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Abstract

In this paper we propose a practical Random Network Coding (RNC)
scheme for data distribution in a peer-to-peer (P2P) overlay network. The
use of RNC incurs a significant computational cost that, till present, has
limited its deployment in practical applications. In this study it is shown
that RNC complexity can be lowered by using Luby Transform (LT) codes
to pre-encode the data and by letting intermediate nodes use RNC in a low-
order Galois Field, i.e. GF(2). Moreover, we exploit a recently proposed
variant of the Gaussian Elimination algorithm (OFG) to improve further
both the creation of random combinations for RNC and the final decoding
of the content.

Our analysis is based on both analytical modeling and simulations over
P2P overlay networks generated from random graphs and real snapshots
of the PPLive streaming application. The results point out that using LT
codes and RNC in GF(2) one is able to significantly improve the overall
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performance in terms of both delay and bandwidth utilization at a reasonable
computational cost. Finally, the RNC strategies we propose do not require
any prior knowledge of the overlay network topology thus making them very
general.

Keywords: LT codes, Random Network Coding, Peer-to-Peer.

1. Introduction

Several recent results pointed out that the use of coding techniques in-
crease the efficiency of content distribution applications such as reliable distri-
bution of bulk data, application level multicast, P2P streaming applications
[1, 2, 3, 4] or efficient broadcasting in ad hoc wireless networks [5, 6], just to
mention a few. Most of the cited results have been catalyzed by the seminal
promises of network coding [7, 8], where nodes in the network are allowed to
combine information packets instead of simply forward them. In particular,
in Random network Coding (RNC) [9] each peer transmits linear combina-
tions of incoming packets, where the coefficients are chosen randomly over
some finite field. The deployment of network coding at application level, e.g.,
in the field of P2P file sharing or video streaming, has been limited primar-
ily because of the bewared added computational cost due to linear coding.
Nowadays, such complexity issue must be carefully reconsidered; indeed, a
novel class of erasure codes called rateless codes [10, 11], designed for appli-
cation level coding, is turning out as a practical tool for efficient coded data
dissemination.

Rateless codes [10, 11] are a family of erasure codes where the rate, i.e.
the number of coded and transmitted symbols, can be adjusted on the fly.
In other words, as opposed to standard channel codes, characterized by a
rate, which is selected in the design phase a rateless encoder can generate
an arbitrary number of coded symbols. The approach used to transmit such
codes is called Digital Fountain (DF), since the transmitter can be viewed as
a fountain emitting coded symbols till all the interested receivers (the sinks)
have received the number of symbols required for successful decoding. It is
evident that such paradigm is well suited for wireless broadcasting applica-
tions where a single source is serving many recipients experiencing different
channel conditions. From the point of view of the added computational cost,
rateless codes require to perform simple xor operations among the original
packets on the encoder side, and to solve a sparse linear system in a Galois



field of order 2 on the decoder side.

In most of the deployed P2P applications a peer concurrently downloads
contents from multiple peers and uploads towards multiple peers. Although
this improves the bandwidth utilization and allows to counteract network dy-
namics, content reconciliation policies are required. However, the potential
advantage of coding is the simplification of the content reconciliation prob-
lem, since every piece of coded information is equally useful regardless of the
peer who has contributed it. If one uses coding, in principle, there is no limit
to the number of uniquely coded packets generated from the original set of
packets, thus relaxing the content reconciliation issue. Therefore, a simpler
push approach can be adopted to let propagate the information. Nonethe-
less, coding poses novel issues, as well. In particular the information flow
has to be divided into coding blocks; the computational complexity needed
to encode end decode such blocks could make this approach unfeasible in
practice.

For these motivations, in this paper we propose a practical Random Net-
work Coding strategy in GF(2) using rateless codes. Our goal is to design a
more efficient exploitation of DF principle for both fast propagation of the
information and low communication overhead due to the transmission of an
excessive amount of redundant coded packets. We use Luby Transform (LT)
codes [10] to pre-encode the source information. In general, when a node that
has not decoded yet has the possibility to send a packet, it sends a linear
combination of the previous received packets, calculated in GF(2).

The major contributions of the paper are the following:

e analytical modeling of the strategies that one can use to forward and
combine coded packets;

e cxploitation of the previous analytical results to design novel approaches
aiming at filling the performance gap between LT based and general
RNC solutions; in particular, we show that throttling the upload band-
width of the peers in the initial phase one significantly decreases the
number of duplicated packets;

e besides the computational savings yielded by the usage of LT codes we
show that the previously proposed OFG decoding algorithm [12] can be
modified to obtain a linear combination of the received coded packets
at the cost of a single XOR operation;



e the results section reports an extensive set of experiments comparing
the proposed approaches versus the literature in terms of both delivery
times and computational costs.

The major achievement of the paper is that using RNC based on LT codes
one can spread the information across a random network maintaining a low
number of duplicated packets and keeping the encoding and decoding com-
plexity limited.

The paper is organized as follows. In Sect. 2 some background on rateless
codes is recalled. In Sect. 3 the related research results are briefly recalled and
compared to our proposal. Sect. 4 presents models whose analysis supports
the definition of several relaying strategies for coded packets while Sect. 5
describes the system we consider. In Sect. 6 the simulator used to test the
proposed relaying strategies is described. Experimental results, performance
evaluation and analysis are reported in Sect. 7. In Sect. 8 our conclusions
and future research directions are drawn.

