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ABSTRACT

The Shortest Remaining Processing Time (SRPT) scheduling policy

and its variants have been extensively studied in both theoretical

and practical settings. While beautiful results are known for single-

server SRPT, much less is known for multiserver SRPT. In partic-

ular, stochastic analysis of the M/G/k under multiserver SRPT is

entirely open. Intuition suggests that multiserver SRPT should be

optimal or near-optimal for minimizing mean response time. How-

ever, the only known analysis of multiserver SRPT is in the worst-

case adversarial setting, where SRPT can be far from optimal. In

this paper, we give the first stochastic analysis bounding mean re-

sponse time of the M/G/k under multiserver SRPT. Using our re-

sponse time bound, we show that multiserver SRPT has asymptoti-

cally optimal mean response time in the heavy-traffic limit. The

key to our bounds is a strategic combination of stochastic and

worst-case techniques. Beyond SRPT, we prove similar response

time bounds and optimality results for several other multiserver

scheduling policies.

1 INTRODUCTION

The Shortest Remaining Processing Time (SRPT) scheduling pol-

icy and variants thereof have been deployed in many computer

systems, including web servers [17], networks [23], databases [14],

operating systems [8] and FPGA layout systems [9]. SRPT has also

long been a topic of fascination for queueing theorists due to its op-

timality properties. In 1966, the mean response time for SRPT was

first derived [29], and in 1968 SRPT was shown to minimize mean

response time both in a stochastic sense and in a worst-case sense

[27]. However, these beautiful optimality results and the analysis

of SRPT are only known for single-server systems. Almost nothing

is known for multiserver systems, such as the M/G/k , even for the

case of just k = 2 servers.

The SRPT policy for the M/G/k is defined as follows: at all times,

the k jobs with smallest remaining processing time receive service,

preempting jobs in service if necessary.

We assume a central queue, meaning any job can be dispatched

ormigrated to any server at any time, and a preempt-resumemodel,

meaning preemption incurs no cost or loss of work.

It seems believable that SRPT should minimize mean response

time in multiserver systems because it gives priority to the jobs

which will finish soonest, which seems like it should minimize the

number of jobs in the system. However, it was shown in 1997 that

SRPT is not optimal for multiserver systems in the worst case [20,

21]. That is, one can come up with an adversarial arrival sequence

for which the mean response time under SRPT is larger that the

optimal mean response time. In fact, the ratio by which SRPT’s

mean response time exceeds the optimal mean response time can

be arbitrarily large [20, 21].

The fact that multiserver SRPT is not optimal in the worst case

provokes a natural question about the stochastic case.

Is SRPT optimal or near-optimal for minimizing mean

response time in the the M/G/k?

Unfortunately, this question is entirely open. Not only is it not

known whether SRPT is optimal, but multiserver SRPT has also

eluded stochastic analysis.

What is the mean response time for the M/G/k under

SRPT?

The purpose of this paper is to answer both of these questions in

the high-load setting. Under low load, response time is dominated

by service time, which is not affected by the scheduling policy. In

contrast, under high load, response time is dominated by queue-

ing time, which can vary wildly under different scheduling poli-

cies. We thus focus on the high-load setting, and specifically on

the heavy-traffic limit as load approaches capacity.

Our main result is that, under mild assumptions on the service

requirement distribution,

SRPT is an optimal multiserver policy for minimizing

mean response time in the M/G/k in the heavy-traffic

limit.

We also give the first mean response time bound for the M/G/k under

SRPT. The bound is valid for all loads and is tight for load near

capacity.

In addition to SRPT, we give the first mean response time bounds

for the M/G/k with three other scheduling policies, specifically Pre-

emptive Shortest Job First (PSJF) [32], Remaining Size Times Orig-

inal Size (RS) [18, 33], and Foreground-Background (FB) [25]. Our

bounds imply that in the heavy-traffic limit, under the same mild

assumptions as for SRPT above,

• multiserver PSJF and RS are also optimal multiserver sched-

uling policies; and

• multiserver FB is optimal in the same setting where single-

server FB is optimal [26], which is when the service require-

ment distribution has decreasing hazard rate and the sched-

uler does not have access to job sizes.

Our approach to analyzing SRPT on k servers is to compare its

performance to that of SRPT on a single server which is k times as

fast, where both systems have the same arrival rate λ and service

requirement distribution S . Specifically, let SRPT-k be the policy

which uses multiserver SRPT on k servers of speed 1/k , as shown

in Figure 1.1. Ordinary SRPT on a single server is simply SRPT-1.

The system load ρ = λE[S] is the average rate at which work enters

the system. The maximal total rate at which the k servers can do
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Single-Server System

speed 1

λ

k-Server System

speed 1/k

speed 1/k

speed 1/k

λ

Figure 1.1: Single-server and k-server systems

work is 1, so the system is stable for ρ < 1, which we assume

throughout.

Our main result is that in the ρ → 1 limit, the mean response

time under SRPT-k , E
[

T SRPT-k
]

, approaches the mean response

time under SRPT-1,E
[

T SRPT-1
]

. Because SRPT-1minimizes response

time among all scheduling policies, thismeans that SRPT-k is asymp-

totically optimal among k-server policies. In particular, let OPT-k

be the optimal k-server policy. Then

E
[

T SRPT-1] ≤ E
[

TOPT-k ] ≤ E
[

T SRPT-k ]
,

so showing that E
[

T SRPT-k
]

approaches E
[

T SRPT-1
]

as ρ → 1 also

shows that E
[

T SRPT-k
]

approaches E
[

TOPT-k
]

as ρ → 1.

Specifically, we prove the following sequence of theorems.

Our first theorem is an upper bound on the mean response time

of a job of size x under SRPT-k , written E
[

T SRPT-k (x)
]

. As in the

classic SRPT-1 analysis [29], the response time of a job of size x

depends on the system load contributed by jobs of size at most x ,

written ρ≤x (see Definition 4.3).

Theorem 5.4. In an M/G/k, the mean response time of a job of

size x under SRPT-k is bounded by

E
[

T SRPT-k (x)
]

≤

∫ x

0
λt2 fS (t)dt

2(1 − ρ≤x )2
+

kρ≤xx

1 − ρ≤x
+

∫ x

0

k

1 − ρ≤t
dt ,

where fS (·) is the probability density function of the service require-

ment distribution S.

The bound given in Theorem 5.4 holds for any load ρ and any

service requirement distributionS . We use this bound to prove that,

under mild conditions on S , the performance of SRPT-k approaches

that of SRPT-1 in the ρ → 1 limit, which implies asymptotic opti-

mality of SRPT-k .

Theorem 6.1. In an M/G/k with any service requirement distri-

bution S which is either (i) bounded or (ii) unbounded with a tail

function which has upper Matuszewska index1 less than −2,

lim
ρ→1

E
[

T SRPT-k
]

E
[

T SRPT-1
] = 1.

The technique by which we bound response time under SRPT-

k is widely generalizable. We also use it to give mean response

time bounds and optimality results for PSJF-k , RS-k , and FB-k (see

Section 7).

1This technical condition is roughly equivalent to finite variance. See Section 2.1 or
Appendix B.

Our approach is inspired by two very different worlds: the sto-

chastic world and the adversarial worst-case world. Purely stochas-

tic approaches are difficult to generalize to the M/G/k for many

reasons, including the fact that multiserver systems are not work-

conserving. Purely adversarial worst-case analysis is easier but leads

to weak bounds when directly applied to the stochastic setting. For

instance, Leonardi and Raz [20, 21] show that for an adversarial ar-

rival sequence, SRPT-k has worse mean response time than the

optimal offline k-server policy by a factor of Ω(log(min(n/k,P)),

where n is the total number of jobs in the arrival sequence and P

is the ratio of the smallest and largest job sizes. This factor can

be arbitrarily large in the context of the M/G/k , because n → ∞

if the arrival sequence is an infinite Poisson process, and P → ∞

if the service requirement distribution is unbounded or allows for

arbitrarily small jobs.

What makes our analysis work is a strategic combination of the

stochastic and worst-case techniques. We use the more powerful

stochastic tools where possible and use worst-case techniques to

bound variables for which exact stochastic analysis is intractable.

2 PRIOR WORK

Countless papers have been published on the stochastic analysis of

the SRPT policy in the single-server model over the last 52 years,

beginning in 1966 with Schrage and Miller’s response time anal-

ysis of the M/G/1 queue under SRPT [29], which was followed

shortly by the proof of SRPT’s optimality [27]. SRPT remains a

major topic of study today. There have been beautiful works on an-

alyzing the tail of response time [5–7], the fairness of SRPT [4, 32]

and SRPT in different models, such as energy-aware control [12].

However, all of these works analyze single-server SRPT. We give

the first analysis of multiserver SRPT. While single-server SRPT

minimizes mean response time, multiserver SRPT does not2 [20,

21].We show thatmultiserver SRPT approaches optimality in heavy

traffic.

