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Abstract

Users of computing systems and devices frequently make decisions related
to information security, e. g., when choosing a password, deciding whether to
log into an unfamiliar wireless network, etc. Employers or other stakeholders
may have a preference for certain outcomes, without being able to or having
a desire to enforce a particular decision. In such situations, systems may
build in design nudges to influence the decision making, e. g., by highlight-
ing the employer’s preferred solution. In this paper we model influencing
in information security to identify which approaches to influencing are most
effective and how they can be optimized. To do so, we extend traditional
multi-criteria decision analysis models with modifiable criteria, to represent
the approaches an influencer has available to influence the choice of the deci-
sion maker. We also introduce the notion of influence power, to characterize
the extend to which an influencer can influence decision makers. We illus-
trate our approach using data from a controlled experiment on techniques
to influence which public wireless network users select. This allows us to
calculate influence power and identify which design nudges exercise the most
influence over user decisions.

Keywords: Information security; security-productivity trade-offs;
multicriteria decision analysis; influencing behavior; nudging; influence
power.
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1. Introduction

People continuously make information security decisions: should I use a
particular public wireless, should I allow someone’s USB to be put in my
laptop, how do I choose and memorize passwords? The decisions are often
complex, with several objectives to be considered simultaneously, and the
optimal decision may very much depend on the specific situation: while
using a stranger’s USB stick is not advisable, the importance of the job to
be completed and/or knowledge about the owner of the USB stick may make
it reasonable to use it, despite the associated information security risks.

A simple compliance policy (such as, not to allow USB sticks at all) would
be suboptimal. Instead, one would want to allow the owner of the laptop to
decide the best course of action. This also emerges in bring your own device
(BYOD, [1]), where device owners use their own device for work-related
activities. The fact that the user owns the device puts certain restrictions
on what the employer can do to implement its preferred security solution.
In any case, there are many situations in which the end user is involved in
information security decisions that impact other stakeholders.

Although various stakeholders are not in a position to control the out-
come of the information security decision, it may be advisable that some
stakeholders (e. g., service providers, device vendors, employers) impacted
by the end-user decisions, are able to influence the decision making, with-
out restricting the freedom of choice of the end-user. Influencing techniques
(such as nudging [2]) have been widely used in healthcare and social policies,
see e. g. [3], [4], [5], but less so in information security. To establish a sound
base to design, evaluate and optimize influencing techniques in information
security, we need a formal and coherent framework to analyze and evaluate
influencing.

In our earlier work [6], we identified an agent-based model that allows one
to reason conceptually about influencing in information security. We intro-
duced the general notion of optimal influencing policy, taking into account
uncertainty of the environment and the fact that agents have partial and
differing ability to observe that environment. The paper shows that end-user
decisions under influencing may outperform the decisions made by either the
end-user or influencer alone (in terms of [6], it shows that ‘soft enforcement’
can be better than weak or strong enforcement).

In this paper we are after a more operational model, that allows us to
identify for real-life scenarios which approaches to influencing are most ef-
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fective and how these approaches can be optimized. To this end, we ap-
ply and extend well-known models from multi-criteria decision analysis, a
well-understood and frequently used approach to modeling human decision
making, see e. g. [7]. In our model, both decision-maker and influencer
make decisions governed by multi-attribute value theory [8]. To represent
influencing we introduce modifiable criteria. Modifiable criteria reflect the
impact an influencer has on the decision maker but do not change the avail-
able alternatives to chose from. For instance, if the influencer uses colors
when presenting alternatives, the coloring does not change which options are
available but does influence the value the decision makers associates with its
decision criteria.

We also introduce the notion of influence power. Influence power ex-
presses the extend to which a user is susceptible to being influenced, in
terms of individual criteria. Vice versa, by adding a cost function to modify-
ing criteria, influence power also allows one to express the effort needed by
the influencer to successfully change the user’s decision. That is, influence
power allows one to evaluate and compare the effort needed in influencing ap-
proaches and therefore provides a tool to optimize the design and application
of an influencing approach.

To illustrate the use of the concepts introduced in this paper we param-
eterize a model using data from a controlled experiment in WiFi network
selection [9]. The experiment provides data about a number of design nudges
which aimed at influencing which WiFi network would be selected–these de-
sign nudges include coloring of available networks, changing the order they
are presented, etc. We show how the influence power of a particular criterion
can be computed and how much influence power is needed to change the
choices of participants with different preferences. We are able to determine
whether the influencer can change the choice of decision makers by changing
only one criterion at a time or a (sub)set of modifiable criteria. Such insights
can guide the designer of nudges and improve the effectiveness of techniques
for influencing choice.

The work presented in this paper advances most elements of our earlier
work in [10], which was the starting point for this special issue paper. The
formalization is extended with the notion of influence power and with that
of modifiable criteria. The analysis using experimental data from a study of
nudging in public Wi-Fi network selection has been extended considerably,
particularly through results in Section 5. We also extended the related work
discussion, especially targeting the community of probabilistic system mod-

3



elers, and we provide a much deeper discussion of remaining challenges and
opportunities.

The paper is organized as follows. Before introducing our modeling ap-
proach, Section 2 discusses key elements of the state of the art in influencing
techniques, drawing from literature in various disciplines. It also discusses
related modeling approaches (particularly Markov decision models and rein-
forcement learning). Section 3 introduces our structured approach to mod-
eling influencing, including the concepts of influence power and modifiable
criteria. Section 5 provides the data analysis for the WiFi network selection
experiment, preceded by an explanation of the case study specifics in Section
4. We discuss gained insights in Section 6, referring to a number of inter-
esting issues for further research and refinement, including intuitive decision
making strategies, influencing through a ‘decoy’ alternative, and influencing
a larger population of users. Section 6 provides the final conclusions.

2. Background and Related Work

Before presenting our approach to modeling influence, Section 2.1 pro-
vides a background discussion of influencing techniques in general and Sec-
tion 2.2 positions our approach of using multi-criteria decision making in the
context of Markov decision modeling and reinforcement learning.

2.1. Influencing Decision Making

Influencing decision making has attracted attention of researchers from
many fields, including psychology, behavioral economics, marketing, health
and, more recently, privacy and security. The research in these varying do-
mains all discuss, from their own disciplinary perspective, the factors that
influence choices and the design of interventions to try to influence decisions.
Examples of such interventions are wide-spread, for instance interventions
that aim to change smoking or eating habits [4]. In marketing, influencing
is part and parcel of anything it aims to achieve, whether it is to improve
product sales or protect the customer [11].

In recent times, policy makers have become increasingly interested in a
specific instance of influencing, namely nudging, as made popular by the
work of Thaler and Sunstein [2]. Nudging refers to the design of a choice
architecture, the manner in which choices are presented or framed. The aim
of the choice architecture is to influence the decision maker (in the desired
direction), without restricting the freedom of choice. Even small changes in
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the presentation may influence final choices of decision makers, as shown by
[12], [13]. A wide variety of practical examples of influencing health and social
decisions exists [2], [3], [4], [5]. For instance, it was shown that rearranging
menu items in a cafeteria may increase consumption of a particular (healthy)
item by up to 25% [2].