2. Rateless codes background

Luby Transform (LT) codes [10] are the first class of efficient rateless
erasure codes that achieve optimality as the data length increases. LT are
random block codes where the original data are divided into k£ information
packets x;, i = 0,...,k — 1 (the code performance does not depend on the
size of the packet). Each coded symbol y;, j > 0, is a packet constituted
by a random combination, i.e., the exclusive-or, of the information packets:
Yj = Zf:_ol 9i.;7i. The key element in LT code design is the so called degree
distribution, where the degree is defined as the number of source packets
combined to obtain a given y;. In [10] the Robust Soliton Distribution (RSD)
75.(1), is proposed for the selection of the degree i = 1,..., k. In the RSD ¢
is a suitable positive constant and ¢ is the allowed failure probability at the
decoder. In [10] it is demonstrated that the decoder fails to recover the data
with probability at most ¢ from a set of K = k + O(Vk - In?(k/§)) coded
symbols, which means that successful decoding is attained with K = k(1+¢)
with limy_, ., € = 0, i.e., the code is asymptotically optimal.

2.1. Decoding algorithms

The classical LT decoder is the BP algorithm [10, 13]. A node waits
for a coded symbol of degree 1 that turns out in the decoding of a source



symbol; this latter is used to lower the degree of all previously received
packets containing such symbol. The adoption of RSD guarantees that this
process can be iterated and converges to the decoding of all symbols as far
as the number of received packets is large enough.

In the most general case, given a set of n coded packets the decoder can at-
tempt reconstruction of the information message by applying Gaussian elim-
ination (GE) on the equivalent code generator matrix G = {g},..., g},
with row vectors g; = {goj,.-.,9k-1,}- In [12] the On the Fly Gaussian
Elimination algorithm (OFG) has been proposed as an improvement over
the classical GE algorithm, that makes the G triangularization process in-
cremental. Indeed, OFG builds a triangular decoding matrix G by exploiting
every received packet. Upon receiving a coded packet y; OFG finds its po-
sition in G by possibly combining it, i.e., xoring, with already filled rows of
G. It follows that at any time, any full row of G contains the combination
of possibly many received coded packets. This feature will be exploited in
Sect. 5.2 to define an effective strategy for relaying coded packets. A packet
that is inserted in G is called a useful packet; on the contrary, a packet that
cannot be inserted in G represents a linear combination of the previously
received packets and is thus discarded. These packets are called duplicated
packets.

Shortly, BP requires less xor and swap operations than OFG for large
values of k but it relies on the assumption that the degree of coded packets
follows the RSD. The BP decoder spends most of its computational efforts
when enough coded packets have been received as opposed to OFG that
spreads the computations over all the packets reception thus turning out
to be faster in practical contexts. Moreover, OFG does not force to use
the RSD distribution in the coding phase to be able to decode the original
information. It means that the distribution employed to encode the original
message can be different from RSD. Furthermore, as shown in [12], OFG
has lower overhead than BP, i.e., the number of duplicated packets is much
smaller for fixed k.

3. Comparison to Related works

In [1] an in depth analysis of the reconciliation issues in conjunction with
packet encoding is shown. A set of reconciliation algorithms trading off
accuracy and complexity is proposed. [1] designs a family of reconciliation
techniques, also tested in a real test-bed in [2], through which the peers



participating to the overlay attempt to coordinate the content downloading
by means of both original packets coding and recoding of already coded data.

The approach presented in [14] follows a complementary approach, by
avoiding the need for reconciliation, based on the optimal design of a dis-
tributed rateless code, i.e., coded packets are guaranteed by construction to
be independent and equally useful. Nevertheless the solution proposed in
[14] is limited to the case of a single network topology with a common relay
node, that can be generalized only assuming perfect knowledge of the overlay
connections. This latter assumption is clearly unfeasible in a real dynamic
overlay. Moreover, the optimization algorithm complexity increases with the
size and the number of the connections in the overlay. In [15] another optimal
coding approach is proposed. This solution is based on re-encoding, where
several coding stages are cascaded while moving from hop to hop. Besides
being asymptotically optimal, recoding comes at a significant computational
expense in intermediate nodes, and may lead to excessive coding overhead in
a real scenario with several hops and limited code block length.

A simpler approach able to cancel the reconciliation phase is used in [4],
where P2P streaming application adopting rateless coding and optimal peer
selection is presented. In [4] the DF approach is applied on every peer-to-peer
connection and peers are not allowed to propagate coded information before
the complete decoding of a block. Therefore, at the expense of an additional
delay, every peer waits for complete decoding of a block of original packets
and then starts sending independent L'T encoded packets. This strategy has
low decoding and decoding complexity due the performance of LT codes, but
the time needed to spread information in a network is large because the nodes
have to wait to decode a whole block before start relaying. The proposed
push approach is coupled with an optimal overlay formation strategy aiming
at constructing high quality streaming topologies so that end-to-end latencies
are minimized.