2.1 Single-Server SRPT in Heavy Traffic

While the exact mean response time analysis of single-server SRPT

is known, it is in the form of a triply nested integral. Therefore, it

is useful to have a simpler formula for mean response time. Many

papers have derived such a formula under heavy traffic [2, 3, 10,

22].

Heavy traffic analysis describes the behavior of a queueing sys-

tem in the limit as load approaches capacity. The most general

heavy-traffic analysis of the mean response time of single-server

SRPT is due to Lin et al. [22], who characterize the asymptotic be-

havior of mean response time for general service requirement dis-

tributions. They consider three categories of service requirement

distributions and give an asymptotic analysis of themean response

time of each:

• bounded distributions,

• distributions whose tail has upper Matuszewska index3 less

than −2, and

2It has been claimed thatmultiserver SRPT is optimal under the additional assumption
that all servers are busy at all times [11, Theorem 2.1]. However, the proof has an error.
See Appendix E.
3See Appendix B.
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• distributionswhose tail has lowerMatuszewska index greater

than −2.

The first and second categories above roughly correspond to the

distribution having finite variance, while the third roughly corre-

sponds to the distribution having infinite variance.

In this paper, we restrict our heavy-traffic results to the first

two categories, focusing on service requirement distributions that

are either bounded or whose tails have upper Matuszewska index

less than −2. We build on the work of Lin et al. [22] to give the

first heavy-traffic analysis of multiserver SRPT. In particular, we

demonstrate that in the heavy-traffic limit, themean response time

of SRPT in a multiserver system with k servers approaches that

of SRPT in a single-server system which runs k times faster (see

Figure 1.1).

2.2 The Multiserver Priority Queue

While there is no existing stochastic analysis of multiserver SRPT,

there is some analysis of multiserver priority queues. In a multi-

server priority queue, it is assumed that there are finitely many

classes of jobs (typically two) with exponential or phase-type ser-

vice requirement distributions. Thus, the system can be modeled

as a multidimensional Markov chain. Mitrani and King [24] give

an exact analysis of the two class multiserver system with preemp-

tive priority between the job classes and exponential service times

within each class. Sleptchenko et al. [31] extend this analysis to

hyperexponential service requirement distributions, and Harchol-

Balter et al. [16] extend it further still to support phase-type service

requirement distributions and any constant number of preemptive

priority classes. However, the solutions found through these exten-

sions can take a very long time to calculate, requiring more time

with every added server, priority class, or state in the phase-type

distribution.

Our analysis goes beyond the multiclass setting by handling

an arbitrary service requirement distribution and a policy, namely

SRPT-k , with an infinite set of priorities. Furthermore, our analysis

produces a closed-form result, in contrast to the numerical results

of these prior works.

2.3 Multiserver SRPT in the Worst Case

While stochastic analysis of mutliserver SRPT is open, multiserver

SRPT has been well studied in the worst-case setting. Worst-case

analysis considers an adversarially chosen sequence of job arrival

times and service requirements. An online policy (which does not

know the arrival sequence) such as SRPT-k is typically compared

to the optimal offline policy (which knows the arrival sequence).

In the worst-case setting, a policy is a c-approximation if its mean

response time is at most c times the mean response time of the

offline optimal policy on any arrival sequence.

Leonardi and Raz [20, 21] analyze SRPT-k in the worst-case set-

ting under the assumptions that (1) there are n jobs in the arrival

sequence and (2) the ratio of the largest and smallest service re-

quirements in the arrival sequence is P . They show that SRPT-k

is an O(log(min(n/k,P)))-approximation for mean response time,

where n is the total number of jobs. They also show that any on-

line policy is at least an Ω(log(min(n/k,P)))-approximation. This

shows that no online policy has a better approximation ratio than

SRPT-k by more than a constant factor.

Unfortunately, directly applying theO(log(min(n/k, P))) bound

on SRPT-k to the M/G/k is not helpful for two reasons. First, the

arrival process is an infinite Poisson process, so n → ∞. Second,

often the maximum job size is unbounded or the minimum job size

is arbitrarily small, so P → ∞ as well.

SRPT has also been considered in other multiserver models. For

example, Avrahami and Azar [1] analyze the immediate dispatch

setting, in which each server has a queue and jobs are dispatched

to these queues on arrival. Each server can only serve the jobs in

its queue, and jobs cannot migrate between queues. Within each

queue, jobs are served according to SRPT. Avrahami and Azar [1]

give a dispatch policy called IMDwhich achieves the sameO(log(min(n/k, P)))-

approximation as SRPT-k , even when compared to the optimal of-

fline policy with migrations. Again, directly applying this to the

M/G/k is problematic because n → ∞ and P → ∞.

In contrast with these worst-case results, we show that in the

stochastic setting, SRPT-k is asymptotically optimal policy formean

response time in the heavy-traffic limit. Our result holds for an

extremely general class of service requirement distributions, in-

cluding distributions which are unbounded and/or have arbitrarily

small jobs.

2.4 Other Prior Work

Gong and Williamson [13] propose a single-server policy called K-

SRPT which is superficially similar to our SRPT-k . Specifically, K-

SRPT shares the processor between the k jobs in the system with

least remaining time. That is, K-SRPT is a hybrid of processor shar-

ing (PS) and SRPT. Crucially, when fewer than k jobs are in the sys-

tem, K-SRPT allows each job to receive an increased share of the

maximum service rate, ensuring work conservation. In contrast,

our SRPT-k model never allows a job to receive more than 1/k of

the maximum service rate of the system, since a job cannot run

on more than one server at once. This means SRPT-k is not work-

conserving, which makes it difficult to analyze.

3 MODEL

We study scheduling policies for the M/G/k queue. We write λ for

the arrival rate, S for the service requirement distribution, and k

for the number of servers. The rate at which any given server com-

pletes work is 1/k . That is, a job with a service requirement, or size,

of x needs to be served for time kx to complete. The k servers all

together have total service rate 1.

The load of the M/G/k system, namely the average rate at which

work arrives, is

ρ = λE[S].

That is, jobs arrive at rate λ jobs per second, each contributing E[S]

work in expectation. We can view E[S] = 1/(kµ), where 1/µ is the

expected amount of time a job needs to be served to complete. We

assume a stable system, meaning ρ < 1, and a preempt-resume

model, meaning that preemption incurs no cost or loss of work.

We will analyze systems in the heavy-traffic limit, which is the

limit as ρ → 1. More precisely, this is the limit as λ → 1/E[S] for

fixed S .
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j in service

j arrives j departs

waiting time

W SRPT-1(x)

residence time

RSRPT-1(x)

response time

T SRPT-1(x)

Figure 4.1: Response time of the tagged job j of size x is the

sum of waiting time and residence time

We analyze and compare systems with k = 1 and general k . An

example of each is shown in Figure 1.1. Note that in our model, the

M/G/1 and M/G/k systems have the same load ρ.

The primary policy we study is the SRPT-k policy, which is the

Shortest Remaining Processing Time policy on k servers. At every

moment in time, SRPT-k serves the k jobs with smallest remaining

processing time. If there are fewer than k jobs in the system, every

job receives service, which leaves some servers idle. Note SRPT-1

is the usual single-server SRPT policy.

4 BACKGROUND AND CHALLENGES

Our approach to analyzing response time under SRPT-k is to com-

pare it with SRPT-1. As such, we begin this section by briefly re-

viewing the analysis of SRPT-1, specifically focusing on the defini-

tions and formulations that will come up in the SRPT-k analysis.

We then outline why the SRPT-1 analysis does not easily general-

ize to SRPT-k with k > 1 servers.

4.1 SRPT-1 Tagged Job Tutorial

We now review the technique used by Schrage and Miller [29] to

analyze SRPT-1. Consider a particular “tagged” job j, of sizex , arriv-

ing to a random system state drawn from the system’s steady-state

distribution. We denote j’s response time byT SRPT-1(x). Of course,

T SRPT-1(x) is a random variable which depends on both the ran-

dom arrivals that occur after j and the random queue state that j

observes upon its own arrival.

We split the analysis ofT SRPT-1(x) into two parts, shown in Fig-

ure 4.1:

• waiting time W SRPT-1(x), the time between j’s arrival and

the moment j first enters service; and

• residence time RSRPT-1(x), the time between the moment j

first enters service and j’s departure.

Given waiting time and residence time, response time is simply

T SRPT-1(x) =W SRPT-1(x) + RSRPT-1(x).

Under SRPT-1, j has priority over all jobs with larger remaining

size than itself, so such jobs do not impact j’s response time.

Definition 4.1. Suppose job j has remaining size x . A job ℓ is

relevant to job j if ℓ has remaining size at most x . Otherwise ℓ is

irrelevant to j.

In particular, we will often consider which jobs are relevant to

the tagged job j. We will simply call jobs “relevant” and “irrelevant”

when the comparison is clear from context. For the purpose of ana-

lyzing j’s response time, we can ignore all jobs which are irrelevant

to j.

During j’s waiting time, the server is only doing relevant work,

namely work that is due to a relevant job. The total amount of work

done is the sum of

• relevant work due to relevant jobs that were in the system

when j arrived and

• relevant work due to relevant jobs that arrived after j.

