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Abstract

In this work, a VANET (Vehicular Ad-hoc NETwork) is considered to operate on a simple lane, without

infrastructure. The arrivals of vehicles are assumed to be general with any traffic and speed assumptions.

The vehicles communicate through the shortest path. In this paper, we study the probability distribution

of the number of hops on the maximal shortest path in a connected component of vehicles. The general

formulation is given for any assumption of road traffic. Then, it is applied to calculate the z-transform

of this distribution for medium and dense networks in the Poisson case. Our model is validated with the

Madrid road traces of the Universitat Politècnica de Catalunya. These results may be useful for example

when evaluating diffusion protocols through the shortest path in a VANET, where not only the mean but

also the other moments are needed to derive accurate results.

Keywords: VANETs, shortest path routing, performance evaluation, connected component size.

1. Introduction

Evaluating Vehicular Ad-hoc NETworks (VANET) protocols is generally complex and difficult as it re-

quires to consider many parameters. Ideally, a VANET model should take into account at least accurate

radio models, accurate road traffic models and protocol models. For this reason, most VANET protocols are

evaluated by simulation. Nevertheless, a formal method to identify shortest hop performance is currently

very relevant, considering the current requirements and developments for Vehicle-to-Vehicle (V2V) commu-

nication in the Intelligent Transportation Systems (ITS) domain. Models given connectivity probabilities

as a function of the distance between a sender and a receiver avoid complex and long simulations. It is the

same for models of the time to route the information from a source to a destination or models given the

number of hops in the shortest path. For example, it is interesting to know the probability that a message

emitted from a source can reach a vehicle located at a certain distance ahead of the road. If this probability
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is positive, we would like to know how much hops are necessary to reach the destination, and how long time

is needed. Connectivity probabilities have been already studied (e.g. [1]) but the process of the number of

hops, when following the shortest path, is not exactly known (there are bounds in [2]). The goal of this

paper is to address this issue.

In this paper, we model the number of hops of the maximal shortest path in a V2V connected component,

which is the shortest path between the vehicle at an end of the connected component to the vehicle at

the other extremity. Modelling the maximal shortest path can be directly used in combination with the

connectivity probability to evaluate the number of hops in a diffusion protocol for instance. Let us call

the hop density the average number of hops in a connected component divided by the average size of the

connected component. Then, assuming a path exists between a sender and a receiver located at a certain

distance, it can be used to approximate the number of hops between them by multiplying the hop density

by the distance separating these two nodes. Using the results we present in this paper, the hop density

can be estimated. More generally, modelling the maximal shortest path allows to derive the performance

of new network protocols or mechanisms. Examples of such problems where models of number of hops

in a connected component are useful to evaluate the solution are [3], [4] and [5]). In [3], we proposed a

LTE-assisted D2D solution for dead-ends recovery. The problem is then to calculate the delay to transmit

a message from a sender to the dead-end, the delay of the LTE-assisted solution and the delay between the

LTE part and the RSU.

In the next section, works related to VANETs modeling are surveyed, the analytical model formulation

is presented in section 3, the explicit calculation in the case of Poisson road traffic is presented in section 4.

Section 5 presents the evaluation and model validation. Section 6 is dedicated to concluding remarks and

future works. Most of the demonstrations are given in the annexes.

2. Related works

Regarding the VANET modeling, when the network is sparse, the information propagation speed may

depend on the vehicle speed because the network may work in a delay tolerant fashion. In [8] and [9], models

were presented for delay tolerant networks or to investigate the impact of disconnections in vehicle networks

on the information propagation. These are interesting results but in our present work, we consider only

real-time applications. As a consequence, we consider the information is sent faster than the vehicle speed,

so the information transfer is stopped if there is a disconnection.

In works like [6] or [7], the number of nodes in a connected component is given. Though these works

provide insightful results on cluster sizes, they did not consider the shortest path. The connectivity in

VANETs was studied as in [10], [11], and [12] where the connectivity probabilities were derived. In [13],

authors proposed an analogy by which the ad hoc network connectivity is modeled by a G/D/∞ queue. In [1],

the authors used this analogy to derive the number of cars in a connected component of vehicles in a VANET
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and what they called the connectivity distance, which is the length of a vehicle connected component. In

[14], the authors investigated the effect of channel randomness on connectivity, with particular emphasis

on the effect of lognormal shadowing and Rayleigh fading phenomena. The connectivity analysis had been

extended to the case of a Nakagami fading channel in [15]. In [16], authors studied the minimum transmitted

power necessary to ensure network connectivity in a VANET under BER requirements.

These papers provide insightful results on connectivity analysis. However, they give no detail on the

number of hops in the shortest path of a vehicle connected component, which is important to estimate

propagation delays. In [17], the multi-hop packet delivery was approximated through an effective bandwidth

approach, with the traffic parameters approximated by average ON and OFF periods. In [18] and [2], the

connectivity and the number of hops through the shortest path were exactly modeled for Poisson traffics.

Unfortunately, the results were given as a recursive formula, which makes it difficult to perform the analysis

as a function of network parameters. In this paper, we provide a method to calculate the number of hops

through the shortest path in a connected component in VANETs for any traffic assumption. We validate it

against VANET traces provided byt the Universitat Politècnica de Catalunya. We illustrate this method by

deriving the explicit expression of the z-transform of its probability in the case if Poisson traffic assumption.

In this case, we provide a closed-form expression which is valid for medium and dense networks (i.e. for

networks for which the product of the node density by the coverage radius is larger than ln 4). This model

can then be used to derive access delays, or path lengths.

3. Analytical model

3.1. Model and assumptions

In this paper, we study the number of hops in a connected component. At a given time, vehicles are

spread on the road, separated by random distances. Considering a solid disk propagation model, which may

be refined later, vehicles can communicate if the interdistance between them is less than a certain coverage

radius. In this case, vehicles can constitute connected components. The goal is to model the distribution

of the number of hops of the maximal shortest path in a connected component, which is the shortest path

between the vehicle at an end of the connected component to the vehicle at the other extremity. Note that

the maximal shortest path is not the number of hosts located between the sender and the receiver at both

extremities because of the shortest path routing algorithm. Actually, we assume a routing protocol is used

allowing only vehicles on the shortest path to retransmit packets. In other words, if two vehicles receive at

the same time the same packet from a sender, only the furthest one under the sender’s coverage forwards

the packet.

