11g.

VI. CONCLUDING REMARKS

In this paper, we have developed two compressed neighbor discovery schemes, which are efficient,

scalable, and easy to implement. The on-off signaling used in neighbor discovery schemes was first

proposed in [35] and referred to as rapid on-off-division duplex, or RODD. Such signaling departs from

the collision model and fully exploits the superposition nature of the wireless medium [36]. Moreover,

using on-off signatures allows half-duplex nodes to achieve network-wide full-duplex discovery. It is

interesting to note that transmission of pulses by each node (which identifies the node) is scheduled at

the symbol level, rather than at the timescale of the frame level.

The neighbor discovery problem is different from most other applications of compressed sensing in

the literature because of the sheer scale of the problem. The number of unknowns is typically 220 or

more. We choose to use RM codes because of its scalability and effectiveness for compressed sensing.

At this point, there are no other practical codes which are known to deliver comparable performance for

noisy compressed sensing at this scale and efficiency.

A brief discussion of how neighbor discovery is triggered is in order. If a single node (e.g., a new

comer) is interested in its neighborhood, it may send a query message, so that only the neighbors which

can hear the message will respond immediately. To implement network-wide discovery, nodes can be

programmed to simultaneously transmit their on-off signatures at regular, pre-determined epochs, so that

all nodes discover their respective neighbors. This also prevents neighbor discovery from interfering with

data transmission.

Compressed neighbor discovery is well suited and in fact significantly outperforms existing schemes

for mobile networks where the topology of the network changes over time. Depending on the mobility, it

may be desirable to carry out neighbor discovery periodically. If this is done frequently, the toplogy may

not change much, hence it is also possible to create a Markov model for connectivity and incorporate

the model into the neighborhood inference problem. This is left to future work.

Finally, we note that very recently Qualcomm has developed the FlashLinQ technology based on
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OFDM, which carries out neighbor discovery over a large number of orthogonal time-frequency slots [37].

Over each slot, however, the scheme is still based on random access. The schemes proposed in this paper

can also be extended to multicarrier systems. This is also a direction for future work.
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