To analyze j’s waiting time, wemake use of a concept called a “busy

period”.

Definition 4.2. A busy period started by (possibly random) amount

of workV , written B(V ), is the amount of time it takes for a work-

conserving system that starts with V work to become empty.

Busy periods are very useful because their length depends only

on the initial amount of work and the arrival process, not on the

service policy or the number of jobs in the system.

In the SRPT-1 system, we do not have to wait for the system to

become completely empty for j to start receiving service. We only

have to wait for the system to become empty of relevant work. We

capture this with the concept of a “relevant busy period”.

Definition 4.3. A relevant busy period for a job of size x started

by (possibly random) amount of work V , written B≤x (V ), is the

amount of time it takes for a work-conserving system that starts

withV work to become empty, where only arrivals of size atmostx ,

the relevant arrivals, are admitted to the system. A relevant busy

period has expectation

E[B≤x (V )] =
E[V ]

1 − ρ≤x
.

Above, ρ≤x is the relevant load for a job of size x , which is the total

load due to relevant jobs. Its value is

ρ≤x = λE[S1(S ≤ x)],

where 1(·) is the indicator function.

This means j’s waiting time is a relevant busy period started by

the amount of relevant work that the tagged job j sees on arrival.

By the PASTA property (Poisson Arrivals See Time Averages) [34],

the distribution for the amount of relevant work j sees is the steady-

state distribution.

Definition 4.4. The steady-state relevant work for a job of size x

under SRPT-1, written RelWorkSRPT-1≤x , is the sum of remaining sizes

of all jobswith remaining size at mostx observed at a randompoint

in time. (An analogous definition applies to SRPT-k .)

By the above discussion, j’s waiting time is

W SRPT-1(x) = B≤x
(

RelWorkSRPT-1≤x

)

.

The analysis of RelWorkSRPT-1≤x is known [29] but outside the scope

of this tutorial.

The residence time of j can be analyzed in a similar way. At the

start of j’s residence time, the SRPT-1 policy serves j, so j, which

has remaining x , must be the job with the smallest remaining size

in the system. This means the system is effectively empty from j’s

perspective, because all work relevant to j is gone.

4
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The only work that will be done from this point until j is com-

pletes is work on j itself and relevant arrivals. Because j’s residence

time starts with its own work x and ends when that work is done,

we can stochastically upper bound j’s residence time as a relevant

busy period:

RSRPT-1(x) ≤st B≤x (x).

The reason this bound is not tight is because j’s remaining size de-

creases during service, which changes the cutoff for relevant jobs.

An exact analysis of RSRPT-1(x) is known [29] but outside the scope

of this tutorial.

4.2 Why the Tagged Job Analysis is Hard for
SRPT-k

Having summarized the analysis of SRPT-1, it is natural to ask: why

does a similar strategy not work for SRPT-k? The primary diffi-

culty is that multiserver systems are not work-conserving, which

manifests in two ways.

First, analyzing busy periods relies onwork conservation, namely

the fact that the server is doingwork at rate 1whenever the system

is not empty. This allows for many simplifications. For instance, in

Definition 4.3, we define busy periods as being started as a total

amount of work, without worrying exactly how that work is di-

vided among jobs. In a k-server system, work is only done at rate 1

if there are k or more jobs in the system. Thus, the exact rate at

which work is done varies over time depending on the number of

jobs in the system, making it difficult to analyze.

Second, analyzing the steady-state relevant work relies on work

conservation. The analysis of RelWorkSRPT-1≤x by Schrage andMiller

[29] relies on being able to equate RelWorkSRPT-1≤x to the total work

in a simpler first-come-first-served system. Equality of remaining

work only holds if both systems are work-conserving. The fact that

SRPT-k is not work-conserving means that we can’t make such an

argument.

5 ANALYSIS OF SRPT-k

As explained in Section 4.2, traditional tagged job analysis cannot

be applied to SRPT-k because SRPT-k is not work-conserving. Our

approach is to find a way to make SRPT-k appear work-conserving

while the tagged job j is in the system. We do this by introducing

the new concept of virtual work. Virtual work encapsulates all of

the time that the servers spend either idle or working on irrelevant

jobs while j is in the system. By thinking of these times as “virtual

work”, the system appears to be work-conserving while j is in the

system, allowing us to bound the response time of j.

Consider a tagged job j of size x . Recall from Definition 4.1

that only jobs of remaining size at most x are relevant to j when

j arrives. We will bound j’s response time by bounding the total

amount of server activity between j’s arrival and departure. Be-

tween j’s arrival and departure, each server can be doing one of

four categories of work.

• Tagged work: serving j.

• Old work: serving a job which is relevant to j that was in the

system upon j’s arrival.

• New work: serving a job which is relevant to j that arrived

after j.

• Virtual work: either idling or serving an job which is irrele-

vant to j.

The response time of j is exactly the total of tagged, old, new, and

virtual work. The main idea behind our analysis is to bound this

total by a single (work-conserving) relevant busy period (see Defi-

nition 4.3).

We already know a few facts about the four categories of work.

• Tagged work is j’s size x .

• Old work is equal to the amount of relevant work seen by j

upon arrival.4 By the PASTAproperty [34], this is RelWorkSRPT-k≤x ,

the steady state amount of relevant work for a job of size x

(see Definition 4.4).

• New work is bounded by all jobs which are relevant to a

job of remaining size x that arrive during a relevant busy

periodB≤x (·) started by tagged, old, and virtual work.
5 This

is only an upper bound because we ignore the fact that j’s

remaining size decreases as j is served, which changes the

size cutoff for relevant jobs.

• Virtual work is as of yet unknown. We denote with the ran-

domvariable VirtWorkSRPT-k (x) the amount of virtualwork

done while j is in the system.

Taken together, these yield the bound

T SRPT-k (x) ≤st B≤x

(

x + RelWorkSRPT-k≤x + VirtWorkSRPT-k (x)
)

.

(5.1)

Our task in the remainder of this section is to bound RelWorkSRPT-k≤x

and VirtWorkSRPT-k (x) as tightly as we can. We use worst-case

methods to bound VirtWorkSRPT-k (x) and a combination of sto-

chastic and worst-case methods to bound RelWorkSRPT-k≤x .

5.1 Virtual Work

We start by bounding VirtWorkSRPT-k (x), the virtual work done

while j is in the system. A purely stochastic analysis of virtual work

would be very difficult. Fortunately, a simple worst-case bound suf-

fices for our purposes. The key is that a server can do virtual work

only while j is in service at a different server. This is because SRPT-k

never allows an irrelevant job to have priority over j.

Lemma 5.1. The virtual work is bounded by

VirtWorkSRPT-k (x) ≤ (k − 1)x .

Proof. Virtual work only occurs while j is in service. The max-

imum possible virtual work is achieved by all k − 1 other servers

doing virtual work whenever j is in service. Each server does work

at rate 1/k . This means j is in service for time kx , during which vir-

tual work is done at rate at most (k − 1)/k . �

5.2 Relevant Work

Our next task is to bound RelWorkSRPT-k≤x , the steady state amount

of relevant work for a job of size x under SRPT-k . As with vir-

tual work, a purely stochastic analysis of relevant work would be

very difficult. We therefore take the following hybrid approach.

4One might worry that an old job that is irrelevant when j arrives could later become
relevant to j , and therefore be part of old work, but this does not occur under SRPT-k .
5One might worry that a new job that is irrelevant when it arrives could later become
relevant to j , and therefore be part of newwork, but this does not occur under SRPT-k .
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We consider a pair of systems, one using SRPT-1 and the other us-

ing SRPT-k , experiencing the same arrival sequence. We compare

the amounts of relevant work in each system, giving a worst-case

bound for the difference. This allows us to use the previously known

stochastic analysis of RelWorkSRPT-1≤x to give a stochastic bound for

RelWorkSRPT-k≤x .

Consider running a pair of systems under the same job arrival

sequence:

• System 1, which schedules using SRPT-1; and

• System k, which schedules using SRPT-k .

For any time t , let RelWork
(1)
≤x (t) be the amount of relevant work in

System 1 at t , and similarly for RelWork
(k)
≤x (t). Our goal is to give

a worst-case bound for the difference in relevant work between

Systems 1 and k ,

∆≤x (t) = RelWork
(k)
≤x (t) − RelWork

(1)
≤x (t).

To bound ∆≤x (t), we split times t into two types of intervals:

• few-jobs intervals, during which there are fewer than k rele-

vant jobs at a time in System k ; and

• many-jobs intervals, during which there are at least k rele-

vant jobs at a time in System k .

A similar type of splitting was used by Leonardi and Raz [20, 21].

As a reminder, a job is relevant if its remaining size is at most x

and irrelevant otherwise (see Definition 4.1). Note that many-jobs

intervals are defined only in terms of System k , so System 1 may

or may not have relevant jobs during a many-jobs interval.

