
This item is the archived peer-reviewed author-version of:

TTL approximations of the cache replacement algorithms LRU(m) and h-LRU

Reference:
Gast Nicolas, Van Houdt Benny.- TTL approximations of the cache replacement algorithms LRU(m) and h-LRU
Performance evaluation - ISSN 0166-5316 - 117(2017), p. 33-57
Full text (Publisher's DOI): https://doi.org/10.1016/J.PEVA.2017.09.002
To cite this reference: http://hdl.handle.net/10067/1485650151162165141

Institutional repository IRUA

http://anet.uantwerpen.be/irua

Accepted Manuscript

TTL approximations of the cache replacement algorithms LRU(m) and
h-LRU

Nicolas Gast, Benny Van Houdt

PII: S0166-5316(17)30068-8
DOI: http://dx.doi.org/10.1016/j.peva.2017.09.002
Reference: PEVA 1930

To appear in: Performance Evaluation

Please cite this article as: N. Gast, B. Van Houdt, TTL approximations of the cache replacement
algorithms LRU(m) and h-LRU, Performance Evaluation (2017),
http://dx.doi.org/10.1016/j.peva.2017.09.002

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to
our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form.
Please note that during the production process errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.peva.2017.09.002

TTL Approximations of the Cache Replacement
Algorithms LRU(m) and h-LRU

Nicolas Gasta,∗, Benny Van Houdtb

aInria, Univ. Grenoble Alpes, CNRS, LIG, F-38000 Grenoble, France
bUniv. of Antwerp, Depart. of Math. and Computer Science, B2020-Antwerp, Belgium

Abstract

Computer system and network performance can be significantly improved by
caching frequently used information. When the cache size is limited, the cache
replacement algorithm has an important impact on the effectiveness of caching.
In this paper we introduce time-to-live (TTL) approximations to determine the
cache hit probability of two classes of cache replacement algorithms: h-LRU
and LRU(m). These approximations only require the requests to be generated
according to a general Markovian arrival process (MAP). This includes phase-
type renewal processes and the IRM model as special cases. We provide both
numerical and theoretical support for the claim that the proposed TTL approx-
imations are asymptotically exact. In particular, we show that the transient hit
probability converges to the solution of a set of ODEs (under the IRM model),
where the fixed point of the set of ODEs corresponds to the TTL approximation.

We use this approximation and trace-based simulation to compare the per-
formance of h-LRU and LRU(m). First, we show that they perform alike, while
the latter requires less work when a hit/miss occurs. Second, we show that as
opposed to LRU, h-LRU and LRU(m) are sensitive to the correlation between
consecutive inter-request times. Last, we study cache partitioning. In all tested
cases, the hit probability improved by partitioning the cache into different parts
– each being dedicated to a particular content provider. However, the gain
is limited and the optimal partition sizes are very sensitive to the problem’s
parameters.

Keywords: Caching, TTL approximations, LRU

1. Introduction

Caches form a key component of many computer networks and systems. A
large variety of cache replacement algorithms has been introduced and analyzed

∗Corresponding author
Email addresses: nicolas.gast@inria.fr (Nicolas Gast),

benny.vanhoudt@uantwerpen.be (Benny Van Houdt)

Preprint submitted to Elsevier September 13, 2017

over the last few decades. A lot of the initial work was focused on deriving
explicit expressions for the cache content distribution by using a Markov chain
analysis [1]. This approach, however, is not always feasible: Even if explicit
expressions can be obtained, they are often only applicable to analyze small
caches, because of the time it takes to evaluate them. This gave rise to various
approximation algorithms to compute cache hit probabilities and most notably
to time-to-live (TTL) approximations.

The first TTL approximation was introduced for the least recently used
(LRU) policy under the Independent reference model (IRM) in [8] and more
recently and independently in [6]. The main idea behind this approximation is
that a LRU cache behaves similarly to a TTL cache. In a TTL cache, when an
item enters the cache, it sets a deterministic timer with initial value T . When
this timer expires the item is removed from the cache. If an item is requested
before its timer expires, its timer is reset to T . When T is fixed, an item with
popularity pk is present in the cache at a random point in time with probability
1 − e−pkT and

∑N
k=1[1 − e−pkT] is the average number of items in the cache.

The TTL approximation [8, 6] consists in approximating a LRU cache of size
m by a TTL cache with characteristic time T (m), where T (m) is the unique
solution of the fixed point equation

m =

N∑

k=1

(1− e−pkT). (1)

The above TTL approximation for LRU can easily be generalized to renewal
requests as well as to other simple variations of LRU and RANDOM under both
IRM and renewal requests, as well as to certain network setups [3, 9, 17, 18]. All
of these TTL approximations have been shown to be (very) accurate by means
of numerical examples, but except for LRU in [8, 10, 14], no theoretical support
was provided thus far.

In this paper we introduce TTL approximations for two classes of cache
replacement algorithms that are variants of LRU. The first class, called LRU(m),
dates back to the 1980s [1], while the second, called h-LRU, was introduced in
[15, 17]. In fact, a TTL approximation for h-LRU was also introduced in [17],
but this approximation relies on an additional approximation of independence
between the different lists when h > 2. As we will show in the paper, this implies
that the approximation error does not reduce to zero as the cache becomes large.

In this paper we make the following contributions:

• We present a TTL approximation for LRU(m) and h-LRU that is appli-
cable when the request process of an item is a Markovian arrival process
(MAP). This includes any phase-type renewal process and the IRM model.
In the special case of the IRM model, we derive simple closed-form expres-
sions for the fixed point equations.

• Our TTL approximation for h-LRU can be computed in linear time in h
and appears to be asymptotically exact as the cache size and the number
of items grow, in contrast to the TTL approximation in [17] for h > 2.

2

Numerical results for the TTL approximation for LRU(m) also suggest
that it is asymptotically exact.

• We prove that, under the IRM model, the transient behavior of both h-
LRU and LRU(m) converges to the unique solution of a system of ODEs
as the cache size and the number of items go to infinity. Our TTL approx-
imations correspond to the unique fixed point of the associated systems
of ODEs. This provides additional support for the claim that our TTL
approximations are asymptotically exact and is the main technical contri-
bution of the paper.

• We validate the accuracy of the TTL approximation. We show that h-
LRU and LRU(m) perform alike in terms of the hit probability under
both synthetic and trace-based workloads, while less work is required for
LRU(m) when a hit/miss occurs.

• We indicate that both h-LRU and LRU(m) can exploit correlation in
consecutive inter-request times of an item, while the hit probability of
LRU is insensitive to this type of correlation.

• We show how partitioning the cache into parts – each being dedicated
to a particular content provider – can improve the hit probability. It is
shown in [7] that when using LRU and under an IRM request process,
there exists an optimal partition of the cache that does not decrease the
hit rate compared to a shared cache. Our numerical observations suggest
that this is also the case for MAP arrivals and h-LRU. The gain, however,
appears to be limited when the cache size is large and the optimal splitting
size is very sensitive to the parameters.

The paper is structured as follows. We recall the definitions of LRU(m) and
h-LRU in Section 2. We show how to build and solve the TTL approximation
for LRU(m) in Section 3.1, and for h-LRU in Section 3.2. We demonstrate the
accuracy of the TTL approximation for any finite time period in Section 4. We
compare LRU(m) and h-LRU in Section 5, by using synthetic data and real
traces. We study cache partitioning in Section 6. We conclude in Section 7.

2. Replacement Algorithms

We consider two families of cache replacement algorithms: h-LRU, intro-
duced in [15, 17], and LRU(m), introduced in [1, 11]. Both operate on a cache
that can store up to m items and both are variants of LRU, which replaces the
least-recently-used item in the cache. One way to regard LRU is to think of the
cache as an ordered list of m items, where the i-th position is occupied by the
i-th most-recently-used item. When a miss occurs, the item in the last position
of the list is removed and the requested item is inserted at the front of the list.
If a hit occurs on the item in position i, item i moves to the front of the list,
meaning the items in position 1 to i− 1 move back one position.

3

The h-LRU replacement algorithm. h-LRU manages a cache of sizem by making
use of h− 1 additional virtual lists of size m (called list 1 to list h− 1) in which
only meta-data is stored and one list of size m that corresponds to the actual
cache (called list h). Each list is ordered, and the item in the ith position of list
` is the ith most-recently-used item among the items in list `. When item k is
requested, two operations are performed:

• For each list ` in which item k appears (say in a position i), the item k
moves to the first position of list ` and the items in positions 1 to i − 1
move back one position.

• For each list ` in which item k does not appear but appears in list ` − 1,
item k is inserted in the first position of list `, all other items of list ` are
moved back one position and the item that was in position m of list ` is
discarded from list `.

List 1 of h-LRU behaves exactly as LRU, except that only the meta-data of the
items is stored. Also, an item can appear in any subset of the h lists at the
same time. This implies that a request can lead to as many as h list updates.
Note that while there is no need for all of the h lists to have the same size m,
we restrict ourselves to this setting (as in [17]).

The LRU(m) replacement algorithm. LRU(m) makes use of h lists of sizes
m1, . . . ,mh, where the first few lists may be virtual, i.e., contain meta-data
only. If the first v lists are virtual we have mv+1 + · · ·+mh = m (that is, only
the items in lists v + 1 to h are stored in the cache). With LRU(m) each item
appears in at most one of the h lists at any given time. Upon each request of
an item:

• If this item is not in any of the h lists, it moves to the first position of list
1 and all other items of list 1 move back one position. The item that was
in position m1 of list 1 is discarded.

• If this item is in position i of a list ` < h, it is removed from list ` and
inserted in the first position of list `+ 1. All other items of list `+ 1 move
back one position and the item in the last position of list `+ 1 is removed
from list `+1 and inserted in the first position of list `. All previous items
from position 1 to i− 1 of list ` move back one position.

• If this item is in position i of list h, then this item moves to the first
position of list h. All items that are in position 1 to i − 1 of list h move
back one position.

When using only one list, LRU(m) coincides with LRU, and therefore with
1-LRU.

4

out 1 h

1 1− e−pkT1 1− e−pkTh−1

1− e−pkTh

e−pkThe−pkT2e−pkT1

Figure 1: Discrete-time Markov models that represents how Item k moves between lists in the
TTL approximation of LRU(m).

3. TTL approximations

3.1. TTL approximation for LRU(m)

3.1.1. IRM setting

Under the IRM model the string of requested items is a set of i.i.d. random
variables, where item k is requested with probability pk. As far as the hit
probability is concerned this corresponds to assuming that item k is requested
according to a Poisson process with rate pk.

The TTL approximation for LRU(m) consists in assuming that, when an
item is not requested, the time it spends in list ` is deterministic and independent
of the item. We denote this characteristic time by T`. Let tn be the n-th time
that item k is either requested or moves from one list to another list (where we
state that an item is part of list 0 when not in the cache). Using the above
assumption, we define an h + 1 states discrete-time Markov chain (Xn)n≥0,
where Xn is equal to the list id of the list containing item k at time tn.

With probability e−pkT` the time between two requests for item k exceeds
T`. Therefore e−pkT` is the probability that an item part of list ` > 0 moves to
list `− 1, while with probability 1− e−pkT` a hit occurs and the item moves to
list `+ 1 if ` < h. In other words, the transition matrix of (Xn)n is

Pk =

0 1
e−pkT1 0 1− e−pkT1

. . .
. . .

. . .

e−pkTh−1 0 1− e−pkTh−1

e−pkTh 1− e−pkTh

.