We consider a vehicles traffic on a straight road. If the vehicle transmission range is sufficiently large

compared to the road width, this commonly used assumption makes sense. We do not make any assumption

on the arrival process nor the speeds. At a given time t, the vehicles are separated by a distance {Ik}k>0. The
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Figure 1: Example showing the sampling of the vehicles according to the shortest path

process {Ik}k>0 is considered independent and identically distributed. Its cumulative distribution function

is P (Ik ≤ x) = F (x) and its density f(x) = dF (x)
dx . Note that while the interdistances are considered

independent, the traffic it models is not independent. It is so only when F corresponds to the exponential

distribution. The vehicles arrive at position 0 of the road.

As in [1], to study the connectivity, we use the equivalent infinite server queueing model presented by

Moriandi and Altman in [13]. These authors proved that the problem of calculating the number of wireless

nodes in a connected cluster and the length of the connected path at a given time with the solid disc

transmission range model is equivalent to the problem of calculating the number of clients in a busy period

of the G/D/∞ queue and the duration of this busy period: the busy period of the G/D/∞ queue corresponds

to a connected vehicle cluster, the time is replaced by the distance, and the communication range replaces

the service time.

By using the results given by Liu and Shi in [19] on the probability generating function of the number of

clients in a busy period and on the Laplace transform of the busy period duration, Yousefi et al. characterize

in [1] the number of clients in a vehicle connected component and the connectivity distance, that is the length

of a vehicle connected component. Here, we adopt the same approach modeling the connectivity in terms

of the GIx/D/∞. Nevertheless, since we consider the number of hops on the shortest path and not each

vehicle in the path and second because we do not make any assumption on the vehicle traffic, the input

process of the queue is no more the Poisson process described in [1] but a sampled process of this Poisson

process. As we will see in the next section, it is a Markovian process.

3.2. The interdistance process

Let X1, X2, . . . , Xn, . . . be the retransmitting vehicles. Xn+1 is the farthest vehicle under Xn’s cov-

erage, or the next node after Xn if the distance between Xn and Xn+1 is larger than R. Because of the

shortest path routing algorithm, if Xn+1 is the farthest vehicle under Xn coverage, it is assumed to re-

transmit Xn packets even if there are other vehicles between them. By extension, Xn denotes also the

coordinate (location) of Xn on the road. Let τn be the distance between node Xn and node Xn+1. Let In,k

the kth interdistance after the nth vehicle. First of all, we need to characterize the process of the distance

τn separating to retransmitting nodes.
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Theorem 1. When R − xn−1 ≤ xn ≤ R, the cumulative distribution function of τn knowing τn−1 = xn−1

and τn−1 ≤ R is given by:

Fτn/τn−1
(xn, xn−1)

=
1

1− F (R − xn−1)

∫ xn

u=R−xn−1

L−1

[L [f(x+R − xn−1)]

1− L [f(x)]

]

(u−(R−xn−1))

[1− F (R− u)] du (1)

Fτ1(x1)

=

∫ xn

u=0

L−1

[ L [f(x)]

1− L [f(x)]

]

(u)

[1− F (R− u)] du (2)

where L and L−1 denotes the Laplace transform and its inverse.

When xn ≥ R, the cumulative distribution function of τn knowing τn−1 = xn−1 and τn−1 ≤ R is given

by:

Fτn/τn−1
(xn, xn−1) = P (In,1 ≤ xn/In,1 > R− xn−1)

=
F (xn)− F (R− xn−1)

1− F (R − xn−1)
(3)

Fτ1(x1) = F (x1) (4)

Proof. See Appendix Appendix A.

We can observe from equations (1), (2), (3) and (4) that the distance between the retransmitting vehicles

on the shortest path is actually a markovian process. In the following sections of the paper, we assume,

without loss of generality, X1 at the beginning of a connected component, which mean that the node X0

before X1 on the x-axis is out of range of x1: X1 −X0 > R.

In the special case of a Poisson process with rate λ,

F (x) = 1− e−λx (5)

and thus,

∀x1 ≤ R,Fτ1(x1) = e−λ(R−x1)
(

1− e−λx1

)

(6)

∀x1 ≥ R,Fτ1(x1) = 1− e−λx1 (7)

Also,

∀xn;R− xn−1 ≤ xn ≤ R,Fτn/τn−1
(xn, xn−1) = e−λ(R−xn) − e−λxn−1 (8)

∀xn ≥ R,Fτn/τn−1
(xn, xn−1) = 1− e−λ[xn−(R−xn−1)] (9)

In the special case of a mixture of two exponential variables with rates λ1 and λ2 and weights α1 and

α2 = 1− α1,

F (x) = 1− α1e
−λ1x − α2e

−λ2x (10)
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and thus, by denoting λm = λ1(1− α1) + λ2(1− α2),

∀x1 ≤ R,Fτ1(x1) =
λ1λ2

λm

[

α1
e−λ1R

λ1

(

eλ1x − 1
)

+ α2
e−λ2R

λ2

(

eλ2x − 1
)

]

+

[

α1λ1

(

1− λ2

λm

)

+ α2λ2

(

1− λ1

λm

)]

×
[

α1e
−λ1R

λm − λ1

(

1− e−(λm−λ1)x1

)

+
α2e

−λ2R

λm − λ2

(

1− e−(λm−λ2)x2

)

]

(11)

∀x1 ≥ R,Fτ1(x1) = 1− α1e
−λ1x1 − α2e

−λ2x1 (12)

Also,

∀xn;R− xn−1 ≤ xn ≤ R,

Fτn/τn−1
(xn, xn−1) = α1

λ2

λm

[

e−λ1(R−xn) − e−λ1xn−1

]

+ α2
λ1

λm

[

e−λ2(R−xn) − e−λ2xn−1

]

+
α1λ1

(

1− λ2

λm

)

e−λ1(R−xn−1) + α2λ2

(

1− λ1

λm

)

e−λ2(R−xn−1)

α1e−λ1(R−xn−1) + α2e−λ2(R−xn−1)

×
[

α1e
−λ1R

λm − λ1

(

e−(λm−λ1)(R−xn−1) − e−(λm−λ1)x
)

+
α2e

−λ2R

λm − λ2

(

e−(λm−λ2)(R−xn−1) − e−(λm−λ2)x
)

]

eλm(R−xn−1) (13)

∀xn ≥ R,Fτn/τn−1
(xn, xn−1) = 1− α1e

−λ1xn + α2e
−λ2xn

α1e−λ1(R−xn−1) + α2e−λ2(R−xn−1)
(14)

3.3. Recall on the results of Liu and Shi in [19] used in [1]

Liu and Shi consider a GIx/G/∞ queue whose customers arrive in batches with generating function

A(z), separated by interarrival times τn with distribution function F (x) and service time distribution H(x).