In [9] the authors propose to combine packets to achieve better perfor-
mance: this strategy is called Random Network Coding (RNC). In fact, the
seeder creates a new packet by a linear combination, in GF(q), of its input
symbols, where ¢ is a sufficiently large integer. The other nodes in the net-
work create new encoded packets by a linear combination in GF(q) of the
previously received packets. In the paper it is proven that ¢ should be larger
than the number of the peers in the network, that makes this strategy hardly
applicable in a real scenario due its computational complexity, as stated in
[16]. To face this problem, in [16] a peer waits to relay packets until it has
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received a certain number of packets. Using this parameter it is possible to
decrease the information spreading time, even if the performance of RNC is
still considered poor; in fact, the computational complexity of encoding and
decoding in GF(q), that increases with the increasing of ¢, is still too costly.

The lesson we learnt from [16] is that RNC is not feasible in a real scenario
because all the encoding and decoding operations are made in a large-order
Galois Field. Therefore, we propose strategies to increase the performance
of RNC in low-order Galois Fields. We use LT codes as a pre-code for the
source for two motivations: they have a low decoding complexity, and they
are generated in GF(2), i.e. with the lowest possible value of ¢. Similarly, we
use OFG decoding algorithm to decode received packets because it permits
to decrease the time needed to create new packets thorough the combination
of previously received packets (i.e. what in RNC is called encoding time).
This is possible because, using OFG, the rows of the decoding matrix are
random linear combinations of received packets; when a node needs a linear
combination of packets to encode a new packet it can to use these rows
rather than calculate a new linear combination. In addition, OFG yields a
low overhead € even if the degree distribution is not RSD, thus allowing one
to exploit linear combinations of LT encoded packets within an RNC delivery
approach.

Another lesson we learnt from [16] is that the performance of RNC im-
proves with the number of received packets: when a node has received few
packets, the encoding process (i.e. to create new packet by a linear combina-
tion of the previously received packets) is less useful. In opposition to [16],
that proposes to block the recoding process, we propose to limit the number
of linear combinations injected by a node depending on the number of the
received coded packets. This idea is carried out by an analytical model, pro-
posed in Sect. 4, to evaluate the effect of throttling the speed used by peers
to saturate the available upload bandwidth.

Some preliminary ideas applied to the case of P2P video streaming have
been already presented in [17]. In this work we considered a strategy where
nodes, as opposed to [4], start relaying coded packet before complete decoding
of a LT block, showing that lower spreading time is obtained. A coded
packet can be forwarded only once to a single destination avoiding the need
of reconciliation at the receiving peer. This simple approach proved useful
in reducing delays and does not result in duplicated packets circulating in an
overlay without loops. To cope with this issue an ad-hoc heuristics has been
devised to prune loops. Both in [17, 4] the possibility of combining packets

7



is not considered: indeed, these studies rely on the standard BP decoder as
opposed to the OFG technique used in this work, which enables the design
of novel relaying solutions.

4. Modeling of Relaying Strategies

In this section we develop two analytical models to support the design
of efficient relaying strategies of coded packets between any two peers in the
overlay network. We first quantify the effect of saturating the upload band-
width of nodes by randomly selecting a set of coded packets to be relayed.
We successively prove that making linear combinations of the received pack-
ets, before forwarding them to the neighbors, yields a higher probability to
provide useful packets to the receiving nodes, i.e. that RNC can be profitably
exploited in GF(2) as well.

We consider a distributed application whose components have organized
in a peer-to-peer overlay network 7. We make no hypothesis on how T
is formed therefore multiple paths between pair of peers and cycles may
be allowed. There is a single peer that holds valuable information for all
the others (the original source). At startup all other peers are interested
in retrieving the information and cooperate to obtain it. Every peer stores
the coded packets that turn out to be useful in the buffer OB. By useful
coded packet we mean a received packet that is not linear dependent on
the previously received ones. Each peer is allowed to combine and forward
packets from its buffer OB. Peers are characterized by their upload (B,) and
download (By) bandwidth expressed in bps. In the sequel we also need to
express the peer bandwidths in pps (packets per second) for a given packet
size; in this case we denote the peer bandwidths as N, and N;. Each peer
is also characterized by the number of its neighbors from which information
is downloaded (z4) and the number of neighbors to which information is
uploaded (z,).

4.1. Saturating the upload bandwidth: delay vs overhead trade-off

To develop our model we consider a pair of neighbor peers A and B.
Time is slotted and peer A randomly selects packets from its output buffer
OB and sends them to peer B. Let d(t) be the size of OB at peer A at
time ¢t (for ¢t = 0,...), and s(¢) the number of packets selected by A for B
(at time t). In the following we denote by P (t,q) the probability that in
the time interval [0,¢] A has forwarded g useful coded packets to B, and by



I(s(t),d(t),n,r) the probability to send n useful packets at time ¢ given that
B has already received r packets during the time interval [0,¢ — 1]. By using
these definitions we can write the following recurrence

_J I(s(?),d(t),q,0) ift =1
Pt >_{ ?:OPuse(tq—l,q—z')-I(s(t),d(t),z‘,q—z') ift> 1.

We can write the probability Pau,(f,u) that A has forwarded u duplicate
packets, i.e. not useful for B, in the interval [0, ] as

Pdup(t7 U) = Puse(tu StOt(t) - U),

where s,,;(t) = >.r_,s(i) is the total number of packet extraction in the
interval [0, ].