Recently, researchers have started to study nudging in the context of se-
curity and privacy decision making [9] [14], [15], [16]; the case study in this
paper is an example of nudging from [9]. In security, nudging is potentially
a soft and flexible alternative to the more common approach of strict com-
pliance to a security policy. In the introduction we already indicated that
nudging may be appropriate in a variety of information security scenarios,
either because the end user has the right to make the decision, or is best
positioned to make an informed decision. At the same time, nudging in in-
formation security may be less straightforward than that in health or other
domains. One of the challenges in information security is that the optimal
decision may be a trade-off between various concerns, including ease of use,
performance, risk appetite and security. That is, it is not always obvious in
which direction to nudge. However, as shown in [15] for WiFi selection and
in [14], [16] for privacy, if an objective is agreed, then influencing can be an
effective approach to improving security and privacy without restricting the
user’s choices.

In [15] we introduced the SCENE design process for choice architecture,
based on the MINDSPACE framework [17], which targets approaches influ-
encing beyond nudging alone. MINDSPACE identifies a number of categories
of phenomena that explain influencing, including messenger, norms, salience,
priming, affect, commitment and ego. (For example, salience highlights im-
portance of particular choices, and priming frames solutions in either positive
or negative context.) The design process in [15] then provides a process for
companies to explore the creation of nudges using the MINDSPACE frame-
work, as part of creative workshops. [15] also explains the role of models in
various stages of the design, in particular in optimizing and evaluating the
choice architecture. This paper provides some of the modeling techniques
that can be used as part of the SCENE design process.

2.2. Quantitative Modeling of Information Security Decision Making

In recent years, several approaches to modeling human information se-
curity decision making have been proposed [18] [19]. These belong to the
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category of discrete-event dynamics systems, in which the state of a sys-
tem changes over time, at discrete points in time. Models belonging to that
class include Markov chains and other variants of Markov processes, as well
as models expressed through stochastic process algebras, e. g., [20]. With
respect to decision making, two analysis approaches are of particular rele-
vance, namely Markov decision processes and reinforcement learning, which
we both discuss briefly.

A Markov decision process (MDP) [21] represents a finite set of states
with transitions from one state to another through some actions/decisions
that are taken over time. A transition from state to state given a decision
is probabilistic. Probabilities of all transitions to all reachable states are
assumed to be known; also for each of such transition a reward is associated.
Then, a policy is a function taken over all decisions from the initial to some
final state. The goal of optimizing MDP is to find a sequence of decisions to
take such that it maximizes the total reward. Each state of an MDP depends
on the previous state only.

Reinforcement learning [22] models operate in a potentially uncertain
environment with a sequence of actions/decisions to be taken over time based
on experience obtained in earlier steps. Rewards of decision sequences may be
only partially known or unknown at all. Behavior of multiple agents can be
modeled assuming that agents observe the environment. Each decision of an
agent depends on the previous decisions taken by the agent or other agents
and the current observation of environment, which may be full or partial,
including information on rewards associated with each potential decision to
be taken. The process of decision making in reinforcement learning can
be modeled with an MDP, although large state spaces can be expected as a
result of the fact that actions depend on the history of decisions. In this case,
simulation approaches must be used to deal with the state space explosion

The modeling approach in this paper differs fundamentally from the above
approaches because it does not model the behavior and dynamics of the sys-
tem itself. Instead, it models the factors that influence a decision, effectively
at some non-specified moment in time (there is no explicit notion of time in
these models). However, one can imagine that merging approaches may be
useful in future expansion of the ideas proposed in this paper. For instance,
when connecting to a public Wi-Fi, see Section 4, the above approaches
would allow one to model the environment, typical user behavior, as well
as sequences of preceding decisions. For instance, knowing that the deci-
sion maker is using Virtual Private Network, which allows communication
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through a public Wi-Fi with all benefits of a private one, including secu-
rity, would have implications for the best implementation of a nudge, since
connecting to an unsecured Wi-Fi will be less harmful.

3. Influencing in Decision Making Models for Multiple Criteria

Multi-Criteria Decision Making refers to a collection of operations re-
search techniques used to formally model and reason about human decision-
making in situations in which multiple and possibly conflicting criteria need
to be considered when choosing an alternative. Multi-criteria decision mak-
ing is used to search for those alternatives that represent the best trade-off
between criteria. Commonly, two branches of multi-criteria decision mak-
ing are identified in the literature [23], namely multi-objective optimization
and multi-criteria decision analysis, which are differentiated by how alterna-
tives are treated. In the former case, the alternatives from which one can
chose are not available in advance and are discovered in the process of opti-
mization within the space of decision variables (infinite, continuous or large,
combinatorial discrete) and restricted by constraints. In the later case, the
alternatives set is available in advance and the space of alternatives is usually
discrete, feasible, countable and small enough to be compared pairwise by
the decision maker [23].

When considering multiple criteria when choosing an alternative, one
can identify the candidate set of optimal alternatives, called the Pareto set
[24], [25]. Alternatives in the Pareto set are non-dominated solutions, which
means that for each alternative in the set no other alternative exists that is
better with respect to all criteria. The set of Pareto alternatives can be large
and even combinatorial in the size of the problem, and if that is the case,
approaches are needed to simplify the selection of the optimal alternative
within the set. One approach to determine the optimum is provided by
using utility functions or one of its variants, which associate a single quantity
with each alternative in the Pareto set. In this paper we will use one such
approach, namely Multi-Attribute Value Theory (MAVT, [8]).

3.1. Multi-Attribute Value Theory: Basic Model

MAVT resolves dealing with trade-offs by introducing a value function,
which takes values associated with criteria, and returns a single value for
each alternative. Then an alternative is considered to be better than the
other one if its value is better. MAVT assumes that decision makers are able
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to assess performance of alternatives on individual criteria and to specify
relative importance of criteria (or criteria weights). Then, the value function
determines which alternative is best, e.g. by computing a weighted sum of
individual criteria values. Value functions are specific to the particular deci-
sion maker and reflect decision maker’s preferences. MAVT’s value function
makes it a ‘compensatory technique’, allowing the construction of functions
that smaller values on a subset of criteria to balance with some large val-
ues on others. Mathematically, MAVT is closely related to Multi-Attribute
Utility Theory [7], which has a probabilistic interpretation and is based on
expected utility theory with some strong technical assumptions related to
comparability, transitivity, continuity, and independence of outcomes (that
assumes independence of criteria). Both multi-attribute value and utility
theory are attractive because of their sound theoretical foundation.

We now provide a formalization of MAVT so that we can introduce con-
structs that help us analyze influencing. A decision maker needs to select an
alternative a from a set A. Alternatives are evaluated by decision makers
using criteria from the set of all criteria G. Each criterion g ∈ G comes with
an ordinal or ordered categorical scale Kg that defines the possible values
the criterion can take. Typical scales include real numbers, intervals, ratios,
binary or qualitative indicators (such as ‘High’, ‘Green’, etc.). Qualitative
scales are often mapped into real numbers Kg → R to allow aggregation, and
we will indeed assume that all value are real values in what follows. For later
use, the minimal and maximal values of on the scale for g are denoted as
gmin and gmax, respectively.

We illustrate above for the case study discussed in Section 4. Assume one
needs to select a public Wi-Fi to perform some task and two networks are
available: A = {s, f}, where s is a secured network with a weak signal and f
a non-secured network with a strong signal. Whether the network is secured
and signal strength can each be represented by a criterion: G = {t, r}, with t
representing trust (i. e., secured network) and r strength. We may decide to
use for both of them the same scale Kt = Kr = {0, 1, 2} (with higher values
preferred).

