
Scalable analytical model for reliability measures in
aging VLSI by interacting Markovian agents

Davide Cerotti1, Antonio Miele2, Marco Gribaudo2, Andrea Bobbio1,
Cristiana Bolchini2

1DiSit - Università Piemonte Orientale, Alessandria, Italy;
2DEIB - Politecnico di Milano, Milano, Italy

Abstract

Aging phenomena in VLSI are enhanced by the shrinkage in transistor dimension
with consequent increase in operating temperature and current density, and
are now recognized as a major cause in the reduction of the chip lifetime and
reliability.

The present study proposes an analytical framework based on Markovian
Agent Model (MAM), able to capture aging effects in VLSI systems, while con-
sidering at the same time the interactions between VLSI elements as a function
of their local position on the chip and the dynamic redistribution of the work-
load with the progressive failure of components. The paper presents the MAM
formalism and how a fairly general aging model can be built with this formalism.
The flexibility and the effectiveness of the model are illustrated by computing
performance-reliability related measures on two case studies with a different
flavor: a Multi-Core System-on-Chip and a Solid state Drive.

Keywords: Modeling, reliability evaluation, VLSI aging, MCSoC, SSD

1. Introduction

Aging phenomena in semiconductor materials and devices have been recog-
nized and studied since the early stages of the Integrated Circuit manufactur-
ing, as documented, for instance, by the IEEE Annual International Reliability
Physics Symposium (IRPS) [20] whose first venue was in 1962.

In the past decades, the aggressive advances in chip manufacturing process
has led to shrink the dimension of transistors to tens of nanometers worsen-
ing several aging mechanisms that are now a major challenge in VLSI useful
life [25, 36]. At the same time, the advances in technology scaling has en-
abled the integration of several processing elements within the same chip, with

Email address: 1[andrea.bobbio, davide.cerotti]@uniupo.it,
2[cristiana.bolchini, marco.gribaudo, antonio.miele]@polimi.it (Davide Cerotti1,
Antonio Miele2, Marco Gribaudo2, Andrea Bobbio1, Cristiana Bolchini2)

Preprint submitted to Elsevier February 27, 2019



a considerable increase in the current densities, and in turn, in the operating
temperatures. These effects have caused detrimental interaction effects among
adjacent elements in the chip with considerable drawback in terms of devices’
lifetime and reliability. As reported in the International Technology Roadmap
for Semiconductors (ITRS) in 2011 [22], the temperature increase is the primary
cause of an acceleration in device aging and wear-out phenomena, including
electromigration (EM), time dependent dielectric breakdown (TDDB), nega-
tive bias temperature instability (NBTI) and thermal cycling (TC). Multi-Core
Systems-on-Chips (MCSoCs) are heavily utilized in modern digital equipment
at any level of complexity, and the analysis of MCSoCs reliability has been the
object of several studies in recent years [40, 18, 43, 4]. The dramatic decrease of
the lifetime of digital computing systems based on MCSoCs has pushed the fo-
cus on the performance and reliability of such devices. The studies have shown
that the system-level design choices (e.g., mapping and scheduling, workload
distribution, utilization levels) have a macroscopic impact on the chip lifetime
higher than circuit-level reliability enhancing techniques [43, 35].

In the area of permanent computer storage devices, the nonvolatile storage
technology based on NAND gates coupled with manufacturing scaling, has made
it possible to increase the storage density and to reduce the storage cost per bit
allowing the flash-memory Solid State Drives (SSDs) to compete with traditional
magnetic HD technology. However, flash cells degrade at any Program/Erase
(PE) cycle, until the cell is no longer readable with detrimental effects on the
memory reliability and endurance [11, 34, 33, 38]. To mitigate the effect of
cell degradation on the SSD lifetime various wear-leveling techniques have been
implemented to balance the number of erasures on the memory blocks [12, 17] so
extending the life span of the drive, although introducing mutual dependences
among the memory blocks [42, 37].