The Markov chain Xn is a discrete-time birth-death process, represented in
Figure 1. Hence, its steady state vector (πk,0, πk,1, . . . , πk,h) obeys

πk,` = πk,0

∏`−1
s=1(1− e−pkTs)
∏`
s=1 e

−pkTs
= πk,0e

pkT`

`−1∏

s=1

(epkTs − 1), (2)

for ` = 1, . . . , h.
Further for ` ∈ {1, . . . , h}, the average time spent in list ` is the expectation

5

of the minimum between an exponential variable of parameter pk and T`. Hence:

E[tn+1 − tn|Xn = `] =

∫ ∞

t=0

P [tn+1 − tn ≥ t|Xn = `] dt

=

∫ T`

t=0

e−pktdt

=
1− e−pkT`

pk
,

and E[tn+1 − tn|Xn = 0] = 1/pk. Combined with (2), this implies that when
observing the system at a random point in time, item k is in list ` ≥ 1 with
probability

πk,`E[tn+1 − tn|Xn = `]
h∑

j=0

πk,jE[tn+1−tn|Xn = j]

=
(epkT1 − 1) . . . (epkT` − 1)

1+
h∑

j=1

(epkT1−1) . . . (epkTj−1)

.

The expected number of items part of list ` is the sum of the previous
expression over all items k. As for the TTL approximation, setting this sum
equal to m` leads to the following set of fixed point equations for T1 to Th:

m` =
n∑

k=1

(epkT1 − 1) . . . (epkT` − 1)

1 +
∑h
j=1(epkT1 − 1) . . . (epkTj − 1)

. (3)

An iterative algorithm used to determine a solution of this set of fixed point
equations is presented in Section 4.1.1. In the next section we generalize this
approximation to MAP arrivals.

Remark. It is interesting to note the similarity of the above set of fixed point
equations with the set of fixed point equations presented in [11] for the RAND(m)
replacement algorithm. The RAND(m) algorithm works in the same manner as
the LRU(m) algorithm, except that when a hit occurs on item i in a list ` < h,
item i is switched with a random item in list ` + 1; when a miss occurs the
missed item replaces a random item in list 1 and when a hit occurs in list h
nothing changes. In this case the set of fixed point equations for the mean field
model presented in [11] can be written as

m` =

n∑

k=1

(pkT1) . . . (pkT`)

1 +
∑h
j=1(pkT1) . . . (pkTj)

, (4)

which is identical to (3) if we replace the factors of the form pkTi by epkTi−1.
Equation (4) can also be derived in a manner similar to (3) if we replace the
assumption that an item spends a deterministic time T` in list ` by the assump-
tion that the time spend in list ` is exponential with mean T`. More specifically,

6

the rate matrix for the continuous-time Markov chain that keeps track of the
position of item k for the RAND(m) replacement algorithm is given by

Qk =

−pk pk
µ1 −µ1 − pk pk

. . .
. . .

. . .

µh−1 −µh−1 − pk pk
µh −µh

,

where µ` = 1/T`. The fixed point equations (4) now readily follow from the
steady state probabilities of this birth-death process.

3.1.2. MAP arrivals

We now assume that the times that item k is requested are captured by a
Markovian Arrival Process (MAP). MAPs have been developed with the aim
of fitting a compact Markov model to workloads with statistical correlations
and non-exponential distributions [5, 19]. A MAP is characterized by two d×d
matrices (D

(k)
0 , D

(k)
1), where the entry (j, j′) of D

(k)
1 is the transition rate from

state j to j′ that is accompanied by an arrival and the entry (j, j′) of D
(k)
0

is the transition rate from state j to j′ (with j 6= j′) without arrival. Let
φ(k) be the stationary distribution of this process, i.e., the unique stochastic

vector such that φ(k)(D
(k)
0 + D

(k)
1) = 0. Note that the request rate λk of item

k can be expressed as λk = φ(k)D
(k)
1 e, where e is a column vector of ones.

Setting the matrices D
(k)
0 = −pk and D

(k)
1 = pk corresponds to the IRM case

and letting D
(k)
1 = −D(k)

0 ev(k), with v(k) is a stochastic vector, implies that
item k is requested according to a phase-type renewal process characterized

by (v(k), D
(k)
0) (where v(k) holds the initial phase probabilities and D

(k)
0 is the

subgenerator matrix of the phase-type inter-arrival time distribution).
Extending the previous section, we define a discrete-time Markov chain

(Xn, Sn), where Xn is the list in which item k appears and Sn is the state
of the MAP process at time tn (recall that tn is the n-th time that item k is
requested or is moved from one list to another list). This Markov chain has
d(h+ 1) states and its transition probability matrix PMAP

k is given by

PMAP
k =

0 (−D(k)
0)−1D

(k)
1

eD
(k)
0 T1 0 A

(k)
1

. . .
. . .

. . .

eD
(k)
0 Th−1 0 A

(k)
h−1

eD
(k)
0 Th A

(k)
h

,

where

A
(k)
` =

∫ T`

t=0

eD
(k)
0 T`dtD

(k)
1 = (I − eD

(k)
0 T`)(−D(k)

0)−1D
(k)
1 .

7

Indeed (eD
(k)
0 T`)i,j is the probability that there are no arrivals in an interval of

length T`, the MAP state at the start of the interval equals i and the MAP

state at the interval is j. Similarly, (A
(k)
`)i,j is the probability of starting in the

MAP state i, having an arrival at time t < T`, while the MAP state equals j at
time t.

Due to the block structure of PMAP
k , its steady state vector (π̃k,0, π̃k,1, . . . , π̃k,h)

obeys [16]

π̃k,` = π̃k,0
∏̀

s=1

Rk,s, (5)

for ` = 1, . . . , h, where the matrices Rk,s can be computed recursively as

Rk,h = A
(k)
h−1(I −A(k)

h)−1, (6)

Rk,` = A
(k)
`−1

(
I −Rk,`+1e

D
(k)
0 T`+1

)−1

, (7)

for ` = 1, . . . , h− 1 and h > 1.
We also define the average time (Nk,`)j,j′ that item k spends in state j′ in

(tn, tn+1) given that Xn = (`, j), for j, j′ ∈ {1, . . . , d}. Let Nk,` be the matrix
with entry (j, j′) equal to (Nk,`)j,j′ , then

Nk,` =

∫ T`

t=0

eD
(k)
0 tdt = (I − eD

(k)
0 T`)(−D(k)

0)−1,

for ` ≥ 1 and Nk,0 = (−D(k)
0)−1. The fixed point equations for T1 to Th given

in (3) generalize to

m` =
n∑

k=1

π̃k,`Nk,`e∑h
j=0 π̃k,jNk,je

. (8)

The hit probability h` in list ` can subsequently be computed as

h` =
1∑n

s=1 λs

n∑

k=1

π̃k,`Nk,`D
(k)
1 e

∑h
j=0 π̃k,jNk,je

, (9)

for ` = 0, . . . , h, where λk/
∑n
s=1 λs is the probability that the requested item is

item k and π̃k,`Nk,`D
(k)
1 e/λk(

∑h
j=0 π̃k,jNk,je) is the probability that item k is

in list ` if we observe the Markov chain of item k only at a request times (which
differs from π̃k,`Nk,`e in case of MAP arrivals).

Remark. As in the IRM case we can also derive a set of fixed point equations
for the RAND(m) replacement algorithm with MAP arrivals by assuming an
exponential sojourn time in list ` with mean T`. The continuous time Markov

8

chain that keeps track of the list that contains item k in case of MAP arrivals
is given by

QMAP
k =

D
(k)
0 D

(k)
1

µ1I D
(k)
0 − µ1I D

(k)
1

. . .
. . .

. . .

µh−1I D
(k)
0 − µh−1I D

(k)
1

µhI D(k) − µhI

, (10)

and the set of fixed point equations to determine T1 to Th readily follow.

3.2. TTL approximation for h-LRU

3.2.1. IRM setting

As in [17], our approximation for h-LRU is obtained by assuming that an
item that is not requested spends a deterministic time T` in list `, independently
of the identity of this item. For now we assume that T1 ≤ T2 ≤ . . . ≤ Th. We will
show that the fixed point solutions for T1 to Th always obey these inequalities.

We start by defining a discrete-time Markov chain (Yn)n≥0 by observing the
system just prior to the time epochs that item k is requested. The state space
of the Markov chain is given by {0, . . . , h}. We say that Yn = 0 if item k is not
in any of the lists (just prior to the nth request). Otherwise, Yn = ` if item k
is in list `, but is not in any of the lists ` + 1 to h. In short, the state of the
Markov chain is the largest id of the lists that contain item k.

If Yn = `, then with probability 1− e−pkT` , item k is requested before time
T` in which case we have Yn+1 = `+ 1. Otherwise, due to our assumption that
T` ≥ T`−1 ≥ . . . ≥ T1 we have Yn+1 = 0 as in this case item k was discarded
from all lists. Therefore the transition probability matrix P̄h,k of the h+1 state
Markov chain (Yn)n≥0 is given by

P̄h,k =

e−pkT1 1−e−pkT1

e−pkT2 1−e−pkT2

...
. . .

e−pkTh 1−e−pkTh
e−pkTh 1−e−pkTh

. (11)

This Markov chain is represented in Figure 2.

Let π̄(h,k) = (π̄
(h,k)
0 , . . . , π̄

(h,k)
h) be the stationary vector of P̄h,k, then the

balance equations imply:

π̄
(h,k)
` = ξ`π̄

(h,k)
0

∏̀

s=1

(1− e−pkTs), (12)

for ` = 1, . . . , h, where ξ` = 1 for ` < h and ξh = epkTh . The probability π̄
(h,k)
h

that item k is in the cache just before a request (which by the PASTA property

9

out 1 2 h1− e−pkT1

1− epkT1 1− e−pkT2 1− e−pkT3 1− e−pkTh

1− e−pkTh
e−pkT3

e−pkTh

e−pkT2

Figure 2: Discrete-time Markov models that represents the highest lits in which Item k is in
the TTL approximation of h-LRU.

is also the steady-state probability for the item to be in the cache) can therefore
be expressed as

π̄
(h,k)
h =

∏h
s=1(1− e−pkTs)

∏h
s=1(1− e−pkTs) + e−pkTh

(
1 +

∑h−1
`=1

∏`
s=1(1− e−pkTs)

) . (13)

Due to the nature of h-LRU, T1 can be found from analyzing LRU, T2 from
2-LRU, etc. Thus, it suffices to define a fixed point equation for Th. Under the

IRM model this is simply m =
∑n
k=1 π̄

(h,k)
h , due to the PASTA property. These

fixed point equations can be generalized without much effort to renewal arrivals
as explained in Appendix A.

Proposition 1. The fixed point equation m =
∑n
k=1 π̄

(h,k)
h has a unique solution

Th which is such that Th ≥ Th−1.

Proof. By reordering the terms in the denominator the fixed point equation for
h ≥ 2 can be written as m = fh(Th), where

fh(x) =
n∑

k=1

(1− e−pkx)
∏h−1
s=1 ek,s∏h−1

s=1 ek,s + e−pkx
(

1 +
∑h−2
j=1

∏j
s=1 ek,s

) ,

with ek,s = (1− e−pkTs). The function fh(x) is clearly an increasing function in
x and therefore m = f(x) has a unique solution Th. Further,

fh(Th−1) =

n∑

k=1

(1− e−pkTh−1)
∏h−1
s=1 ek,s∏h−1

s=1 ek,s + e−pkTh−1

(
1 +

∑h−2
j=1

∏j
s=1 ek,s

)

<
n∑

k=1

∏h−1
s=1 ek,s∏h−1

s=1 ek,s + e−pkTh−1

(
1 +

∑h−2
j=1

∏j
s=1 ek,s

) =
n∑

k=1

π̄
(h−1,k)
h−1 = m,

meaning Th ≥ Th−1.

The above fixed point equations are derived from P̄h,k, which relied on the
assumption that T1 ≤ . . . ≤ Th. If we do not make any assumptions on the Ti
values we need to consider a 2h state Markov chain (as an item can be part of

10

any subset of the h lists) and derive a set of m fixed point equations from its
steady state. The next proposition shows that the solution of this set of fixed
equations is such that T1 ≤ . . . ≤ Th, which shows that we can compute the Ti
values from the h+ 1 state Markov chain without loss of generality.