At time t peer A may select s(t) packets with or without replacement. In
the former case we can derive that

I(s(t),d(t),n,7) = (d(t) - T) : Z <z)f<s<t>,n +hdt)), (1)

n
h=0

where f(s(t),b,d(t)) = % if s(t) > b and 0 otherwise. We use { <bt} to

denote the Stirling number of the second kind [18]. If we view packets in OB
of A as urns and extractions as balls then the expression for I(s(t),d(t), n,0)
is actually the probability distribution of the number of urns that contain at
least one ball in a classical occupancy model [19].

In the case without replacement, the expression of I(s(t),d(t),n,r) re-
duces to a hypergeometric probability distribution:

d(t)—r r

( (T)L ) ’ (s(t)fn)
d(t) :
(s(t))

In the following we test the proposed model with some numerical exam-
ples. To show the trade-off between delay and overhead we set N, = 1024
and z, = 32, which amounts to set a maximum available bandwidth from
A to B of N“ = 32 pps. Furthermore, we make the simple assumption
that useful packets of A increase linearly with time as d(t) = x - t for some

x. The number of packets selected by A at each time slot is limited by
s(t) = mln( s Smaz), where 1 < s,0, < ]:—: In other words the number

I(s(t),d(t),n,r) = (2)
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of packets forwarded by A is limited by the number of packets in OB and
by a design parameter s,,,, which is upper bounded by the upload capacity.
We consider original data coded using £ = 100 so that A and B must, on
average, collect K = 107 coded packets before decoding as experimented in
Sect. 7; in Fig. 1 we show the time to complete the collection of K packets
teng = min{t : > 07 1 Puse(t,d) > 0.99} for x = 1 (Fig. 1(a)) and z = 64
(Fig. 1(b)). Fig. 1 also reports the minimum feasible collection time defined
as tmin = (ﬁ]
(z,8maz)

In Fig. 1 we also show the fraction of duplicated packets from A to B

defined as

Stot (tend)_l

Z u - Pdup(tenda U)

%p(tend) - u=0

Stot (tend)
for # = 1 (Fig. 1(c)) and = = 64 (Fig. 1(d)). It can be noted that models
defined in Egs. 1 and 2 yield overlapping results for x = 1 while we note a
slight increase in the values of dup(t.nq) for selection with replacement in the
case of a quickly growing size of the buffer of peer A. As a consequence, in the
following only selection without replacement will be considered. We easily
observe that when we increase the maximum allowed upload bandwidth we
manage to reduce the time for B to collect K packets but the price that is
paid is an increasing fraction of duplicated packets received by B. A simple
countermeasure to reduce the value of dup(t.,q) (while increasing the value
of tenq) is to throttle the speed of A by setting s(t) = min(%, Smaz) for a
given a« > 1. The parameter « is used to lower the number ‘of forwarded
packets in the initial phase when A is filling its OB.

In Fig. 1 we also report the values obtained by setting a = 2. Results
clearly show that throttling the upload is crucial in reducing the amount of
duplicated packets.

4.2. Combining packets

We now argue that if A combines packets selected from O B before sending
them to B then the probability of sending a useful packet increases, i.e.
that RNC is useful even if it is made in GF(2). In fact, we want to show
that if node A has useful packets for B, then combining packets reduces the
probability to send duplicates.

Assume peer A owns h linear independent packets, of which hy < h are
linear dependent on the packets owned by B: this means that each of these

10
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Figure 1: Time to collect K packets for z = 1 (a) and 2 = 64 (b) and fraction of duplicated
packets from A to B for z =1 (¢) and = = 64 (d).

hq packets would be a duplicate if A sends it to B. Call H, the linear
space generated by the packets of A linear dependent on the packets of B.
Peers generally receive packets from different peers, thus A does not know
which packets are in Hy. If A sends a randomly chosen packet p to B, the
probability p; that B receives a duplicate is pg = P(p € Hy) % If A
draws r different packets pq,...,p, and xors them obtaining a new packet
Ps = Y., Pi, such packet is useless if and only if all combined packets are in
Hq. In the case r < hy the probability that B receives a duplicate turns to
be p§ = P(ps € Ha) = P(p1,...,pr € Ha) = % :;11 % < pgq. Otherwise, if
7 > hg then 3i <r:p; ¢ Hy and p§ = 0. Therefore we have that p§ < pg Vr.

This means that to combine packets decreases the probability to send

duplicated packets in the network.
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5. System description

In this section we describe the behavior of the various peers in the network
and the relaying strategies they can follow.

5.1. State of the peers

Each peer in T can be in one of the following states:

o WAIT: the peer is waiting for the reception of the first coded packet.
As soon as the peer receives the first packet it changes its state to
DECODER.

e OFF': the peer is not cooperating to obtain or distribute the data.
This state is assumed when the peer and all its neighbors have already
received and decoded all the k packets.

e SEEDER: the peer has already received and decoded the k information
packets but some of its neighbors are still in the DECODER state.
In this case, the peer generates new LT coded packets, saturating the
upload towards its neighbors. As soon as all its neighbors have decoded
the original information, the peer changes its state to OFF.

e DECODER: the peer has not received enough information data to de-
code the original information. The relaying strategy followed by peers
in state DECODER will be discussed in Section 5.2. As soon as the
peer receives enough packets to decode the information data, the peer
signals such event to all its seeding nodes so as to stop them from
pushing more coded packets and changes its state to SEEDER.