This paper defines a fairly general analytical model for the quantitative eval-
uation of performance- and reliability-related measures in large VLSI systems
affected by aging phenomena, and we apply it to two study cases. The proposed
analytical model is based on the formalism of Markovian Agent Model (MAM)
[5, 6, 2]. A MAM is a collection of Markovian Agents (MAs), where an MA is a
finite-state stochastic model governed by an infinitesimal generator kernel that
contains local transition rates and transition rates induced by the interaction
with the other MAs. Furthermore, MAs are located in a defined geographical
space, so that their local properties and the interaction induced mechanisms
may depend on their relative positions.

The overall MAM model may combine MAs representing the VLSI elements
(core or memory blocks) and their mutual interaction and MAs representing the
aging mechanism and its effect on the VLSI elements. Each MA can capture
physical characteristics of the VLSI element and how these characteristics are
influenced by the interaction with the other elements and with the aging mech-
anisms. Further, the MAM can account for system-level design choices that
have a considerable impact on the system endurance. A preliminary study of a
MAM for a MCSoC has been presented in [1] showing how the reliability of such
a kind of system is influenced by the variations of temperature and workload in

2



caused by the redistribution of applications when a core failure occurs and by
the interaction among the cores.

In this paper, we illustrate the capabilities of the MAM model on two case
studies with two different flavors: a Multi-Core System-on-Chip and an SSD,
the former being it a typical study case addressed with different strategies, the
latter as a proof-of-concept for the proposed approach, being it a field where
only little data is available. Section 2 introduces the formalism of MAMs and
Section 3 shows how a general aging model based on MAMs can be built. Then
two case studies follow, namely, the MCSoC case study in Section 4 and the
SSD in Section 5. Section 7 gives an overview on related works and conclusions
follow in Section 8.

2. Markovian Agent Model

A Markovian Agent Model (MAM) is an agent-based spatio-temporal ana-
lytical formalism suitable to describe large scale systems of interacting objects.
Each of them is represented by a MA, a finite-state automata over which a
transition kernel is defined. Agents are located in a space and both their local
properties and mutual interactions may depend on their positions.

In a Markovian Agent Model model we are interested in computing the
temporal evolution of the average numbers of agent in a given state for every
location. Solution is obtained with a mean field approximation thanks to a set of
ordinary differential equations. In this work, we extend conventional Markovian
Agent Model by adding reward states: continuous variables that are not used
to count the average number of agents in a given state, but to hold the values
of a control parameter.

Conventional states evolves according to a transition kernel defined by two
components: a local transition matrix and an induced transition matrix. The for-
mer describes the local behavior by an homogeneous Continuous Time Markov
Chain (CTMC) whose values may depend on the position of the agent. The
latter models the interactions of the MA with the other MAs. The evolution
of the reward states is based on a drift function, which in turn depends on the
average count of agents in a given state (either in the same or in neighbour
locations). MAs may belong to different classes and agents in a specific class c
are characterized by the same transition kernel; more details are described in
[2]. In the extension used in this work, each agent class determines also the
rewards and the corresponding drifts associated to the MAs.
From a graphical point of view, we represent conventional states with circles
and local transitions with arcs (as in standard Markov Chain models). Reward
states are represented with double circles, and drifts with double arrows, follow-
ing a notations similar to the one used in Fluid Stochastic Petri Nets to denote
continuous places and transitions [13]. The graphical notation is summarised in
Figure 1, where two conventional states i and j, a reward state k, a transition
with rate qij and a drift at rate λk are shown.

Let us call πc(t; v) state vector of a single MA of class c at time t. It
contains one component for each state: πc(t; v) = [πDc (t; v),πRc (t; v)], with

3



i

j
kqij

...

...

...

...

λk

Figure 1: Graphical representation of a Markovian Agent with reward states

πDc (t; v) holding all the components corresponding to conventional states, and
πDc (t; v) focusing on reward states. Elements of πDc (t; v) corresponds to the
average count of agents in that state in the considered position at the given
time. If we focus on a location that contains a single agent, the components of
πDc (t; v) can be seen as an approximation of the state probability distribution
of the agent. For reward states, the corresponding component in πRc (t; v) holds
the average accumulated reward in the considered location. We also denote with
[ΠV ] the ensemble of the state vectors of all the MAs in the space at time t:
in other words, a single vector that includes all the states, rewards, classes and
locations of the model.