Yn is the number of clients in the nth batch and Tn is the time necessary to complete the services of the nth

batch. K(x) = A (H(x)) is the distribution function of Tn. In this case, they show that the z-transform of

the distribution function of the number Nb of clients in a connected component is

+∞
∑

k=1

P (Nb = k) zk =

∞
∑

n=1

[A(z)]
n
∫ ∞

0

. . .

∫ ∞

0

n−1
∏

i=1









K





n
∑

j=i

xi



−K(xi)



 dF (xi)







K(xn)dF (xn)(15)

This is true because the probability distribution of the number of customers served in a busy period is

P (Nb = k) =

∞
∑

n=1

P

(

n
∑

i=1

Yi = k

)

× P



τi ≤ Ti <

n
∑

j=i

τj , (i = 1, . . . , n− 1), τn > Tn



 (16)

Actually, taking the generating function of (16) and noting the discrete convolutions involved in the

generating function, (15) can be obtained.
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Also, in the special case of the GIx/D/∞, K(x) = 1 if x ≥ R and 0 otherwise so that (15) becomes

+∞
∑

k=1

P (Nb = k) zk =

∞
∑

n=1

[A(z)]
n
∫ R

x1=0

. . .

∫ R

xn−1=0

∫ ∞

xn=R

n
∏

i=1

dF (xi) (17)

and thus Liu and Shi prove that formula (15) simplifies into:

+∞
∑

k=1

P (Nb = k) zk = z.
1− F (R)

1− zF (R)
(18)

With the same kind of arguments, Liu and Shi present the Laplace transform of the busy period for the

GIx/G/∞ which reduces, in the special case of the GIx/D/∞, to

L (fd) (s) =
e−sR (1− F (R))

1−
∫ R

0 e−sxdF (x)
(19)

The authors of [1] rely on (18) and (19) to derive an upper bound for the tail distribution of the number

of hops in the connected component:

P (Nb ≥ h) ≤
(

1− e−λR
)h

(20)

and the average distance of a vehicles connected component Lcc, which they call connectivity distance of

vehicles and which is equal to the average length of the busy period:

E [Lcc] =
1− e−λR

λe−λR
. (21)

3.4. Number of hops in the maximal shortest path

Due to the independance of the interarrivals of the GIx/G/∞, the multiple integral in (17) can be easily

simplified to obtain (18). However, in our case, considering the shortest path leads to a markovian process

as already explained in §.3.2.
The process of the interdistance between the vehicles is thus not an independent process but a markovian

one. As a consequence, to compute the distribution of the number of vehicles in a connected component,

the results of [1] cannot be used. The authors of [1] rely on the results in [19] for the GIx/G/∞, where the

arrivals are assumed independent. Consequently, to compute the distribution of the number of vehicles in

a connected component, the results given in [1] is not compatible with the new process description. That

is why we roll back to the approach initiated in [1] to adapt the model according to the Markovian arrival

process. Therefore, the results presented in [19] cannot be directly applied but they must be adapted to the

non independent case.

Theorem 2. In the case of a markovian interdistance process, and still denoting by Fτi/τi−1
(xi, xi−1) the

cumulative distribution function of τi knowing τi−1, the probability to have k hops in a connected component

7



is:

P (Nb = k) (22)

=

∫ R

x1=0

∫ R

x2=R−x1

. . .

∫ R

xk−1=R−xk−2

(

1− Fτk/τk−1
(R, xk−1)

)

dFτ1(x1)
k−1
∏

i=2

dFτi/τi−1
(xi, xi−1)

Proof. By following the same approach as in [19], but using the Markov property, we obtain:

P (Nb = k) = P



∀i ∈ J1; k − 1K, τi ≤ R <

k
∑

j=i

τj , τk > R



 (23)

= P (∀i ∈ J1; k − 1K, τi ≤ R, τk > R)

=

∫ R

x1=0

P (∀i ∈ J2; k − 1K, τi ≤ R, τk > R/τ1 = x1) dP (τ1 = x1)

...

=

∫ R

x1=0

∫ R

x2=R−x1

. . .

∫ R

xk−1=R−xk−2

P (τk > R/τk−1 = xk−1)×

k−1
∏

i=2

dP (τi = xi/τi−1 = xi−1) dP (τ1 = x1)

4. Explicit calculation in the case of Poisson road traffic

In this section, we derive the expression of the probabilities P (Nb = k) in the case where the road traffic

is Poisson with parameter λ. The Poisson assumptions means that the vehicles are independent, which is

usually not the case. Nevertheless, the arrival times are often independent, even if the behavior of the cars

become not independent anymore when they are on the same road. Moreover, in free flow regime, when the

arrivals are separated by time arrivals larger than 5 or 6 seconds, they may be independent. It is the case in

highways for example and this is why the Poisson assumption is often considered in performance evaluations.

For these situations, we give the explicit solution of the model. Let us denote λ′ = λR, ρ = λ′e−λ′

and

ρ′ = e−λ′

.

In the special case of the interdistance process described in §.3.2 (i.e. equations (6), (7), (8) and (9)), the

probability of the number of hops in the connected component becomes with a simple change of variable:

P (Nb = k) = ρk−1

∫ 1

u1=0

∫ 1

u2=1−u1

. . .

∫ 1

uk−1=1−uk−2

k−2
∏

i=1

eλ
′ui

k−1
∏

i=1

dui (24)

In order to calculate this integral, it is convenient to denote

Mα,k = ρk
∫ 1

u1=0

∫ 1

u2=1−u1

. . .