At the beginning, the source state is set to SEEDER state while all the other
peers are set to WAIT state. All peers in the SEEDER state encode the
original data and send it to their neighbors in the DECODER state using
the RSD. All peers in the DECODER state run the OFG decoding algorithm
and progressively construct their generator matrix G, based on the generating
equations of the received coded packets. At the same time, these peers insert
only their useful packets in an output buffer OB from which packets are
selected for relaying.

12



5.2. Protocol description

The lesson we learnt from Sects. 4.1 and 4.2 is that throttling peers
in DECODER state and combining packets before relaying to neighbors in
DECODER state are effective strategies to reduce the amount of duplicated
packets while retaining the capability of spreading received packets as soon
as possible. This allows us to define and compare several strategies for the
relaying of coded packets while in the DECODER state:

e Store and Recover (SR): a peer does not forward any of the received
coded packets that are used to recover the k original blocks. This
means that a peer starts to forward packets only when it switches to
the SEEDER state. This is the strategy used in rStream [4].

e Relay (RE): at every transmission opportunity, a peer selects a packet
in OB and forwards it. Such packet is deleted from OB so to relay
it only once. The procedure is repeated until OB turns empty or the
upload capacity is saturated. This strategy is used in [17].

e Random Relay (RR): a peer at every transmission opportunity ran-
domly draws from OB enough packets to fully use its upload capacity
and sends them to its neighbors.

e Random Relay with Combinations (RRC): on every transmission op-
portunity the peer randomly draws from OB enough packets to fully
use its upload capacity, it xors them with a randomly chosen row of
the decoding matrix G and sends them to its neighbors. As recalled
in Sect. 2.1 this amounts to combine the selected packet with a set of
previously received packets at the cost of a single packet xor operation.

The aim of the RR and RRC strategies is to send as much information as
possible: the high utilization of upload bandwidth allows us to reduce the
information data spreading time. As already seen in Sect. 4, these strategies
may be too aggressive, i.e. they could fill the network with too many dupli-
cate packets. For this reason we consider two variants of previous strategies,
namely TRR and TRRC, where the upload bandwidth of RR and RRC is
throttled according to the criterion analyzed in Sect. 4.1. In particular at
any transmission opportunity the number of relayed packets is limited to

min(N(t)/a, Ny).
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6. Simulator description and implementation

All the distribution strategies described previously have been implemented
in a C++ simulator. As already mentioned, the simulator builds an overlay
network topology where a single peer (called source) begins sending its infor-
mation data, divided into k packets, to all the other peers. At the beginning,
the source state is set to SEEDER while all the other peers are set to WAIT.
The simulator operates on a time slot basis. During each time slot all the
network nodes run the selected distribution protocol. Each node is character-
ized by a maximum upload B, and download By capacity, which determine
the maximum number of coded packets that a node can upload/download in
a single time slot. The simulator does not assume any form of rate control,
thus each node behaves independently aiming at saturating all its upload ca-
pacity. The packets are uploaded with a round-robin scheduling without any
feedback from the recipients. On the receiver side, each node can download
packets up to the saturation of its download bandwidth; the packets received
in excess of the By limit are simply dropped.

The simulator is based on a complete implementation of the LT encod-
ing and decoding procedures. As a source, each node has its own random
generator for the RSD distribution and can generate the required number of
coded symbols in each time slot, based on linear combinations of the original
k information packets. As a receiver, each node progressively decodes the
received packets. Both the standard BP decoder based on backward substi-
tution of degree 1 equations and the recent OFG algorithm are available. In
the OFG case, each node progressively constructs the generator matrix G,
based on the generating equations of the received coded packets. The OFG
decoder is run in every time slot to retrieve the maximum number of source
packets x;, given the currently received coded symbols. As soon as a node
successfully decodes the original k information packets it signals such event
to all its seeding nodes so as to stop them from pushing more coded packets.

The simulator goal is the measurement of the following performance in-
dexes for each node p that is reachable from the source in d hops:

e tr(p,d): time slot of the first packet arrival, i.e. transition from WAIT
to DECODER;

e ip(p,d): time slot when LT decoding is fully accomplished (the & in-
formation packets are recovered), i.e. when a node state switches from

DECODER to SEEDER.
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e l5(p,d): time slot when a SEEDER turns OFF, i.e, all of its neighbors
completed decoding;

e é(p,d): LT code overhead estimated at node p, i.e. percentage of pack-
ets in excess of k£ downloaded while in the DECODER state. In other
words, the number of downloaded packets is expressed as (1+€)k. The
term overhead has been introduced in the rateless coding literature to
identify the penalty due to random linear coding. With abuse of nota-
tion we use it to sum up the sub-optimality of both the LT encoding
and the distribution strategy.

Previous indexes, are then averaged on all peers at given distance d allow-
ing us to analyze the behavior of the different distribution strategies. From
tp(p,d) we obtain tp(d) = ﬁ > per, to(p, d) where Ty is the subset of nodes
in 7 d hops away from the source. As a performance index for all the overlay
we can compute tp = « >y > o7, tp(p, d) where N is the number of nodes in
the graph 7. tp(d) and tp are termed absolute decoding time and represent
average delays between the time instant when the source has initiated the
data distribution and the retrieval of the information. In the case of a P2P
live video streaming application such index determines the play-out delay.
Analogous averages can be computed on tr(p,d) and tg(p,d). In particular,
as pointed out in the next section, it is interesting to analyze the behavior of
tp(d) — tp(d), termed the relative decoding delay, which represents the av-
erage time between the reception of the first coded packet and the complete
LT decoding, i.e., the time spent in the DECODER state at d hops from the
source.