Lemma 5.2. For any arrival sequence and at any time t, the dif-

ference between the relevant work in System 1 and the relevant work

in System k is bounded by

∆≤x (t) ≤ kx .

Proof. Any time t is in either a few-jobs interval or a many-

jobs interval. The case where t is in a few-jobs interval is simple:

there are at most k − 1 relevant jobs in System k at time t , each of

remaining size at most x , so

∆≤x (t) ≤ RelWork
(k)
≤x (t) ≤ (k − 1)x .

Suppose instead that t is in a many-jobs interval. Let time s be

the start of the many-jobs interval containing t . We will show

∆≤x (t) ≤ ∆≤x (s) ≤ kx .

We first show that ∆≤x (t) ≤ ∆≤x (s). Let

D(1)
= RelWork

(1)
≤x (t) − RelWork

(1)
≤x (s)

D(k)
= RelWork

(k)
≤x (t) − RelWork

(k)
≤x (s)

be the change in relevant work from s to t in Systems 1 and k ,

respectively. Because

∆≤x (t) − ∆≤x (s) = D(k) − D(1)
,

it suffices to show D(k) ≤ D(1).

We can write D(1) as a sum of three components,

D(1)
= Arrivals(1) + NewlyRelevant(1) − Served(1),

which are defined as follows.

• Arrivals(1) is the relevant work added during [s, t] due to

relevant new arrivals.

• NewlyRelevant(1) is the relevant work added during [s, t]

due to the server serving irrelevant jobs until they reach

remaining size x , at which point they become relevant. For

our purposes, all that matters is that NewlyRelevant(1) ≥ 0.

• Served(1) is the amount of relevant work done by the server

during [s, t]. System 1 does relevant work at rate 1 if it has

any relevant jobs and rate 0 otherwise, so Served(1) ≤ t − s .

We define analogous quantities for System k and compare them to

their System 1 counterparts.

• Arrivals(k) = Arrivals(1) because the two systems expe-

rience the same arrivals.

• NewlyRelevant(k) = 0 because [s, t] is within a many-jobs

interval, during which System k has at least k relevant jobs.

Therefore, there is never an opportunity for an irrelevant

job to be served and become relevant. In particular,

NewlyRelevant(k) ≤ NewlyRelevant(1).

• Served(k) = t − s because [s, t] is within a many-jobs in-

terval, during which System k has at least k relevant jobs.

Therefore, its servers do relevant work at combined rate 1

during all of [s, t]. In particular,

Served(k) ≥ Served(1) .

The three comparisons above imply D(k) ≤ D(1), as desired.

All that remains is to show ∆≤x (s) ≤ kx . Recall that s is the start

of a many-jobs interval. There are two ways to enter a many-jobs

interval. In both cases, we show that ∆≤x (s) ≤ kx .

One way a many-jobs interval can start is when a relevant job

arrives while System k has k − 1 relevant jobs. The same arrival

occurs in System 1, so ∆≤x (s) = ∆≤x (s
−), where s− is the instant

before the arrival. But s− is the end of a few-jobs interval, during

which System k has at most k − 1 relevant jobs, so

∆≤x (s) = ∆≤x (s
−) ≤ RelWork

(k)
≤x (s

−) ≤ (k − 1)x .

The other way a many-jobs interval can start is for irrelevant

jobs already in System k to become relevant. For this to happen, Sys-

tem k must be serving i ≥ 1 irrelevant jobs at s−. Because relevant

jobs have priority over irrelevant jobs, all relevant jobs must also

be in service at s−. There are i irrelevant jobs in service at s−, so

there are at most k − i relevant jobs at s−. At time s , at most i ir-

relevant jobs become relevant, so there are at most k relevant jobs

at s . Each relevant job has size at most x , so

∆≤x (s) ≤ RelWork
(k)
≤x (s) ≤ kx . �

Lemma 5.2 shows that ∆≤x (t) is bounded at all times. We can

summarize the proof of Lemma 5.2 as follows. In a few-jobs inter-

val, ∆≤x (t) is bounded because there are few relevant jobs in Sys-

tem 1 and each contributes a bounded amount of relevant work. In

a many-jobs interval, ∆≤x (t) is nonincreasing, and hence bounded.

One might intuitively expect ∆≤x (t) to be constant during a

many-jobs interval. However, ∆≤x (t) can decrease during a many-

jobs interval, namely when System 1 is empty, as shown in Fig-

ure 5.1.
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System 1 is empty

0 time t
0

work difference

∆≤x (t)

kx

many-jobs interval

all servers in System k occupied

Figure 5.1: Relevant work difference is nonincreasing

during many-jobs intervals

5.3 Response Time Bound

Theorem 5.3. In an M/G/k, the response time of a job of size x

under SRPT-k is bounded by

T SRPT-k (x) ≤stW
SRPT-1(x) + B≤x (2kx),

whereW SRPT-1(x) denotes the waiting time of a job of size x under

SRPT-1.

Proof. From (5.1), we know that

T SRPT-k (x) ≤st B≤x

(

x + RelWorkSRPT-k≤x + VirtWorkSRPT-k (x)
)

.

By plugging in Lemmas 5.1 and 5.2, we find that

T SRPT-k (x) ≤st B≤x
(

RelWorkSRPT-1≤x + 2kx
)

= B≤x
(

RelWorkSRPT-1≤x

)

+ B≤x (2kx).

Recall from Section 4.1 that the waiting time in SRPT-1 is

W SRPT-1(x) = B≤x
(

RelWorkSRPT-1≤x

)

,

giving the desired bound. �

While Theorem 5.3 gives a good bound on the response time

under SRPT-k , we can tighten the bound further by making use of

three ideas.

• As the tagged job j is served, its remaining size decreases.

This decreases the size cutoff for new arrivals to be relevant,

so not as many arriving jobs contribute to new work. Our

current bounds to not account for this effect.

• In Lemma 5.2, we bound the difference ∆≤x (t) between rel-

evant work in System 1, which uses SRPT-1, and relevant

work in System k , which uses SRPT-k . It turns out that the

same proof holds when System 1 uses PSJF-1, the preemp-

tive shortest job first policy, instead of SRPT-1. This improves

the boundbecausewaiting time under PSJF-1 is smaller than

waiting time under SRPT-1 [33].

• Even after replacing SRPT-1 with PSJF-1, Lemma 5.2 is not

tight. In particular, ∆≤x (t) is at most x times the number

of servers serving relevant jobs at time t , and there are not

always k such servers.

These ideas allow us to prove the following tighter bound on mean

response time.

Theorem 5.4. In an M/G/k, the mean response time of a job of

size x under SRPT-k is bounded by

E
[

T SRPT-k (x)
]

≤

∫ x

0
λt2 fS (t)dt

2(1 − ρ≤x )2
+

kρ≤xx

1 − ρ≤x
+

∫ x

0

k

1 − ρ≤t
dt ,

where fS (·) is the probability density function of the service require-

ment distribution S.

Proof. See Appendix A.

Note that the first term of Theorem 5.4’s upper bound is the

mean waiting time of a job of size x under PSJF-1.

6 OPTIMALITY OF SRPT-k IN HEAVY
TRAFFIC

With the bound derived in Theorem 5.3, we can prove our main

result on the optimality of SRPT-k in the heavy-traffic limit. Theo-

rem 6.1will refer toE
[

T SRPT-k
]

, which is derived fromTheorem 5.3

by taking the expectation over possible sizes x .

Theorem6.1. In anM/G/k with any service requirement distribu-

tion S which is either (i) bounded or (ii) unbounded with tail function

of upper Matuszewska index6 less than −2,

lim
ρ→1

E
[

T SRPT-k
]

E
[

T SRPT-1
] = 1.

To prove Theorem 6.1, we start with a result from the literature

on the performance of SRPT-1 in the heavy-traffic limit [22].

Lemma 6.2. In an M/G/1 with any service requirement distribu-

tion S which is either (i) bounded or (ii) unbounded with tail function

of upper Matuszewska index less than −2,

lim
ρ→1

log
(

1
1−ρ

)

E
[

T SRPT-1
] = 0.

Proof. Follows immediately from results of Lin et al. [22]. See

Appendix C.

The next step in proving Theorem 6.1, is to use the bound on

T SRPT-k (x) provided by Theorem 5.3. Let H (x) be the bound on

E
[

T SRPT-k (x)
]

,

H (x) = E
[

W SRPT-1(x) + B≤x (2kx)
]

. (6.1)

By taking the expectation of drawing size x from the service re-

quirement distributionS , Theorem 5.3 implies E
[

T SRPT-k
]

≤ E[H (S)].

The following lemma shows that E[H (S)] approaches E
[

T SRPT-1
]

in the heavy-traffic limit.

Lemma 6.3. In an M/G/k with any service requirement distribu-

tion S which is either (i) bounded or (ii) unbounded with tail function

of upper Matuszewska index less than −2,

lim
ρ→1

E[H (S)]

E
[

T SRPT-1
] = 1.