∫ 1

uk=1−uk−1

uα
k e

λ′uk

k−1
∏

i=1

eλ
′ui

k
∏

i=1

dui (25)
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All the probabilities P (Nb) are function of such integrals. We can observe that

P (Nb = k) = ρM1,k−2. (26)

These probabilities can be calculated by reccurence. Actually, by integrating by parts,






M0,k = M0,k−1 − ρM1,k−2 (27)

Mα,k = M0,k−1 −
α

λ′Mα−1,k −
ρMα+1,k−2

α+ 1
(28)

Now, for medium and dense networks, that is λR ≥ ln 4, a closed form expression can be given for the

z-transform of these probabilities. Let Q(z) be the z-transform of Nb and M1(z) the z-transform of M1,k:

Q(z) =

+∞
∑

k=1

P (Nb = k) zk (29)

M1(z) =

+∞
∑

k=1

M1,kz
k (30)

Theorem 3. In the special case where λR ≥ ln 4, the z transform M1(z) can be expressed in a close formula:

M1(z) =
h1(z) + h2(z) + h3(z)

ρz2
[

1 +
√

1− 4ρ′z2 − 2ze
1

2
λ′

(√
1−4ρ′z2−1

)
] (31)

where

h1(z) =
√

1− 4ρ′z2
[

(1− ρ′ − ρ) z3 − (1− ρ′) z2 − z (1− ρ) + 2− ρ′ − ρ
]

h2(z) = e
1

2
λ′

(√
1−4ρ′z2−1

)

[

2ρz3 + 2ρ′z2 − z − 1 + (z − 1)
√

1− 4ρ′z2
]

h3(z) = z3(ρ′ + ρ− 1) + z2(1− 3ρ′ − 2ρ) + z(1− ρ) + ρ′ + ρ

Proof. See Appendix B.

The moments of the number of hops can simply be obtained by differentiating Q(z).

Theorem 4. The z-transform of Nb is:

Q(z) = ρ′z + ρz2 (1 +M1(z)) . (32)

Proof.

P (Nb = 1) = P (τ1 > R) (33)

= e−λR

Moreover,

P (Nb = 2) =

∫ R

x1=0

P (τ2 > R/τ1 = x1) dP (τ1 = x1) (34)

= λRe−λR

Then, by using (26), we get the result.
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For example, the expectation of Nb is

E [Nb] =
e+

λ′

2

√
1−4ρ′ − 2

1+
√
1−4ρ′

e−
λ′

2

e
λ′

2 − 2
1+

√
1−4ρ′

e+
λ′

2

√
1−4ρ′

(35)

5. Simulations and validations

In order to validate the proposed model, we ran a number of simulations1 and compared these results to

the analytical results. We also compared the model with traces available on the WEB and provided by the

Universitat Politècnica de Calaunya.

5.1. Comparison between simulations and the model

We compare the model and the simulations in two different cases. First of all, we consider the hyperex-

ponential case where the distance between the vehicles follows a mixture of two exponential distributions.

It corresponds to the distribution (10). Then, we focus on the Poisson case.

5.1.1. The hyperexponential case

The fig. 2 presents the comparison of the model and the simulations for the hyperexponential case.

Knowing the distribution of the distance between the vehicles given by (10), we can determine the distribu-

tion of the distance between two hops in a connected component by using (1), (2), (3) and (4). The result

is given in (11), (12), (13) and (14). Then, we can evaluate (22) with a Monte-Carlo method. This curve is

presented on the fig. 2 for different values of α1, λ1 and λ2 (with α2 = 1−α1). Note that the average of the

three distributions is the same, that is the mean rate of the traffic remains the same while the parameters

of the exponential mixtures are varied. As expected, the size of the connected component decreases when

the traffic becomes more and more bursty. Conversely, it increases with R. The simulations and the model

fit very well.

The validity of (13) and (14) is presented Fig. 3. It represents the distribution of the distance between

two hops τn knowing τn−1, for the analytical model and for a simulation with τn−1 = 80, R = 100, α1 = 0.95,

λ1 = 1/14.2 and λ2 = 1/43.2.

5.1.2. The Poisson case

We compare the results of the analytical model, and more precisely the average number of hops in a

connected component given by (35), with the simulations. Figure 4 shows the average number of hops in a

connected component, minus the first node, in function of different values for λ′. There is a perfect match

between the model and the simulations. It is interesting to note that the expression of the average number

of hops given in equation (35), though theoretically valid only for λ′ > ln 4, seems to be still valid for any λ′.

1The corresponding code is available at http://www-public.it-sudparis.eu/∼marot/archiveForReviewers.tar.gz
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Figure 2: Average number of hops in a connected component, in function of the coverage radius R, for different values of
parameters α1, λ1 and λ2 (with α2 = 1− α1) at constant mean rate

Actually, we can notice that for λ′ ∈ [0 : ln 4] when injecting i
√
4e−λ′ − 1 (where, here, i2 = −1) in place of

√
1− 4e−λ′ in eq. (35), the imaginary part disapears so that, it becomes:

e+
λ′

2

√
1−4ρ′ − 2

1+
√
1−4ρ′

e−
λ′

2

e
λ′

2 − 2
1+

√
1−4ρ′

e+
λ′

2

√
1−4ρ′

=
2e−

λ′

2 cos
λ′

√
4e−λ′−1
2 − 1

2− e
λ′

2

[

cos λ′

√
4e−λ′−1
2 +

√
4e−λ′ − 1 sin λ′

√
4e−λ′−1
2

] (36)

5.2. Comparison with traces of the Universitat Politècnica de Catalunya

To validate our results, we compared our model to vehicular traces provided by the Universitat Politècnica

de Catalunya (cf. [20] and [21]). Since this traffic is not Poisson, we determined the distribution of the

distance between vehicles and then we injected this distance in (1), (2), (3) and (4) in order to determine

the distribution of the distance between hops. Using this estimated distribution, we calculated the mean of

the number of hops in the maximal shortest path by numerically evaluating (22) with a Monte-Carlo method.

With the distribution of the distances between vehicles we just estimated, we also generated artificially the

same traffic and finally we compared the size of the number of hops in the maximal shortest path for the

traces, for the artificially generated traffic and the model (i.e. (22)).