The transition kernel is a square matrix with as many rows and columns as
conventional states, and it rules the stochastic behavior of an MA of class c. Its
formal description is:

Kc(t; v; ΠV ) = Qc(t; v) + Ic(t; v; ΠV ) (1)

where Qc(t; v) is the local kernel (infinitesimal generator) that depends only on
the position v of the MA, Ic(t; v; [ΠV ]) is the induced kernel that depends on
the position v of the MA and on the ensemble of the average state count [ΠV ]:
in this way a MA can be influenced in its evolution by all the other agents (and
rewards) in the entire model.
Rewards vary instead according to a drift vector dc(t; v; ΠV ), with one element
per reward component. It can be different in any location, defined per class,
and depend both on time and the ensemble of the average state count [ΠV ].
The presence of a separated interaction component allows to avoid the con-
struction of the whole state space and to solve the overall model by building
one sub-models for each MA, and then solve them separately using the standard
equation: 

dπDc (t; v)

d t
= πDc (t; v)Kc(t; v; [ΠV ])

dπRc (t; v)

d t
= dc(t; v; ΠV )

(2)

4



with a given initial condition πc(0; v).
Thus, the solution of the overall model at any time t is obtained by solving

for any MA of any class c in the space an equation of type (2). Several examples
of the derivation of the structure of the kernel Kc(t; v; [ΠV ]) without rewards
are described in [6, 2].

3. Aging model in MAM

Here we will describe the general methodology used in MAM to consider the
effect of aging on the stochastic behavior of the agents..

Given an agent of class c in position v we enrich the model with a reward
state A that keeps track of the accumulated aging level Ψ. Such value increases
at rate λ(v,ΠV ) that may depend on the agent location v and on the ensemble
ΠV at time t in order to take in account the impact of other MAs to the
aging of agent v. To simplify the notation, we assume that such dependency
can be captured by a single parameter Ω = ω(ΠV ). Moreover, we assume
that the agent in position v has at least a transition trf that depends on the
aging process, typically trf represents a failure event. Let us call Y the random
variable representing the time to failure of trf . Due to the dependency on
the ensemble, the probability distribution of Y (t|Ω) is non-homogeneous and
non-exponential.

To support such type of distribution we apply the supplementary variables
approach from Cox [10]. The random variable Y is characterized by a proba-
bility density function (pdf) fY (t) and Cumulative distribution function (Cdf)
FY (t), its hazard rate hY (t) and accumulated hazard rate HY (t) are defined,
respectively, as:

hY (t) =
fY (t)

1− FY (t)
HY (t) =

∫ t

0

hY (u)du (3)

Assuming that the process starts at time t = 0, we can model its non-exponential
behavior by a continuous variable Markov process, where at each point in time
t, the non-exponential event modeled by Y occurs at rate1 λY = hY (t). The
accumulated age Ψ of the process is:

Ψ = HY (t) =

∫ t

0

hY (u)du (4)

Since hY (t) is a strictly positive function, HY (t) is invertible. This allows us to
express the failure rate as function of the accumulated age Ψ:

λY (Ψ) = hY
(
H−1
Y (Ψ)

)
(5)

1To simplify the presentation, in this section we have deliberately not included all the
dependencies in the variable: for example, we have written λY = hY (t) instead of λY (t) =
hY (t)

5



Moreover, the evolution of the accumulated age can be expressed in a differential
way:

dΨ

dt
=
dHY

dt
= hY (t) = hY

(
H−1
Y (Ψ)

)
= λY (Ψ) (6)

Whenever the value of Ω varies the Time To Failure (TTF) distribution of
Y (t|Ω) changes, however it has been proved that the reliability conserves [26],
that is, if at time t′, the TTF distribution changes from Y to Y ′, we must have
that:

RY (t′) = RY ′(t
′) (7)

This is in general obtained by “time shifting” the hazard rate of the new distri-
bution Y ′ to match the previously accumulated aging. However, in our model
we have:

RY (t′) = e−HY (t′) = e−Ψ = e−HY ′ (t
′) = RY ′(t

′) (8)

since Ψ does not depend on t or t′. In other words, the change of variable from
t to Ψ that allows us to express the hazard rate as function of the aging also
allows us to change directly the TTF distribution from Y to Y ′, conserving the
reliability.