Proposition 2. Any solution to the fixed point equations for the 2h state
Markov chain is such that T1 ≤ T2 ≤ . . . ≤ Th.

Proof. Using induction we prove that the fixed point solutions obey T1 ≤ . . . ≤
Th. We assume that T1 ≤ . . . ≤ Th−1 (which trivially holds for h = 2) and show
that the fixed point equation for Th does not have a solution for Th ∈ (0, Th−1).
When T1 ≤ . . . ≤ Th−1 and Th < Th−1 we still obtain a h+1 state discrete-time
Markov chain by observing the largest id of the list that contains item k just
prior to the time epochs that item k is requested. The transition probability
matrix is identical to P̄h,k except that the last two rows need to be modified.
The key thing to note is that when Th < Th−1 item k is part of list h − 1
whenever it is part of list h. Therefore, if item k enters (or remains in) list h
upon arrival it is still in list h when the next request for item k occurs with
probability 1 − e−pkTh , while with probability e−pkTh(1 − e−pk(Th−1−Th)) it is
removed from list h, but still in list h − 1. Finally with probability e−pkTh−1

the item is also removed from list h− 1 in which case it is no longer part of any
list as T1 ≤ . . . ≤ Th−1 (hence, the relative order of Th−1 and Ti for i < h− 1 is
irrelevant). As such the last two rows of the transition probability matrix are
both equal to

(e−pkTh−1 , 0, . . . , 0, e−pkTh − e−pkTh−1 , 1− e−pkTh).

Let (π̂
(h,k)
0 , . . . , π̂

(h,k)
h) be the invariant vector of this modified Markov chain,

then it is easy to see that

π̂
(h,k)
h−1 + π̂

(h,k)
h = π̄

(h−1,k)
h−1 ,

as lumping the last two states into a single state results in the matrix P̄h−1,k.

Hence the fixed point equation
∑n
k=1 π̂

(h,k)
h = m cannot have a solution as

n∑

k=1

π̂
(h,k)
h <

n∑

k=1

(π̂
(h,k)
h−1 + π̂

(h,k)
h) =

n∑

k=1

π̄
(h−1,k)
h−1 = m.

When h = 2 Equation (13) simplifies to (1−e−pkT1)(1−e−pkT2)/(1−e−pkT1 +
e−pkT2) which coincides with the hit probability of the so-called refined model
for 2-LRU presented in [17, Eqn (9)]. For h > 2 only an approximation that
relied on an additional approximation of independence between the h lists was
presented in [17, see Eqn (10)]. In Figure 3 we plotted the ratio between our
approximation and the one based on (10) of [17]. The results indicate that the
difference grows with increasing h and decreasing the Zipf parameter α. In other
words, the difference decreases as the popular items gain in popularity.

11

0 200 400 600 800 1000
0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

Cache Size m

R
e
fi
n
e
d
 p

h
it
 /
 p

h
it

h = 1

h = 2

h = 3

h = 5

h = 10

h = 20

h = 50

n = 1000, α = 0.8

(a) α = 0.8

0 200 400 600 800 1000
0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

1.025

Cache Size m

R
e
fi
n
e
d
 p

h
it
 /
 p

h
it

n = 1000, 5−LRU

α = 0.2

α = 0.4

α = 0.6

α = 0.8

α = 1.0

α = 1.2

α = 1.4

(b) h = 5

Figure 3: Ratio of the approximation of the hit rate for h-LRU under the IRM model based
on (13) and (10) of [17] as a function of the cache size with n = 1000 items with a Zipf-like
popularity distribution with parameter α.

As (13) does not rely on the additional independence approximation, we
expect that its approximation error is smaller and even tends to zero as m
tends to infinity. This is confirmed by simulation and we list a small set of
randomly chosen examples in Table 1 to illustrate.

3.2.2. MAP arrivals

For order d MAP arrivals, characterized by (D
(k)
0 , D

(k)
1) for item k, we obtain

a (h + 1)d state MC by additionally keeping track of the MAP state immedi-
ately after the requests (this construction is done by assuming that, as for IRM
arrivals, T1 ≤ . . . ≤ Th for the solutions to the fixed point equations. This can
be proven using a monotonicity argument similar to the one used in Proposi-
tion 2). The transition probability matrix has the same form as P̄h,k, we only

need to replace the probabilities of the form e−pkT` by eD
(k)
0 T`(−D(k)

0)−1D
(k)
1 and

1− e−pkT` by (I− eD(k)
0 T`)(−D(k)

0)−1D
(k)
1 . Note that (eD

(k)
0 T`(−D(k)

0)−1D
(k)
1)i,j

is the probability that we start in MAP state i, the next request for item k
occurs after time T` and the MAP state when item k is requested next is j. In
order to express the fixed point equations we need to determine the probability
that item k is in the cache at a random point in time as the PASTA property
does not hold in case of MAP arrivals. Using a standard argument we have that
the probability that item k is in the cache at a random point in time equals

(π̄
(h,k)
h−1 + π̄

(h,k)
h)

(∫ Th
0

eD
(k)
0 udu

)
e

1/λk
,

where λk is the request rate of item k and entry j of π̄
(h,k)
` is the probability

that item k is in list ` (but not in lists ` + 1, . . . , h) just prior to a request of
item k and the MAP state immediately after the request is j. The fixed point

12

h Simul. Eq. (10) of [17] (err) Eq. (13) (err)
n = 1000, m = 10

2 0.19826 0.20139 (+1.576%) 0.20080 (+1.277%)
3 0.21139 0.21399 (+1.230%) 0.21336 (+0.932%)
5 0.21863 0.21780 (−0.381%) 0.21994 (+0.598%)
10 0.22357 0.21912 (−1.991%) 0.22402 (+0.201%)

n = 1000, m = 100
2 0.47610 0.47808 (+0.415%) 0.47641 (+0.064%)
3 0.49535 0.49695 (+0.322%) 0.49579 (+0.089%)
5 0.50777 0.50521 (−0.504%) 0.50806 (+0.056%)
10 0.51506 0.50796 (−1.380%) 0.51552 (+0.088%)

n = 10000, m = 100
2 0.27322 0.27404 (+0.302%) 0.27352 (+0.109%)
3 0.28453 0.28533 (+0.281%) 0.28477 (+0.085%)
5 0.29048 0.28873 (−0.602%) 0.29065 (+0.061%)
10 0.29427 0.28991 (−1.483%) 0.29430 (+0.011%)

n = 10000, m = 1000
2 0.52589 0.52746 (+0.300%) 0.52596 (+0.013%)
3 0.54340 0.54453 (+0.207%) 0.54348 (+0.015%)
5 0.55452 0.55199 (−0.455%) 0.55457 (+0.009%)
10 0.56124 0.55447 (−1.206%) 0.56130 (+0.012%)

Table 1: Accuracy of the two approximations for the hit probability of h-LRU under the IRM
model with a Zipf-like popularity distribution with α = 0.8. Simulation is based on 10 runs
of 103n requests with a warm-up period of 33%.

equation for determining Th can therefore be expressed as

m =

n∑

k=1

(π̄
(h,k)
h−1 + π̄

(h,k)
h)(I − eD(k)

0 Th)(−D(k)
0)−1e

1/λk
, (14)

where λk is the request rate of item k. Due to the structure of the transition

probability matrix of the (h+ 1)d state Markov chain, the vectors π̄
(h,k)
` obey

π̄
(h,k)
` = π̄

(h,k)
0

(∏̀

s=1

(I − eD
(k)
0 Ts)(−D(k)

0)−1D
(k)
1

)
Ξ`,

for ` = 1, . . . , h, where Ξ` = I for ` < h and Ξh = (I−(I−eD(k)
0 Th)(−D(k)

0)−1D
(k)
1)−1.

Finally, let ν(k) be the stochastic invariant vector of (−D(k)
0)−1D

(k)
1 , that is, its

d entries contain the probabilities to be in state 1 to d immediately after an

arrival. Hence, π̄
(h,k)
0 can be computed by noting that

∑h
`=0 π̄

(h,k)
` = ν(k).

4. Asymptotic Exactness of the approximations

In this section, we provide evidence that the TTL approximations presented
in the previous section are asymptotically exact as cache size and the number of

13

items tends to infinity. We first provide numerical evidence. We then show that
the transient behavior of LRU(m) and h-LRU converges to a system of ODEs.
By using a change of variable, these ODE can be transformed into PDEs whose
fixed points are our TTL approximations.

4.1. Numerical validation

4.1.1. Numerical procedure to solve the fixed-point equations

The only costly operation when evaluating the performance of h-LRU and
LRU(m) is to solve the fixed point equations (14) and (8). As we explain be-
low, for h-LRU computing T1, . . . , Th corresponds to solving h one dimensional
problems whereas for LRU(m), computing T1 . . . Th corresponds to solving a
single h-dimensional one.

The computation time for h-LRU scales linearly with the number of lists:
by construction, the first h − 1 lists of a h-LRU cache behave like an (h−1)-
LRU cache. Once Th−1 has been computed, the right-hand side of the fixed
point equation (14) is increasing in Th and can therefore be easily solved. For
LRU(m) solving the fixed point equations is more costly. In our experiments the
fixed point of Equation (8) is computed by an iterative procedure that updates
the values T` in a round-robin fashion. This iterative procedure is detailed in
Algorithm 1. It works well for up to h ≈ 5 lists, but becomes very slow for a
large number of lists. At this stage we do not have a proof that this algorithm
converges, but it appears to do so in practice.

Input: D0, D1, m1, . . . ,mh, ε
Output: fixed point solution T̂1, . . . , T̂m

1 for ` = 1 to h do

2 T̂` = n;
3 end

4 T̂h+1 =∞, x = 1;
5 while x > ε do
6 for ` = 1 to h do

7 Find x ∈ (−T̂`, T̂`+1) such that (T1, . . . , Th) equal to

(T̂1, . . . , T̂` + x, T̂`+1 − x, . . . , T̂h) minimizes |m`− rhs of (8)|;
8 T̂` = T̂` + x; T̂`+1 = T̂`+1 − x;

9 end

10 end
Algorithm 1: Iterative algorithm to compute the fixed point of (8).

4.1.2. Synthetic data-set

We assume that the inter-request times of item k follow a hyperexponen-
tial distribution with rate zpk in state one and pk/z in state two, while the
popularity distribution is a Zipf-like distribution with parameter α, i.e., pk =

14

n q z h0 h1 h2

model (simu.) model (simu.) model (simu.)
100 1 2 0.26898 (0.27021) 0.19304 (0.19340) 0.53798 (0.53639)

10 0.03712 (0.03723) 0.05889 (0.06106) 0.90399 (0.90171)
1000 1 2 0.22580 (0.22599) 0.16262 (0.16256) 0.61158 (0.61145)

10 0.03112 (0.0310) 0.04963 (0.04969) 0.91925 (0.91923)
1000 0.1 2 0.21609 (0.21603) 0.14510 (0.14526) 0.63881 (0.63870)

10 0.03006 (0.02984) 0.02044 (0.02032) 0.94950 (0.9498)

Table 2: Accuracy of probability h` of finding a requested item in list ` for LRU(m). In this
example α = 0.8, h = 2 and m1 = m2 = n/5 (i.e., 20 or 200).

(1/kα)/
∑n
i=1 1/iα. Correlation between consecutive inter-request times is in-

troduced using the parameter q ∈ (0, 1]. More precisely, let

D
(k)
0 = pk

[
−z 0
0 −1/z

]
,

and

D
(k)
1 = pk

(
q

[
z

1/z

] [
z

1 + z

1

1 + z

]
− (1− q)D(k)

0

)
.

The squared coefficient of variation (SCV) of the inter-request times of item k
is given by 2(z2 − z + 1)/z − 1 and the lag-1 autocorrelation of inter-request
times of item k is

ρ1 = (1− q) (1− z)2

2(1− z)2 + z
.