5.2.1. Traces analysis

As explained in [20], these traces are derived from high-detail real-world traffic counts and describe the

road traffic on two highways around Madrid, Spain, at several hours of different working days. The Autov́ıa
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Figure 4: Average number of hops in a connected component, 1st vehicle excluded, in function of λ′

A6 is a motorway that connects the city of A Coruña to the city of Madrid. This road enters into the urban

area from the northwest and collects the traffic demand of the conurbation that was built along it. The data
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Figure 5: Cumulative distribution function of the distance (in meters) between the vehicles for the traces and for the corre-
sponding exponential distributions with same means

collection point is placed around the 11-km milepost (Madrid direction), where the A6 features three lanes

with a speed limit of 120 km/h. However, this location is right after a popular entrance ramp that joins the

rightmost lane and significantly slows down the road traffic. The length of the considered road segment is

10km.

The road traffic data set is formed by mobility traces for 4 dates and 2 time intervals (8h am and 11h

am). To avoid transient effects, we did not consider the beginning of the files but we kept the data only

after 600 seconds of measurements. Then, since the four data sets are more or less homogeneous at a given

time interval (i.e. either 8h am or 11h am), we concatenated the remaining parts of the corresponding four

data sets. Also, we sampled the state of the traffic every 600s.

We approximated the empirical cumulative distributions function F8h(x) and F11h(x) of the distance

between each vehicle in each sample (8h or 11h) by the following hyperexponential distributions:

F8h(x) = 1− 0.92e−x/12.1534 − 0.08e−x/40.4655 (37)

F11h(x) = 1− 0.8100133e−x/16.20606 − 0.1899867e−x/44.4476 (38)

On fig. 5 the cumulative distributions of the distance in meters between the vehicles for the traces is

compared to the corresponding exponential distributions with same means. We observe that they differ.

Then, on fig. 6, they are compared to (37) and (38). The fitting is good.
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5.2.2. Comparison between the traces and the model

The comparison of the number of hops in the maximal shortest path (or number of hops in a connected

component) for the traces, the analytical model and the simulations is given Fig. 7. The match is not

perfect due to the fact that the estimation of the distribution of the distances between the vehicles is also

no perfect. Actually, we decided to approximate it by hyperexponential laws as mixtures of two exponential

distributions but maybe could it be more accurate to use a mixture of more exponential laws than only two.

Nevertheless, the results are sufficiently close to validate our model.

5.2.3. Remark on the density of hop per unit length in a connected component

On Fig. 8, the average number of hops of the connected component divided by the length of the connected

component is plotted in function of the coverage radius R for the hyperexponential distributions with various

parameters α1, α2 = 1 − α1, λ1 and λ2. The unit length is the radius R. To calculate the length of the

connected component, we used (19), which gives, in the case of the considered hyperexponential process:

E [Lcc] =
1

λ1λ2

α1λ2

(

1− e−λ1R
)

+ α2λ1

(

1− e−λ2R
)

α1e−λ1R + α2e−λ2R
(39)

All the curves corresponds to different parameters of the exponential mixture, but the resulting mean

rate is kept constant. Thus, it can be noticed that this density is not uniform with the traffic conditions: it

depends on the traffic profile.
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6. Conclusion

VANET modeling is a requirement to avoid complex simulations when designing new protocols. For

studies involving routing mechanisms, the number of hops along the shortest path must be characterized,

especially (but not only) for VANET without infrastructure. In this paper, we propose a method to calculate

the distribution of the number of hops in the maximal shortest path of a vehicle connected component for

any traffic assumption. Also, for the special case of the Poisson assumption, we provide a closed-form

expression of its z-transform for medium and dense networks. We derive also the average of this number and

it is easy to obtain the other moments by following the same method as for deriving the expectation either

analytically or numerically. We validated our approach with traces available at the Universitat Politècnica

de Catalunya.

These results can be exactly used to know the average number of hops for diffusion protocols in VANETs

or other performance studies like in [3]. It can also be used to exactly estimate the time needed to diffuse

the information by multiplying the number of hops on the shortest path by the access time at each hop

since it can be assumed an independance between the access to the medium and the spread of the connected

component, even if both numbers increase with the road traffic intensity. It can also be used to approximate

the number of hops on a path over a certain distance separating the source and the destination by estimating

the hop density of the shortest path and multiplying it by the distance, the hop density being the average

15



1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

10 20 30 40 50 60 70 80 90 100

E
[N

b
]/
E
[L

c
c
]

R

density - α1 = 0.95 λ1 = 1/14.2 λ2 = 1/43.2

density - α1 = 0.9 λ1 = 1/14.2 λ2 = 1/28.7

density - α1 = 0.8 λ1 = 1/14.2 λ2 = 1/21.45

density - α1 = 0.05 λ1 = 1/14.2 λ2 = 1/15.7263157895

Figure 8: Average number of hops in a connected components divided by the average length of the connected component
(”density of hops”) in function of the coverage radius R, for the hyperexponential distributions with various parameters α1,
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given in this paper divided by the average spread of the connected component given in [1].

Appendix A. Demonstration of theorem 1

The probability that τn be less than xn knowing that τn−1 = xn−1 is:

F (τn ≤ xn/τn−1 = xn−1) = P (τn ≤ xn/In−1,1 ≥ R− xn−1)

=
P (τn ≤ xn ∩ In−1,1 ≥ R − xn−1)

P (In−1,1 ≥ R− xn−1)

=
P (τn ≤ xn ∩ In−1,1 ≥ R − xn−1)

1− F (R− xn−1)
(A.1)

and the probability to have τn ≤ xn ∩ In−1,1 is the probability to have any number of vehicles between

Xn+R−xn−1 and x on one hand and on the other hand that the next interdistance between the last vehicle

just before x and the next vehicle to be larger than R − xn. Its density is:
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dP

dxn
(τn = xn ∩ In−1,1 ≥ R− xn−1)

=
dP

dxn
(In−1,1 = xn)P (In−1,2 ≥ R− xn)

+

∫ xn

in−1,1=R−xn−1

dP (In−1,1 = in−1,1)

din−1,1

(

dP (In−1,2 = in−1,2)

din−1,2

)

in−1,2=xn−in−1,1

din−1,1P (In−1,3 ≥ R− xn)

+

∫ xn

in−1,1=R−xn−1

∫ xn−in−1,1

in−1,2=0

dP (In−1,1 = in−1,1)

din−1,1

dP (In−1,2 = in−1,2)

din−1,2
×

(

dP (In−1,3 = in−1,3)

din−1,3

)

in−1,3=xn−in−1,1−in−1,2

din−1,1din−1,2P (In−1,4 ≥ R− xn)

+ . . .