Values associated with criteria differ across alternatives, so we say that
values are defined by a partial value function vg : A → Kg, which is also
referred in literature as a marginal value function. We write Vg for all possible
vg functions, and VG =

∏
g∈G Vg for the cartesian product of all partial value

functions. When no confusion can arise, we write v(a) = (vg1 , . . . , vgm) for the
vector of partial value functions belonging with the criteria of alternative a ∈
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A. To facilitate aggregation in a single value, criteria values are normalized,
to provide a fair basis for comparison. We write the normalization function
as ng : Kg → [0, 1], for g ∈ G.

Preferences are encoded using criteria weights, which express relative im-
portance and trade-offs between criteria, essentially defining how many units
of one criterion can be traded-off for a unit of another criterion. Crite-
ria weights are defined through a vector w(a), with each criterion weight
wg : A → [0, 1] such that

∑
wg(a)∈w wg(a) = 1, for all a ∈ A. Although not

strictly necessary in MAVT, we use the convention for weights to be between
0 and 1 as in utility theory (where weights are interpreted as probabilities).

We are now in a position to provide a formal characterization for MAVT:

Multi-Attribute Value Theory Model. A MAVT model is a tuple M =
(A,G,K, VG, n,W ), where A is a set of alternatives, G is a set of criteria, K is
a set of criteria scales, VG is a set of partial value functions with vg : A → Kg

for each pair {a, g}, n is a set of normalization functions with ng : Kg → [0, 1]
for each g, and W is a set of vectors of weights w(a), for each a ∈ A, with
wg(a) ∈ [0, 1] and such that for each a ∈ A,

∑
wg(a)∈w(a)wg(a) = 1.

To aggregate normalized criteria values for each alternative various can-
didate aggregation function can be thought of, e. g. multiplicative, additive
or some combination thereof. In this paper we will use the most straightfor-
ward aggregating value function, which fits naturally with our use of weights,
namely the weighted sum [7]:

Value Function. Given a model M = (A,G,K, VG, n,W ), the value func-
tion v of an alternative a ∈ A, is defined as:

v(a, w, v) =
∑

g∈G
wg(a) · ng(vg(a)). (1)

The preferred alternative then is the alternative a ∈ A that has maximum
valued value function. We note that in the above equation including w and
v in v(a, w, v) is redundant, since a alone specifies the value and weight
functions already. However, we will need to include w and v as parameters
in v(a, w, v) to facilitate the discussion on (optimal) modifiable criteria later
on.
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3.2. MAVT for Influencing Information Security Decisions: Optimal Policy
and Impact

When analysis influencing, we need to consider two different parties, the
decision maker and the influencer–a typical example of the two parties would
be the user of a device as decision maker, and the employer as the influencer.
There is a MAVT model associated with each of the parties, one for the
decision maker and one with the influencer. We use the subscript DM for
the decision maker and I for the influencer.

One particular case is where the decision maker and influencer exhibit
the same preferences i. e., the same weights wI = wDM and the same set of
partial value functions: vI = vDM . Since the decision maker already choses
the same alternative as the influencer, influencing would not be necessary,
and could even be counter productive. Reality would typically be different,
with partial value functions vI 6= vDM and weight vectors wI 6= wDM different
for the two parties.

We now want to map MAVT terminology and concepts on those derived
for influencing in [10] and [26]. First, we introduce the notion of policy
π(w, v) ∈ A, intuitively referring to something similar as an information
security policy, that is, the information security rules one would want to
follow or impose. Given a vector of partial value functions v, and a weight
vector w, the policy π(w, v) ∈ A of a decision maker is defined as [10]:

π(w, v) = arg max
a∈A

v(a, w, v). (2)

It will become apparent in the following subsection that this notation for
impact is useful when reasoning about modifiable criteria modification. Note
that in order for a decision maker to be deterministic, we assume the exis-
tence of an arbitrary ordering over alternatives, so that if there are several
alternatives maximizing the value function, the decision maker selects the
highest one according to that ordering.

The impact function ρ was introduced in [26] to express the benefit of
making certain decisions, and again we introduce notation to express in the
next section impact of influencing attempts. In general the impact function
can be defined in many different ways (for instance, through an access control
policy stating which alternatives are secure [26]), but in this paper we have
already defined a version of impact through the value function v of M . How-
ever, in the context of information security, we want to clearly distinguish
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the alternatives, so that there are ‘good’ and ‘bad’ alternatives. Hence, for
an alternative a, we define the impact function as:

ρ(a, w, v) =

{
1 if v(a, w, v) ≥ v(a′, w, v) for all a′ ∈ A,
0 otherwise.

In other words, an alternative has an impact if, and only if, it is maximal
according to the value function. Note that more complex impact functions
can be considered, for instance, when different levels of value can be defined.

3.3. Introducing Influence in MAVT

This subsection extends MAVT to represent and analyze influencing. Our
approach is as follows. Given the set of alternatives A of the decision maker,
attempts to influence by the influencer inflict a change in some of the par-
tial value functions of criteria associated with alternative a ∈ A. However,
influencing does not alter the set A, still the same alternatives are available.
We say, given the set of criteria G, a subset of modifiable criteria M ⊆ G
is available to the influencer. The exact subset depends of course on the
problem at hand, but intuitively, it corresponds anything the decision maker
takes into account that is under the (partial) control of the influencer.

We say that there is influence, if and only if, the decision maker decides
differently than when not being influenced, that is, when the optimal policies
before and after modification are such that π(w, v) 6= π(w, v′). Here, we use
v′ to express modifications to the partial value functions of criteria (from v
to v′).

As an example, we return to the WiFi network selection example. Earlier
in this section we introduced two alternatives A = {f, s}, and two criteria
G = {t, r}, corresponding to network trust and strengths, respectively. The
influencer now may wish to attempt to influence the choice of the decision
maker by modify the displayed number of bars available for strength, e. g.,
from {0, 1, 2} to {0, 1, 2, 3, 4}. Or the influencer may change the color of the
displayed name of the network, again to influence selection. In both cases,
the decision maker sees a different presentation of the alternatives, which
then is reflected in a change in the value the decision maker associates with
a criterion.

To determine which modification is the best for the influencer we first
define the set of all modifications of criterion values available to the influencer,
and then take from that set the modification with the highest impact. Given
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a vector of partial value functions v, the set of all possible modification
functions is:

PM(v) = {v′ | ∀g ∈ (G \M) v′[g] = v[g]}.
In the case study, we will be able to enumerate all possible modification
that are possible. One can also chose to define further restrictions on PM,
for instance, reflecting a limit on the change in the values of criteria (e. g.,
the value of a criterion can only be incremented or decremented by a given
factor). The optimal modification possible by an influencer over a decision
maker can now be defined as follows:

Definition 1 (Optimal Modifications). Given an influencer with a weights
function wI and a vector of partial value functions vI , and a decision maker
with a vector of weights wDM and a vector of partial value functions vDM ,
the vectors of optimal modified partial value functions for the decision maker
are given by:

opt(wI , vI , wDM , vDM) = arg max
v′DM∈PM(vDM )

ρ(π(wDM , v
′
DM), wI , vI). (3)

In words, this says that the optimal modification v′DM is the one that
results in a reaction of the decision maker that is of the most benefit to the
influencer.