In other words the lag-1 autocorrelation decreases linearly in q and setting q = 1
implies that the arrival process is a renewal process with hyperexponential inter-
request times. Setting z = 1 reduces the model to the IRM model.

4.1.3. Accuracy of the approximation for LRU(m) and h-LRU

To test the accuracy of our approximations, we implemented a stochastic
simulator of h-LRU and LRU(m). We use the hyperexponential distribution
described in the previous section.

In Table 2, we compare the accuracy of the model with time consuming
simulations (based on 5 runs of 2 · 106 requests) for LRU(m). We observe a
good agreement between the TTL approximation and simulation that tends to
improve with the size of the system (i.e., when n increases from 100 to 1000).

For h-LRU, the TTL approximation for the IRM model was already validated
by simulation in Table 1. Using the same numerical examples as for LRU(m) we
now demonstrate the accuracy of the TTL approximation under MAP arrivals
in Table 3. Simulation results are based on 5 runs containing 2 · 106 requests
each. As for LRU(m), the TTL approximation is in good agreement with the
simulation and tend to be more accurate as the number of items grows.

15

n q z h = 2 h = 3
model (simu.) model (simu.)

100 1 2 0.53619 (0.53449) 0.54292 (0.54150)
10 0.88249 (0.87936) 0.83718 (0.83449)

1000 1 2 0.61028 (0.61016) 0.61605 (0.61587)
10 0.90103 (0.90071) 0.86300 (0.86262)

1000 0.1 2 0.64744 (0.64807) 0.65841 (0.65899)
10 0.94935 (0.94924) 0.94646 (0.94632)

Table 3: Accuracy of hit probability for h-LRU with MAP arrivals. In this example α = 0.8
and m = n/5.

4.2. Asymptotic behavior and TTL approximation

In this subsection, we construct two systems of ODEs: Equation (19) for
h-LRU and Equation (26) for LRU(m). We prove that the solutions of these
ODEs are approximations of the transient behavior of LRU(m) and h-LRU
that become exact as the popularity of the most popular item decreases to
zero (regardless of the cache size). To ease the presentation, we present the
convergence result when the arrivals follow a discrete-time IRM model: time is
slotted and at each time-step item k has a probability pk of being requested.

Theorem 1. Consider the IRM model. Let H`(t) be the sum of the popularity
of the items of list ` and h`(t) be the corresponding ODE approximation (Equa-
tion (19) for h-LRU and Equation (26) for LRU(m)). Then: for any time T ,
there exists a constant C such that

E

[
sup

t≤T/√maxk pk

|H`(t)− h`(t)|
]
≤ C

√
max
k

pk,

where C does not depend on the probabilities p1 . . . pn, the cache size m or the
number of items n.

Remarks:

• The above result concerns the transient regime of the hit rate. In each
case, we will show that the ODE can be transformed into a PDE that has
the same fixed point as the TTL approximation developed in Section 3.
This does not fully guarantee the asymptotic exactness of the TTL ap-
proximation. To show that, one would in addition need to show that all
trajectories of the PDE converge to their fixed point. We believe that this
is the case but we have no proof of this result so far.

• Our proof of this result is to use an alternative representation of the state
space that allows us to use techniques from stochastic approximation. We
associate to each item k a variable τk(t) that we call the request time of
item k and that is the time of the most recent request of item k before
time t and an additional variable that tracks if an item appears in a list.

16

Our approximation is given by an ordinary differential equation (ODE) on
xk,`,b(t) that is an approximation of the probability that τk(t) is greater
than b while appearing in a list `. In each case, we show that the fixed
point of the PDE corresponds to the TTL approximation of LRU(m) and
h-LRU presented in Sections 3.1 and 3.2.

• This proof can be adapted to the case of MAP arrivals but at the price of
more complex notations. Indeed, for IRM, our system of ODEs is given
by the variables xk,`,b(t) (or xk,b(t) for LRU(m)) which are essentially an
approximation of the probability for item k to be in a list ` while having
been requested between time b and t. If the arrival process of an item
is modeled by a MAP with d states, then our approximation would need
to consider xk,`,b,j(t) which would approximate the probabilities for the
MAP of item k to be in state j, for item k to be in list ` and having being
requested between b and t.

4.2.1. Proof of Theorem 1: the case of LRU

Before presenting the complex cases of h-LRU and LRU(m), we first con-
struct the ODE approximation for LRU. The main purpose of this section is to
serve as a basis for the more complex cases of h-LRU and LRU(m). Note that
in the simpler case of LRU the proof of the validity of the TTL approximation
could rely on a more direct argument that uses a simple property of the steady
state distribution: the items in the cache are the m most recently requested.
This argument, used in [10, 14], makes an easy connection between the LRU
cache and the TTL approximation cache: the TTL of a LRU-cache is the mth
order statistics of n non-identically distributed, but independent random vari-
ables. For LRU(m) and h-LRU, there are strong dependencies between items
that makes the approach of [10, 14] impossible.

The cache containsm items. We denote1 by Θ(t) = sup{b :
∑n
k=1 1{τk(t)≥b} ≥

m} the request time of the mth most recently requested item at time t. When
using LRU, an item k having a request time τk(t) greater or equal to Θ(t) is
in the cache at time t. Let H(t) be the sum of the popularities of items in the
cache:

H(t) =
n∑

k=1

pk1{τk(t)≥Θ(t)}.

Our approximation of the probability for item k to have a request time after
b, is given by the following ODE (for b < t):

ẋk,b(t) = pk(1− xk,b(t)). (15)

with the initial conditions: xk,b(0) = 1{τk(t)≥b} and xk,b(b) = 0 for b > 0. The
initial condition xk,b(0) = 1{τk(t)≥b} corresponds to the state of the cache at

1Throughout the paper 1{A} is the indicator function of an event A. It is equal to 1 if A
is true and 0 otherwise.

17

time 0. The initial condition xk,b(b) = 0 for b > 0 indicate that at time b, no
items have a request time higher than b.

By analogy with the stochastic system, let θ(t) = sup{b :
∑n
k=1 xk,b(t) ≥ m},

be the time at which the sum of xk,b(t) equals to m. The approximation of the
hit ratio for LRU is then given by

h(t) =
n∑

k=1

pkxk,θ(t)(t).

The key difficulty when comparing H(t) and h(t) is that the quantities
1{τk(t)≥Θ(t)} and xk,θ(t)(t) are not easily comparable. The key ingredient of
our proof is then to use the same change of variables as in the proof of Theo-
rem 6 of [11], which is to consider the variables Pδ,b(t) and ρδ,b(t):

Pδ,b(t) = a1−δ
n∑

k=1

(pk)δ1{τk(t)≥b} and ρδ,b(t) = a1−δ
n∑

k=1

(pk)δxk,b(t)

where a := maxnk=1 pk. These variables are defined for δ ∈ {0, 1, . . . } and b ∈ Z.
They live in a set of infinite dimension P:

P =
{

(Pδ,b)δ,b : ∃(xk,b) non-increasing in b, bounded by 1

such that for all δ, b: Pδ,b = a1−δ
n∑

k=1

(pk)δxk,b

}
.

We equip P with the L∞ norm and denote ‖ρ‖∞ = supδ,b |ρδ,b| the norm of a
vector ρ ∈ P.

The proof of the theorem relies on the following result of stochastic approx-
imation. For completeness, we provide a proof of Lemma 1 in Appendix B.

Lemma 1. Let f : P → span(P) be a Lipchitz continuous function with constant
aL such that supx∈P ‖f(x)‖∞ ≤ a ≤ 1 and f(x)− x ∈ P. Let X be a P-valued
stochastic process adapted to a filtration F such that E [X(t+ 1)−X(t) | Ft] =

f(X(t)) and E
[
‖X(t+ 1)−X(t)‖2∞

]
≤ a2. Then, the ODE ẋ = f(x) has a

unique solution xX(0) that starts in X(0) and for any T > 0,

E

[
sup
t≤T/a

∥∥X(t)− xX(0)(t)
∥∥2

∞

]
≤ T (2L+ 1) exp(2TL)a.

To apply this result, we use the fact that:

• The functions ρδ,b are solutions of the system of ODEs d/dtρδ,b(t) =
fδ,b(ρ), where:

fδ,b(ρ) = a1−δ(
∑

k

(pk)δ+1)− aρδ+1,a(t).

where f : P → span(P) is a Lipschitz-continuous function.

18

• f is the drift of the stochastic system: indeed, Pδ,b(t) changes if the
requested item has a request time prior to b. If this item is k, then
Pδ,b(t+ 1) = Pδ,b(t) + a1−δ(pk)δ. This shows that

E [Pδ,b(t+ 1)− Pδ,b(t) | Ft] =
n∑

k=1

pka
1−δ(pk)δ1{τk(t)<b} = fδ,b(P (t)),

where (Ft) denotes the natural filtration associated to the stochastic pro-
cess P .

• The variance of P (t) is bounded:

E
[
‖P (t+1)−P (t)‖2∞ |P

]
= E

[
sup
δ,b
|Pδ,b(t+1)−Pδ,b(t)|2 |Ft

]

= E
[
|P0,t(t+1)−P0,t(t)|2 |Ft

]

= a2.

By using Lemma 1, this implies that for each T > 0, there exists a constant

C such that E
[
supt≤T/a ‖P (t)− ρ(t)‖2∞

]
≤ Ca2. Lemma 2, whose is given in

Appendix B, concludes the proof for LRU.

Lemma 2. Let gm : P → [0, 1] be the function defined by gm(ρ) = ρ1,θ, where
θ = sup{b : ρ0,b ≥ m}. The function gm(ρ) is Lipschitz-continuous on P with
the constant 2.

Note that Equation (15) can be transformed into a PDE by considering the
change of variable yk,s(t) = xk,t−s(t). The quantity yk,s(t) is an approximation
of the probability for an item k to have been requested between t−s and t. The
set of ordinary differential Equations (15) can then be naturally transformed in
the following PDE:

∂

∂t
yk,s(t) = pk(1− yk,s(t))−

∂

∂s
yk,s(t). (16)

The fixed point y of the PDE can be obtained by solving the equation ∂
∂ty = 0.

This fixed point satisfies yk,s = 1 − e−pks. For this fixed point, the quantity
T = t−θ satisfies m =

∑n
k=1(1−e−pkT). This equation is the same as the TTL

approximation, given by Equation (1).

4.2.2. h-LRU

The construction for LRU can be extended to the case of h-LRU by adding
to each item h variables Lk,`(t) ∈ {true, false}. For item k and a list `, Lk,`(t)
equals true if item k was present in list ` just after the last request2 of item k

2Note that, after a request, an item is always inserted in list 1. This implies Lk,1(t) = true.

19

and false otherwise. Similarly to the case of LRU, we define the quantity Θ`(t)
to be the request time of the least recently requested item that belongs to list
` at time t, that is,

Θ`(t) = sup{b :
n∑

k=1

1{τk(t)≥b∧Lk,`(t)} ≥ m}.

We then define xk,`,b(t) that is an approximation of the probability for item
k to have τk(t) ≥ b and L`(t) = true.

As L1(t) is always equal to true, the ODE approximation for xk,1,b(t) is
the same as (15). Moreover, this implies that Θ1(t) ≥ Θ`(t) for ` ≥ 2. For
the list ` = 2, the approximation is obtained by considering the evolution of
L2(t). After a request, L2(t+ 1) is true if τk(t) ≥ Θ1(t) or if (τk(t) ≥ Θ2(t) and
L2(t) = true). Both these events occur if (τk(t) ≥ Θ1(t) and L2(t) = true) as
Θ1(t) ≥ Θ2(t). This suggests that, if the item k is requested, then, in average
Lk,2(t+ 1) is approximately xk,1,θ1(t) + xk,2,θ2(t) − xk,2,θ1(t), which leads to the
following ODE approximation for xk,2,b:

ẋk,2,b = pk(xk,2,θ2(t) + xk,1,θ1(t) − xk,2,θ1(t) − xk,2,b), (17)

where θ`(t) = sup{b :
∑n
k=1 xk,`,b(t) ≥ m} for ` ∈ {1, 2}.

