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a b s t r a c t

We show how a shot-noise fluid queue can be considered as the limiting case of a sequence
of infinite-server queues with batch arrivals. The shot-noise queue we consider receives
fluid amounts at the arrival times of a (time-inhomogeneous) Poisson process, the sizes of
which are governed by some probability distribution that may also depend on time. The
continuous rate at which fluid leaves the queue is proportional to the current content of
the queue. Thus, intuitively, one can think of drops of fluid arriving in batches, which are
taken into service immediately upon arrival, at an exponential service rate.

We show how to obtain the partial differential equation for (the Laplace–Stieltjes
transform of) the queue content at time t , as well as its solution, from the corresponding
infinite-server systems by taking appropriate limits. Also, for the special case of a time-
homogeneous arrival process, we show that the scaled number of occupied servers in the
infinite-server system converges as a process to the shot-noise queue content, implying
that finite-dimensional distributions also converge.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Shot noise was first used in physics as a model for discontinuous noise, conveyed by pulses, as opposed to white noise,
being the continuous noise conveyed by thermal fluctuations. Today shot noise is widely used in other fields as well, such
as mathematical finance, insurance and queueing. For more on shot noise in a historical and physical setting, see e.g. Eliazar
and Klafter [1].

A shot-noise fluid queue can be described as a fluid reservoir from which fluid is released continuously at a rate that is
proportional to the current content V (t) of the reservoir. Hence, at any time t , the output rate r(t) satisfies r(t) = rV (t)
for a fixed constant r > 0. In the standard model, fluid arrives to the reservoir according to a compound Poisson process,
i.e., quantities of fluid arrive instantaneously to the reservoir according to a Poisson process with rate λ. The sizes of these
quantities are assumed to be i.i.d., according to some generic random variable Bwith distribution function B(x) = P(B ≤ x),
and independent of the Poisson process. In the main part of the paper we will look at the more general model with time-
inhomogeneous input, where both the Poisson rate and the distribution of B are allowed to vary over time in a continuous
manner, replacing λ and B(x) by λ(t) and B(x, t).

Let us first consider the content process Vi(t) of a shot-noise queue that starts empty at time t = 0, and to which just a
single quantity of fluid arrives at time t = ti with size Bi. In the sequel we will simply call Bi the size of the jump at time ti,
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Fig. 1. The content process of a shot-noise queue.

for obvious reasons. Clearly the dynamics of the content process Vi(t) are then given by the initial value problem
dVi(t)
dt

= −rVi(t), Vi(ti) = Bi,

which can be solved to obtain

Vi(t) = Bie−r(t−ti), t ≥ ti.

The content process V (t) of a general shot-noise queue can be viewed as a sum of independent processes Vi(t), see also [2]:

V (t) =

N(t)∑
i=1

Bie−r(t−ti)1{t ≥ ti}, (1.1)

where N(t) denotes the number of jumps arriving up to time t , and 1{t ≥ ti} is 1 when t ≥ ti and 0 otherwise. In Fig. 1 a
possible realization of the content process in a shot-noise queue is given.

For the standard case with time-homogeneous input (where λ and B(x) do not vary over time) it was shown in [2] how
to obtain the Laplace–Stieltjes Transform (LST) of the amount of fluid in the reservoir at any time t , and from that one can
easily find the LST of the amount of fluid in stationarity, see the expressions below Theorem 2.2 in the sequel. In fact it is
not difficult to generalize the time-dependent results to the case of time-inhomogeneous input (where λ(t) and B(x, t) may
vary over time in a continuous way). We could work with (1.1) directly, as in [2], viewing V (t) as a functional of a – now
time-dependent – Poisson Process; the result can then be found by applying an extended version of Campbell’s theorem, see
Kingman [3, section 5.3]. Another approach would be to write down the integro-differential equation of Takács [4], similar
as was done in e.g. [5] for a feedback fluid queue, or in Bekker [6] for queues with workload-dependent service rate. Then a
partial differential equation (PDE) can be derived for the Laplace–Stieltjes Transform of V (t), see (2.3) in Section 2.1, which
can be solved straightforwardly. This solution is presented in Appendix A.1. A third approach is to consider (1.1) in the
context of Levy processes [7], which could also yield the solution to generalized problems, e.g. involving a Brownian motion
component. We outline this approach in Appendix A.2, just to show its efficiency and elegance.

The solution for time-inhomogeneous input has never appeared in the literature to the best of our knowledge.We present
it in this paper, but our main goal is in fact not to show the result, but rather to show the way we find it, which is different
from the approaches outlined before. Our approach is to establish a relation with infinite-server systemswith batch arrivals.
Roughly the idea is that in the shot-noise queue each ’drop’ of fluid is assigned its own dedicated small server. In particular
we introduce for any shot-noise queue a sequence of infinite-server systems, indexed by some k, with a corresponding PDE
and its solution. We then show how these converge as k grows large to the PDE and its solution for the shot-noise queue.

The relation with infinite-server systems has been mentioned before in Kella and Whitt [8]. They consider networks of
fluid queues which are linear in the sense that the workload process vector for all queues in the network is just the sum of all
individual workload vectors that can be associated to the existing superposition of inputs. Due to this linearity property the
authors are then able to come up with elegant results at considerable generality. In their introduction they mention that the
workload process can be regarded as the limit as n → ∞ of the scaled number of busy servers at each node in a network of
infinite-server systems with batch arrivals, where the batch sizes in model n are the batch sizes in model 1 multiplied by n.