= f(xn) [1− F (R− xn)]

+

∫ xn

in−1,1=R−xn−1

f(in−1,1)f(xn − in−1,1)din−1,1 [1− F (R− xn)]

+

∫ xn

in−1,1=R−xn−1

∫ xn−in−1,1

in−1,2=0

f(in−1,1)f(in−1,2)f(xn − in−1,1 − in−1,2)din−1,1din−1,2 [1− F (R− xn)]

+ . . . ... (A.2)

Let us define g(xn) such as:

g(xn) = f(xn)

+

∫ xn

in−1,1=R−xn−1

f(in−1,1)f(xn − in−1,1)din−1,1

+

∫ xn

in−1,1=R−xn−1

∫ xn−in−1,1

in−1,2=0

f(in−1,1)f(in−1,2)f(xn − in−1,1 − in−1,2)din−1,1din−1,2

+ . . . ... (A.3)

Then,

dP

dxn
(τn = xn ∩ In−1,1 ≥ R− xn−1) = g(xn) [1− F (R − xn)] (A.4)

and since for any function h

∫ +∞

x=R−xn−1

e−sxh(x)dx = e−s(R−xn−1)L [h(x+R− xn−1)] , (A.5)

we deduce from the definition of g that

∫ +∞

x=R−xn−1

e−sxg(x)dx = e−s(R−xn−1)L [g(x+R − xn−1)]

= e−s(R−xn−1)L [f(x+R − xn−1)]

+∞
∑

k=0

L [f(x)]
k
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so that

L [g(x+R − xn−1)] =
L [f(x+R− xn−1)]

1− L [f(x))]
(A.6)

Combining (A.4) and (A.6), integrating on xn between R− xn−1 and x and using (A.1), we get (1).

Appendix B. Demonstration of theorem 3

The idea of the proof is to begin by finding the expression of M1(z), given by lemma 2, which is proved

itself in Appendix C. Lemmas 3, 4, 5 and 6 are then used to simplify the expression of M1(z) given by

lemma 2. The lemma 1 gives the condition of convergence of M1(z).

Let us define the following notations.

bi = ρ′i





i
∑

j=0

(−1)j
λ′j

j!
Ci

2i−j



 (B.1)

ci = ρ′iCi
2i−1 (B.2)

a2k,i = ρ′k−1(−1)iCk−2
2k−i−3 (B.3)

a2k+1,i = ρ′k(−1)iCk−1
2k−i−1. (B.4)

Let us also define the following z-transforms.

∀i > 0, A
(e)
i (z) =

+∞
∑

k=i+1

a2k,iz
2k (B.5)

A
(e)
0 (z) =

+∞
∑

k=2

a2k,0z
2k (B.6)

∀i > 0, A
(o)
i (z) =

+∞
∑

k=i

a2k+1,iz
2k+1 (B.7)

A
(o)
0 (z) =

+∞
∑

k=1

a2k+1,0z
2k+1 (B.8)

Lemma 1. The series

+∞
∑

biz
2i+1 converges for λ′ > ln 4 + ln z2.

Proof.

bi = ρ′i





i
∑

j=0

(−1)j
λ′j

j!
Ci

2i−j





= ρ′i



Ci
2i

i
∑

j=0

(−λ′)j

j!

Ci
2i−j

Ci
2i





= ρ′i



Ci
2i

i
∑

j=0

(−λ′)j

j!

(2i− j)!i!

(2i)!(i− j)!



 (B.9)
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But
i
∑

j=0

(−λ′)j

j!

(2i− j)!i!

(2i)!(i− j)!

is bounded because

(2i− j)!i!

(2i)!(i− j)!
=

i(i− 1) · · · (i− j + 1)

2i(2i− 1) · · · (2i− j + 1)

< 1. (B.10)

Moreover, in the neighborhood of +∞, by denoting Cst a constant term, and using Stirling’s formula,

biz
2i+1 ∼ ρ′iCst× Ci

2iz
2i+1

∼ ρ′iCst
(2i)!

i!i!
z2i+1

∼ ρ′iCst

√
2π2i

(

2i
e

)2i

[√
2πi

(

i
e

)i
]2 z

2i+1

∼ Cst
ei ln 4−iλ′

√
πi

z2i+1 (B.11)

Then,

+∞
∑

biz
2i+1 converges if and only if λ′ > ln 4 + 2 ln z.

Similarly, it can be shown that the other sums converges only when λ′ > ln 4 for z in the neighborhood

of 1. Then, for λ′ > ln 4 for z in the neighborhood of 1, we have the following lemma.

Lemma 2.

M1(z) =
1

ρz2

[

1− b0z +

+∞
∑

i=1

(

ciz
2i − biz

2i+1
)

] × (B.12)

[

(z − 1)
+∞
∑

i=0

λ′i

i!

(

Mi,1A
(o)
i (z) +Mi,2A

(e)
i (z)

)

+
(

M0,1z +M0,2z
2 −M0,1z

2
)

+∞
∑

i=1

ciz
2i −M0,2z

2
+∞
∑

i=1

biz
2i+1

]

where, for all α ≥ 0,

Mα,1 =

α
∑

i=0

(−1)iα!

(α− i)!

1

λ′i + (−1)α+1 α!

λ′α ρ
′ (B.13)

and, for all α ≥ 0,

Mα,2 =

α
∑

i=0

(−1)iα!

(α− i)!

1

λ′i −
ρ

α+ 1
− (−1)α

α!

λ′ ρ
′ (B.14)

Proof. See Appendix Appendix C.
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At last, by combining lemmas 3, 4, 5 and 6, this expression of M1(z) can be simplified into (31).