The formulation for the third list and above is more complex. In Section 3.2,
we showed that the computation of the fixed point is simple because the quan-
tities T` of the fixed point satisfy T1 ≤ T2 · · · ≤ Th. However, for the stochastic
system, we do not necessarily have3 Θ`(t) ≥ Θ`+1(t) when ` ≥ 2, which implies
that the ODE approximation for h-LRU has 2h−1 terms.

Applying the reasoning of Lk,2 to compute Lk,` (` ≥ 3) involves computing
the probability of (τk(t) ≥ Θ`−1(t) and Lk,`−1(t) = true) or (τk(t) ≥ Θ`(t) and
Lk,`(t) = true). When Θ`(t) ≤ Θ`−1(t), both these events occur if (τk(t) ≥
Θ`−1(t) and Lk,`(t) = Lk,`−1(t) = true). This suggests that the ODE for
xk,`,b(t) has to involve a term xk,{`−1,`},θ`−1(t)(t), that is an approximation for
the item k to have a request time after θ`−1(t) and such that Lk,`−1(t) =
Lk,`(t) = true. Note, for ` = 2 we have xk,{`−1,`},b(t) = xk,`,b(t) as Lk,1(t)
is always true, but this does not hold for ` > 2. This leads to:

ẋk,`,b = pk(xk,`,θ`(t) + xk,`−1,θ`−1(t) − xk,{`−1,`},max{θ`−1(t),θ`(t)} − xk,`,b), (18)

A similar reasoning can be applied to obtain an ODE for xk,{`−1,`},b(t) as a
function of xk,{`−1,`},b(t), xk,{`−2,`−1,`},b(t) and xk,{`−2,`},b(t). For example, for
` = 3 the changes of xk,{2,3},b(t) are caused by items that were only in lists 2 or

3When h = 3 lists, the variables Θ`(t) are not always ordered. For example, consider
the case of four items {1, 2, 3, 4} and m1 = m2 = m3 = 3. If initially the three caches
contain the three items 1, 2, 3. Then, after a stream of requests: 4, 4, 3, 2, 1, the cache 1 and
3 will contain the items {1, 2, 3} while the cache 2 will contain {1, 2, 4}. This implies that
t− 3 = Θ2(t) < Θ3(t) = Θ1(t) = t− 2.

20

in list 3 and that are now in both lists {2, 3}, or by items that leave list {2, 3}.
Hence, for {2, 3}, Equation (17) becomes

ẋk,{2,3},b(t) = xk,2,θ2(t)+xk,3,θ1(t)−xk,{2,3},θ1(t)−xk,{2,3},b
as Lk,1(t) is always true.

The hit probability of list ` used in Theorem 1 is then

h`(t) =

n∑

k=1

xk,`,θ`(t)(t), (19)

where the variables xk,`,b satisfy the above ODE.
The proof that the ODE (18) describes well the transient behavior of h-LRU

is almost identical to the corresponding proof for LRU. For example, if we focus
on the case of 2-LRU4, the main idea would be to define the quantities ρδ,`,b(t)
and Pδ,`,b(t) (for ` ∈ {1, 2}):

ρδ,`,b(t) = a1−δ
n∑

k=1

(pk)δxk,`,b(t); and Pδ,`,b(t) = a1−δ
n∑

k=1

(pk)δ1{τk(t)≥b∧Lk,`(t)}.

Equation (17) implies that

ρ̇δ,2,b = a(ρδ+1,2,θ2(t) + ρδ+1,1,θ1(t) − ρδ+1,2,θ1(t) − ρδ+1,2,b). (20)

Lemma 2 implies that the quantity gm,`(ρ) = ρ1,`,θ, where θ is such that
ρ0,`,θ = m, is a Lipschitz function of ρ with constant 2. It follows that the
right-side of the ODE Equation (20) is Lipschitz-continuous with constant 4a.
As for LRU, the right side of Equation (20) is the average variation of Pδ,2,b and
that the second moment of the variation is bounded by a. Lemma 1 concludes
the proof for 2-LRU.

As for LRU, we can transform (17) into a PDE by using the change of
variables yk,`,s(t) = xk,`,t−s(t) and T`(t) = t− θ`(t). For example, for ` = 2, the
fixed point y of this PDE satisfies

0 = pk(yk,2,T2 + yk,1,T1 − yk,2,T1 − yk,2,s)−
∂

∂s
yk,2,s.

The solution of this ODE in s is given by

yk,2,s = (yk,2,T2 − yk,2,T1 + yk,1,T1)(1− e−pks) (21)

=
yk,1,T1

1 + e−pkT2 − epkT1
(1− e−pks), (22)

where we use (21) for s = T1 and s = T2 to obtain (22).
In Section 4.2.1, we have shown that yk,1,T1

= 1 − e−pkT1 where T1 is such
that

∑n
k=1 yk,1,T1

= m. One can verify that replacing yk,1,T1
by 1 − e−pkT1 in

Equation (22) with s = T2 leads to Equation (13).

4For h ≥ 3, the proof is similar but one would need to also consider quantities like
ρδ,{2,3},b(t) = a1−δ

∑n
k=1(pk)δxk,{2,3},b(t).

21

4.2.3. LRU(m)

The construction of the approximation and the proof for the case of LRU(m)
is more involved because of discontinuities in the dynamics. We replace the
request time by a quantity that we call a virtual request time that is such that
the mh items that have the largest virtual request times are in list h. The next
mh−1 are in list h − 1, etc. At time 0, we initialize the virtual request times
to be minus the position of the item in the cache. The virtual request time of
an item changes when this item is requested. If the item was in list h or h− 1
prior to the request, its virtual request time becomes t+ 1. If the item was in a
list ` ∈ {0 . . . h− 2}, its virtual request time becomes the largest virtual request
time of the items in list `+ 1.

The approximation of the distribution of virtual request times is given by
an ODE on the quantities xk,b(t) that are meant to be an approximation of the
probability that the item k has a virtual request time after b:

ẋk,b(t) = pk(xk,θζb(t)−1(t)(t)− xk,b(t)), (23)

where θ`(t) and ζb(t) are defined by:

θ`(t) = sup{b :

n∑

k=1

xk,b(t) ≥ mh + · · ·+m`} (24)

ζb(t) = max{` : θ`(t) ≤ b} (25)

In the above equation, θ`(t) is an approximation of the highest virtual request
time of an object that is in list `− 1 (at time t) and ζb(t) is the list in which an
item with a request time b is (at time t).

virt. request time
θ1 θ2 θ3 θ4 = h

x x x x x x x x x x x x

items in list 2 items in list h = 4

b

request

Figure 4: The evolution of virtual request times. Each “x” corresponds to the virtual request
time of an object. We consider a LRU(m) cache with 4 lists. The objects that have a virtual
request time betwee, θ2 and θ3 are in list 2. If a request item has a virtual request time
between θ1 and b, then its virtual request time will be higher than b at the next time step.

The intuition behind Equation (23) is as follows. The quantity xk,b(t) is
meant to be an approximation of the probability that item k has a virtual request
time after b. Hence, this probability evolves because there is a probability
that object k had a virtual request time prior to b and that now has a virtual
request time b or after. This occurs if item k had a virtual request time between
θζb(t)−1(t) and b and was requested (in which case its new virtual request time
is θζb(t)+1(t) ≥ b). Otherwise, if the item k had a virtual request time prior to

22

θζb(t)−1(t), then upon request it jumps to a list ` < ζb(t)− 1 and therefore will
keep a virtual request time prior to b. Figure 4 illustrate how virtual request
times evolve.

The hit ratio for LRU(m) used in Theorem 1 is given by

h`(t) =

n∑

k=1

pk(xk,θ`(t)(t)− xk,θ`+1(t)(t)) (26)

The main difference between the proof for LRU(m) compared to the one of
h-LRU is that the right-side of the differential equation (23) is not Lipschitz-
continuous in ρ because the list in which an item that has a virtual request time
b belongs to depends non-continuously on ρ (the list ζb is a discrete quantity).
Our method to overcome this difficulty is prove that the drift is partially one-
sided Lipschitz-continuous functions (in a sense that will me made precise in
Lemma 3).

As before, let Pδ,b(t) = a1−δ∑n
k=1(pk)δ1{τk(t)≥b}, where a = maxnk=1 pk. We

also define f : P → span(P) by fδ,b(ρ) = a(ρδ+1,θζb−1 − ρδ+1,b), where θ` and
ζb are two functions of ρ that are defined by

ρ0,θ` = m` + · · ·+mh and θζb ≤ b < θζb+1.

As for the the cases of LRU and h-LRU, one can verify that fδ,b is the aver-
age variation of Pδ,b(t) during one time step and that the second moment of the
average variation is bounded by a2. Moreover, if x is a solution of the differ-
ential equation (23), then ρδ,b(t) =

∑n
k=1 xk,b(t) is a solution of the differential

equation ρ̇ = f(ρ).
The next lemma – whose proof is given in Appendix B.1 – states some key

properties of the function f . In particular, (i) quantifies what we mean by
partially one-sided Lipschitz.

Lemma 3. For any ρ, ρ′ ∈ P and δ ≥ 1, we have:

(i) (ρ0,b − ρ′0,b)(f0,b(ρ)− f0,b(ρ
′)) ≤ 2a ‖ρ− ρ′‖2∞;

(ii) ‖f(ρ)‖∞ ≤ a;

(iii) |fδ,b(ρ)− fδ,b(ρ′)− (f0,b(ρ)− f0,b(ρ
′))| ≤ 5a ‖ρ− ρ′‖∞.

Let V (t) ∈ P be the vector defined by Vδ,b(t) = Pδ,b(t + 1) − Pδ,b(t) −
fδ,b(P (t)). By using the definition Pδ,b(b) = ρδ,b(b), the fact that ρδ,b(t) =

ρδ,b(b) +
∫ t
b
fδ,b(ρ(s))ds, and Lemma 3(iii), we have

|Pδ,b(t)−ρδ,b(t)| =
∣∣∣∣∣

∫ t

s=b

(fδ,b(P (bsc))− fδ,b(ρ(s)))ds+

t−1∑

s=b

Vδ,b(s)

∣∣∣∣∣ (27)

≤
∣∣∣∣
∫ t

s=b

f0,b(P (bsc))− f0,b(ρ(s))ds

∣∣∣∣+ 5a

∫ t

s=b

‖P (bsc)− ρ(s)‖∞ ds+
t−1∑

s=b

‖V (s)‖∞

≤ |P0,b(t)− ρ0,b(s)|+ 5a

∫ t

s=b

‖P (bsc)− ρ(s)‖∞ ds+ 2
t−1∑

s=b

‖V (s)‖∞ , (28)

23

where the last line comes from the reverse triangle inequality applied to Equa-
tion (27) with δ = 0. As at most one item change list at each time-slot, we have
‖V (s)‖∞ ≤ a. Moreover, by using Gronwall’s Lemma, Equation (28) implies
that

‖P (t)−ρ(t)‖∞ ≤ |P0,b(t)− ρ0,b(s)|+ 5a

∫ t

s=b

‖P (bsc)− ρ(s)‖∞ ds+ 2at

≤ (|P0,b(t)− ρ0,b(s)|+ 2at)e5at. (29)

In order to bound the previous equation, we will use Lemma 3(i) to bound
|P0,b(t)− ρ0,b(t)|. As ρ is solution of the differential equation ρ̇ = f(ρ), we have

ρ(t+ 1) = ρ(t) +
∫ 1

0
f(ρ(t+ s))ds. This implies

(P0,b(t+1)−ρ0,b(t+1))2 = (P0,b(t)− ρ0,b(t)+V0,b(t)+f0,b(P (t))+

∫ 1

0

f0,b(ρ(t+s))ds)2

=(P0,b(t)− ρ0,b(t))
2 +

[
V0,b(t) + f0,b(P (t)) +

∫ 1

0

f0,b(ρ(t+ s))ds
]2

+2
(
P0,b(t)− ρ0,b(t)

)
V0,b(t)

+2
(
P0,b(t)−ρ0,b(t)

)(
f0,b(P (t))+

∫ 1

0

f0,b(ρ(t+s))ds
)

(30)

As at most one object changes list at each time step, we have E
[
‖V (t)‖2∞ | Ft

]
≤

maxk(pk)2 = a2. This, pus the fact that f0,b(·) ≤ a, implies that the expectation
of the second term is smaller than 9a2. Moreover, f(P) is the average variation
of P , and therefore E [V (t) | Ft] = 0 which implies that the expectation of the
third term is equal to 0. Moreover, The last term equals

2

∫ 1

0

(
P0,b(t)− ρ0,b(t)

)(
f0,b(P (t)) + f0,b(ρ(t+ s))

)
ds

= 2

∫ 1

0

(
P0,b(t)− ρ0,b(t+ s)

)(
f0,b(P (t)) + f0,b(ρ(t+ s))

)
ds

+ 2

∫ 1

0

(
ρ0,b(t+ s)− ρ0,b(t)

)(
f0,b(P (t)) + f0,b(ρ(t+ s))

)
ds (31)

≤ 4a

∫ 1

0

‖P (t)− ρ(t+ s)‖2∞ ds+ 2a2, (32)

≤4a ‖P (t)− ρ(t)‖2∞ + 4a2, (33)

where we use Lemma 3(i) to bound the first term of the Equation (31) and
Lemma 3(ii) to bound its second term. We again used Lemma 3(ii) to bound
(32).