While in [8] the connection with (networks of) infinite-server systems appears to be mentioned ‘only’ as an intuitive
explanation of why the presented results may be expected, it is our goal to actually show the convergence of infinite-server
systems to shot-noise queues, and to use this relation to find the related PDE and its solution.Wewill limit ourselves to single



W.F. de Graaf et al. / Performance Evaluation 116 (2017) 143–155 145

queues only, although much of this work can be generalized to networks as in [8]. In the main part of the paper we allow
the input process to be time-inhomogeneous, while most of the results in [8] are for time-homogeneous input processes.

The paper is organized as follows. In Section 2 we give the models of the shot-noise queue and the Markovian infinite-
server system, and preliminary results. Then in Section 3 we show how the PDE and solution for the sequence of infinite-
server systems converge to the corresponding PDE and solution of the shot-noise queue for the case of time-inhomogeneous
input. Finally in Section 4 we show convergence at the process level, i.e., we prove that all finite-dimensional distributions
of the (properly scaled) number of active servers converge to those of the shot-noise workload process; for the analysis in
Section 4 we need to restrict ourselves to the case of time-homogeneous input.

2. Models and preliminary results

In this section we first present the shot-noise queueing model, the equations that govern the dynamics of this system,
as well as the form of the corresponding time-dependent solution in terms of Laplace–Stieltjes transforms (LSTs). We then
continue to do the same for the Markovian infinite-server system model.

2.1. Shot-noise queue

We consider a shot-noise queue as introduced in Section 1 with time-dependent input. Thus, both the current Poisson
arrival rate λ(t) and the distribution function B(x, t) = P(B(t) ≤ x) of the size of a jump B(t) occurring at time t are functions
of t; we assume these functions to be continuously differentiable. Allowing the queue to be nonempty at t = 0, we are
interested in the time-dependent distribution function of the amount V (t) of fluid present at time t , which is denoted as
V (x, t) = P(V (t) ≤ x).

We first derive the integro-differential equation of Takács for V (x, t). For h small we have

V (x, t + h) = (1 − λ(t)h) V ((1 + rh)x, t)

+ λ(t)h
∫ x

0
B(x − y, t)dyV (y, t) + o(h).

Taking the limit h ↓ 0 and using the continuity of B(x, t), gives the following result.

Lemma 2.1. The distribution function V (x, t) of the content of the shot-noise queue at time t satisfies

∂V (x, t)
∂t

− rx
∂V (x, t)
∂x

= −λ(t)
∫ x

0
(1 − B(x − y, t))dyV (y, t), x > 0, t ≥ 0. (2.1)

Next we define the LSTs of B(t) and V (t) as

β(s, t) =

∫
∞

0
e−sxdxB(x, t) and Φ(s, t) =

∫
∞

0
e−sxdxV (x, t), Re(s) ≥ 0. (2.2)

The following theorem gives the PDE forΦ(s, t) and its solution.

Theorem 2.2. The LST Φ(s, t) of the amount of fluid V (t) in the shot-noise queue satisfies the following partial differential
equation,

∂Φ(s, t)
∂t

+ rs
∂Φ(s, t)
∂s

= −λ(t)(1 − β(s, t))Φ(s, t). (2.3)

Assuming that λ(t) is a C1 function, the unique solution is given by

Φ(s, t) = Φ(se−rt , 0) exp
(

−

∫ t

0
λ(η)(1 − β(se−r(t−η), η))dη

)
. (2.4)

Proof. The proof of the PDE in (2.3) is immediate from Lemma 2.1, by taking Laplace transforms using (2.2). The solution
(2.4) can be derived in several ways, as mentioned in the Introduction, two of which are presented in Appendices A.1 and
A.2. □

For the time-homogeneous case, with λ(t) ≡ λ and β(s, t) ≡ β(s), the solution (2.4) is (by a change of variables),

Φ(s, t) = Φ(se−rt , 0) exp
(

−λ

∫ t

0
(1 − β(se−r(η)))dη

)
.

In that case we can also take the limit as t → ∞ to find the LST of the stationary distribution,

lim
t→∞

Φ(s, t) = exp
(

−λ

∫
∞

0

(
1 − β(se−r(η))

)
dη
)
.
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For the special case of exponential jump sizes, with β(s) = ν/(ν + s), this leads to Φ(s,∞) = (ν/(ν + s))λ/r , i.e., a
Gamma(ν, λ/r) distribution.

In Section 3 we will find the same results as in Theorem 2.2 by studying the relation with infinite-server systems with
batch arrivals. Therefore we will first discuss such systems in the next subsection.

2.2. The infinite-server system with batch arrivals

In the book by Chaudhry and Templeton [9] the MX (t)/M/∞ system is investigated. In such a system customers arrive
in batches according to a Poisson process with time-dependent arrival rate λ(t). The system has an infinite number of
homogeneous servers. Service times are exponentially distributed with parameter µ. We assume that all random variables
involved are independent. Furthermore, we extend the model in [9] by allowing the distribution of the size X(t) of a batch
that arrives at time t to depend on t . We call this aMX(t)(t)/M/∞ system, and denote the probability generating function of
X(t) by

PX (z, t) =

∞∑
m=1

P(X(t) = m)zm, |z| ≤ 1, t ≥ 0.