There may be several vectors of optimal modifications that result in same
optimal policy. To select one of them we introduce cost c(vDM , v

′
DM), which

is associated with the amount of effort needed by the influencer to achieve
the optimal change. The influencer will be interested in finding a vector of
optimal modifications that require minimal effort, which we call here Vector
of Optimal Modifications.

Definition 2 (Vector of Optimal Modifications). Given the same model el-
ements as in the previous definition, the Vector of Optimal Modifications is
defined as:

opt∗(wI , vI , wDM , vDM) = arg min
v′DM∈opt(wI ,vI ,wDM ,vDM )

c(vDM , v
′
DM). (4)

Associating cost/effort with modifications provides us with a way of quan-
tifying the effectiveness of different approaches to influencing. This leads to
the introduction of the second key novel concept (after modifiable criteria),
namely Influence Power. Influence Power is defined through the cost of per-
forming optimal modifications computed with (3):
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Definition 3 (Influence Power). Given the same model elements as in the
previous definitions, the Influence Power IP is defined as:

IP(wI , vI , wDM , vDM) = min
v′DM∈opt∗(wI ,vI ,wDM ,vDM )

c(vDM , v
′
DM). (5)

3.4. Influence Power for the Case Study

To close this section we introduced variants of the notion of Influence
Power useful for the discussion of the case study in Section 4. In the case
study, all scales K are discrete, and as we already remarked, this allows
enumeration of the elements of the set PM(v) of all possible modification.
It also provides a natural way to assign cost to modifications, namely by
counting the number of changes needed to go from v to v′. It is then more
illustrative to look at influence power relative to the the maximum number
of changes possible. For the case study, the scales all have the same direction
(higher is better), which allows us to define relative influence power as follows:

Definition 4 (Relative Influence Power). Given the same model elements as
in the previous definitions, and with vmin

DM and vmax
DM vectors of partial value

functions with all the smallest and all the largest values on all criteria scales,
respectively. Then, Relative Influence Power is defined as:

RIP(wI , vI , wDM , vDM) =
IP(wI , vI , wDM , vDM)

c(vmin
DM , v

max
DM )

· 100%. (6)

Note that in the above setting (since it intuitively represents ‘effort needed’
to change the decision maker’s choice) a low value of RIP is better. We also
note that it is very well possible that the optimal modification for the influ-
encer is to not make any changes, i. e., vDM = v′DM . Formally, the influencer
should not make use of any of the influencing techniques if one of the two
following statements holds:

if ρ(π(wDM , vDM), wI , vI) = 1, then vDM ∈ opt(wI , vI , wDM , vDM),

or:

if @v′DM s.t. ρ(π(wDM , v
′
DM), wI , vI) = 1, then vDM ∈ opt(wI , vI , wDM , vDM).
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4. Case Study: Selection of a Wi-Fi Network

In this section we illustrate the modeling ideas presented in this paper.
We present the core of the decision model we constructed when a user has
to decide which Wi-Fi network to select in a public space. In this section
we do not yet use the data from the experiment, that is done in Section 5.
The MAVT model we use in this section provides the core of the full model
needed in Section 5.

4.1. Selection of a Wi-Fi Network with MAVT

The decision maker chooses between two different public wireless networks
A = {s, f}: s is a secure Wi-Fi with weak signal; f is a Wi-Fi with strong
signal, but not necessarily secure. This illustrates the trade-off between secu-
rity and productivity/usability. The set of criteria is G = {t, r, l}, indicating
the trust or security t of the network, its strength r and the color l in which
the network name is displayed. The scales for the trust and strength criteria
are defined as Kt = Kr = {0, 1, 2} (higher is better). For the color criterion,
the scale is Kl = {R,N,G}, corresponding to red, neutral and green font
colors.

In the language of the Wi-Fi application, trust t relates to the level of
security, e. g. whether the Wired Equivalent Privacy (WEP) protocol is used
and/or whether it is in the whitelist of the networks recognized by the decision
maker’s device. More sophisticated evaluation of trust may take into account
other aspects, e. g., current location of an employee [27]. Strength r of a
network can be associated with the number of bars showing the strength
of the signal, and one may expect that people would chose networks with
high signal strength. Color l indicates the font color in which the network
name is displayed, through a traffic light system [28]. This associates colors
to emotions: red color – to danger, amber – to attention, and green – to no
danger, and is a common ingredient in design nudges. For instance, in [14] the
traffic light approach is used to nudge individuals away from privacy-invasive
applications in.

The decision maker defines the criteria weights, e. g. w = (0.5; 0.3; 0.2),
or, alternatively, weights can be derived from observed decision maker choices.
Weights w = (0.5; 0.3; 0.2) can for instance be interpreted as follows: con-
necting to a trusted Wi-Fi is more important for the decision maker than
choosing a Wi-Fi with strong signal. The color in which a Wi-Fi name is dis-
played, is less significant for the decision maker than the two other criteria,
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Table 1: Decision matrix corresponding to v = [s 7→ (1, 1, N), f 7→ (0, 2, N)].

Criteria G
Trust (t) Strength (r) Color (l)

Weight Vector w 0.5 0.3 0.2

Alternatives A
Safe (s) 1 1 N
Fast (f) 0 2 N

etc.
In the following, for the sake of compactness, it is written v = [s 7→

(v1, v2, v3), f 7→ (v4, v5, v6)], associating network s with a trust of v1, a
strength of v2 and a color of v3 values, respectively; and network f with
a trust of v4, a strength of v5 and a color of v6 values, respectively. Table 1
represents the traditional decision matrix [7], corresponding to the compact
notation v = [s 7→ (v1, v2, v3), f 7→ (v4, v5, v6)].

In Table 1, available alternatives s and f (rows in the lower part) with
their values on criteria t, r, and l (columns) are presented. In addition,
criteria weights are given in the headings of columns. We assume a linear
normalization function of the following form:

ng(vg(a)) =
vg(a)− gmin

gmax − gmin
. (7)

E.g. for scales Kt = {0, 1, 2}, Kr = {0, 1, 2}, Kl = {R,N,G}, normalized
scales all equal Kn

t = Kn
r = Kn

l = {0, 0.5, 1}. So, we now can compute the
value functions (assumed to be additive sum as in Eq. (1)) for alternatives
s and f :

v(s, w, v) = 0.5 ∗ 0.5 + 0.3 ∗ 0.5 + 0.2 ∗ 0.5 = 0.5

v(f, w, v) = 0.5 ∗ 0 + 0.3 ∗ 1 + 0.2 ∗ 0.5 = 0.4.

In this case, in terms of Eq. (2), the decision maker will use policy π(w, v) =
s, that is, the secure network will be chosen.

To illustrate decision evaluation scenarios for the case of public Wi-Fi
selection, let us consider the influencer and the decision maker having the
same weight vectors wI = wDM = (0.5; 0.3; 0.2). However, they have different
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partial value functions: vI = [s 7→ (1, 1, N), f 7→ (0, 2, N)] for the influencer
and vDM = [s 7→ (1, 1, N), f 7→ (1, 2, N)] for the decision maker. Indeed,
the decision maker considers the alternative f as being more trusted, with
vDM [t](f) = 1, when compared to the influencer, which assigns to it a smaller
trust value with vI [t](f) = 0. This difference results in different utilities of
the alternatives v(s, wDM , vDM) = 0.5 and v(f, wDM , vDM) = 0.65, and leads
to the decision maker choosing π(wDM , vDM) = f . However, ρ(f, wI , vI) = 0,
meaning that the decision maker selects an alternative that is suboptimal for
the influencer.