Combining Equation (30) and (33) shows that

E
[
|P0,b(t)− ρ0,b(t)|2

]
≤ 2a

t∑

s=b

E
[
‖P (s)− ρ(s)‖2∞

]
+ 13a2t (34)

24

Equation (29) implies that

‖P (t)−ρ(t)‖2∞ ≤ (2 |P0,b(t)− ρ0,b(s)|2 + 4a2t2)e10at.

We can then plug the above inequality into Equation (34) to show that

E
[
|P0,b(t)− ρ0,b(t)|2

]
≤ 2a

t∑

s=0

(
2E
[
|P0,b(s)− ρ0,b(s)|2

]
+ 4a2t2

)
e10at + 13a2t

= 4a
t∑

s=0

E
[
|P0,b(s)− ρ0,b(s)|2

]
e10at + a(8a2t2e10at + 13at)

By using the discrete Gronwall’s inequality, for all T , there exists a constant

C = (8T 2e10T + 13T)e2e10T /3 such that this is less than Ca when t is less than
T/a. Lemma 2 concludes the result.

5. Comparison of LRU, LRU(m) and h-LRU

In this section we start by presenting an insensitivity result for LRU, next we
compare the performance of LRU, LRU(m) and h-LRU in terms of the achieved
hit probability when subject to IRM, renewal, MAP requests and trace-based
simulation. A good replacement algorithm should keep popular items in the
cache, but needs to be sufficiently responsive to changes in the popularity. As
LRU(m) and h-LRU are clearly better suited to keep popular items in the cache
than LRU, they perform better under static workloads (IRM). We demonstrate
that they often also outperform LRU when the workload is dynamic.

5.1. LRU insensitivity

The theorem presented in this subsection complements the results of Je-
lenkovic and Radovanovic who showed in [13, 12] that for dependent request
processes, the hit probability is asymptotically, for large cache sizes, the same
as in the corresponding LRU system with i.i.d. requests. Our insensitivity re-
sult is valid not just asymptotically, but requires the request processes of the
various items to be independent.

Theorem 2. Assume that the items’ request processes are stationary, indepen-
dent of each other and that the expected number of requests per unit time is
positive and finite. Then, the hit probability of LRU only depends on the inter-
arrival time distribution. In particular, it does not depend on the correlation
between inter-arrival times.

Proof of Theorem 2. For each k, the requests of k are generated according to
a stationary point process Rk. For t < s, Rk[t, s) is the number of requests
of item k during a time interval [t, s]. Let ϑk(t) be the time elapsed since the
last request of item k. Without loss of generality, in the rest of the proof, we
assume that the request process is simple (i.e. that with probability 1, the time

25

between two consecutive requests of an item is never 0). If it is not the case,
one can suppress any of the two request and obtain the same behavior of the
LRU cache. Hence, the process (Rk, ϑk) is a stationary marked point process
that satisfies Hypothesis 1.1.1 of [2].

As R is stationary, the probability that the item k is requested during a time
interval [t, t+x] does not depend on t. Let F̃k(x) denote this quantity. We have:

F̃k(x) = P [Rk[t, t+ x] ≥ 1] = P [Rk[0, x] ≥ 1] .

We also define Fk(x) that is the probability that the time between two requests
from item k is smaller than x. As (Rk, ϑk) is a stationary marked point process,
this quantity is well defined and can be expressed as

Fk(x) = P [Rk[t, t+ x] ≥ 1 | a request occurred a time t]

= P [Rk[0, x] ≥ 1 | a request occurred a time 0]

Note that the definition of Fk(x) only requires the process Rk to be stationary.
When the process is a renewal process, Fk(x) is the cumulative distribution
function of the inter-request time.

By the inversion formula [2, Section 1.2.4], F̃k is a function of Fk:

F̃k(x) = λk

∫ x

0

(1− Fk(t))dt, (35)

where λk = 1/
∫∞

0
(1−Fk(t))dt is the request rate of item k. This quantity only

depends on Fk and not on the correlation between two arrivals.
To conclude the proof, we remark that the probability that an item k is in

the cache when it is requested can be expressed in terms of the functions Fk
and F̃` for ` 6= k. Indeed, Let Sn,−k be the set of permutation of {1 . . . k −
1}⋃{k+ 1 . . . n} (i.e. all integers between 1 and n except k). An item is in the
cache at time t if it is among the m items that were last requested. Hence, the
probability for item k to be in the cache at time t is

∑

σ∈Sn,−k
P
[
ϑk(t) ≤ ϑσ(m)(t), ϑσ(1)(t) ≤ · · · ≤ ϑσ(n−1)(t)

]
.

This event conditioned on the fact that item k is requested at time t is the
probability that item k is in the cache when requested. Hence, the hit rate is:

∑

k

λk
∑

σ∈Sn,−k
P

(
ϑk(t) ≤ ϑσ(m)(t),

ϑσ(1)(t) ≤ · · · ≤ ϑσ(n−1)(t)

∣∣∣∣
item k is

requested at t

)
.

This quantity can clearly be expressed as a function of the Fk and F̃k which by
Equation (35) can be expressed solely as a function of the Fk.

26

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache Size

H
it
 P

ro
b

a
b

ili
ty

Zipf α=0.8, n = 1000,

no correlation in IRTs

IRM LRU

IRM 2−LRU

IRM LRM(m,m)

Hypo10 LRU

Hypo10 2−LRU

Hypo10 LRU(m,m)

(a) IRM model or hyperexponential
inter-request times (with z = 10).

0 50 100 150 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Cache Size

H
it
 P

ro
b

a
b

ili
ty

Zipf α=0.8, n = 1000,

correlation in IRTs

Hypo2 LRU

Hypo2 2−LRU

Hypo2 LRM(m,m)

Hypo10 LRU

Hypo10 2−LRU

Hypo10 LRU(m,m)

(b) MAP arrivals (with z = 2, 10 and q =
1/20).

Figure 5: Hit probability as a function of the cache size for LRU, LRU(m,m) and 2-LRU

5.2. Synthetic (static) workloads

For the synthetic workloads we restrict ourselves to LRU, 2-LRU and LRU(m,m).
The latter two algorithms both use a cache of size m and additionally keep track
of meta-data only for the m items in list 1.

Figure 5a depicts the hit probability as a function of the cache size when
n = 1000, items follow a Zipf-like popularity distribution with parameter α =
0.8 under IRM and renewal requests (with z = 10, see Section 4.1.2). Figure 5b
shows the impact of having correlation between consecutive inter-request times
(that is, q = 1/20 instead of q = 1 for z = 2, 10).

One of the main observations is that LRU(m,m) performs very similar to 2-
LRU under IRM, renewal and MAP requests. In fact, 2-LRU performs slightly
better, unless the workload is very dynamic (z = 10 and q = 1 case). Another
conclusion that can be drawn from comparing Figures 5a and 5b is that the hit
rate of both 2-LRU and LRU(m,m) significantly improves in the presence of
correlation between consecutive inter-request times (that is, when q < 1), while
LRU does not. Recall that LRU(m) needs to update at most one list per hit,
as opposed to h-LRU. Thus, whenever both algorithms perform alike, LRU(m)
may be more attractive to use.

Figure 6 shows that the hit rate of 2-LRU and LRU(m,m) both increase with
increasing lag-1 autocorrelation and confirms that the hit probability of LRU is
completely insensitive to any correlation between consecutive inter-request times
(as proven by Theorem 2). Figure 6 further indicates that the hit probability
also increases with ρ1 when splitting the cache in two lists of equal size (although
the gain is less pronounced).

5.3. Trace-based simulation

To perform the trace-based simulations we rely on the same 4 IR cache
traces as in [4, Section 4]. In this section, we only report the result for the trace

27

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.8

0.82

0.84

0.86

0.88

0.9

0.92

h
it
 p

ro
b
a
b
ili

ty

Lag−1 autocorrelation ρ
1

Zipf α=0.8, n = 1000, m = 100

LRU

2−LRU

LRU(m,m)

LRU(m/2,m/2)

Figure 6: Hit probability as a function of the lag-1 autocorrelation ρ1 for LRU, LRU(m,m),
LRU(m/2,m/2) and 2-LRU when subject to MAP arrivals (with z = 10).

64 128 256 512 1024 2048 4096 8192 16384 32768
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Cache Size m

h
it
 p

ro
b

a
b

ili
ty

 /
 L

R
U

 h
it
 p

ro
b

a
b

ili
ty

LRU

LRU(m/2,m/2)

LRU(m/3,m/3,m/3)

LRU(m,m)

LRU(m,m/2,m/2)

(a) LRU(m) compared to LRU.

64 128 256 512 1024 2048 4096 8192 16384 32768
0.97

0.98

0.99

1

1.01

1.02

1.03

Cache Size m

h
it
 p

ro
b

a
b

ili
ty

 /
 L

R
U

(m
,m

)
h

it
 p

ro
b

a
b

ili
ty

LRU(m,m)

LRU(m,m,m,m,m)

2−LRU

5−LRU

(b) LRU(m,m,m,m,m) and h-LRU com-
pared to LRU(m,m).

Figure 7: Hit probability as a function of the cache size using trace-based simulation.

collected on Monday 18th Feb 2013. We also simulated the other traces and
obtained very similar results.

The hit probability of LRU(m) with a split cache and/or virtual lists nor-
malized by the LRU hit probability is depicted in Figure 7a as a function of
the cache size m. It indicates that LRU(m) is more effective than LRU, espe-
cially when the cache is small. For small caches using a virtual list is better
than splitting the cache and using both a virtual list and split cache offers only
a slight additional gain. While not depicted here, we should note that using
more virtual lists or splitting the cache in more parts sometimes results in a hit
probability below the LRU hit probability for larger caches.

Figure 7b compares h-LRU with LRU(m) using virtual lists, where the hit
probability is now normalized by the hit probability of LRU(m,m) to bet-
ter highlight the differences. We observe that 2-LRU differs by less than 1%

28

from LRU(m,m), while 5-LRU and LRU(m,m,m,m,m) differ by less than 2%.
Given that h-LRU may require an update of up to h lists, while LRU(m) requires
only one update in case of a hit, LRU(m) seems preferential in this particular
case.