We let N(t) denote the number of customers (or busy servers) in the system at time t . Clearly {N(t)} is a (nonhomoge-
neous) Markov process. The probability generating function of N(t) is given by

PN (z, t) =

∞∑
n=0

P(N(t) = n)zn, |z| ≤ 1, t ≥ 0.

Theorem 2.3. The probability generating function PN (z, t) of the number of busy servers N(t) in the MX(t)(t)/M/∞ system
satisfies the following partial differential equation,

∂PN (z, t)
∂t

− µ(1 − z)
∂PN (z, t)
∂z

= −λ(t)(1 − PX (z, t))PN (z, t). (2.5)

Assuming that λ(t) is a C1 function, the unique solution is given by

PN (z, t) = PN (v(z, t), 0) exp
(

−

∫ t

0
λ(η) (1 − PX (v(z, t − η), η)) dη

)
, (2.6)

where

v(z, t) = 1 − (1 − z)e−µt .

Proof. For the case in which the jump size distribution does not depend on t , a straightforward derivation of the PDE
(2.5) can be found in [9], see (5.1.4) there. To keep the paper self-contained, we present the main idea here. Writing
pm(t) = P(X(t) = m) and am(t) = P(N(t) = m),m = 0, 1, . . . we have the following system of (backward) differential-
difference equations for pn(t),

p′

0(t) = −λ(t)p0(t) + µp1(t),

p′

n(t) = −(λ(t) + nµ)pn(t) + λ(t)
n∑

m=1

ampn−m(t) + (n + 1)µpn+1(t), n = 1, 2, . . . .

Multiplying these equations by 1, z, z2, . . . and then summing leads to (2.5), using for the convolution that
∞∑
n=1

zn
n∑

m=1

ampn−m(t) = PX (z, t)PN (z, t).

For the solution (2.6) one could rewrite (5.1.9) in [9] while taking into account the time-dependent distribution of B(t). In
Appendix A.3, we present a proof of (2.6) by solving the PDE (2.5) straightforwardly. □

3. Relation with infinite-server systems with batch arrivals

In this section we show how for each shot-noise queue we can define a certain sequence of infinite-server systems that
converges to it. We first define the sequence in Section 3.1 based on some shot-noise queue, and then show in Sections 3.2
and 3.3 how by taking appropriate limits the corresponding PDE’s and solutions of Theorem 2.3 converge to the PDE and
solution, as given in Theorem 2.2, of the shot-noise queue we started with.
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3.1. Sequence of MX(t)(t)/M/∞ systems

Our starting point is a shot-noise queuewith time-dependent input as in Section 2.1. The arrival rate (of jumps) is λ(t) and
the size of a jump arriving at time t is B(t), with distribution function B(x, t) = P(B(t) ≤ x) and LSTβ(s, t) =

∫
∞

0 e−sxdxB(x, t).
Moreover, the amount of fluid in the buffer at time 0 is ze of a jump arriving at time t is B(t), with distribution function
B(x, t) = P(B(t) ≤ x) and LST β(s, t) =

∫
∞

0 e−sxdxB(x, t).
The next step is to define a sequence of correspondingMX(t)(t)/M/∞ systems as in Section 2.2, indexed by k = 1, 2, . . ..

The arrival rate (of batches) is taken identical to λ(t), while the size Xk(t) of a batch arriving at time t in the kth model is
determined as follows. The idea is that, as k increases, Xk(t) scales with k, while simultaneously the amount of work per
arriving customer scales as 1/k, so that the total amount of work arriving in a batch will remain of the same order. Thus, we
define Xk(t) as the smallest integer larger than or equal to kB(t), i.e.,

Xk(t) = ⌈kB(t)⌉. (3.1)

Now let the random variable Zk(t) be the total amount of work arriving at time t in the kth MX(t)(t)/M/∞ system. The
service rate in the kth model is always µ, so we model Zk(t) as the sum of Xk(t) customer sizes which are exponential with
parameter k. To do so, and to facilitate later taking the limit k → ∞, we first introduce random variables Ci as i.i.d. ∼ exp(1),
independent of everything else. The variable Ci represents a scaled version of the size (service time) of the ith customer of a
batch, where the scaling is independent of the particular value k = 1, 2, . . .. To retrieve the properly scaled size of customer
i in model k, we simply rescale this Ci, dividing it by k, to end up with the following,

Zk(t) =

Xk(t)∑
i=1

1
k
Ci.

The LST of Zk(t), defined as Z̃k(s, t) = E[e−sZk(t)], can be found by conditioning on Xk(t),

Z̃k(s, t) = E

[(
k

k + s

)Xk(t)
]

≡ PXk

(
k

k + s
, t
)
. (3.2)

To show that Zk(t) indeed behaves as expected we first write

Zk(t) =
Xk(t)
k

·
1

Xk(t)

Xk(t)∑
i=1

Ci.

Since for any b > 0 it holds that limk→∞⌈kb⌉/k = b, we conclude that Xk(t)/k → B(t) a.s. The second factor converges to
EC = 1 a.s. by the strong law of large numbers, noting that as k → ∞ also Xk → ∞ a.s. But then also the product converges
a.s. to B(t) (since for any two events, P(E) = 1 and P(F ) = 1 together imply P(E ∩ F ) = 1). Thus we arrive at the following.