In particular for a Weibull distribution, defined by scale parameter α and
shape parameter β, we have:

fW (t) =
β

α

(
t

α

)β−1

e−( tα )
β

FW (t) = 1− e−( tα )
β

(9)

hW (t) =
β

α

(
t

α

)β−1

HW (t) =

(
t

α

)β
(10)

H−1
W (Ψ) = αΨ

1
β λW (Ψ) =

β

α
Ψ
β−1
β (11)

4. Case study 1: Reliability model of a Multi-Core System-on-Chip

4.1. System description

The first case study we propose in this paper shows the applicability of
Markovian agents for the analysis of aging and wear-out effects in Multi-Core
System-on-Chip architecture. The considered MCSoC architecture, shown in
Figure 2, is composed of a set of homogeneous processing cores organized with
a mesh structure. The system is used to run a multi-programmed workload,
composed of various applications that are distributed on the available processing
cores by the operating system according to a specific mapping policy.

Based on the workload distribution, each core may either perform some
elaboration or be in an idle status, and consequently will have a specific power
consumption. Moreover, based on the power spatial profile of the overall ar-
chitecture, the temperature of each core is a function of the its internal power
consumption and the heat conveyed by neighboring cores. Finally, the time

6



dependent rate of wear-out of each core caused by the progressive aging is pri-
marily related to its temperature, with an exponential form.

As a conclusion, the aging process of each unit in a MCSoC architecture is
strictly related to its activity and therefore on how the workload is distributed.
The complexity of this picture is even more exacerbated by considering that
the failure of a core may not represent a catastrophic failure of the overall
system. Indeed, the workload can be redistributed on the remaining cores thus
allowing a sort of graceful degradation of the architecture. Such a strategy can
be adopted till the system is able to provide the minimum required Quality-of-
Service, i.e., there is a minimum number of healthy cores capable of providing
the necessary computational power to complete the running workload with the
required performance level.

In this scenario, the construction of the analytical model is particularly chal-
lenging because the lifetime of any single core is influenced by the operating
conditions of all the other cores with a sort of “multi-step” relationship involv-
ing core utilization, power consumption, temperature and heating interference,
and aging rates, as well as the possibility of the core to fail.

We here show that MAMs are suited to model the reliability of MCSoC ar-
chitectures by taking into account the complex cause-effect relationship affecting
core aging over the time. We will demonstrate that the MA dependence on the
position in the space allows the model to investigate the effect of various work-
load distribution strategies on the aging of the various cores and consequently
on the lifetime of the overall architecture.

Other

logic

Core

...

...

...

.
.
.

.
.
.

.
.
.

.
.
.

C00

C10

CN0

C01

C11

CN1

C02

C12

CN2

C0M

C1M

CNM

N+1

M+1

Cij

Figure 2: Simplified architecture of a many-core CPU

4.2. Thermal and aging models

The temperature model for the various cores within the complex architec-
ture is a quite complex formulation based on differential equations involving
various aspects, such as the geometrical organization of the architecture, the

7



power characteristics of the considered technological node and the actual activ-
ity profile of each core. For this reason, we have used a set of state-of-the-art
tools for characterizing a simple linear regression model capable of modeling the
steady-state temperature for each core in a given activity profile of the overall
architecture. The details of such characterization can be found in [1].

The obtained model takes in inputW, a binary matrix whose element wi,j in
position (i, j) is 1 if the core in position (i, j) is in the W state, and 0 otherwise.
The model returns the temperature Tc(i, j) of a core in position (i, j) as:

Tc(i, j) = c0 + c1 · wi,j + (12)

+ c2 · (wi+1,j + wi−1,j + wi,j+1 + wi,j−1) +

+ c3 · (wi+1,j+1 + wi+1,j−1 + wi−1,j+1 + wi−1,j−1)

where c0 . . . c3 are four thermal constants. In this work, we have considered
c0 = 329 K, c1 = 16 K, c2 = 3 K, and c3 = 1.5 K.