4.2. Influencing Selection of a Wi-Fi Network

Let us consider as subset of modifiable criteria M = {l}, i. e., only the
color in which network’s name is displayed can be modified. Assuming an
influencer has a set of criteria weights wI = (0.5; 0.4; 0.1) and a set of partial
value functions vI = [s 7→ (1, 1, N), f 7→ (0, 2, N)], then the impact of alter-
natives s and f can be computed for the influencer as follows, ρ(s, wI , vI) = 1
and ρ(f, wI , vI) = 0, respectively. In other words, the influencer wants to in-
fluence the decision maker towards selecting a more secure Wi-Fi s. The
decision maker has criteria weights wDM = (0.3; 0.5; 0.2) and partial values
functions vDM = [s 7→ (1, 1, N), f 7→ (1, 2, N)]. This leads to the decision
maker choosing a fast network π(wDM , vDM) = f .

Since M = {l}, only the color criterion value can be modified. Table 2
details all the possible cases of modifying color, where we write vxy

DM for the
partial value function vxy

DM = [s 7→ (1, 1, x), f 7→ (1, 2, y)] of decision maker
when modification to the color was applied. To break ties, we assume that
when s and f have the same value for their value function, the decision maker
selects f by default.

The vector of optimal modifications is opt(wI , vI , wDM , vDM) = [s 7→
(1, 1, G), f 7→ (1, 2, R)], i. e., changing the display color of network s to green,
and that of f to red, results in the decision maker to change their choice from
the alternative f to the alternative s. The decision maker then selects the
alternative preferred by the influencer. Note that here there is only one
vector of optimal modifications.

The impact of a modification depends on the set of non-modifiable criteria
{t, r}. See Table 3, for the same set of partial value functions vDM = [s 7→
(1, 1, N), f 7→ (1, 2, N)] but different set of weights wDM = (0; 0.8; 0.2). Table
3 demonstrates that if a decision maker does not care about the trust of the
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Table 2: Impact of all possible modifications to the color criterion, vDM = [s 7→
(1, 1, x), f 7→ (1, 2, y)], wDM = (0.3; 0.5; 0.2). The decision maker only selects network
s if the network s is displayed in green (x = G) and the network f is displayed in red
(y = R), as highlighted in bold.

vxy
DM vDM (s, wDM , vxy

DM ) vDM (f, wDM , vxy
DM ) π(wDM , vxy

DM ) = a ρ(a,wDM , vxy
DM )

vNN
DM 0.5 0.6 f 0
vNR

DM 0.5 0.5 f 0
vNG

DM 0.5 0.7 f 0
vGN

DM 0.6 0.6 f 0
vRN

DM 0.4 0.6 f 0
vGR
DM 0.6 0.5 s 1
vRG

DM 0.4 0.7 f 0
vRR

DM 0.4 0.5 f 0
vGG

DM 0.6 0.7 f 0

network, there are no modifiable criteria that are effective when trying to
make the decision maker select the more secure network.

The relative influence power RIP, expressing the cost of optimal modifi-
cations as a fraction of maximal influence power value, can be computed as
follows. Criterion t can take three values (0, 1, or 2), thus allowing for four
changes, two in each direction: from 0 to 1, from 1 to 2, from 2 to 1 and
from 1 to 0. Criteria r and l also allow for 4 changes, thus resulting in 12 for
the total amount of possible changes. Assume the colors initially equal to N
for both networks, then changing the choice of the decision maker requires 2
grades changes (from neutral to green and from neutral to red, respectively)
RIP = 2

12
= 16, 66%.

5. Experimental Results for Influencing Wi-Fi Network Selection

We apply our modeling approach to the problem of WiFi network se-
lection in experimental setting and study whether we can influence which
network users will choose when they are in public spaces. Our analysis uses
data from the controlled experiment reported in [9] and further analyzed in
[29] and [30], in which a number of design nudges were introduced in order to
influence the user’s network selection. The set-up is described in Section 5.1.
We then explain how we formulated the Wi-Fi network selection problem in

17



Table 3: Impact of all possible modifications to the color criterion, vDM = [s 7→
(1, 1, x), f 7→ (1, 2, y)], wDM = (0.0; 0.8; 0.2). Irrespective of the influencing attempt
(through coloring the displayed network name), the decision maker will not select secure
network s since it associates zero weight to criterion t (trust).

vxy
DM vDM (s, wDM , vxy

DM ) vDM (f, wDM , vxy
DM ) π(wDM , vxy

DM ) = a ρ(a,wDM , vxy
DM )

vNN
DM 0.5 0.9 f 0
vNR

DM 0.5 0.8 f 0
vNG

DM 0.5 1 f 0
vGN

DM 0.6 0.9 f 0
vRN

DM 0.4 0.9 f 0
vGR

DM 0.6 0.8 f 0
vRG

DM 0.4 1 f 0
vRR

DM 0.4 0.8 f 0
vGG

DM 0.6 1 f 0

MAVT in Section 5.2. Using the notion of modifiable criteria, we identify in
Section 5.3 which criteria are most suitable for successful influencing. As-
suming each individual criterion as modifiable we compute influence power
needed for changing choices. From this investigation we concluded that it
is not always possible to influence decision makers with subset of modifiable
criteria and possibilities of influencer are limited. In Section 5.4 we further
explore how much relative influence power is needed for various groups of
decision makers to make them changing their choices. From this study we
concluded that the amount of influence power needed for various screenshots
depends on the number of criteria used at that screenshot.

5.1. Design of Experiment

The participants were recruited at the Newcastle University. Altogether
34 individuals participated, among which were computing, non-computing
students, post-doctoral researchers and several professionals. The partici-
pants were asked to imagine a need for a document to be submitted urgently
using a publicly available wireless network in a cafe. A set of 6 mobile phone
screenshots were presented to participants in random order with 6 Wi-Fi
networks displayed in each screenshot. The screenshots are given in Figure
1 and Figure 2. Participants were asked to rank networks according to the
order in which they would try to connect to the networks, assuming they
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(a) OCn Screenshot (b) OWp Screenshot (c) OCp Screenshot

Figure 1: Screenshots with Wi-Fi’s ordered according to their utility to influencer [9]

have the password to access every Wi-Fi available. The network names were
composed from randomly generated alphabetic characters and numbers to
avoid bias due to perceived familiarity of network names (see [27] for a study
of this effect).

The names of screenshots encode the manner of presentation, which re-
lates closely to the criteria to be used in the MAVT model of Section 5.2. For
the six names of the screenshots, the first letter stands for ‘Order’ (‘O’ for
order being used and ‘R’ for not used); the second letter stands for ‘Color’
(‘C’ for a traffic light color scheme being used and ‘W’ for it not being used,
in which case all Wi-Fi names are displayed in white); and the third letter
stands for ‘Padlock’, which indicates usage of the padlock symbol (‘p’ for
being used, ‘n’ for not being used).