Lemma 3.1. The amount of work Zk(t) arriving at time t in the kth MX(t)(t)/M/∞ system satisfies

Zk(t) → B(t) a.s., as k → ∞.

In particular, its LST Z̃k(s, t) satisfies

lim
k→∞

Z̃k(s, t) = β(s, t). (3.3)

Note that the proof does not need the Ci’s to be exponentially distributed, but the following does require this.
Turning to the amount of workWk(t) in the kthMX(t)(t)/M/∞ system, we can write similarly as above,

Wk(t) =

Nk(t)∑
i=1

1
k
Ci,

with Nk(t) the number of busy servers in model k, and the Ci distributed as before, using their memorylessness. For the LST
W̃k(s, t) = E[e−sWk(t)] it holds, by conditioning on Nk(t), that

W̃k(s, t) =

∞∑
m=0

(
k

k + s

)m

P(Nk(t) = m) = PNk

(
k

k + s
, t
)
. (3.4)

In particular, the amount V (0) of fluid present in the buffer at t = 0 can be discretizedwith a similar explicit construction
as we used for the jump size distribution, since its distribution function V (x, 0) and LST Φ(s, 0) are known, just as for the
jump size the distribution function B(x, t) and LST β(s, t) are also known. Thus, analogous to (3.1)–(3.2), and replacing the
random variables Xk(t) and Zk(t) by Nk(0) and Wk(0), respectively, we first define Nk(0) = ⌈kV (0)⌉ and then have

Wk(0) =

Nk(0)∑
i=1

1
k
Ci,
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with LST as in (3.4) with t = 0. Similarly to the arguments leading up to Lemma 3.1 we can observe that Nk(0)/k → V (0)
a.s., and 1

Nk(0)

∑Nk(0)
i=1 Ci converges to EC = 1 a.s. Thus we arrive at the following lemma.

Lemma 3.2. The amount of work Wk(0) present at time 0 in the kth MX(t)(t)/M/∞ system satisfies

Wk(0) → V (0) a.s., as k → ∞.

In particular, its LST W̃k(s, 0) satisfies

lim
k→∞

W̃k(s, 0) = Φ(s, 0).

In the next two subsectionswe insert the expressions (3.2) and (3.4) for general t ≥ 0 into the partial differential equation
for the MX(t)(t)/M/∞ system, and its solution, respectively. Then we take the limit k → ∞ to show that both expressions
converge.

3.2. Convergence of PDEs

Here we focus on the partial differential equation (2.5) applied to model k. From identities (3.2) and (3.4) we find

PXk (z, t) = Z̃k(s, t) and PNk (z, t) = W̃k(s, t), (3.5)

where s = k
(
z−1

− 1
)
of equivalently z = k/(k + s). Using this, (2.5) is transformed to

∂W̃k(s, t)
∂t

+ µs
(
1 +

s
k

) ∂W̃k(s, t)
∂s

= −λ(t)(1 − Z̃k(s, t))W̃k(s, t).

Now let W̃ (s, t) = limk→∞W̃k(s, t), assuming for now that this limit exists (the proof of this is given below in Section 3.3).
Then taking the limit k → ∞ in the above and also using (3.3) we obtain

∂W̃ (s, t)
∂t

+ µs
∂W̃ (s, t)
∂s

= −λ(t)(1 − β(s, t))W̃ (s, t).

This equation corresponds to the partial differential equation (2.3) in Theorem 2.2 for the shot-noise queue, with r = µ.
So when the service times in the MX(t)(t)/M/∞ system are exponentially distributed with parameter r , the PDE of the
infinite-server system with batch arrivals converges to that of the shot-noise queue.

3.3. Convergence of solutions

Next, we focus on the solution (2.6) of the partial differential equation for model k. Using (3.5) again, this can be
transformed, leading to

W̃k(s, t) = W̃k(τk(s, t), 0) exp
(

−

∫ t

0
λ(η)

(
1 − Z̃k(τk(s, t − η), η)

)
dη
)
,

where

τk(s, t) = k
[

1
v(k/(k + s), t)

− 1
]

= e−µt ks
k + s(1 + e−µt )

.

To prove that W̃ (s, t) = limk→∞W̃k(s, t) exists, first note that τk(s, t) → se−µt as k → ∞, from which we immediately have
that W̃k(τk(s, t), 0) → W̃ (se−µt , 0), and also Z̃k(τk(s, t − η), η) → β(se−µ(t−η), η) due to our assumption that B(x, t), and
hence β(s, t), varies continuously over time t . Thus we arrive at

W̃ (s, t) = W̃ (se−µt , 0) exp
(

−

∫ t

0
λ(η)(1 − β(se−µ(t−η), η))dη

)
.

This equation is exactly equal to the solution (2.4) for the shot-noise queue, just with r = µ, andΦ(s, t) replaced by W̃ (s, t).
Thus, the random variable W (t) behaves exactly like V (t), the content of the shot-noise queue at time t . So indeed the
MX(t)(t)/M/∞ solution converges for k → ∞ to the shot-noise solutionwhen the service times in theMX(t)(t)/M/∞ system
are exponentially distributed with parameter r .

3.4. Discussion

We conclude that a shot-noise queue with time-dependent arrival process can be interpreted as the limiting case of a
sequence ofMX(t)(t)/M/∞ system with output parameter equal to the service rate of the infinite-server systems.