6See Section 2.1 or Appendix B.
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Proof. We know E[H (S)] ≥ E
[

T SRPT-k
]

by Theorem 5.3, and

we know E
[

T SRPT-k
]

≥ E
[

T SRPT-1
]

by optimality of SRPT-1, so

E[H (S)]

E
[

T SRPT-1
] ≥ 1.

We thus only need to show

lim
ρ→1

E
[

H (S)
]

E
[

T SRPT-1
] ≤ 1.

BecauseW SRPT-1 ≤ T SRPT-1, by (6.1) it suffices to show

lim
ρ→1

E[B≤S (2kS)]

E
[

T SRPT-1
] = 0. (6.2)

Applying standard results for busy periods [15],

E[B≤S (2kS)] = 2kE

[

S

1 − ρ≤S

]

= 2k

∫ ∞

0

x fS (x)

1 − ρ≤x
dx,

where fS (·) is the probability density function of S . To compute

the integral, we make a change of variables from x to ρ≤x (see

Definition 4.3), which uses the following facts:

ρ≤x = λE[S1(S < x)] =

∫ x

0
λt fS (t)dt

dρ≤x

dx
= λx fS (x)

ρ≤0 = 0

lim
x→∞

ρ≤x = ρ.

Given this change of variables, we compute

E

[

S

1 − ρ≤S

]

=

∫ ∞

0

x fS (x)

1 − ρ≤x
dx

=

∫ ρ

0

1

λ(1 − ρ≤x )
dρ≤x

=

1

λ
ln

(

1

1 − ρ

)

= Θ

(

log

(

1

1 − ρ

))

.

This means E[B≤S (2kS)] = Θ(log(1/(1− ρ))), so (6.2) follows from

Lemma 6.2. �

Armed with Theorem 5.3 and Lemma 6.3, we are now prepared

to prove our main result, Theorem 6.1.

Proof of Theorem 6.1. Because SRPT-1minimizes mean response

time, it suffices to show that

lim
ρ→1

E
[

T SRPT-k
]

E
[

T SRPT-1
] ≤ 1,

which follows immediately from Theorem 5.3 and Lemma 6.3. �

Theorem 6.1 and the optimality of SRPT-1 imply that SRPT-k is

optimal in the heavy-traffic limit.

Corollary 6.4. In an M/G/k with any service requirement dis-

tribution S which is either (i) bounded or (ii) unbounded with tail

function of upper Matuszewska index less than −2,

lim
ρ→1

E
[

T SRPT-k
]

E
[

T P
] ≤ 1

for any scheduling policy P.

Recall from (6.1) that Theorem5.3 implies E
[

T SRPT-k
]

≤ E[H (S)].

Similarly, letting

I (x) =

∫ x

0
λt2 fS (t)dt

2(1 − ρ≤x )2
+

kρ≤xx

1 − ρ≤x
+

∫ x

0

k

1 − ρ≤t
dt ,

Theorem 5.4 implies E
[

T SRPT-k
]

≤ E[I (S)]. Lemma 6.3 and the op-

timality of SRPT-1 imply that these bounds on SRPT-k’s mean re-

sponse time are tight as ρ → 1.

Corollary 6.5. In an M/G/k with any service requirement dis-

tribution S which is either (i) bounded or (ii) unbounded with tail

function of upper Matuszewska index less than −2,

lim
ρ→1

E[H (S)]

E
[

T SRPT-k
] = lim

ρ→1

E[I (S)]

E
[

T SRPT-k
] = 1.

Proof. After applying Theorem 5.3, Lemma 6.3, and the opti-

mality of SRPT-1, we know that

lim
ρ→1

E[H (S)]

E
[

T SRPT-k
] = 1.

All that remains is to show I (x) ≤ H (x). This holds because
∫ x

0
λt2 fS (t)dt

2(1 − ρ≤x )2
≤ E

[

W SRPT-1(x)
]

by the standard analysis ofW SRPT-1(x) [29], and

kρ≤xx

1 − ρ≤x
+

∫ x

0

k

1 − ρ≤t
dt ≤

2kx

1 − ρ≤x
= E[B≤x (2kx)]. �

As an illustration of the optimality of SRPT-k , we plot the ratio

E
[

T SRPT-k
]

/E
[

T SRPT-1
]

in Figure 6.1. The solid orange lines show

simulation results for this ratio. For the dashed blue lines, we used

our analysis from Theorem 5.4 as an upper bound on E
[

T SRPT-k
]

,

and divided by the known results for E
[

T SRPT-1
]

. The important

feature to notice in Figure 6.1 is that as system load ρ approaches 1,

both our analytic bound and the simulation converge to 1.

7 OTHER SCHEDULING POLICIES

We generalize our analysis to give the first response time bounds

on several additional multiserver scheduling policies. Using the

bounds, we prove optimality results for each policy as ρ → 1. For

each policy P , we generalize the usual single-server policy, written

P-1, to a multiserver policy for k servers, written P-k , by preemp-

tively serving the k jobs with highest priority at any time.

• Preemptive Shortest Job First (PSJF) prioritizes the jobs with

smallest original size. PSJF achieves performance compara-

ble to SRPT despite not tracking every job’s age [15].

• Remaining Size Times Original Size (RS) prioritizes the jobs

with the smallest product of original size and remaining size.

RS is also known as Size Processing Time Product (SPTP).

RS is optimal for minimizing mean slowdown [18].

• Foreground-Background (FB) prioritizes the jobs with small-

est age, meaning the jobs that have been served the least so

far. FB is also known as Least Attained Service (LAS). When

the service requirement distribution has decreasing hazard

8
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The plots above show the ratio E
[

T SRPT-k
]

/E
[

T SRPT-1
]

. Observe that as ρ → 1, both our bound and the simulation converge to a ratio of 1. Our simulations

of this ratio are the solid orange curves. Our analytic upper bounds derived in Theorem 5.4 are the dashed blue curves. We use k = 10 servers. The service

requirement distribution S is Uniform(0, 2) in the left plot and a Hyperexponential distribution with E[S ] = 1 andC2
= 10 in the right plot. We only simulate

up to ρ = 0.9975 due to long convergence times.

Figure 6.1: Convergence of mean response time ratio

rate, FB minimizes mean response time among all schedul-

ing policies that do not have access to job sizes [26].

We give the first response time bounds for PSJF-k , RS-k and FB-k .

We then use these bounds to prove the following optimality results,

under mild assumptions on the service requirement distribution:

• In the ρ → 1 limit, PSJF-k and RS-k minimize mean re-

sponse time among all scheduling policies (see Theorems 7.3

and 7.6).

• In the ρ → 1 limit, FB-k minimizes mean response time

under the same conditions as FB-1 (see Theorem 7.13).

Our analyses follow the same steps as in Section 5.

• Use the four categories of work to bound the response time

of the tagged job j in terms of virtual work and steady-state

relevant work.

• Bound virtual work.

• Bound steady-state relevant work.

Because different scheduling policies prioritize jobs differently, we

use a different definition of “relevant jobs” for each policy. Under

PSJF-k and RS-k , the definition of relevant jobs is very similar to

that for SRPT-k , allowing us to use familiar tools such as relevant

busy periods B≤x (·). However, FB-k uses a somewhat different def-

inition of relevant jobs, resulting in a few changes to the analysis.

Finally, in Section 7.4, we discuss why our technique does not

generalize to the First-Come, First-Served (FCFS) scheduling pol-

icy.

7.1 Preemptive Shortest Job First (PSJF-k)

As usual, we consider a tagged job j of size x . Under PSJF-k , an-

other job ℓ is relevant to j if ℓ has original size at most x . With

this definition of relevance, we divide work into the same four cat-

egories as in Section 5, namely tagged, old, new, and virtual. This

bounds the response time of j by

T PSJF-k ≤st B≤x

(

x + RelWork
PSJF-k
≤x + VirtWorkPSJF-k (x)

)

. (7.1)

The proof of Lemma 5.1 works nearly verbatim for PSJF-k , so

VirtWorkPSJF-k (x) ≤ (k − 1)x . (7.2)

The analysis of steady-state relevant work is similar to that in

Section 5.2.We consider a pair of systems experiencing the same ar-

rival sequence: System 1, which uses PSJF-1, and System k , which

uses PSJF-k . We define ∆PSJF-k
≤x (t) to be the difference between the

amounts of relevant work in the two systems at time t . We then

bound ∆
PSJF-k
≤x (t).

Lemma 7.1. The difference in relevant work between Systems 1

and k is bounded by

∆
PSJF-k
≤x (t) ≤ (k − 1)x .

Proof. We define few-jobs intervals andmany-jobs intervals as

in Section 5.2. The case where t is in a few-jobs interval is simple:

there are at most k − 1 relevant jobs in System k at time t , each of

remaining size at most x , so

∆
PSJF-k
≤x (t) ≤ (k − 1)x .

Suppose instead that t is in a many-jobs interval. Let time s be

the start of the many-jobs interval containing t . By essentially the

same argument as in the proof of Lemma 5.2,7

∆
PSJF-k
≤x (t) ≤ ∆

PSJF-k
≤x (s).