As recognised by both academia and industry, aging mechanisms for inte-
grated circuits modeled with the Weibull distribution, are validated in several
sources, as documented by the JEDEC standard [23]. Discussion on academic
works based on such results will be given in Section 7. In our case study, for
a proof of concept, the electromigration aging mechanism has been considered
and characterized as in [4]. The shape parameter β = 2, and the scale parameter
αEM (T ) is computed with the Black’s equation:

αEM (T ) =
AEM (J − Jcrit)−ne

EaEM
kT

Γ
(

1 + 1
β

) (13)

where AEM is a material-dependent constant, J and Jcrit are the current density
and its critical value activating the phenomenon, respectively, n is empirically
determined constant, EaEM is the activation energy, K is Boltzman’s constant, Γ
is the Gamma function, and T is the constant worst-case temperature in Kelvin
degrees. In particular, as in [4], EaEM = 0.48eV, K = 8.61673324 · 10−5eV/K
and n = 1.1. Finally, since other parameters are usual not disclosed by the
industry, they have set according the common academic practice [18, 43, 15, 4]
that consists in fitting the lifetime of a single core to a given value. In our work
we have considered an Mean Time To Failure (MTTF) equal to 10 years for
a single core working at the constant steady-state temperature of 60◦C; thus,
J = 1.5 · 106A/cm2, Jcrit ∼= 0A/cm2, AEM = 3 · 105(h/cm2)·(A/cm2)n.

4.3. System model

To evaluate the reliability of the overall system, we represent each core with
the MA shown in Figure 3 . It has three conventional states, namely active
(W), idle (I) and failed (F), used to model the activity of the core , and a
reward state Aging (A) , used to identify the aging level of the core. The core
may alternate between the W and the I modes before reaching the absorbing
state F . The transition rates between W and I depend on the location of the

8



I W F

A

δ(v,ΠVΠVΠV )

γ(v,ΠVΠVΠV )

µW (v,ΠVΠVΠV )

µI(v,ΠVΠVΠV )

λ(v,Π
V

Π
V

Π
V )

Figure 3: Markovian Agent Model of a many-core CPU core

core, on the initial workload of the core and on the policy by which the load
is redistributed among the still alive cores, upon a core failure. the reason is
that δ(v,ΠV ) and γ(v,ΠV ) are function of the position and of the probability
vectors of all the other core states (as shown in Equations from (2) to (5)).
Then, the TTF either from state W or I to F , is a function of the aging level
of the core that primarily depends on core temperature and utilization level.

We assume that the total workload to be processed by the system is known
and constant in time. Actually, this type of workload is generally considered in
embedded systems, where the same group of applications has to be repeated con-
tinuously regardless of the inputs. Moreover, such assumption might be easily
removed to consider workload changes in time by adding a modulation process;
we leave further studies in this direction for future work. The workload distri-
bution policy aims to always elaborate such total workload, without exceeding
a given power budget, by rotating the activation of the cores in order to stress
all of them, on average, at the same level, thus with the same aging effects. We
identify the average stress level of the core by means of a utilization parameter
0 ≤ U ≤ 1. When a core fails, its workload is uniformly re-distributed among
the remaining cores, until the cores reach an utilization U = 1. Subsequent core
failures will cause the MCSoC to operate in a degraded condition.

The alternation between the W and I states in each core is tuned to the
rotation cycle-time at which the different cores are activated in the chip. Since
the transition rates δ(v,ΠV ) and γ(v,ΠV ) that determine the alternation cycle
between W and I are, in any case, several orders of magnitude faster than the
failure rates µW (v,ΠV ) and µI(v,ΠV ) from W and I to F , respectively, we
can assume that the states W and I reach their steady state value at the time

9



scale of the core failure [3]. Hence:

U =

1
γ(v,ΠV )

1
δ(v,ΠV ) + 1

γ(v,ΠV )

=
δ(v,ΠV )

δ(v,ΠV ) + γ(v,ΠV )
(14)

As the time proceeds, the average number of still alive cores nal(t) at time t can
be calculated from:

nal(t) = n0 −
n0∑
i=1

πF (t; vi)

where n0 is the initial number of cores in the MCSoC , vi is the position of the
core of index i and πF (t; vi) is the failure probability of the core in position vi
at time t. To preserve the global workload of the chip, the utilization of the
cores increases in time according to the following law:

U(t) =
n0

nal(t)
U0 (15)

where U0 is the initial utilization of the system with n0 cores. We assume a
fixed mean active-idle cycle length L, with:

L =
1

δ(v,ΠV )
+

1

γ(v,ΠV )
=
δ(v,ΠV ) + γ(v,ΠV )

δ(v,ΠV ) γ(v,ΠV )
(16)

Equation (16), combined with Equations (15) and (14), allows us to evaluate
how the transition rates from W to I change in time:

γ(v,ΠV ) =
1

LU(t)

δ(v,ΠV ) =
1

L (1− U(t))

(17)

In order to characterize the aging rates in a variable working scenario, it is
necessary to consider the fact that the temperature uses to change in time and,
unfortunately, the basic formulation in Equation 13 receives as input a single,
constant temperature value. Therefore, as show in [1], λ(A) formula has been
modeled to support such temperature change. As a first step, if we consider a
single core switching between two different temperatures TI and TW with the
same probability, asymptotically λ(A) can be modeled as:

λ(A) =
β

2
A
β−1
β ·

(
1

αEM (TI)
+

1

αEM (TW )

)
(18)

After that, we had also to consider the fact that, based on the thermal
model, the temperature of each core depends on all its neighbors, thus sensibly
increasing the complexity of Equation (18) since we have to consider the prob-
ability of each neighbor to be in each single status. Therefore, we simplified the
thermal model to compute the average temperature of each core by considering
the average utilization of each neighbor (which in turn asymptotically represent

10



the probability for each core to be in a specific state). therefore, let us define
sum of the utilization of the side (US(i, j)) and corner (UC(i, j)) neighbors as:

US(i, j) = πW (t; vi+1,j) + πW (t; vi−1,j) +

+ πW (t; vi,j+1) + πW (t; vi,j−1) (19)

UC(i, j) = πW (t; vi+1,j+1) + πW (t; vi+1,j−1) +

+ πW (t; vi−1,j+1) + πW (t; vi−1,j−1) (20)

We approximate the TW (i, j) and TI(i, j) temperatures in the W and I states
as:

TW (i, j) = c0 + c2 · US(i, j) + c3 · UC(i, j)

TI(i, j) = c0 + c1 + c2 · US(i, j) + c3 · UC(i, j)

And finally, we define µW (vi,j ,ΠV ), µI(vi,j ,ΠV ) and λ(vi,j ,ΠV ) as:

µW (vi,j ,ΠV ) =
(
πA(t; vi,j)

) β−1
β

β

αEM
(
TW (i, j)

)
µI(vi,j ,ΠV ) =

(
πA(t; vi,j)

) β−1
β

β

αEM
(
TI(i, j)

)
λ(vi,j ,ΠV ) = µW (vi,j ,ΠV )πW (t; vi,j)

+ µI(vi,j ,ΠV )
(
1− πW (t; vi,j)

)
Basically, the age accumulates following Equation (18) where the temperature
considers the effect of the local W and I states, plus the average contribution
of the neighbors. However, the failure rates in the two W and I states, consider
only the failure time distribution specific for the corresponding operational tem-
perature.

4.4. Results

Let us consider a system with n0 cores, each of them with an utilization
of U0, as introduced in Section 4.3. When a core fails, the utilization of the
remaining ones is increased by the workload distribution policy to maintain a
fully operational state thus preserving the total system workload of n0U0.

However, when all cores reach the full utilization, further failures lead the
system to a degraded operating state. To analyze such behavior, let us define
the workload Wl(t) at time instant t as:

Wl(t) =
∑
v

πW (t; v), (21)

where the sum of the utilisations of the cores corresponds to the current pro-
cessing level of the CPU. Then, the mean time to degradation MTTD of the
system, i.e. the first time instant at which the global workload goes below n0U0

is computed as:

MTTDsys = inf {t ∈ [0,+∞] : Wl(t) < n0U0} , (22)

11



Such performance index allows us to evaluate the effectiveness of the workload
distribution policy in extending the fully operational phase of the MCSoC .

To evaluate the proposed MAM model, in the following paragraphs we
present two experimental sessions using two different workload distribution poli-
cies. All the experiments were performed on a personal computer with an Intel
Core i5-2450M CPU at 2.50GHz and 6 GB RAM with completion times of a
few minutes.