It would be interesting to see whether a similar convergence could be shown for other arrival processes than (time-
inhomogeneous) Poisson, e.g. Markov-Modulated (compound) Poisson processes, in which the arrival rate depends on some
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background Markov process. We expect a similar convergence result holds for a sequence of Markov-modulated infinite-
server systems with batch arrivals, where the batch size distribution depends on the same backgroundMarkov-process. The
same may hold for models with state-dependent arrivals, and models with more than one queue.

Remark 1. In this section we considered the convergence based on workloads in the infinite-server systems (distributed
as Zk(t) per arriving batch and as Wk(t) in the system). Instead, we could also have considered the scaled number of
customers (distributed as Xk(t)/k per arriving batch and as Nk(t)/k in the system). Even though the derivations would be
more straightforward in that case, we chose to show the result for workloads since in our view they are the most natural
candidates to convergence to the fluid analogues in the shot-noise queue. However, in the next section we will consider the
(scaled) number of customers to show how this discrete process converges at the process level to the continuous shot-noise
queue content.

4. Convergence at the process level

In this section we show convergence at the process level, i.e., we prove that all finite-dimensional distributions of the
discrete infinite-server system converge to those of the shot-noise workload process. We apply the theory of convergence
of Markov processes in Ethier and Kurtz [10], and in order to do so we need to restrict ourselves to the case of time-
homogeneous input. Thus, in the sequel we assume that the arrival rate and the jump size distribution do not depend on
time, writing λ and B(x) rather than λ(t) and B(x, t), respectively. As a result, {V (t)} is a time-homogeneous Markov process
in continuous time with continuous state space R+. For the corresponding kth infinite server system, we choose the batch
size as in (3.1), i.e.,

Xk = ⌈kB⌉. (4.1)

Instead of the (continuous) workload in the kth infinite-server system, we study {Nk(t)}, where Nk(t) as before is the
number of busy servers in the kth infinite-server system; see also Remark 1. Due to the time-homogeneous input, this is
now also a Markov process, with discrete state space N. Despite the different state spaces of {Nk(t)} and {V (t)}, we will
show convergence of {Nk(t)} to {V (t)} as a process, following Ethier and Kurtz [10]. Roughly, the idea is to show uniform
convergence of the semigroups involved, by the equivalent statement that their generators converge uniformly. As a result
we may then conclude convergence of the processes, under appropriate (converging) initial conditions.

We start off by determining the relevant semigroups and generators, which are operators1 on appropriate Banach spaces
of test functions. For the Markov processes {Nk(t)} we take this space to be B̂(N) = {f ∈ B(N) : limx→∞|f (x)| = 0}, where
B(N) (also known as ℓ∞) is the space of all bounded functions on N with norm ∥f ∥ = supx∈N|f (x)|. The ‘hat’ notation here
reflects the vanishing-at-infinity aspect. Now appending a subindex k to the test functions and operators that correspond to
the process {Nk(t)}, we define its semigroup, and give its first order expansion (where o(h)/h vanishes as h ↓ 0), as follows.
For all fk ∈ B̂(N),

Tk(h)fk(x) = E[fk(Nk(h))|Nk(0) = x] =

∞∑
y=0

fk(y)P(Nk(h) = y|Nk(0) = x)

= (1 − λh − xµh)fk(x) + xµhfk(x − 1) + λh
∞∑

m=1

a(k)m fk(x + m) + o(h),

where a(k)m is the probability that a batch size Xk equals m, and is given by, cf. (4.1),

a(k)m = P(Xk = m) = B(m/k) − B((m − 1)/k), m = 1, 2, . . . .

The generator Ak of {Nk(t)} is given by

Akfk(x) = lim
h→0

Tk(h)fk(x) − fk(x)
h

= −λfk(x) − µxfk(x) + µxfk(x − 1) + λ

∞∑
m=1

a(k)m fk(x + m). (4.2)

The domain of Ak is D(Ak) = {f ∈ B̂(N) : x(f (x) − f (x − 1)) ∈ B̂(N)}, to ensure that Ak is an operator into B̂(N).
Now turning to the process {V (t)}, we take the Banach space of test functions to be Ĉ(R+) = {f ∈ C(R+) : limx→∞|f (x)| =

0}, where C(R+) is the space of bounded and continuous functions on R+ with norm ∥f ∥ = supx∈R+ |f (x)|. Again, the ‘hat’
notation reflects the vanishing-at-infinity aspect. The semigroup of {V (t)} can now be given as

T (h)f (x) = E[f (V (h))|V (0) = x] =

∫
∞

0
f (y)dyP(V (h) = y|V (0) = x)

= f (x(1 − rh))(1 − λh) + λh
∫

∞

x
f (y)dyB(y − x) + o(h),

1 In fact the semigroup is a whole family of operators indexed by the time parameter t .
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for all f ∈ Ĉ(R+), and the corresponding generator A is

Af (x) = lim
h→0

T (h)f (x) − f (x)
h

= −λf (x) + lim
h→0

f (x(1 − rh)) − f (x)
h

+ λ

∫
∞

x
f (y)dyB(y − x)

= −λf (x) − rxf ′(x) + λ

∫
∞

x
f (y)dyB(y − x). (4.3)

The domain of A is given by

D(A) = {f ∈ Ĉ(R+) : f differentiable, xf ′(x) ∈ Ĉ(R+)},

which ensures that A is an operator into Ĉ(R+). Note that we need not assume that f ′′ exists, but we do need f ′ to be
continuous.