6. Cache partitioning

In this section we consider the cache partitioning scenario introduced in [7].
Consider a cache of size m that is accessed by users for content generated by 2
content providers (CPs). CP k serves a set of nk items (i.e., files) of equal size
that are distinct from the items served by the other CP. Our main objective
is to compare the following two setups. In the first setup the cache of size m
is shared by both CPs and a single replacement algorithm manages the entire
cache. In the second setup the cache provider splits the cache into 2 parts of
size m1 and m2, such that m1,m2 > 0 and m1 + m2 = m. The size mk part
of the cache is dedicated to CP k and therefore only stores the items of CP
k. Each part is managed by its own (possibly different) replacement algorithm.
The work presented in [7] focused on the LRU replacement algorithm combined
with IRM requests. We start by revisiting this case and subsequently consider
h-LRU as well as non-IRM request streams.

6.1. IRM combined with LRU

In this subsection we assume that the popularity of the nk items of CP
k follows a Zipf distribution with parameter θk. We further assume that the
request rate for content of each CP is the same and define the overall hit rate in
case of the split cache as the sum of the hit rates in both parts of the cache (i.e.,
this corresponds to setting λ1 = λ2 and w1 = w2 = 1 in [7]). For the split cache
we set the size m1 of the first part of the cache such that the overall hit rate is
optimized. In this case Theorem 2 of [7] shows that sharing the cache is never
better than the optimal split cache. In Figure 8 we depict the gain achieved by
splitting cache in the optimal manner when n1 = n2 = 1000 and the cache size
m is either 80 or 400. We also plotted the optimal cache size m1.

A first observation is that the gain decreases as the cache size increases and is
negligible for large caches unless the popularity of the content of one of the CPs
is close to uniform (this trend was confirmed by considering other values for m).
Second, when both popularity distributions have the same shape (i.e., θ1 = θ2)
the optimal split is to set m1 = m/2 (as expected). In this case the optimal
split cache achieves the same overall hit rate as the shared cache, meaning there
is no gain in splitting the cache. Third, although the gain by splitting the cache
may be very limited, the optimal size m1 is quite sensitive to the shape of both
distributions. Figure 9 further demonstrates that some care is required when
splitting the cache in case the shape of the distribution is not known.

29

0 0.5 1 1.5

θ
2

1

1.05

1.1

1.15

1.2

1.25

1.3

R
e

la
ti
v
e

 g
a

in
 b

y
 s

p
lit

ti
n

g

θ
1
 = 0.6

θ
1
 = 0.8

θ
1
 = 1

θ
1
 = 1.2

(a) Gain of the optimal split – m = 80

0 0.5 1 1.5

θ
2

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

R
e

la
ti
v
e

 g
a

in
 b

y
 s

p
lit

ti
n

g

θ
1
 = 0.6

θ
1
 = 0.8

θ
1
 = 1

θ
1
 = 1.2

(b) Gain of the optimal split – m = 400

0 0.5 1 1.5

θ
2

10

20

30

40

50

60

70

80

O
p
ti
m

a
l
c
a
c
h
e
 s

iz
e
 m

1

θ
1
 = 0.6

θ
1
 = 0.8

θ
1
 = 1

θ
1
 = 1.2

(c) Optimal split size – m = 80

0 0.5 1 1.5

θ
2

100

150

200

250

300

350

O
p

ti
m

a
l
fr

a
c
ti
o

n
 m

1

θ
1
 = 0.6

θ
1
 = 0.8

θ
1
 = 1

θ
1
 = 1.2

(d) Optimal split size – m = 400

Figure 8: Relative hit rate gain by the optimal split cache and optimal cache size dedicated
to the first CP under IRM requests with n1 = n2 = 1000, and Zipf popularity for the LRU
replacement algorithm.

6.2. IRM combined with h-LRU

We now consider the same scenario as in the previous subsection, except
that we replace LRU by h-LRU. The main questions we wish to answer are:
does the optimal split cache still outperform the shared cache and how are the
possible gains achieved the optimal split cache affected by the number of lists
h. When combining h-LRU with a split cache, we split all of the h lists in two
parts such that the first part has size m1. In other words CP k uses h-LRU
where all the lists have size mk. Allowing different splits in each of the h lists
may further improve the hit rate, but is not considered in this section.

Figure 10 plots the relative gains achieved by splitting the cache in the
optimal manner when the cache size m = 80 and h-LRU is used instead of
LRU. We first note that all the relative gains are at least one, meaning the
optimal split cache also appears to outperform the shared cache for h-LRU.
When comparing Figures 8a, 10a and 10b we further note that the gain achieved
by the optimal split cache diminishes as h increases. Thus, when using h-LRU
(combined with IRM requests) there is less use in implementing a split cache

30

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

θ
2

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

R
e

la
ti
v
e

 g
a

in
 b

y
 s

p
lit

ti
n

g

m
1
 = m/4

m
1
 = m/2

m
1
 = 3m/4

(a) θ1 = 0.8

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

θ
2

0.9

0.95

1

1.05

1.1

1.15

R
e

la
ti
v
e

 g
a

in
 b

y
 s

p
lit

ti
n

g

m
1
 = m/4

m
1
 = m/2

m
1
 = 3m/4

(b) θ1 = 1.2

Figure 9: Relative hit rate gain of the split cache compared to a shared cache under IRM
requests with n1 = n2 = 1000, m = 80 and Zipf popularity for the LRU replacement algorithm
for m1 = 20, 40 and 60.

compared to LRU. This can be understood by noting that under the IRM model
increasing h improves the hit probability of the shared cache and therefore it
becomes harder to achieve significant gains by splitting the cache.

6.3. MAP requests

In this subsection we replace the IRM request process by the MAP process
described in Section 4.1.2, where the inter request time distribution follows a
hyperexponential distribution with rates z and 1/z. We only present results for
LRU, for 2-LRU similar observations were made.

The scenario presented in Figure 11b is identical to Figure 8a except that the
exponential inter request times are replaced by a hyperexponential distribution
with z = 10 (note the value of q is irrelevant due to Theorem 2). We first
note that as in the IRM case the optimal split cache achieves a higher hit rate
than the shared cache. The relative gain is however much smaller. This can be
attributed to the fact that higher hit rates are observed with hyperexponential
inter request times, meaning there is less room for improvement by splitting
the cache. If we further lower the cache size to m = 16 as in Figure 11a
we observe larger relative gains. Comparing Figures 8 and 11 shows that the
optimal manner in which the cache is split depends heavily on the inter request
time distribution as well as on the overall cache size.

7. Conclusion

In this paper, we developed algorithms to approximate the hit probability
of the cache replacement policies LRU(m) and h-LRU. These algorithms rely
on an equivalence between LRU-based and TTL-based cache replacement algo-
rithms. We showed numerically that the TLL approximations are very accurate
for moderate cache sizes and appear asymptotically exact as the cache size and

31

0 0.5 1 1.5

θ
2

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

R
e

la
ti
v
e

 g
a

in
 b

y
 s

p
lit

ti
n

g

θ
1
 = 0.6

θ
1
 = 0.8

θ
1
 = 1

θ
1
 = 1.2

(a) h = 2

0 0.5 1 1.5

θ
2

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

R
e

la
ti
v
e

 g
a

in
 b

y
 s

p
lit

ti
n

g

θ
1
 = 0.6

θ
1
 = 0.8

θ
1
 = 1

θ
1
 = 1.2

(b) h = 4

Figure 10: Relative hit rate gain by the optimal split cache compared to a shared cache under
IRM requests with n1 = n2 = 1000, m = 80 and Zipf popularity for the h-LRU replacement
algorithm.

number of items tends to infinity. We also provide theoretical support for this
claim, by establishing a bound between the transient dynamics of both poli-
cies and a set of ODEs whose fixed-point coincides with the proposed TTL
approximation.

Using these approximations, we showed that the hit probability of h-LRU
and LRU(m) are comparable in many scenarios. We also studied how splitting
the cache can improve the performance. Our numerical observations confirm
that for all the tested parameters, the optimal split cache outperforms a shared
cache. However, the gain appears to be limited for large cache sizes and the
optimal splitting size is very sensitive to the parameters.

A possible extension of our results would be to study networks of caches
in which LRU, LRU(m) or h-LRU is used in each node. Further, our TTL
approximation with MAP arrivals can be readily adapted to other policies such
as FIFO(m) and RAND(m) introduced in [11]. In fact, a generalization to a
network of caches would be fairly straightforward for the class of RAND(m)
policies.

Acknowledgements

This work is partially supported by the EU project QUANTICOL, 600708.

[1] O. I. Aven, E. G. Coffman, Jr., and Y. A. Kogan. Stochastic Analysis of
Computer Storage. Kluwer Academic Publishers, Norwell, MA, USA, 1987.

[2] F. Baccelli and P. Brémaud. Elements of queueing theory: Palm Martingale
calculus and stochastic recurrences, volume 26. Springer Science & Business
Media, 2013.

[3] D. S. Berger, P. Gland, S. Singla, and F. Ciucu. Exact analysis of TTL
cache networks. Performance Evaluation, 79:2–23, 2014.

32

0 0.5 1 1.5

θ
2

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

R
e

la
ti
v
e

 g
a

in
 b

y
 s

p
lit

ti
n

g

θ
1
 = 0.6

θ
1
 = 0.8

θ
1
 = 1

θ
1
 = 1.2

(a) Gain of the optimal split – m = 16

0 0.5 1 1.5

θ
2

1

1.005

1.01

1.015

R
e

la
ti
v
e

 g
a

in
 b

y
 s

p
lit

ti
n

g

θ
1
 = 0.6

θ
1
 = 0.8

θ
1
 = 1

θ
1
 = 1.2

(b) Gain of the optimal split – m = 80

0 0.5 1 1.5

θ
2

5

6

7

8

9

10

11

12

13

14

15

16

O
p
ti
m

a
l
c
a
c
h
e
 s

iz
e
 m

1

θ
1
 = 0.6

θ
1
 = 0.8

θ
1
 = 1

θ
1
 = 1.2

(c) Optimal split size –y m = 16

0 0.5 1 1.5

θ
2

10

20

30

40

50

60

70

O
p
ti
m

a
l
c
a
c
h
e
 s

iz
e
 m

1

θ
1
 = 0.6

θ
1
 = 0.8

θ
1
 = 1

θ
1
 = 1.2

(d) Optimal split size – m = 80

Figure 11: Relative hit rate gain compared to a shared cache and optimal cache size dedicated
to the first CP under hyperexponential requests (z = 10) with n1 = n2 = 1000, m = 80 and
Zipf popularity for the LRU replacement algorithm.

[4] G. Bianchi, A. Detti, A. Caponi, and N. Blefari-Melazzi. Check before
storing: What is the performance price of content integrity verification in
LRU caching? SIGCOMM Comput. Commun. Rev., 43(3):59–67, July
2013.

[5] G. Casale. Building accurate workload models using markovian arrival
processes. In ACM SIGMETRICS, SIGMETRICS ’11, pages 357–358, New
York, NY, USA, 2011. ACM.

[6] H. Che, Y. Tung, and Z. Wang. Hierarchical web caching systems: model-
ing, design and experimental results. IEEE J.Sel. A. Commun., 20(7):1305–
1314, 2002.

[7] W. Chu, M. Dehghan, D. Towsley, and Z. Zhang. On allocating cache
resources to content providers. In Proceedings of the 3rd ACM Conference
on Information-Centric Networking, ACM-ICN ’16, pages 154–159, New
York, NY, USA, 2016. ACM.

33

[8] R. Fagin. Asymptotic miss ratios over independent references. Journal of
Computer and System Sciences, 14(2):222 – 250, 1977.

[9] N. C. Fofack, P. Nain, G. Neglia, and D. Towsley. Performance evaluation of
hierarchical TTL-based cache networks. Computer Networks, 65:212–231,
2014.

[10] C. Fricker, P. Robert, and J. Roberts. A versatile and accurate approxima-
tion for LRU cache performance. In Proceedings of the 24th International
Teletraffic Congress, ITC ’12, pages 8:1–8, 2012.