We also defined performance indexes to characterize the computational
complexity of the distribution strategies we consider. To this end we defined
the following measures that are averaged over all nodes in 7

e decoding complexity ¢, to estimate the number of row XOR operations
in the OFG decoding algorithm when nodes are DECODER;

e encoding complexity c. for the number of XOR operations to create
coded packets when nodes turn into SEEDER,;

e combination complexity c. to consider the number of XOR opera-
tions to obtain a combination of received packets when nodes are DE-
CODER;
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All protocols have been evaluated on static topologies T, based on the
representation of the set of N active nodes in a P2P network as a finite graph
of size N, where a vertex represents a peer and application-level connections
between peers are modeled as edges.

7. Simulation results

In this section the SR [17], RE [4], RR, TRR, RRC and TRRC strategies
are analyzed and compared. The goal of this analysis is twofold. On one
hand, the advantages offered by relaying and combining coded packets are
shown. On the other hand, the experiments contribute to get a deeper under-
standing of the behavior of protocols based on rateless codes in a complex
random network. We also consider an idealized form of Random Network
Coding (that we denote as iRNC) to obtain a lower bound on the delay
and an upper bound on the computational complexity for the performance
indexes we defined in Sect. 6.

7.1. Simulation parameters

The simulator described in Sect. 6 has been used to simulate the temporal
behavior of the system with a time slot equal to 30 ms. Information packets
of 1000 bytes and LT coding with £ = 100, ¢ = 0.05 and = 0.01 are used.
When testing the TRR and TRRC strategies the parameter v = 2.0 is used,
unless otherwise stated.

For the generation of the network topology 7 we considered several in-
stances of Erdés-Rényi (ER) random graphs [20], which are described by a
Poisson probability distribution for both the outgoing and incoming degree
whose average is equal to z. Another set of experiments has been worked out
on real topologies obtained from PPLive video streaming application [21].
PPLive peers organize in an overlay to receive and relay multimedia content
for a particular channel. We used the crawler [22] to gather topological infor-
mation of PPLive channels. Because of the overlay dynamics, the accuracy
of the captured snapshots depends on the crawling speed. The crawler in [22]
reduces the crawling time by using a distributed approach that allows one
to capture snapshots of the overlay supporting a PPLive Cartoon channel
in times ranging from 5 to 8 minutes. The size of captured snapshots varies
according to a daily behavior ranging from 4000 to 8000 peers. In this paper
we selected 25 snapshots with an average size of 6300 nodes with an average
number of neighbors per peer equal to 46. In order to compare the results
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Table 1: Bandwidth classes.
B, By Percentage

10 Mbps 10 Mbps 5%
256 kbps 2 Mbps 15%
256 kbps 4 Mbps 60%
512 kbps 8 Mbps 15%
1 Mbps 20 Mbps 5%

with those obtained on random graph we used 25 ER graph instances with
the same average size and z = 46. All the performance indexes reported
in the following are obtained averaging the results of independent simula-
tions on the available 25 graph instances. In each simulation the source
is randomly chosen among the nodes from which it is possible to reach all
the other N — 1 nodes. The bandwidth distribution shown in Tab. 1 has
been used to randomly allocate the peer bandwidth capacities B,, By. The
selected bandwidth figures are representative of a realistic scenario with a
majority of peers with limited capacities, e.g. accessing through ADSL links,
and a small percentage of high capacity institutional nodes.

7.2. Comparison between OFG and BP

As already mentioned, in this work we propose to use OFG to decode
LT codes. Such algorithm has a number of important features, the most
important being the possibility of incrementally solving the system of linear
equations determined by LT coding, its lower overhead for short block lengths
k and its limited sensitiveness to the degree distribution of the coded packets.
In Tab. 2 the average performance indexes tg, tp, ts and €, obtained when
using the SR strategy and a source node with B, = 10 Mbps on ER graphs,
are shown for BP and OFG. As opposed to OFG, BP is very sensitive to the
RSD parameters; in the BP case we noticed that using ¢ = 0.05, = 1.0 yields
the best performance for £ = 100, shown in Tab.2. It can be noticed that
while the BP decoder requires a significant overhead € = 0.35, which means
that about 135 coded packets are needed to retrieve the original 100 packets,
OFG needs only 107 coded packets. Clearly, the lower overhead positively
impacts on all the other indexes, reducing by about the 18% the average
decoding delay. Moreover, BP algorithm is not usable in a scenario where
LT encoded packets are combined: indeed, the degree distribution of received

19



Table 2: Comparison between OFG and BP using SR on ER graphs: source with B,, = 10
Mbps.