Since we work with the scaled number of busy servers Nk(t)/k, we define the operator πk : Ĉ(R+) → B̂(N) to be
πkf = f (·/k) for k ≥ 1; this simply ‘samples’ the continuous function f ∈ Ĉ(R+) at distances of 1/k, resulting in an element
fk ∈ Ĉ(N) with fk(i) = f (i/k).

In the remainder we will use the following results from Ethier and Kurtz [10], see Theorems 1.6.1 and 4.2.5. We write
them down for our situation at hand.

Theorem 4.1. Let D be a core of A. The following are equivalent:

(i) For each f ∈ Ĉ(R+), Tk(h)πkf converges to T (h)f for all h ≥ 0, uniformly, that is

lim
k→∞

sup
x∈N

|Tk(h)πkf (x) − πkT (h)f (x)| = 0

(ii) For each f ∈ D there exists a fk ∈ D(Ak) for each k ≥ 1, such that fk converges uniformly to f , that is

lim
k→∞

sup
x∈N

|fk(x) − πkf (x)| = 0,

and Akfk converges uniformly to Af , that is

lim
k→∞

sup
x∈N

|Akfk(x) − πkAf (x)| = 0.

Furthermore, if the initial distribution of Nk(0)/k converges to the initial distribution of V (0), and either (i) or (ii) above holds
(and hence both hold), then

Nk

k
→ V for k → ∞

as a process. In particular this implies that all finite dimensional distributions coincide.

Proof. See Ethier and Kurtz [10], Theorems 1.6.1 and 4.2.5. The condition that the semigroups involved are Feller semigroups
is proven in Appendix A.4. □

We use this theorem by showing (ii), simply choosing the core D to be the domain D(A) of A. For any function f ∈ D(A)
we then define the function fk as fk = πkf . Then fk converges uniformly to f in a trivial manner. For the generator Ak we have
from (4.2) that

Akfk(x) = −λf (x/k) − µx (f (x/k) − f ((x − 1)/k))+ λ

∞∑
m=1

a(k)m f ((x + m)/k),

where we have used that fk(x) = πkf (x) = f (x/k). For the generator A it follows from (4.3) that

πkAf (x) = (Af )(x/k) = −λf (x/k) −
rx
k
f ′(x/k) + λ

∫
∞

x/k
f (y)dB(y − x/k).

Hence to show (ii) above, it suffices to show that for any f ∈ D(A),

lim
k→∞

sup
x∈N

⏐⏐⏐⏐⏐−µxk f
( x
k

)
− f

( x−1
k

)
1/k

+
rx
k
f ′

( x
k

)⏐⏐⏐⏐⏐ = 0

and

lim
k→∞

sup
x∈N

⏐⏐⏐⏐⏐
∞∑

m=1

a(k)m f ((x + m)/k) −

∫
∞

x/k
f (v)dvB(v − x/k)

⏐⏐⏐⏐⏐ = 0.

Choosing r = µ and letting y = x/k, the correctness of these statements follows from the following lemma.
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Lemma 4.2. For any f ∈ D(A) the following two statements of (uniform) convergence hold.

lim
k→∞

sup
y≥1/k

⏐⏐⏐⏐yf ′(y) − y
f (y) − f (y − 1/k)

1/k

⏐⏐⏐⏐ = 0 (4.4)

and

lim
k→∞

sup
y>0

lim
N→∞

⏐⏐⏐⏐⏐
kN∑

m=1

f
(
y +

m
k

)[
B
(m
k

)
− B

(
m − 1

k

)]
−

∫ N

0
f (y + v)dB(v)

⏐⏐⏐⏐⏐ = 0. (4.5)

Moreover, D(A) lies dense in Ĉ(R+), so D(A) is a proper core of A.

Proof. Uniform convergence of (4.4) follows from the fact that xf ′(x) is bounded when f ∈ D(A).
For (4.5) we argue that the given Riemann–Stieltjes integral in it is approximated arbitrarily closely by the summation in

front of it. That the convergence is uniform follows from the fact that f is continuous and f ′ is bounded.
Finally, to show thatD(A) lies dense in Ĉ(R+), take an arbitrary f ∈ Ĉ(R+) outside ofD(A). Then either f is not differentiable

at one or more points, or limx→∞|xf ′(x)| ̸= 0, or both. We indicate how a sequence of fn ∈ D(A) can be constructed with
fn → f uniformly. When f is not differentiable at some x0, this can be solved in a standard manner, letting the fn be closer
and closer to f near x0 as n → ∞, while maintaining that all fn (for finite n) are inD(A). On the other hand, when xf ′(x) does
not vanish at infinity, while f itself does, we can e.g. choose fn(x) to be a smoothed version (near x = n) of f (x)1{x ≤ n}, so
that all fn are in D(A) when f is differentiable, and clearly xf ′

n(x) vanishes at infinity. When f features both problems, we can
combine both approaches to find a suitable sequence fn. □

Finally we choose the initial distribution of Nk(t) as before,

Nk(0) = ⌈kV (0)⌉, (4.6)

where V (0) is the initial content of the shot-noise queue we started with. Clearly Nk(0)/k converges a.s. to V (0) as k → ∞,
as already mentioned above Lemma 3.2. Therefore, we are now ready to apply Theorem 4.1 and conclude the following.