[11] N. Gast and B. Van Houdt. Transient and steady-state regime of a family
of list-based cache replacement algorithms. In Proceedings of ACM SIG-
METRICS. ACM, 2015.

[12] P. Jelenkovic and A. Radovanovic. Asymptotic insensitivity of least-
recently-used caching to statistical dependency. In INFOCOM 2003.
Twenty-Second Annual Joint Conference of the IEEE Computer and Com-
munications. IEEE Societies, volume 1, pages 438–447. IEEE, 2003.

[13] P. R. Jelenković and A. Radovanović. Least-recently-used caching with
dependent requests. Theoretical computer science, 326(1):293–327, 2004.

[14] B. Jiang, P. Nain, and D. Towsley. LRU cache under stationary requests.
arXiv preprint arXiv:1707.06204, 2017.

[15] T. Johnson and D. Shasha. 2Q: A low overhead high performance buffer
management replacement algorithm. In Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases, VLDB ’94, pages 439–450,
San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[16] G. Latouche and V. Ramaswami. Introduction to Matrix Analytic Methods
and stochastic modeling. SIAM, Philadelphia, 1999.

[17] V. Martina, M. Garetto, and E. Leonardi. A unified approach to the perfor-
mance analysis of caching systems. In INFOCOM 2014, pages 2040–2048,
2014.

[18] E. J. Rosensweig, J. Kurose, and D. Towsley. Approximate models for
general cache networks. In INFOCOM’10, pages 1100–1108, Piscataway,
NJ, USA, 2010. IEEE Press.

[19] M. Telek and G. Horváth. A minimal representation of markov arrival
processes and a moments matching method. Perform. Eval., 64(9-12):1153–
1168, Oct. 2007.

34

Appendix A. h-LRU with renewal arrivals

The same approach as for the IRM model can be used to obtain a TTL
approximation when the requests for item k follow a renewal process, character-
ized by a distribution with cumulative distribution function Fk(x). Let F̄k(x) =
1−Fk(x). In this case we get (P̄h,k)j,0 = F̄k(Tmin(h,j+1)) and (P̄h,k)j,min(h,j+1) =
Fk(Tmin(h,j+1)). The hit probability for item k can therefore be expressed as

π̄
(h,k)
h =

∏h
s=1 Fk(Ts)

∏h
s=1 Fk(Ts) + F̄k(Th)

(
1 +

∑h−1
j=1

∏j
s=1 Fk(Ts)

) ,

while for j = 1, . . . , h− 1 we have

π̄
(h,k)
j =

F̄k(Th)
∏j
s=1 Fk(Ts)

∏h
s=1 Fk(Ts) + F̄k(Th)

(
1 +

∑h−1
j=1

∏j
s=1 Fk(Ts)

) .

The fixed point equation for determining Th is found as

m =
n∑

k=1

(π̄
(h,k)
h−1 + π̄

(h,k)
h)

∫ Th
x=0

xdFk(x)∫∞
x=0

F̄k(x)dx
=

n∑

k=1

(π̄
(h,k)
h−1 + π̄

(h,k)
h)

(
Th −

∫ Th
x=0

Fk(x)dx
)

∫∞
x=0

F̄k(x)dx
,

as (π̄
(h,k)
h−1 + π̄

(h,k)
h)

∫ Th
x=0

xdFk(x) is the mean time that item k spends in the

cache between two requests for item k and
∫∞
x=0

F̄k(x)dx is simply the mean
time between two requests.

Appendix B. Proofs of the lemmas used in the proof of Theorem 1

Proof of Lemma 1. The only difficulty of Lemma 1 is that the variables {Pδ,b}δ,b
live in a set of infinite dimension P:

P =
{

(Pδ,b)δ,b : ∃(xk,b) non-increasing in b, bounded by 1

such that for all δ, b: Pδ,b = a1−δ
n∑

k=1

(pk)δxk,b

}
.

We equip P with the L∞ norm and denote ‖ρ‖∞ = supδ,b |ρδ,b| the norm of a
vector ρ ∈ P.

The solution of the ODE ẋ = f(x) that starts in X(0) satisfies x(t) =

X(0)+
∫ t
s=0

f(x(s))ds. Let E(t) be such that

X(t) = X(0) +

t−1∑

s=0

f(X(s)) + E(t)

= X(0) +

∫ t−1

0

f(X(bsc))ds+ E(t).

35

We have:

‖X(t)− x(t)‖∞ ≤
∫ t

s=0

‖f(X(bsc))− f(x(s))‖∞ + ‖E(t)‖∞

≤ aL
∫ t

s=0

‖X(bsc)− x(s)‖∞ + ‖E(t)‖∞ ,

where we used that f is Lipschitz-continuous of constant La.
Let X̄(t) be the the piecewise-linear interpolation of X such that X̄(t) =

X(t) when t ∈ Z+. We have:

‖X(bsc)− x(s)‖∞ ≤
∥∥X(bsc)− X̄(s)

∥∥
∞ +

∥∥X̄(s)− x(s)
∥∥
∞

≤ a+
∥∥X̄(s)− x(s)

∥∥
∞ ,

where we used that ‖f(x)‖∞ ≤ a.
This shows that for any t ≤ T/a (with t ∈ Z+):

∥∥X̄(t)− x(t)
∥∥
∞ ≤ aL

∫ t

s=0

∥∥X̄(s)− x(s)
∥∥
∞ + a2Lt+ ‖E(t)‖∞

≤ exp(aLt)(a2Lt+ sup
s≤t
‖E(s)‖∞)

≤ exp(LT)(aLT + sup
t≤T/a

‖E(t)‖∞),

using Gronwall’s inequality.
By assumption,

E
[
‖E(t+ 1)− E(t)‖2∞ | Ft

]
= var [‖X(t+ 1)−X(t) | Ft‖∞] ≤ a2.

As E(t) is a martingale, this implies that

E

[
sup
t≤T/a

‖E(t)‖2∞

]
≤ E

[
‖E(T)‖2∞

]
≤ aT.

Proof of Lemma 2. Let ρ, ρ′ ∈ P. By definition of P, there exist x and x′ such
that ρδ,b = a1−δ∑n

k=1(pk)δxk,b and ρ′δ,b = a1−δ∑n
k=1(pk)δx′k,b. Let θ, θ′ be

such that ρ0,θ = ρ′0,θ′ = m and assume without loss of generality that θ′ ≤ θ.
As xk,b is non-increasing in b, this implies that xk,θ ≥ xk,θ′ . Hence, we have:

|ρ1,θ − ρ1,θ′ | =
n∑

k=1

pk(xk,θ − xk,θ′) ≤
n∑

k=1

a(xk,θ − xk,θ′)

= |ρ0,θ − ρ0,θ′ | ≤
∣∣ρ0,θ − ρ′0,θ′

∣∣+
∣∣ρ′0,θ′ − ρ0,θ′

∣∣
= |ρ0,θ′ − ρ0,θ′ | ≤ ‖ρ− ρ′‖∞ . (B.1)

Therefore:

|gm(ρ)− gm(ρ′)| =
∣∣ρ1,θ − ρ′1,θ′

∣∣ ≤ |ρ1,θ − ρ1,θ′ |+
∣∣ρ1,θ′ − ρ′1,θ′

∣∣ ≤ 2 ‖ρ− ρ′‖∞ ,

where the last inequality comes from (B.1).

36

Appendix B.1. Proof of Lemma 3

Proof of Lemma 3. The function f : P → span(P) is given by

fδ,b(ρ) = a(ρδ+1,θζb−1 − ρδ+1,b), (B.2)

where θ` and ζb are two functions of ρ that are defined by

ρ0,θ` = m` + · · ·+mh and θζb ≤ b < θζb+1. (B.3)

We begin by the proof of (i) which states that (ρ0,b−ρ′0,b)(f0,b(ρ)−f0,b(ρ
′)) ≤

2a ‖ρ− ρ′‖2∞. Let ρ, ρ′ ∈ P and let ζb and ζ ′b be defined as in Equation (B.3).
We have

(ρ0,b − ρ′0,b)(f0,b(ρ)− f0,b(ρ
′))

= a(ρ0,b − ρ′0,b)(ρ′δ+1,b − ρδ+1,b + ρδ+1,θζb−1
− ρ′δ+1,θ′

ζ′
b
−1

)

≤ a ‖ρ− ρ′‖2∞ + a(ρ0,b − ρ′0,b)(ρδ+1,θζb−1
− ρ′δ+1,θ′

ζ′
b
−1

).

We then distinguish three cases:

• If ζb = ζ ′b, then we can use Lemma 2 to show that we have

∣∣∣∣ρδ+1,θζb−1
− ρ′δ+1,θ′

ζ′
b
−1

∣∣∣∣ ≤

‖ρ− ρ′‖∞, which implies that (ρ0,b−ρ′0,b)(ρδ+1,θζb−1
−ρ′δ+1,θ′

ζ′
b
−1

) ≤ ‖ρ− ρ′‖2∞.

• If ζb > ζ ′b, then Equation (B.3) implies that ρ0,b ≥ mζb+1+· · ·+mh > ρ′0,b.
ζb > ζ ′b also implies that ρ′δ+1,θ′

ζ′
b
−1

> ρ′δ+1,θ′ζb−1
. Hence,

(ρ0,b − ρ′0,b)(ρδ+1,θζb−1
− ρ′δ+1,θ′

ζ′
b
−1

)

≤ (ρ0,b − ρ′0,b)(ρδ+1,θζb−1
− ρ′δ+1,θ′ζb−1

) ≤ ‖ρ− ρ′‖2∞ ,

where the last inequality comes from Lemma 2.

• The case ζb < ζ ′b is symmetric.

This concludes the proof of (i). Point (ii) follows directly from Equation (B.2).
For point (iii), we can mimic the proof of Equation (B.1). Let ρ, ρ′ ∈ P and

assume without loss of generality that θζb ≤ θ′ζ′b
which implies that xk,θζb ≥

xk,θ′
ζ′
b

for all k ∈ {1 . . . n}. Equation (B.2) implies that for δ ≥ 1, we have

1

a
(fδ−1,b(ρ

′)− fδ−1,b(ρ)) = ρ′δ,θ′ζb−1 − ρδ,θζb−1 + ρδ,b − ρ′δ,b.

This shows that

1

a
(fδ−1,b(ρ

′)− fδ−1,b(ρ)− (f0,b(ρ
′)− f0,b(ρ))) ≤

∣∣∣ρ′δ,θ′ζb−1 − ρδ,θζb−1 − (ρ′0,θ′ζb−1 − ρ0,θζb−1)
∣∣∣

+ 2 ‖ρ− ρ′‖∞ .

37

∣∣∣ρδ,θζb−1
− ρ′δ,θ′ζb−1

− (ρ0,θζb−1
− ρ′0,θ′ζb−1

)
∣∣∣ =

∣∣∣∣∣
n∑

k=1

(a1−δ(pk)δ − a)(xk,θζb − x
′
k,θ′

ζ′
b

)

∣∣∣∣∣

≤
∣∣∣∣∣
n∑

k=1

(a1−δ(pk)δ − a)(xk,θζb − xk,θ′ζ′
b

)

∣∣∣∣∣+ ‖ρ− ρ′‖∞

=

n∑

k=1

(a− a1−δ(pk)δ)(xk,θζb − xk,θ′ζ′
b

) + ‖ρ− ρ′‖∞

≤
n∑

k=1

a(xk,θζb − xk,θ′ζ′
b

) + ‖ρ− ρ′‖∞

≤
∣∣∣∣∣
n∑

k=1

a(xk,θζb − x
′
k,θ′

ζ′
b

)

∣∣∣∣∣+ 2 ‖ρ− ρ′‖∞

≤ 3 ‖ρ− ρ′‖∞
where we used the assumption xk,θζb ≥ xk,θ′ζ′

b

.

38

	TTL approximations of the cache replacement algorithms LRU(m) and h-LRU