lr 135 ls €
BP 17.75 31.23 32.86 0.35
OFG 1490 25.71 26.97 0.07

Table 3: Average performance indexes as a function of the upload capacity B, of the

source.
B, = 256 kbps B, =1 Mbps B,, = 10 Mbps
tr tp ts € tr tp ts € tr tp ts €
2} iRNC 0.20 1.02 1.33 0.05 0.18 1.00 1.32 0.05 0.15 0.97 1.28 0.05
% SR [4] 170.95 183.20 184.48 0.07 50.99 62.21 63.48 0.07 14.90 25.71 26.97 0.07
5% | RE [17] 78.33 123.06 126.86 0.08 20.76 35.48 37.66 0.08 2.89 7.57 8.27 0.08
~ RR 0.20 541 5.54 4.45 0.18 2.92 3.12 1.93 0.15 1.77 2.04 0.82
M TRR 286 594 6.12 1.55 1.23 3.04 3.29 0.50 0.67 2.13 2.41 0.27
RRC 0.20 3.77 3.84 274 0.18 1.83 2.06 0.82 0.15 0.99 1.31 0.08
TRRC 2.85 4.11 4.40 0.09 1.23 2.41 2.71 0.07 0.66 1.84 2.14 0.07
iRNC 034 1.76 3.36 0.02 0.30 1.72 3.32 0.02 0.27 1.69 3.28 0.02
.q_>"> SR [4] 173.92 181.39 182.72 0.07 49.08 55.58 56.90 0.07 11.47 17.65 18.97 0.07
i RE [17] 15.79 77.12 77.38 0.08 4.76 22.94 23.19 0.08 1.10 5.61 5.86 0.08
[al RR 0.36 6.09 6.49 3.74 0.32 3.49 3.98 1.51 0.29 2.50 3.06 0.68
TRR 543 853 9.08 0.61 1.47 3.92 4.48 0.38 0.86 2.95 3.56 0.20
RRC 0.36 4.75 5.10 2.52 0.32 2.86 3.35 0.93 0.28 1.81 2.41 0.12
TRRC 538 7.49 8.08 0.08 1.43 3.29 3.90 0.09 0.84 2.68 3.29 0.09

packets is different to RSD, making BP algorithm unusable. Therefore, all
the experimental results reported in the following are worked out with OFG.

7.8. Analysis of delay and computational complezity

After this preliminary comparison we pass to the most important result
of this work, i.e. the performance evaluation of the proposed random relay
strategies. In Tab. 3 the average performance indexes obtained with SR,
RE, RR, TRR, RRC, TRRC are shown as a function of the source upload
capacity for both the ER graphs and the PPLive snapshots. It can be no-
ticed that all the proposed RR, TRR, RRC and TRRC strategies, being able
to increase the exploitation of the upload bandwidth, reduce tremendously
all the delays. On the other hand, random coded packet forwarding can be
heavily penalized in terms of overhead, due to the high probability to create
duplicated packets in the overlay. In particular when the source upload is
limited RR turns out to be practically unusable with € > 1. As expected,
using packet combinations in RRC significantly improves both in terms of de-

20



coding delay tp and €. This is clearly due to the lower probability to forward
duplicated packets. It can be observed that in all the reported experiments
RRC is the algorithm achieving the lowest tp, shown in bold face in Tab. 3.
RRC turns out to be efficient in terms of € only when the source has B, = 10
Mbps. The performance impairment in the case of a source with limited up-
load capacity can be overcome by throttling the upload resorting to TRRC,
which consistently yields the best € (boldface in Table). This advantage is
paid in terms of slightly larger delays. TRR, i.e. the same upload reduction
but without combinations, still yields large delays and overhead even if it
performs better than RR. First row in Tab. 3 reports results for an idealized
form of Random Network Coding in GF(q) using some large prime power
g. We simulated the data dissemination process by considering no overhead
and by neglecting duplicate packets, i.e., all received packets are assumed to
be innovative although they can be duplicates. It can be noted that this ide-
alized form of RNC still has the overhead due to the arrival of late packets.
Most important, as the source upload capacity increases the performance of
RRC strategy gets closer to the lower bound represented by the idealized
RNC strategy we chose. Furthermore, the overhead of the TRRC strategy is
very close to the ideal one in all considered scenarios.

To get a better insight into the behavior of the various strategies in the
following we will analyze the average tp(d) and tp(d), i.e. the delays as a
function of the number of hops separating a node from the source. From this
point on all the reported results refer to the case of PPLive snapshots. ER
graphs show very similar behavior and they are omitted for conciseness. In
Fig. 2 tp(d) is shown as a function of d when the source upload bandwidth
is B,, = 256 kbps (a) and B, = 10 Mbps (b). As already observed in terms
of average tp, RRC is the strategy yielding the lowest decoding delay at any
distance from the source and independently of the source upload.

In Fig. 3 the relative decoding time tp(d) — tp(d) is shown as a function
of d when the source upload bandwidth is B, = 256 kbps (a) and B, = 10
Mbps (b). In Fig. 3(a) it can be noted that SR is heavily conditioned by the
limited upload of the source when d = 1. Indeed, in the SR case nodes at
distance d = 1 are directly served by the unique source; the other strategies,
being based on relay of coded packets, let the information flow as soon as
possible, thus reducing the LT decoding time. This advantage becomes less
evident for higher distances since in such a case both SR and the other
techniques rely on the presence of a number of nodes in the SEEDER state,
that act as a set of independent sources. The number of such source nodes
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clearly increases with the distance d. In the reported results such source
propagation effect diminishes for d = 4 because of the particular topological
structure of the PPLive overlay. Indeed PPLive snapshots are formed by
very well connected nodes (average degree is 46) when d < 3. Nodes with
d > 3 form low connected chains where packet upload can be limited by a
single bottleneck. In Fig. 3(b) we show the same indexes when the source
has a large upload; in such a case the SR relative delay for d = 1 is less
penalized by the single source, whereas the values for d > 1 are the same as
in 3(a). In the case of RR, TRR, RRC and TRRC the larger upload capacity
of the source yields a relevant reduction of the relative decoding delays for
all values of d (expect for d = 4 due to the mentioned topological issues).