Table 4 provides the named screenshots and also indicates which criteria
can be studied through the respective screenshots. ‘Order’ indicates that
Wi-Fi’s were initially pre-ordered, with the most secure networks located
at the top of the list, see screenshots OCn, OWp, OCp in Figure 1. Oth-
erwise, Wi-Fi’s are presented in random order, see screenshots RCp, RWp,
RWn in Figure 2. ‘Color’ refers to the display of Wi-Fi names in different
colors: green, neutral, amber or red. We also have text under the names
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(a) RWn Screenshot (b) RCp Screenshot (c) RWp Screenshot

Figure 2: Screenshot with randomly presented Wi-Fi’s [9]

of networks, either ‘Trusted’, ‘Secure’ or ‘Open’. Both ‘Color’ and ‘Trust’
are used in OCn, OCp, RCp screenshots and not used in OWn, RWn, RWp
screenshots. ‘Padlock’ refers to the padlock graphical symbol, and is used
in some screenshots: OCp, OWp, OCp, while no padlock symbol is used in
other screenshots OCn, OWn, RWn. ‘Strength’ is indicated by the number
of solid bars of the usual signal graphic, reflecting the strength of the Wi-Fi
signal, and is present in all screenshots.

The experiment has been used in a number of papers to discuss the psy-
chological and information security implications. In particular, in [9] the
application for nudging users was presented for android phones. In the same
work it was investigated to what extend different features of Wi-Fi’s, such as
color, place in the ordered list and presence of the padlock symbol, may nudge
decision makers towards selecting more or less secured networks. In addi-
tion, follow up studies explored how individual differences, such as technical
self-efficacy, perceived controllability and vulnerability to risk, impulsivity
of participants and their motivation to behave securely, influence decisions
made [29], [30].
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Table 4: Classification of screenshots according to the used criteria

Alternatives A Criteria G
Number of Criteria

Strength Padlock Order Color Trust

OCp + + + + + 5
OCn + – + + + 4
RCp + + – + + 4
OWp + + + – – 3
RWp + + – – – 2
RWn + – + – – 2

5.2. Initial Data for MAVT Model of the Experiment

We now create a MAVT model M = (A,G,K, VG, n,W ), so we specify
alternatives A, criteria G, criteria scales K, partial value functions VG for
all criteria, normalization function n, and weights W , followed by the Value
Function v.

There are always 6 Wi-Fi’s one can select from, so there are six alterna-
tives

A = {a1, a2, a3, a4, a5, a6}.
We assume five criteria:

G = {GStrength,GTrust,GPadlock,GColor,GOrder}.

These correspond to the strength of Wi-Fi signal, the trust provision of the
Wi-Fi, the presence of padlock symbol for the network, the color in which the
Wi-Fi network name is displayed, and the order position at which network
is displayed to the decision maker, respectively.

Each criterion is associated with a scale of decreasing/increasing criteria
values: K = {KStrength,KTrust,KPadlock,KColor,KOrder}.

KStrength = {0, 1, 2, 3, 4},

with strength of signal varying from 0 to 4 bars.

KTrust = {‘Trusted′, ‘Secured′, ‘Open′},
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where ‘Trusted’ indicates that WEP and that the network is in the whitelist
of the user; ‘Secured’ indicates WEP only; and ‘Open’ indicates neither of
the two previous cases.

KPadlock = {‘Present′, ‘Absent′},

indicating whether padlock is used or not.

KColor = {‘Green′, ‘Amber′, ‘White′, ‘Red′},

and it correlates with Trust, as follows: ‘Trusted′ is ‘Green′; ‘Secured′ is
‘Amber′ and ‘Open′ is ‘Red′. ‘White′ refers to a neutral color used for dis-
playing names of Wi-Fi’s when no color scheme is applied.

KOrder = {1, 2, 3, 4, 5, 6}

represents the place among the listed networks, with 1 implying place at the
top and 6 at the bottom of the list. The normalization function of the form
(7) is used here, so all normalized values are between 0 and 1.

When modeling decision making with MAVT, preferences can be provided
by (or elicited from) decision makers in a form of criteria weights although
this will not be straightforward because of wide range of possible semantics
of weights [7]. However, we have data on previous choices of participants
available and can use that to estimate weights. We use an ordinal regres-
sion approach popular in machine learning literature to extract weights from
decisions made by participants of the experiment. Using clustering tech-
niques, we grouped individuals with similar weights in clusters, details will
be forthcoming in [31].

Using the experimental data for the OCp screenshot, 7 groups of decision
makers were identified, each with different weight vector, see Table 5. For in-
stance, the group C1 has weights wC1 = (0.0089, 0.0793, 0.8064, 0.0463, 0.0590).
Ignoring the weight values of 1 for the moment, one can see immediately from
the high weights in the ‘Padlock’ criterion column that for many groups the
padlock is an important element in their decision making. ‘Strength’ is also
particularly important for some groups (groups C3 and C4). The groups C6
and C7 represent two extremes where only one criterion is relevant to the
decision makers: ‘Strength’ for C6 and ‘Padlock’ for C7.
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Table 5: Groups of decision makers with criteria weights extracted from results for the
OCp screenshot.

Clusters C Criteria Weights w

Strength Trust Padlock Color Order

wC1 0.0089 0.0793 0.8064 0.0463 0.0590
wC2 0.0973 0.0629 0.7337 0.0433 0.0628
wC3 0.3199 0 0.6801 0 0
wC4 0.5566 0.0889 0.1796 0.0618 0.1131
wC5 0.0858 0 0.9142 0 0
wC6 1 0 0 0 0
wC7 0 0 1 0 0

5.3. Analysis of Influence Power per Criterion

In the first part of the analysis we investigate influence power per in-
dividual criterion: whether we can change choices of decision makers by
modifying one criterion at a time. In the first place, we are interested in
studying whether it is possible to influence choices of decision makers by ad-
justing values on modifiable criteria only: ‘Color’ M = {′Color′} or ‘Order’
M = {‘Order′}. Then we take a step further and check whether other cri-
teria (non-modifiable) would be more influential if we find a way to modify
them by consideringM = {‘Strength′},M = {‘Trust′},M = {‘Padlock′},
M = {‘Color′}, M = {‘Order′}. Intuitively, we expect that criteria with
highest weights for decision makers are most effective in changing choices.

We now focus on the second group C2, with criteria weights w2 = (0.0973,
0.0629, 0.7337, 0.0433, 0.0628), see second row of Table 5. Tables 6–9 display
the influence power required to change the selection of the decision maker,
providing results for four criteria. The tables should be understood as follows.
Each row represents the network for which we want to improve its current
rank towards rank of the network in the column: Rank 1 if the network is
the user’s first choice, rank 2 if it is its second choice, etc. This is known
from the experiment data, because users were asked to rank the six networks
displayed on a screenshot, i. e. to identify which one they would select first,
second, up to sixth. The columns represent the desired improvement of the
rank. The values within the space then show the influence power IP, where
∞ means that the influence is not achievable. So, if we consider criterion
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Table 6: Cost of influence with ‘Strength’ criterion for the decision maker from group C2
with criteria weights wC2 = (0.0973, 0.0629, 0.7337, 0.0433, 0.0628) for OCp screenshot

Alternatives A Alternatives A
‘6v2l’ ‘2xu5’ ‘71xk’ ‘dd47’ ‘7bc2’ ‘37hh’

‘6v2l’ 0
‘2xu5’ 1 0
‘71xk’ 2 1 0
‘dd47’ ∞ 2 1 0
‘7bc2’ ∞ ∞ ∞ ∞ 0
‘37hh’ ∞ ∞ ∞ ∞ 2 0

‘Strength’ in Table 6, then to move to first position the network that is ranked
as second choice (‘2xu5’), we need the following influence power IP = 1. To
move the worst ranked (6-th) network (‘37hh’) to first is not possible (∞ for
the element in 6-th row and 1-st column in Table 6).