It thus suffices to show ∆
PSJF-k
≤x (s) ≤ (k−1)x . The only way a many-

jobs interval can start under PSJF-k is for a relevant job to arrive

7In fact, the argument for PSJF is slightly simpler than that for SRPT, because irrele-
vant jobs never become relevant under PSJF.

9
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while System k has k − 1 relevant jobs. The same arrival occurs in

System 1, so

∆
PSJF-k
≤x (s) = ∆

PSJF-k
≤x (s−) ≤ (k − 1)x

because s−, the instant before s , is in a few-jobs interval. �

Theorem 7.2. In an M/G/k, the response time of a job of size x

under PSJF-k is bounded by

T PSJF-k (x) ≤st W
PSJF-1(x) + B≤x ((2k − 1)x).

Proof. By (7.1), (7.2), and Lemma 7.1,

T PSJF-k (x) ≤st B≤x
(

RelWork
PSJF-1
≤x + (2k − 1)x

)

= B≤x
(

RelWork
PSJF-1
≤x

)

+ B≤x (2k − 1).

The waiting time in PSJF-1 is

W PSJF-1(x) = B≤x
(

RelWork
PSJF-1
≤x

)

,

giving the desired bound. �

With the bound derived in Theorem 7.2, we can prove that PSJF-

k also minimizes mean response time in the heavy-traffic limit.

Theorem 7.3. In anM/G/kwith any service requirement distribu-

tion S which is either (i) bounded or (ii) unboundedwith tail function

of upper Matuszewska index8 less than −2,

lim
ρ→1

E
[

T PSJF-k
]

E
[

T SRPT-1
] = 1.

Proof. From Theorem 7.2, we know that

T PSJF-k (x) ≤stW
PSJF-1(x) + B≤x ((2k − 1)x)

However,W PSJF-1(x) ≤stW
SRPT-1(x) [33]. Therefore,

T PSJF-k (x) ≤st W
SRPT-1(x) + B≤x ((2k − 1)x)

≤st W
SRPT-1(x) + B≤x (2kx)

This bound on T PSJF-k (x) is the same as the bound on T SRPT-k (x)

given in Theorem 5.3. The rest of the proof proceeds as in the proof

of Theorem 6.1. �

As in Corollary 6.4, Theorem 7.3 and the optimality of SRPT-1

imply that PSJF-k is optimal in the heavy-traffic limit.

7.2 Remaining Size Times Original Size (RS-k)

As usual, we consider a tagged job j of size x . When j has remain-

ing size y, another job ℓ is relevant to j if the product of ℓ’s original

size and remaining size is at most xy. In particular, if ℓ is relevant

to j, then ℓ’s remaining size is at most x . With this definition of

relevance, we divide work into the same four categories as in Sec-

tion 5, namely tagged, old, new, and virtual. This bounds the re-

sponse time of j by

TRS-k ≤st B≤x

(

x + RelWorkRS-k≤x + VirtWork
RS-k (x)

)

. (7.3)

The proof of Lemma 5.1 works nearly verbatim for RS-k , so

VirtWorkRS-k (x) ≤ (k − 1)x . (7.4)

The analysis of steady-state relevant work is similar to that in

Section 5.2. We consider a pair of systems experiencing the same

8See Section 2.1 or Appendix B.

arrival sequence: System 1, which uses RS-1, and System k , which

uses RS-k . We define ∆
RS-k
≤x (t) to be the difference between the

amounts of relevant work in the two systems at time t . We then

bound ∆
RS-k
≤x (t).

Lemma 7.4. The difference in relevant work between Systems 1

and k is bounded by

∆
RS-k
≤x (t) ≤ kx .

Proof. Even though RS uses a definition of relevant jobs differ-

ent from SRPT’s, the proof is analogous to that of Lemma 5.2. �

Theorem 7.5. In an M/G/k, the response time of a job of size x

under RS-k is bounded by

TRS-k (x) ≤stW
RS-1(x) + B≤x ((2k − 1)x).

Proof. By (7.3), (7.4), and Lemma 7.4,

TRS-k (x) ≤st B≤x
(

RelWorkRS-1≤x + 2kx
)

≤st B≤x
(

RelWorkRS-1≤x

)

+ B≤x (2kx).

The waiting time in RS-1 is

W RS-1(x) = B≤x
(

RelWork
PSJF-1
≤x

)

,

giving the desired bound. �

With the bound derived in Theorem 7.5, we can prove that RS-k

also minimizes mean response time in the heavy-traffic limit.

Theorem7.6. In anM/G/k with any service requirement distribu-

tion S which is either (i) bounded or (ii) unbounded with tail function

of upper Matuszewska index9 less than −2,

lim
ρ→1

E
[

TRS-k
]

E
[

T SRPT-1
] = 1.

Proof. From Theorem 7.5, we know that

TRS-k (x) ≤stW
RS-1(x) + B≤x (2kx)

However,W RS-1(x) ≤stW
SRPT-1(x) [33]. Therefore,

TRS-k (x) ≤st W
SRPT-1(x) + B≤x (2kx)

This bound on TRS-k (x) is the same as the bound on T SRPT-k (x)

given in Theorem 5.3. The rest of the proof proceeds as in the proof

of Theorem 6.1. �

As in Corollary 6.4, Theorem 7.6 and the optimality of SRPT-1

imply that RS-k is optimal in the heavy-traffic limit.

We have so far shown response time bounds for SRPT-k , PSJF-

k , and RS-k that are strong enough to prove asymptotic optimality

in heavy traffic. We conjecture that similar bounds and optimality

results hold for multiserver variants of any policy in the SMART

class [33], which includes SRPT, PSJF, and RS.

9See Section 2.1 or Appendix B.
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7.3 Foreground-Background (FB-k)

The analysis of FB-k proceeds similarly to the analysis of SRPT-k

but with a few more changes than were needed for PSJF-k and RS-

k . To analyze PSJF-k and RS-k , we followed the same outline as

Section 5 with a small change to the definition of relevant jobs. In

particular, we reused the notion of relevant busy periods B≤x (·)

from Definition 4.3. In contrast, as we will see shortly, FB-k has a

significantly different definition of relevant jobs, so the definition

of relevant busy periods will also change.

As usual, we consider a tagged job j of size x . Recall that FB pri-

oritizes the jobs of smallest age, or attained service. When j arrives,

its age is 0, so it has priority over all other jobs in the system. How-

ever, as j is served, its age increases and its priority gets worse. The

key to the usual single-server analysis of FB is that to define rele-

vant work, we have to look at j’s worst future priority [15, 28, 30].

This worst priority occurs when j has age x , an instant before com-

pletion, giving us the following definition of relevant jobs.

Definition 7.7. Suppose job j has original size x . Under FB-k , a

job ℓ is relevant to job j if ℓ has age at most x . Otherwise ℓ is irrel-

evant to j.

There is an important difference between the notions of rele-

vance for SRPT-k and FB-k . Under SRPT-k , each arriving job starts

as either relevant or irrelevant to j and remains that way for j’s en-

tire time in the system. In contrast, under FB-k , every new arrival

is at least temporarily relevant to j. Specifically, if a new arrival ℓ

has size at most x , then ℓ is relevant to j for its entire time in the

system. If ℓ instead has size greater than x , then ℓ is relevant to j

only until it reaches age x , at which point it becomes irrelevant.

This observation motivates the definition of relevant busy periods

for FB-k .

Definition 7.8. Under FB-k , a relevant busy period for a job of

sizex started by (possibly random) amount ofworkV , writtenBx (V ),

is the amount of time it takes for a work-conserving system that

starts withV work to become empty, where every arrival’s service

is truncated at age x. A relevant busy period has expectation

E[Bx (V )] =
E[V ]

1 − ρx
.

Above, ρx is the relevant load for a job of size x , which is the total

load due to relevant jobs. Its value is

ρx = λE[min(S,x)],

because each arrival is relevant only until it reaches age x .

We make a similar modification to the definition of steady-state

relevant work.

Definition 7.9. The steady-state relevant work for a job of size x

under FB-k , written RelWorkFB-k
x

, is the sum of remaining trun-

cated sizes of all jobs observed at a random point in time. A job’s

remaining truncated size is the amount of time until it either com-

pletes or reaches age x .

Armed with Definitions 7.7, 7.8, and 7.9, we divide work into

the same four categories as in Section 5, namely tagged, old, new,

and virtual. This bounds the response time of j by

T FB-k ≤st Bx

(

x + RelWorkFB-k
x
+ VirtWorkFB-k (x)

)

. (7.5)

The proof of Lemma 5.1 works nearly verbatim for FB-k , so

VirtWorkFB-k (x) ≤ (k − 1)x . (7.6)

The analysis of steady-state relevant work is similar to that in

Section 5.2. We consider a pair of systems experiencing the same

arrival sequence: System 1, which uses FB-1, and System k , which

uses PSJF-k . We define ∆
FB-k
x

(t) to be the difference between the

amounts of relevant work in the two systems at time t . We then

bound ∆
FB-k
x

(t).