Corollary 4.3. If we choose the batch size distribution in theMX/M/∞ system according to (4.1), the initial distribution according
to (4.6), and choose µ = r, then Nk/k converges to V as a process.

In particular this implies that all finite dimensional distributions for the infinite-server system, i.e. P(Nk(t1) ≤ kx1, . . . ,
Nk(tn) ≤ kxn), converge in distribution as k → ∞ to those for the shot-noise queue, i.e. to P(Vk(t1) ≤ x1, . . . , Vk(tn) ≤ xn).
Obviously this is a stronger statement then those in Section 3, where we only considered the distribution at one point in
time.

Appendix. Proofs of some theorems

In this appendix we present some proofs that are not central to the line of reasoning in our paper. For the solution in
Theorem 2.2 we present two proofs, illustrating the fact that the solution (2.4) can be found in a number of ways, see also
the discussion in Section 1; in Appendix A.1we give a full proof including uniqueness, while Appendix A.2 ismainly included
for its elegance. Furthermore, Appendix A.3 presents the proof of (the solution in) Theorem 2.3 and Appendix A.4 presents
the Feller properties of the semigroup {T (h)}, in the context of the proof of Theorem 4.1.

A.1. Proof of Theorem 2.2

The linear first order partial differential equation (2.3) with initial condition g(s) := Φ(s, 0) can be solved by the method
of characteristics, see e.g. [11]. For the partial differential operator Lwe have that

L = rs
∂

∂s
+
∂

∂t
and for the inhomogeneous term ψ that

ψ(s, t;Φ(s, t)) = −λ(t)(1 − β(s, t))Φ(s, t).

Note that ψ is at least a C1 function ofΦ(s, t), s and t . Furthermore we define the set S to be S := (s, 0).
The parametrized characteristic curves γ = (γ1, γ2)T for L can be computed to be

dγ1(w)
dw

= rγ1(w) ⇒ γ1(w) = γ1(0)erw,

dγ2(w)
dw

= 1 ⇒ γ2(w) = w + γ2(0).
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Then, by means of the method of characteristics, we find that
∂Φ(γ (w))
∂w

= ψ(γ (w),Φ(γ (w)))

= −λ(w + γ2(0))(1 − β(γ1(0)erw, w + γ2(0)))Φ(γ1(0)erw, w + γ2(0)).

Next we define for every ξ ∈ S, γξ in such a way that γ (0) = ξ . This condition comes down to

γ1(0) = ξ and γ2(0) = 0.

So γξ is defined as follows,

γξ1(w) = ξerw and γξ2(w) = w.

Next step is to define the function ψξ ,

ψξ (w, y) = ψ(γξ (w), y) = −λ(w)(1 − β(ξerw, w))y.

According to the method of characteristics the function v(w) = Φ(γ (w)) has to be a solution of the initial value problem

dv(w)
dw

= ψξ (w, v(w)) = −λ(w)(1 − β(ξerw, w))v(w), v(0) = g(ξ ).

Integrating both sides of the equation gives that∫ v(w)

v(0)

1
v(w)

dv(w) = −

∫ w

0
λ(η)(1 − β(ξerη, η))dη,

which results in

v(w) = −g(ξ ) exp
(∫ w

0
λ(η)(1 − β(ξerη, η))dη

)
.

Substituting ξ = e−rws, since ξerw = s, and t = w into the above solution we get

Φ(s, t) = Φ(se−rt , 0) exp
(

−

∫ t

0
λ(η)(1 − β(se−r(t−η), η))dη

)
.

Since the function ψ is at least one time continuously differentiable, the solutions γξ and ψξ are at least C1 functions. This
implies that the solution is uniquely determined on the union of characteristic curves which intersect S.

A.2. Alternative proof of Theorem 2.2

In this section we choose to present an elegant method due to [7], in which the process is viewed as a (time-dependent)
Lévy process, rather than solving (2.3) directly.

It is well-known that the stochastic behavior of a Lévy process J(t) is characterized by its exponent ξ (s), for which we
have Ee−sJ(t)

= e−tξ (s). A similar result holds when J(t) is a time-dependent Lévy process:

Ee−s(J(t)−J(t0)) = e−
∫ t
t0
ξ (s,u)du

,

where ξ (s, u) is the current Lévy exponent at time u.We first present the general derivation, supposing thatwe are interested
in Ee−sX(t), where for some function h(u),

X(t) =

∫ t

0
h(u)dJ(u). (A.1)

Wemay now subdivide the interval (0, t] into n equal subintervals (ti, ti+1], with ti = ti/n, i = 0, . . . , n, and then let n → ∞

to obtain

Ee−s
∫ t
0 h(u)dJ(u)

= lim
n→∞

Ee−s
∑n−1

i=0 h(ti)(J(ti+1)−J(ti))

= lim
n→∞

E
n−1∏
i=0

e−sh(ti)(J(ti+1)−J(ti))

= lim
n→∞

n−1∏
i=0

Ee−sh(ti)(J(ti+1)−J(ti))

= lim
n→∞

n−1∏
i=0

exp
(

−

∫ ti+1

ti

ξ (sh(ti), u)du
)



W.F. de Graaf et al. / Performance Evaluation 116 (2017) 143–155 153

= lim
n→∞

exp

(
−

n−1∑
i=0

∫ ti+1

ti

ξ (sh(ti), u)du

)

= exp
(

−

∫ t

0
ξ (sh(u), u)du

)
.