Let

uα,k =
λ′α

α!
Mα,k. (B.15)

Lemma 3. If λR ≥ ln 4,

+∞
∑

α=1

uα,1A
(o)
α (z) =

f(z)

1 + 1
2g(z)

[

1

2
g(z)(ρ′ − 1) + e

1

2
λ′g(z) − 1

]

(B.16)

where

f(z) =
2z(ρ′z2)

√

1− 4ρ′z2 − (1 − 4ρz2)
(B.17)

and

g(z) =
√

1− 4ρ′z2 − 1 (B.18)

Proof. From equations (B.4) and (B.7), ∀i > 0,

A
(o)
i (z) = ρ′i(−1)iz2i+1

+∞
∑

k=0

ρ′kCk
2k+i−1z

2k. (B.19)

But,

ρ′k+1Ck+1
2(k+1)+i−1

ρ′kCk
2k+i−1

= 4ρ′
[

k + i+1
2

] [

k + i
2

]

(k + 1)(k + i)
(B.20)

so that the series

+∞
∑

k=0

ρ′kCk
2k+i−1z

2k is the hypergeometric series:

+∞
∑

k=0

ρ′kCk
2k+i−1z

2k = 2F1

(

i+ 1

2
,
i

2
, i, 4ρ′z2

)

. (B.21)

Also,

2F1

(

a, b, 2b,
4u

(u+ 1)2

)

= (u+ 1)2a2F1

(

a, a− b+
1

2
, b+

1

2
, u2

)

(B.22)

and

2F1(a, 1, a, u
2) = (1− u2)−1. (B.23)

Thus, by chosing u so that

4u

(u+ 1)2
= 4ρ′z2, (B.24)
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we have

∀i > 0, A
(o)
i (z) = f(z)

1

2i
g(z)i. (B.25)

At last,

+∞
∑

α=1

uα,1A
(o)
α (z) =

+∞
∑

α=1

(−1)α





α
∑

j=0

(−1)j
λ′j

j!
− ρ′



 f(z)
1

2α
g(z)α (B.26)

and noting that

+∞
∑

α=1

α
∑

j=0

vjwα =
+∞
∑

α=1

v0wα +
+∞
∑

j=1

+∞
∑

α=j

vjwα, (B.27)

where (vn) and (wn) are two arbitrary sequences, we get (B.16). Note that it exists a u solution of (B.24)

only if λR ≥ ln 4.

Similarly, by noting that a2k,i = a2k−1,i, the following lemma can be proved.

Lemma 4. If λR ≥ ln 4,

+∞
∑

α=1

uα,2A
(e)
α (z) =

2ρ′zf(z)

g(z)

[

1 +
1

2
λ′g(z)− e

1

2
λ′g(z)

]

+
1

2
(ρ′ − 1)

zf(z)g(z)

1 + 1
2g(z)

+ zf(z)
e

1

2
λ′g(z) − 1

1 + 1
2g(z)

(B.28)

Lemma 5. If λR ≥ ln 4,

+∞
∑

i=1

ciz
2i =

1

4ρ′z3
f(z)g(z)2. (B.29)

Proof. On one hand,

+∞
∑

i=1

ciz
2i = ρ′z22F1

(

3

2
, 1, 2, 4ρ′z2

)

(B.30)

and on the other hand,

2F1

(

3

2
, 1, 2,

4u

(1 + u)2

)

= (u+ 1)32F1

(

3

2
, 1,

3

2
, u2

)

(B.31)

=
(u+ 1)3

1− u2
.

Thus, with u solution of (B.24), (B.29) is proved.

Lemma 6. If λR ≥ ln 4,

+∞
∑

i=1

biz
2i+1 =

z
[

e
1

2
λ′g(z) − g(z)− 1

]

1 + g(z)
. (B.32)

Proof. This lemma can be proved by using identity (B.27) and the following ones:

2F1

(

1

2
, 1, 1, 4ρ′z2

)

=
1

√

1− 4ρ′z2
(B.33)

and

2F1

(

a, b, 2b,
4u

(u+ 1)2

)

= (1 + u)2a2F1

(

a, a− b+
1

2
, b+

1

2
, u2

)

(B.34)
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Appendix C. Demonstration of lemma2

In this section, we derive M1(z). To find the elements of the sequence (M1,k)k it is necessary to solve

the double recurrence, both in α and k. That is why we will proceed in two steps. The set of the positive

values of α and k constitutes a quarter plane. In the first step, we will bring back the recurrence in the

borders of the quarter plane by eliminating the terms in Mα,k for which α > 0 and k > 2 and keep only

the terms of the form M0,k for k > 2 and the terms of the form Mα,1 or Mα,2. Actually, Mα,1 and Mα,2

are easy to calculate. This way, we will obtain a new recurrence expressing M0,k in function of M0,i where

i < k, Mα,1 and Mα,2. In the second step, we will solve this last recurrence in order to find M0,k in function

of the Mα,1 and Mα,2. Then, using equation (27), it is easy to deduce M1,k.

Appendix C.1. First step - expressing M0,k in function of M0,i, i < k, Mα,1 and Mα,2

By injecting (B.15) in (27) and (28), a simpler system is obtained:







u0,k = u0,k−1 − ρ′u1,k−2 (C.1)

uα,k =
λ′α

α!
u0,k−1 − uα−1,k − ρ′uα+1,k−2 (C.2)

Let Vk(z) be the z-transform of uα,k relatively to α:

Vk(z) =

+∞
∑

α=0

uα,kz
α (C.3)

Multiplying (C.2) by zα and summing over α ≥ 1,

Vk(z) =
eλ

′z

1 + z
u0,k−1 +

ρ′

z(1 + z)
u0,k−2 −

ρ′

z(1 + z)
Vk−2(z) (C.4)

By recurrence,

V2k(z) (C.5)

=

[

− ρ′

z(1 + z)

]k−1

V2(z)−
k−1
∑

i=1

[

− ρ′

z(1 + z)

]i

u0,2(k−i) +
eλ

′z

1 + z

k−2
∑

i=0

(

− ρ′

z(1 + z)

)i

u0,2(k−i)−1

V2k+1(z) (C.6)

=

[

− ρ′

z(1 + z)

]k−1

V1(z)−
k
∑

i=1

[

− ρ′

z(1 + z)

]i

u0,2(k−i)+1 +
eλ

′z

1 + z

k−1
∑

i=0

(

− ρ′

z(1 + z)

)i

u0,2(k−i).