Lemma 7.10. The difference in relevant work between Systems 1

and k is bounded by

∆
FB-k
x

(t) ≤ (k − 1)x .

Proof. Even though FB uses a definition of relevant jobs differ-

ent from PSJF’s,10 the proof is analogous to that of Lemma 7.1. �

Theorem 7.11. In an M/G/k, the response time of a job of size x

under FB-k is bounded by

T FB-k (x) ≤st Bx
(

RelWorkFB-k
x
+ (2k − 1)x

)

.

Proof. Combining (7.5), (7.6), and Lemma 7.10 yields the de-

sired bound. �

Note that the waiting time under FB-1 is always zero, as a new

job immediately receives service, so we do not phrase the bound

in terms of waiting time.

With the bound derived in Theorem 7.5, we can prove that the

mean response time of FB-k approaches that of FB-1 in the heavy-

traffic limit. Wemake use of prior work on the mean response time

of FB in heavy traffic [19]. Let

W (x) = E[Bx (RelWork
FB-k
x

)]

R(x) = E[Bx (x)].

W (x) and R(x) are not the mean waiting and residence times of

a job of size x under FB because waiting time is always zero, but

they play roughly analogous roles in the standard analysis of FB

[30, Section 5].

Lemma 7.12. In an M/G/1 with any service requirement distribu-

tion S which is unbounded with tail function of upper Matuszewska

index11 less than −2,

lim
ρ→1

E[R(S)]

E
[

T FB-1
] = 0.

Proof. Follows immediately from results of Kamphorst and Zwart

[19]. See Appendix D.

Theorem 7.13. In an M/G/k with any service requirement distri-

bution Swhich is unboundedwith tail function of upperMatuszewska

index less than −2,

lim
ρ→1

E
[

T FB-k
]

E
[

T FB-1
] = 1.

10We draw an analogy with PSJF rather than SRPT because under both FB and PSJF,
irrelevant jobs never become relevant.
11See Section 2.1 or Appendix B.
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Proof. The standard analysis of FB-1 [15, 28] shows

E
[

T FB-1]
= E[W (S)] + E[R(S)],

whereas Theorem 7.11 implies

E
[

T FB-k ] ≤ E[W (S)] + (2k − 1)E[R(S)],

so the result follows by Lemma 7.12. �

Righter and Shanthikumar [26] show that when the job size dis-

tribution S has decreasing hazard rate, FB-1 is optimal for minimiz-

ing response time among all scheduling policies that do not have

access to job sizes. Theorem 7.13 implies that in the heavy-traffic

limit, FB-k is optimal in the same setting.12

Corollary 7.14. In an M/G/k with any service requirement dis-

tribution S which (a) is unbounded, (b) has decreasing hazard rate,

and (c) has tail function of upper Matuszewska index less than −2,

lim
ρ→1

E
[

T FB-1
]

E
[

T P
] ≤ 1

for any scheduling policy P that does not have access to job sizes.

7.4 What about First-Come, First-Served?

Having seen the success of our modified tagged job analysis for a

variety of policies, it is natural to ask: does a similar analysis work

for the multiserver First-Come, First-Served policy (FCFS-k)?

Unfortunately, our technique does not work for FCFS-k . To see

why, let us take a look at what our analyses of SRPT-k , PSJF-k , RS-k ,

and FB-k have in common. A central component of all four anal-

yses is bounding the difference in relevant work between two sys-

tems experiencing the same arrival sequence, one using a single-

server policy P-1 and another using its k-server variant P-k . These

bounds are given in Lemmas 5.2, 7.1, 7.4, and 7.10. All four lemmas

have similar two-step proofs.

• First, they bound the number of relevant jobs both during

few-jobs intervals and at the start of many-jobs intervals.

For all four policies, this bound is at most k .

• Second, they bound the relevant work contributed by each

relevant job. For all four policies, this bound is x .

When we try to prove analogous bounds for FCFS-k , we can still

bound the number of relevant jobs by k , but the relevant work con-

tributed by each relevant job is unbounded.

The definition of relevant jobs is the crucial difference between

FCFS-k and the policies we analyze. Consider the jobs relevant to

a tagged job j of size x .

• Under SRPT-k , PSJF-k , and RS-k , only some jobs are relevant

to j, and all such jobs have size at most x .

• Under FB-k , while all jobs might be relevant to j, they are

only temporarily relevant, each contributing at most x rele-

vant work.

• However, under FCFS-k , all jobs in the system when j ar-

rives are permanently relevant to j.

12It has been claimed that FB-k is optimal for arbitrary arrival sequences when the
service requirement distribution has decreasing hazard rate [35, Theorem 2.1]. How-
ever, the proof has an error. See Appendix E.

This means that if the service requirement distribution S is un-

bounded, our worst-case technique is insufficient for bounding the

difference in relevant work between FCFS-1 and FCFS-k .

8 CONCLUSION

We give the first stochastic bound on the response time of SRPT-k

(see Section 5). Using this bound, we show that SRPT-k has asymp-

totically optimal mean response time in the heavy-traffic limit (see

Section 6). We generalize our analysis to give the first stochastic

bounds on the response times of the PSJF-k , RS-k and FB-k policies,

and we use these bounds to prove asymptotic optimality results for

all three policies (see Section 7).

To achieve these results, we strategically combine stochastic

and worst-case techniques. Specifically, we obtain our bounds us-

ing a modified tagged job analysis. Traditional tagged job analyses

for single-server systems rely on properties that do not hold in

multiserver systems, notably work conservation. To make tagged

job analysis work for multiple servers, we use two key insights.

• We introduce the concept of virtual work (see Section 5),

which makes the system appear work-conserving while the

tagged job is in the system. We give a worst-case bound for

virtual work.

• We compare the multiserver system with a single-server sys-

tem of the same service capacity. We show that even in the

worst case, the steady state amount of relevant work under

SRPT-k is close to the steady state amount of relevant work

under SRPT-1.

Applying these two insights to the tagged job analysis gives a sto-

chastic expression bounding response time.

One direction for future work is to apply our technique to a

broader range of scheduling policies. In particular, we conjecture

that out results generalize to the SMART class of policies [33],

which includes SRPT, PSJF, and RS. Another direction is to im-

prove our response time bounds under low system load. While our

bounds are valid for all loads, they are only tight for load near ca-

pacity.
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A IMPROVED SRPT-k BOUND

Theorem 5.4. In an M/G/k, the mean response time of a job of

size x under SRPT-k is bounded by

E
[

T SRPT-k (x)
]

≤

∫ x

0
λt2 fS (t)dt

2(1 − ρ≤x )2
+

kρ≤xx

1 − ρ≤x
+

∫ x

0

k

1 − ρ≤t
dt ,

where fS (·) is the probability density function of the service require-

ment distribution S.

Proof. We will prove Theorem 5.4 by proving improved ver-

sions of (5.1) and Lemma 5.2.

A key element of our analysis is bounding the amount of new

work done while the tagged job j of size x is in the system. In (5.1),

we bound this quantity by a relevant busy period with size cutoff x .

However, in reality, the size cutoff decreases as j receives service.

We can use this to give a tighter bound on the amount of new work

performed.

Let r j be the amount of relevant work seen by j on arrival. Note

that r j is also the amount of old work that will be done while j is

in the system.

Starting from the time of j’s arrival, after at most B≤x (r j ) time,

j must enter service. During this busy period, an amount of work

is performed equal to r j plus all arrivals during this busy period.

More generally, for any amount of time s ≤ x , after at most a

relevant busy period started by r j + ks work, j must have received

s service. This holds because even if the servers finish all the old

work and all the new work that has arrived so far, the servers must

still complete ks combined tagged and virtual work. Of this tagged

and virtual work, at least s must be tagged work, namely serving j.

This means that the first dt service of j must be completed by time

B≤x (r j ) + B≤x (k · dt).

The next dt service of j must be completed by time

B≤x (r j ) + B≤x (k · dt) + B≤x−dt (k · dt),

because the cutoff for entering the relevant busy period decreases

as j receives service. Similarly, the following dt service of j must

be completed by time

B≤x (r j ) + B≤x (k · dt) + B≤x−dt (k · dt) + B≤x−2dt (k · dt).

This pattern continues as j receives service. The descending size

cutoff yields the same sort of relevant busy period as in the tradi-

tional tagged job analysis of SRPT-1 [29]. Recalling that r j is drawn

from the distribution RelWorkSRPT-k≤x yields the following bound on

the mean response time of j:

T SRPT-k (x) ≤ B≤x
(

RelWorkSRPT-k≤x

)

+

∫ x

0
B≤t (k · dt). (A.1)

With (A.1), we have improved upon (5.1).
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Next, we will improve upon Lemma 5.2. We consider a pair of

systems experiencing the same arrival sequence: System 1, which

uses PSJF-1, and System k , which uses SRPT-k .

Recall from Section 7.1 that under PSJF-1, a job ℓ is relevant to j

if ℓ has original size at most x . In contrast, under SRPT-k , a job ℓ

is relevant to j if ℓ has remaining size at most x .