The strong IP for ‘Padlock’ is obvious from Table 8, where there are
no ∞. That is, using only the ‘Padlock’ criterion, it is possible to make
participants of the second group C2 choose any desired network. For the
alternatives ranked as second, third or fourth, IP = 1. This means that
simply adding/removing the padlock symbol to one of these alternatives or
adding/removing it from the alternative with rank above is enough to im-
prove rank of the alternative. For the alternatives ranked fifth or sixth ranks
two changes are needed: adding the padlock to one network and removing
the padlock from another. In a similar way analysis for other criteria can be
done (see Tables 6, 7, 8 for ‘Strength’, ‘Trust’ and ‘Order’ criteria, respec-
tively). We note that the ‘Color’ criterion is completely ineffective and we
did not present it here. In general, with criteria other than ‘Padlock’ the
influencing possibilities are limited.

5.4. Analysis of Influence Power per Group of Participants and per Screen-
shot

In the second part of the analysis we want to see how influence power
varies over groups of decision makers with different preferences and look
at average influence power needed for changing choices of decision makers
across all groups for various screenshots. By assuming all criteria as modifi-
able at the same timeM = {‘Strength′, ‘Trust′, ‘Padlock′, ‘Color′, ‘Order′}
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Table 7: Cost of influence with ‘Trust’ criterion for the decision maker from group C2 with
criteria weights wC2 = (0.0973, 0.0629, 0.7337, 0.0433, 0.0628) for OCp screenshot

Alternatives A Alternatives A
‘6v2l’ ‘2xu5’ ‘71xk’ ‘dd47’ ‘7bc2’ ‘37hh’

‘6v2l’ 0
‘2xu5’ 3 0
‘71xk’ ∞ 1 0
‘dd47’ ∞ ∞ 3 0
‘7bc2’ ∞ ∞ ∞ ∞ 0
‘37hh’ ∞ ∞ ∞ ∞ ∞ 0

Table 8: Cost of influence with ‘Padlock’ criterion for the decision maker from group C2
with criteria weights wC2 = (0.0973, 0.0629, 0.7337, 0.0433, 0.0628) for OCp screenshot

Alternatives A Alternatives A
‘6v2l’ ‘2xu5’ ‘71xk’ ‘dd47’ ‘7bc2’ ‘37hh’

‘6v2l’ 0
‘2xu5’ 1 0
‘71xk’ 1 1 0
‘dd47’ 1 1 1 0
‘7bc2’ 2 2 2 1 0
‘37hh’ 2 2 2 2 1 0

Table 9: Cost of influence with ‘Order’ criterion for the decision maker from group C2 with
criteria weights wC2 = (0.0973, 0.0629, 0.7337, 0.0433, 0.0628) for OCp screenshot

Alternatives A Alternatives A
‘6v2l’ ‘2xu5’ ‘71xk’ ‘dd47’ ‘7bc2’ ‘37hh’

‘6v2l’ 0
‘2xu5’ 7 0
‘71xk’ ∞ 2 0
‘dd47’ ∞ ∞ 7 0
‘7bc2’ ∞ ∞ ∞ ∞ 0
‘37hh’ ∞ ∞ ∞ ∞ ∞ 0
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Table 10: Relative influence power RIP for seven identified groups for ‘OCp’ screenshot.
Lower RIP values suggest less effort needed for successful influencing.

Clusters C wC1 wC2 wC3 wC4 wC5 wC6 wC7

RIP (in %) 33.33 27.67 26.00 14.00 26.67 24.67 23.33

Table 11: Average relative influence power RIP for all screenshots. Lower RIP values
suggest less effort needed for successful influencing. The result indicates that exposing the
decision maker to all criteria modifications is not effective (scenarios based on screenshots
with less criteria have lower RIP values).

Screenshots C OCp OCn RCp OWp RWp RWn
RIP (in %) 23.38 17.33 20.56 17.33 12.33 13.28

we study how big is the fraction of total influence power needed for chang-
ing choices of decision makers in groups with different preferences (criteria
weights). Even though it is not always realistic for the influencer to have
such ability/desire to modify all criteria, here it is used to identify groups of
decision makers that are more susceptible to being influenced.

To compute relative influence power RIP, analysis for each screenshot
for all groups of participants is performed. We do a separate calculation
for each screenshot, since different screenshots pertain to a different set of
criteria. Pairs of alternatives at each screenshot are compared and the effort
(number of operations to make the decision maker change his/her selection) is
computed. For instance, for the OCp screenshot all five criteria are available,
see Figure 1 (c). To change the decision from the alternative with all the
lowest values on all criteria (‘7bc2’) to the alternative with all the highest
criteria values (‘6v2l’) the maximal number of criteria changes (altogether 24
operations) is needed. This then is the denominator for RIP. Note also that
different criteria have different scales, for which we corrected by assuming
that each criterion contributes one-fifth to the denominator in RIP.

The results of analysis of relative influence power are presented in two
tables: the results for different clusters of decision makers obtained for ‘OCp’
screenshot are presented in Table 10, and overall average relative influence
power across all screenshots is presented in Table 11. Taking into account
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only criteria with non-zero weights the average relative influence power (i. e.
the average percentage of changes) needed for all participants and for partici-
pants within each group of criteria weights for each screenshot are computed.
Analysis of average values in Table 11 confirms our assumption that if there
are more criteria involved in alternatives evaluations more effort is required to
make a decision maker change his/her selection. In terms of RIP this shows up
as follows: the screenshots with lower number of criteria have lower average
values for RIP. It seems justified to conclude that if less criteria are available
to modify, modification will be more effective, possibly because there is less
interference of other artifacts visible to the decision maker.

6. Discussion

Since human minds and abilities are limited, when facing complex choices
decision makers tend to simplify problems in order to process and solve them
approximately. The first two open issues discussed here are related to such
simplification strategies people use to make decisions involving trade-offs.
We also demonstrate influence population of decision makers, which may be
done in a way similar to influencing individual decision makers.

6.1. Intuitive Strategies for Decision Making Involving Trade-offs

Simplification strategies, also called heuristics, are often applied intu-
itively. They make us smart and often help us finding fast and frugal solu-
tions as shown with multiple examples in [32]. However, they may also result
in unexpected and irrational decisions as discussed in [33].

Applying heuristics is also related to work of our automatic system (which
Kahneman calls System 1 [13]) that searches for fast intuitive solutions with-
out using much of cognitive resources, contrary to our controlled system (or
System 2) that takes a more deliberate approach but also requires more cog-
nitive resources to make decisions based on some reflexion.