In order to find the elements of the type u0,k, the 0 degree in z of these equations should be extracted.

Knowing that

∀z ∈]− 1;+1[, (1 + z)−α = 1 +
+∞
∑

n=1

(−1)nCn
α+n−1z

n, (C.7)
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equating the 0 degrees in z of both sides of equation (C.5) gives

u0,2k (C.8)

= ρ′k−1
k−1
∑

i=0

(−1)iCk−2
2k−i−3ui,2 −

k−1
∑

i=1

ρ′iCi
2i−1u0,2(k−i) +

k−2
∑

i=0

ρ′i





i
∑

j=0

(−1)j
λ′j

j!
Ci

2i−j



 u0,2(k−i)−1

and the same for equation (C.6):

u0,2k+1 (C.9)

= ρ′k
k
∑

i=0

(−1)iCk−1
2k−i−1ui,1 −

k
∑

i=1

ρ′iCi
2i−1u0,2(k−i)+1 +

k−1
∑

i=0

ρ′i





i
∑

j=0

(−1)j
λ′j

j!
Ci

2i−j



 u0,2(k−i).

Now, the system of equations (C.8) and (C.9) gives an expression of u0,k in function of u0,i for i < k.

In the next section, we solve this recurrence by searching the z-transform U0(z) of u0,k and making the link

between U0(z) and M1(z).

Appendix C.2. Second step - finding M1(z)

Let us define the following z-transforms.

U
(e)
0 (z) =

+∞
∑

k=1

u0,2kz
2k (C.10)

U
(o)
0 (z) =

+∞
∑

k=0

u0,2k+1z
2k+1 (C.11)

U0(z) = U
(e)
0 (z) + U

(o)
0 (z) (C.12)

∀i ≥ 0, Ui(z) =

+∞
∑

k=0

ui,kz
k (C.13)

Then, using notations (B.1), (B.2), (B.3) and (B.4), the system of equations (C.8) and (C.9) becomes



























u0,2k =

k−1
∑

i=0

a2k,iui,2 +

k−2
∑

i=0

biu0,2(k−i)−1 −
k−1
∑

i=1

ciu0,2(k−i) (C.14)

u0,2k+1 =

k
∑

i=0

a2k+1,iui,1 +

k−1
∑

i=0

biu0,2(k−i) −
k
∑

i=1

ciu0,2(k−i)+1 (C.15)

Multiplying equation (C.14) by z2k and summing for k ≥ 2, multiplying equation (C.15) by z2k+1 and

summing for k ≥ 1 and summing both leads to

+∞
∑

k≥3

u0,kz
k = (C.16)

+∞
∑

i=0

[

ui,1A
(o)
i (z) + ui,2A

(e)
i (z)

]

− u0,1z

+∞
∑

i=0

biz
2i+1 +

[

U
(e)
0 (z) + U

(o)
0 (z)

]

[

+∞
∑

i=0

biz
2i+1 −

+∞
∑

i=1

ciz
2i

]
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or, equivalently,

U0(z)

[

1− b0z +

+∞
∑

i=1

(

ciz
2i − biz

2i+1
)

]

(C.17)

=
+∞
∑

i=0

[

ui,1A
(o)
i (z) + ui,2A

(e)
i (z)

]

+ u0,1z + u0,2z
2 − u0,1z

+∞
∑

i=0

biz
2i+1

Moreover, multiplying equations (C.1) by zk for every k and summing for all k ≥ 3, leads to

U0(z)− u0,2z
2 − u0,1z = z [U0(z)− u0,1z]− ρ′z2U1(z) (C.18)

and, since M1,k = u1,k × 1!
λ′1 ,

M1(z) =
1

λ′U1(z). (C.19)

Combining (C.18) and (C.19),

M1(z) =
u0,2 − u0,1

ρ
+

u0,1

ρ

1

z
+

z − 1

ρz2
U0(z) (C.20)

Finally, thanks to (C.17),

M1(z) =
1

ρz2

[

1− b0z +

+∞
∑

i=1

(

ciz
2i − biz

2i+1
)

] × (C.21)

[

(z − 1)

+∞
∑

i=0

(

ui,1A
(o)
i (z) + ui,2A

(e)
i (z)

)

+
(

u0,1z + u0,2z
2 − u0,1z

2
)

+∞
∑

i=1

ciz
2i − u0,2z

2
+∞
∑

i=1

biz
2i+1

]

Replacing uα,k by Mα,k, we get (B.12).

At last, by integrating by parts, Mα,1 = 1− α
λ′
Mα−1,1 and Mα,2 = 1− ρ′ − ρ

α+1 − α
λ′
Mα−1,2. Then, by

recurrence (B.13) and (B.14) are obtained.
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26



This figure "adel.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/1510.02238v1

http://arxiv.org/ps/1510.02238v1


This figure "hossam.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/1510.02238v1

http://arxiv.org/ps/1510.02238v1


This figure "michel3.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/1510.02238v1

http://arxiv.org/ps/1510.02238v1

	1 Introduction
	2 Related works
	3 Analytical model
	3.1 Model and assumptions
	3.2 The interdistance process
	3.3 Recall on the results of Liu and Shi in liushi used in altman
	3.4 Number of hops in the maximal shortest path

	4 Explicit calculation in the case of Poisson road traffic
	5 Simulations and validations
	5.1 Comparison between simulations and the model
	5.1.1 The hyperexponential case
	5.1.2 The Poisson case

	5.2 Comparison with traces of the Universitat Politècnica de Catalunya
	5.2.1 Traces analysis
	5.2.2 Comparison between the traces and the model
	5.2.3 Remark on the density of hop per unit length in a connected component


	6 Conclusion
	Appendix  A Demonstration of theorem 1
	Appendix  B Demonstration of theorem 3
	Appendix  C Demonstration of lemma2
	Appendix  C.1 First step - expressing M0,k in function of M0,i, i<k, M,1 and M,2
	Appendix  C.2 Second step - finding M1(z)