Furthermore, TRRC achieves a high utilization of the upload capacities
defined as n,(p,d) = Bu[tS{Z“d(p '?F(p de where R, (p,d) is the total amount of
data uploaded by peer p placed at d hops from the source, averaged over all
peers belonging to the same bandwidth class. In all the simulated scenarios
TRRC exhibits an average 7, above 0.8 for ADSL links, and 7, of about 0.5
for the institutional nodes. As a reference SR achieves 7, around 0.2 for all
bandwidth classes.

Finally, in Tab. 4 we present the results for the computational complexity
of the considered strategies. We do not consider iRNC since in that case
decoding is based on Gaussian Elimination requiring Q row combinations;
each row combination takes log, ¢ XOR operations When q is a power of 2.
Clearly, for large values of ¢ this yields very large values for ¢4 [23]. In our
settings, we obtain c¢; ~ 5000 log, q.

Except for SR, the decoding complexity ¢, represents the most significant
contribution to the overall computational complexity. It can be noted that
RRC yields high decoding complexities, i.e., ¢4, which can be explained by
the fact that RRC is likely to create a large number of linearly dependent
combinations of packets that translate into a high overhead as noted in Tab. 3.
Linearly dependent combinations require several XOR operations in OFG to
cancel out all terms. On the other hand, throttling reduces both overhead
and computational complexity.

8. Conclusions and future works

In this paper we showed that the performance of data distribution in
P2P networks can be improved tremendously at a very reasonable cost us-
ing rateless codes and RNC. In particular, we propose to perform the linear
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Table 4: Average complexity indexes as a function of the upload capacity B, of the source.

B, = 256 kbps B, =1 Mbps B, = 10 Mbps
Ce Cd Ce Ce Cd Ce Ce Cd Ce
] SR [4] 942.60 1138.40 - 943.63 1139.24 - 942.24 1138.01
% RE [17] 280.75 1218.03 - 279.15 121594 - 281.46 1206.50
by RR 138.61 2854.09 - 220.95 2675.89 - 235.80 1508.49
oo TRR 77.36 1659.65 - 146.55 1354.23 - 220.60 1221.24
= RRC 204.63 6593.53 405.58 | 246.85 3772.38 191.38 | 248.65 2564.07 101.71
TRRC 43.44 3182.34 93.05 | 178.65 2877.60 82.81 | 258.16 2470.56 82.45
SR [4] 883.81 1094.41 - 882.89 1093.22 - 882.15 1094.56 -
.g RE [17] 504.63 1119.89 - 507.88 1120.13 - 498.54 1121.60
E RR 235.22 2720.70 - 320.80 1599.64 - 336.75 1450.41
a B TRR 173.42 1567.53 - 232.29 1287.41 - 300.14 1193.96 -
RRC 278.36 6825.73 542.27| 357.32 3305.85 376.49| 361.22 2220.11 281.55
TRRC 137.03 2981.95 88.94 | 270.47 2187.40 64.20 | 350.19 2176.33 63.76

combinations of information packets in GF(2), to reduce the computational
complexity, and to use LT codes to pre-encode the information packets. We
let nodes propagate encoded packets as soon as possible, so as to increase
the utilization of the upload capacity and reduce the delay after which a
node is able to accomplish the decoding, thus retrieving the original infor-
mation. We showed that letting a node relay linear combinations, even if in
GF(2), of the coded packets accumulated during the decoding process is very
likely to reduce the amount of useless information, so improving the overall
system performance in terms of both delay and bandwidth utilization. The
most simple random relay approach is potentially dangerous because it is
very likely to saturate the upload bandwidth with duplicated packets. To
solve this problem we propose to initially throttle the upload bandwidth.
The results we obtain are really promising: the improvement on the system
performance are shown by means of very detailed simulation of an overlay
network of nodes running encoding and decoding stages. The overlay net-
works we considered are both random graphs and snapshots of PPLive. The
proposed distribution strategy turned out to yield very low decoding delay
so as to sustain a larger throughput, while avoiding to flood the overlay net-
work with excessive useless coded packets. In particular, we observed that
as the source upload capacity increases the performance of RRC strategy
gets closer to the lower bound represented by the idealized RNC strategy we
chose. Furthermore, the overhead of the TRRC strategy is very close to the
ideal one in all considered scenarios. As for the computational complexity,
RRC requires a large number of XOR operations; this can be explained by
the fact that RRC is likely to create a large number of linearly dependent
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combinations. On the other hand, throttling reduces both overhead and
computational complexity.

Ongoing research in this area includes the exploitation of network aware-

ness for overlay formation and coded packet distribution, e.g. prioritizing
the transmission towards peers with more upload capacity. Finally, the im-
plementation of the proposed relaying strategies in a real P2P application is
currently underway on Planetlab.
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