When dealing with alternatives evaluated on several conflicting criteria
and representing trade-offs between them, two types of intuitive strategies
can be differentiated: compensatory and non-compensatory. In compen-
satory approaches bad performance of alternatives on some criteria can be
compensated by good performance on other ones. In non-compensatory
approaches such compensation is not acceptable [34]. In some sense non-
compensatory strategies are easier for decision makers, since they have to
consider comparison of alternatives on each criterion separately.
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Compensatory strategies requires more cognitive effort of decision makers,
since they have to compare trade-offs between different criteria in order to
make a final choice. Among compensatory approaches, zero-sum heuristic
or compensatory inference, derives from the game theory idea of balancing
gains and losses of all players. This concept is extended to economics with
efficient markets [11], where it is assumed that products with high prices have
high values. Based on this approach, in situation of uncertainty and absence
of information on some of criteria, people derive missing criteria values from
the values of observable criteria assuming correlation between them. For
instance, quality of a product is deduced from its price, or quality from a
brand name.

It was shown in [35] that similarly users derive unobservable security
quality of Wi-Fi from its observable convenience quality. This research is
particularly interesting in the context of the present work, since it suggests
that a majority of people perceive security of Wi-Fi’s wrongly: Using com-
pensatory inference people underestimate security quality of a Wi-Fi with
both high security and high convenience, and overestimate its convenience,
when comparing it to a Wi-Fi with both lower security and lower convenience.
It was demonstrated experimentally that such wrongly perceived qualities of
both security and convenience affect choices of Wi-Fi’s by decision makers,
and that the level of users’ technology knowledge had no significant impact
on their choice.

6.2. Strategies to Influence Decision Making Involving Trade-offs

In the context of the present work, particularly interesting are results on
influencing decision making involving multiple criteria presented by Sedikides
et al. in [36], where contextual and procedural determinants were studied
(for the case study of a partner selection). As a contextual determinant of
choice, the asymmetric dominance effect [36] (also called ‘decoy’ [33]) was
investigated, which refers to the phenomenon of changing preference from
one alternative to another after introduction of a third alternative, which
is very similar to (although dominated by) the alternative towards which
the decision maker is nudged, but non-dominated with respect to the other
alternative. Although the third alternative is not likely to be selected as it is
inferior to one of the alternatives, it has a role of highlighter of the alternative
which dominates it. Ease of comparison of this newly introduced alternative
to one of the alternatives makes the last one more salient and increases its
chances to be selected when compared to another non-dominated alternative.
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For the Wi-Fi choice example introduced in Section 4.1 and presented in
Table 1 in order to nudge decision maker towards selecting a secure alterna-
tive with weak signal s, a decoy alternative d may be introduced such that
v = [s 7→ (v1, v2, v3), d 7→ (v1, v7, v3), f 7→ (v4, v5, v6)], where v7 < v2. For
instance, v = [s 7→ (1, 1, N), d 7→ (1, 0, N), f 7→ (0, 2, N)], meaning that the
decoy alternative has the same values on the trust and color criteria, but is
worse on the strength of signal criterion when compared to (and consequently
is dominated by) the alternative s. For instance, in the Wi-Fi example the
decoy alternative d has worse value of trust when compared to the alterna-
tive s. This difference indicates to the decision makers how much they are
losing by not selecting the alternative s. On the other hand, there is no such
highlighter for the alternative f , which is very different from both s and d
even though non-dominated with respect to both.

The explanation of why decoy works can be found in another research
on prospect theory by Kahneman and Tversky [12], which shows that regret
from losing is much stronger then the joy of winning, and people would
rather not lose than win. The decoy alternative shows to the decision makers
exactly how much they are loosing by choosing an alternative other than the
alternative similar to the decoy alternative. Obviously, the effect can be
neutralized by introducing another decoy alternative, which is similar but
is a bit worse than the second alternative, the alternative f with strongest
signal in the Wi-Fi example.

6.3. Influencing Population

In all previous sections, we have considered a deterministic decision maker
by default. To allow modeling groups of decision makers rather than single
users, we may consider a probabilistic decision maker. We model this aspect
by considering a probability distribution over weights, such that given a
weight function w, ψ(w) represents the probability of w. From a statistical
point of view, ψ(w) represents the percentage of the population with the
weight distribution w.

The policy of the entire population can therefore be defined as given in
MAVT model M = (A,G,K, VG, n, ψ(w)):

π(ψ, v, a) =
∑

w∈W

{ψ(w) | π(w, v, ) = a}. (8)

For influencing a population of decision makers, an influencer needs to
look for an alternative (or subset of alternatives) with highest impact and
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a subset of modifiable criteria that makes this alternative (preferred by the
influencer) to be selected by the majority of population.

opt(wc, vc, ψu, vu) = arg max
v′∈PM(vu)

∑

a∈A
ρ(a, wc, vc)π(ψu, v

′
u, a).

As an example of population modeling, we can consider examples of
three types of decision makers with the same criteria evaluation functions
vu = [s 7→ (1, 1, N), f 7→ (1, 2, N)], but different criteria weights w1 =
(0.3; 0.5; 0.2), w2 = (0; 0.8; 0.2), and w3 = (0.8; 0; 0.2). Let us also consider
a probability distribution ψ such that ψ(w1) = ψ(w2) = ψ(w3) = 1/3. We
can calculate that π(w1, vu) = f , π(w2, vu) = f , π(w3, vu) = s, and therefore,
following Equation (8), we have π(f, v, ψ) = 2/3 and π(s, v, ψ) = 1/3.

If the influencer wants to shift choices of a population of users, he/she may
consider similar strategy as one proposed for influencing choice of individual
decision makers, but taking into account weights of different groups of users.

7. Conclusions and Outlook

In this paper we proposed an operational model for influencing human
decision making in security context. In particular, we introduced influence
within multi-attribute value theory. The set-up for modeling influencing
requires two parties, a decision maker and an influencer, each of them with
their own MAVT optimization model. The influencer’s attempts to influence
a decision are modeled through changes in the MAVT model of the decision
maker and to express such changes we introduced the concept of modifiable
criteria. We also introduced the concept of influence power, which quantifies
the effort to successfully influence the decision maker.

The application of the model using data collected in a study of public Wi-
Fi network selection resulted in a number of interesting insights. First, we
showed it is possible using data from actual experiments to express influenc-
ing in a MAVT model with modifiable criteria. In addition, using influence
power, we were able to identify which optimization criterion is most amenable
to influencing, by calculating for which criteria successful influencing requires
the least effort. For instance, in the Wi-Fi example, we showed that adding
the padlock symbol to a displayed network name was by far the most power-
ful influencer for the largest group of participants. An additional important
aspect when influencing is the fact that (groups of) people are ideally tar-
geted in bespoke manner. In the Wi-Fi study, several ‘clusters’ of decision
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makers were identified with often very different criteria determining their
decision. Finally, the analysis also indicated that influence power decreases
when increasingly many options are available to the influencer, possibly be-
cause the affect of a single change in the display is less pronounced when
other display features compete for attention from the decision maker. The
latter two items would need to be researched in more detail.

In general, formal modeling and optimization models such as these in this
paper should ideally be integrated more intimately with the design of influ-
encing attempts. Methods for designing choice architectures (i.e., the way
choices are presented to the decision maker) can use the models to identify
which elements in the choice architecture can be expected to be most pow-
erful in influencing decisions. In addition, the work presented in this paper
provides an approach to personalizing influencing attempts by calculating in-
fluence power depending on the characteristics of different groups of decision
makers. From our study it became clear that personalization, if practicable,
potentially greatly enhances the likelihood of success of influencing.
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