Next we apply this general result to our situation at hand. Just as a compound Poisson process with rate λ and jump size
LST β(s) is a Lévy process with exponent ξ (s) = λ(1 − β(s)), a time-dependent compound Poisson process is obtained by
considering a time-dependent Lévy processwith exponent ξ (s, u) = λ(u)(1−β(s, u)). Furthermorewe choose the functional
h(·) of this process as h(u) = e−r(t−u), so that the process X(t) defined in (A.1) coincides with our shot-noise content process
V (t), provided that we have V (0) = 0. Inserting the two equations above, we find the solution (2.4) as in Theorem 2.2, apart
from the factorΦ(se−rt , 0) which is 1 when V (0) = 0.

When V (0) > 0, the resulting additional remaining content V (0)e−rt is stochastically independent of X(t) as defined in
(A.1), so by multiplication of LSTs we end up with

E[e−sV (t)
] = E[e−s(V (0)e−rt

+X(t))
] = Φ(se−rt , 0)E[e−sX(t)

],

leading to (2.4).

A.3. Proof of Theorem 2.3

The linear first order partial differential equation (2.5) with initial condition g(z) := PN (z, 0) can be solved by themethod
of characteristics, as is also used in the proof of Theorem 2.2 in Appendix A.1. We repeat the arguments to let this section be
self-contained.

For the partial differential operator Lwe have that

L = −µ(1 − z)
∂

∂z
+
∂

∂t
,

and for the inhomogeneous term ψ that

ψ(z, t; PN (z, t)) = −λ(t)(1 − PX (z, t))PN (z, t).

Note that ψ is at least a C1 function of PN (z, t), z and t . Furthermore we define the set S to be S := (z, 0).
The parametrized characteristic curves γ = (γ1, γ2)T for L can be computed to be

dγ1(w)
dw

= −µ(1 − γ1(w)) ⇒ γ1(w) = (γ1(0) − 1)eµw + 1,

dγ2(w)
dw

= 1 ⇒ γ2(w) = w + γ2(0).

Then, by means of the method of characteristics, we find that

∂PN (γ (w))
∂w

= ψ(γ (w), PN (γ (w)))

= −λ(w + γ2(0))(1 − PX ((γ1(0) − 1)eµw + 1, w + γ2(0)))
× PN ((γ1(0) − 1)eµw + 1, w + γ2(0)).

Next we define for every ξ ∈ S, γξ in such a way that γ (0) = ξ . This condition comes down to

γ1(0) = ξ and γ2(0) = 0.

So γξ is defined as follows,

γξ1(w) = (ξ − 1)eµw + 1 and γξ2(w) = w.

Next step is to define the function ψξ ,

ψξ (w, y) = ψ(γξ (w), y) = −λ(w)(1 − PX ((ξ − 1)eµw + 1, w))y.

According to the method of characteristics the function v(w) = PN (γ (w)) has to be a solution of the initial value problem

dv(w)
dw

= ψξ (w, v(w)) = −λ(w)(1 − PX ((ξ − 1)eµw + 1, w))v(w), v(0) = g(ξ ).

Integrating both sides of the equation gives that∫ v(w)

v(0)

1
v(w)

dv(w) = −

∫ w

0
λ(η)(1 − PX ((ξ − 1)eµη + 1, η))dη,
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which results in

v(w) = g(ξ ) exp
(

−

∫ w

0
λ(η)(1 − PX ((ξ − 1)eµη + 1, η))dη

)
.

Substituting ξ = e−µw(z − 1) + 1, since (ξ − 1)eµw + 1 = z, and t = w into the above solution, yields that

PN (z, t) = PN (v(z, t), 0) exp
(

−

∫ t

0
λ(η)(1 − PX (v(z, t − η), η))dη

)
,

where v(z, t) = 1− (1−z)e−µt . Since the functionψ is at least one time continuously differentiable, the solutions γξ andψξ
are at least C1 functions. This implies that the solution is uniquely determined on the union of characteristic curves which
intersect S.

A.4. Proof of Theorem 4.1

We need to prove that the semigroup {T (h)} is a Feller semigroup on Ĉ(R+), and that for any k the semigroup {Tk(h)} is
a Feller semigroup on B̂(N). Since both proofs are very similar we only show the former, leaving the latter for the reader to
verify. Firstly observe that {T (h)} is a strongly continuous contraction semigroup on Ĉ(R+), since

lim
h↓0

T (h)f (x) = f (x)

and since

∥T (h)f ∥ = sup
x∈R+

|E[f (V (h))|V (0) = x]|

≤ sup
x∈R+

|f (x)|

= ∥f ∥

for all h ≥ 0 and all f ∈ Ĉ(R+). In order for {T (h)} to be a Feller semigroup, it should also be positive on Ĉ(R+) and its generator
A conservative. It is positive since T (h) is a positive operator for all h ≥ 0. This is seen from the fact that for nonnegative
functions f

T (h)f (x) = E[f (V (h))|V (0) = x] ≥ 0

for all h ≥ 0. The generator A : Ĉ(R+) → Ĉ(R+) is conservative since it clearly contains (1, 0), i.e. when f (x) = 1 is chosen,
we have that

A1 = −λ+ λ

∫
∞

x
dB(y − x) = −λ+ λ = 0.
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