We define ∆
′
≤x (t) to be the difference between the amounts

of relevant work in the two systems at time t . Using Lemma A.1

(proof deferred), we obtain a bound on∆′
≤x (t) tighter than the anal-

ogous bound in Lemma 5.2.

Lemma A.1. The difference in relevant work between Systems 1

and k is bounded by

∆
′
≤x (t) ≤ x · RelBusy

(k)
≤x (t)

where RelBusy
(k)
≤x (t) is the number of servers in System k which are

busy with relevant work at time t.

Proof. We define few-jobs intervals and many-jobs intervals

as in Section 5.2. Note that RelBusy
(k)
≤x (t) = k during a many-jobs

interval, and that RelBusy
(k)
≤x (t) is the number of jobs in the system

during a few-jobs interval.

The case where t is in a few-jobs interval is simple: there are

exactly RelBusy
(k)
≤x (t) jobs in System k at time t , each of remaining

size at most x , so

∆
′
≤x (t) ≤ x · RelBusy

(k)
≤x (t).

Suppose instead that t is in a many-jobs interval, in which case

RelBusy
(k)
≤x (t) = k . Let time s be the start of the many-jobs in-

terval containing t . Over the interval [s, t], the same amount of

relevant work arrives in both systems, because relevant arrivals

are the same under SRPT and PSJF. Upon arrival a job’s original

and remaining sizes are equal. The other two categories of rele-

vant work over the interval follow the same arguments as in the

proof of Lemma 5.2. Thus,

∆
′
≤x (t) ≤ ∆

′
≤x (s).

It therefore suffices to show ∆
′
≤x (s) ≤ kx . As in Lemma 5.2, a

many-jobs interval can begin due to the arrival of a relevant job,

or due an irrelevant job in System k becoming relevant. In the case

of an arrival, the same arrival occurs in System 1, and must be

relevant in System 1, so

∆
′
≤x (s) = ∆≤x (s

−) ≤ (k − 1)x,

because s−, the instant before s , is in a few-jobs interval. In the

case of an irrelevant job in System k becoming relevant, by the

same argument as in the proof of Lemma 5.2,

∆
′
≤x (s) ≤ RelWork

(k)
≤x (s) ≤ kx . �

Continuing the proof of Theorem 5.4, we are now ready to prove

the stronger bound. From (A.1), we know

T SRPT-k (x) ≤ B≤x
(

RelWorkSRPT-k≤x

)

+

∫ x

0
B≤t (k · dt).

By plugging in Lemma 5.1 and Lemma A.1, we find that

T SRPT-k (x)

≤ B≤x
(

RelWork
PSJF-1
≤x + x · RelBusySRPT-k≤x

)

+

∫ x

0
B≤t (k · dt)

= B≤x
(

RelWork
PSJF-1
≤x

)

+ B≤x
(

x · RelBusySRPT-k≤x

)

+

∫ x

0
B≤t (k · dt)

=W PSJF-1(x) + B≤x
(

x · RelBusySRPT-k≤x

)

+

∫ x

0
B≤t (k · dt),

where RelBusySRPT-k≤x is the steady state number of servers which

are busy with relevant jobs under SRPT-k . Taking expectations

yields

E
[

T SRPT-k (x)
]

≤ E
[

W PSJF-1(x)
]

+ E
[

B≤x
(

x · RelBusySRPT-k≤x

) ]

+

∫ x

0
E[B≤t (k · dt)].

From the literature [33], we know that

E
[

W PSJF-1(x)
]

=

∫ x

0
λt2 fS (t)dt

2(1 − ρ≤x )2
.

By the expectation of a relevant busy period, from Definition 4.3,
∫ x

0
E[B≤t (k · dt)] =

∫ x

0

k

1 − ρ≤t
dt .

Similarly,

E
[

B≤x
(

x · RelBusySRPT-k≤x

) ]

=

E
[

x · RelBusySRPT-k≤x

]

1 − ρ≤x
.

The average rate at which the SRPT-k system performs relevant

work is E
[

RelBusySRPT-k≤x

]

/k , since each busy server does work at

rate 1/k . Because the system is stable, the rate at which relevant

work is done must equal the rate at which relevant work enters the

system, namely ρ≤x . Thus, E
[

RelBusySRPT-k≤x

]

= kρ≤x , so

E
[

B≤x
(

x · RelBusySRPT-k≤x

) ]

=

kρ≤xx

1 − ρ≤x
,

yielding the desired bound. �

B MATUSZEWSKA INDEX

Theheavy-traffic results in this paper, such as Theorem 6.1, assume

that the service requirement distribution S is not too heavy-tailed.

Specifically, we require that either S is bounded or that the upper

Matuszewska index of the tail of S is less than −2. This is slightly

stronger than assuming that S has finite variance. The formal def-

inition of the upper Matuszewska index is the following.

Definition B.1. Let f be a positive real function. The upper Ma-

tuszewska index of f , written M(f ), is the infimum over α such

that there exists a constant C such that for all γ > 1,

lim
x→∞

f (γx)

f (x)
≤ Cγα .

Moreover, for all Γ > 1, the convergence as x → ∞ above must be

uniform in γ ∈ [1, Γ].
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The condition M(FS ) < −2, where FS is the tail of S , is intu-

itively close to saying that FS (x) ≤ Cx−2−ϵ for some constant C

and some ϵ > 0. Roughly speaking, this means that S has a lighter

tail than a Pareto distribution with α = 2.

C SRPT-1 IN HEAVY TRAFFIC

Lemma 6.2. In an M/G/1 with any service requirement distribu-

tion S which is either (i) bounded or (ii) unboundedwith tail function

of upper Matuszewska index13 less than −2,

lim
ρ→1

log
(

1
1−ρ

)

E
[

T SRPT-1
] = 0.

Proof. Lin et al. [22] show in their Theorem1 that if S is bounded,

then

E
[

T SRPT-1]
= Θ

(

1

1 − ρ

)

,

proving case (i). They also show in their Theorem 2 that if the

upper Matuszewska index of the tail of S is less than −2, then

E
[

T SRPT-1
]

= Θ

(

1

(1 − ρ)G−1(ρ)

)

,

where G−1(·) is the inverse of G(x) = ρ≤x/ρ. In their proof of

Theorem 2, they also show that

lim
ρ→1

log

(

1

1 − ρ

)

· (1 − ρ)G−1(ρ) = 0,

proving case (ii). �

D FB-1 IN HEAVY TRAFFIC

Lemma 7.12. In an M/G/1 with any service requirement distribu-

tion S which is unbounded with tail function of upper Matuszewska

index less than −2,

lim
ρ→1

E[R(S)]

E
[

T FB-1
] = 0.

Proof. Recall that

W (x) = E[Bx (RelWork
FB-k
x

)]

R(x) = E[Bx (x)].

The standard analysis of FB-1 [15, 28] shows

E
[

T FB-1]
= E[W (S)] + E[R(S)].

Kamphorst and Zwart [19, Equation (4.3)] decompose E
[

T FB-1
]

into a sum of three functions of the load ρ,

E
[

T FB-1
]

= X (ρ) + Y (ρ) + Z (ρ),

such that

E[W (S)] = Z (ρ) +
1

2
Y (ρ)

E[R(S)] = X (ρ) +
1

2
Y (ρ).

Kamphorst and Zwart [19, Section 4.1.1] then show that

lim
ρ→1

X (ρ)

Z (ρ)
= lim

ρ→1

Y (ρ)

Z (ρ)
= 0,

13See Section 2.1 or Appendix B.

which implies the desired limit

lim
ρ→1

E[R(S)]

E
[

T FB-1
] = lim

ρ→1

X (ρ) + 1
2Y (ρ)

X (ρ) + Y (ρ) + Z (ρ)
= 0. �

E FLAWED INTERCHANGE ARGUMENTS

Down and Wu [11, Theorem 2.1] claim that SRPT-k is optimal in

the sense of minimizing the completion time of the nth job for all

n, under the additional assumption that all servers are busy at all

times. Unfortunately, this claim is false. The proof attempts to use

an interchange argument, mimicking the classic proof of the opti-

mality of SRPT-1 [27]. However, the specified interchange can re-

sult in the same job running on two servers simultaneously, which

is of course not possible.

A concrete counterexample is the following: let k = 2, and let

jobs of size 1, 1, 2 and 2 arrive at time 0. Recall that a job of size

x must be in service for kx time to complete. SRPT-k completes

its third job at time 6, while a policy which serves a job of size 2

over the interval [0, 4) and jobs of size 1 over the intervals [0, 2)

and [2, 4) would finish its third job at time 4. Moreover, more com-

plicated counterexamples exist which show that multiserver SRPT

does not minimize mean response time even if all servers are busy

at all times.

A similar error occurs in a claim by Wu and Down [35, The-

orem 2.1] that FB-k is optimal among policies that do not have

access to job size information when the service requirement dis-

tribution has decreasing hazard rate. Again the proof given is an

interchange argument, and again the specified interchange can re-

sult in the same job running on two servers simultaneously.
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