Scenario 1. In the first scenario we assume a uniform distribution of the
workload over a system with 16 cores and an initial per-core utilization of U0 =
0.95%, for a total workload Θ = 16 · 0.95 ' 15. In such a case due to the high
utilization level of each core, we expect a short fully operational phase.

An equal amount of workload can be elaborated by systems with a larger
number of cores reducing their stress level. Indeed, we can recompute the per-
core utilization, required by an architecture with n cores to elaborate the work-
load Θ, as Un0 = Θ/n. For instance, the per-core utilization required for a
system with 36 cores will be reduced to U36

0 = 0.416%. Figure 4 shows in detail
the behavior of one core of such system. After an initial short transient phase,
the core reaches its fully operational condition working at the target utilization
U36

0 . As the time goes on, the failure probability increases thus, to preserve the
desired total workload, the distribution policy must increase the utilization of
the cores until the value of 1 is reached. After such time, further failures lead
the system to work in a degraded condition.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  20  40  60  80  100  120

P
r

t [months]

U
Idle

Working
Fail

Figure 4: The utilization and state probabilities evolution in a system with 36 cores.

Figure 5 shows the behavior of the workload normalized with respect to Θ for
the 16, 36 and 64 architectures. As expected, we can observe how performing the
constant workload of the 16 cores chip over architectures with a greater number
of cores increases the system MTTD. Indeed, the 16 core chip on average lasts

12



in full operating condition for about one year, whereas the 36 CPU lasts slightly
more than six years and the 64 chip more than ten years.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  20  40  60  80  100  120

N
o
rm

a
li

z
e
d
(W

l)

t [months]

N=4
N=6
N=8

Figure 5: The global workload trend for a chip with 16, 36 and 64 cores.

Scenario 2. In such scenario the cores are partitioned into two sub-classes:
initially the primary cores are active, whereas the spare cores are inactive. We
consider a 12×12 CPU with 144 cores and we study two different workload
redistribution policies:

• P1: the workload lost due to the failures of the primary cores is evenly
redistributed to the spare ones only, increasing their utilization level.

• P2: the workload lost is evenly redistributed to the spare ones until the
workloads of the primary and spare cores are balanced. Then, the lost
workload will be redistributed evenly on all the remaining cores.

Moreover we consider different spatial distributions of the initially active/spare
cores, according to the patterns shown in Figure 6.

Figure 7 shows the results for two different target utilization levels (of the
initially active cores) U0 = 0.6 and U0 = 0.9 for the considered policies P1 and
P2. The two policies obtain very similar results, even if P2 performs slightly
better. The pattern distribution has instead a more sensible impact: best results
are obtained when the initially working cores are concentrated in a corner of
the CPU. It is interesting to note that its dual - when the cores initially active
are distributed over an L-shaped pattern, has the worst performances.

To better show the evolution of the system, Figure 8 presents the thermal
distribution of the temperature over the chip at three different time instants
for policy P1, target U = 0.9% and initial core distribution B3 of Figure 6. At
the beginning of the life of the system, the active cores, which are concentrated

13



(a) C (b) Cd (c) L (d) Ld (e) B2

(f) B3 (g) B3d (h) CH

Figure 6: Primary vs spare core patterns. The primary cores are white, the spare black.

 50

 60

 70

 80

 90

 100

 110

 120

P1 0.6 P1 0.9 P2 0.6 P2 0.9

M
T

T
D

S
y
s 

[m
o
n
th

s]

C
Cd

L
Ld
B2
B3

B3d
CH

Figure 7: Comparison of the system MTTD achieved by different core patterns varying the
load redistribution policy and the initial primary core utilization.

in the middle band, are working at a high temperature, while the outer bands
are colder. When the MTTD is reached at around five years (Figure 8b), the
CPU works at a lower temperature, and the pattern is inverted: indeed the
spare cores at the beginning now have to take the place of the failed ones. After
ten years, due to the distribution of the failures over the CPU, the differences
between the temperature of the hot and cold area are reduced, and the surviving
cores work at a much lower average temperature.

5. Case study 2: Reliability model of an SSD

5.1. System description

The second example is given to support the validity of the approach based on
MAM to cope with aging phenomena in VLSI. The diffusion of SSDs is rapidly

14



1 2 3 4 5 6 7 8 9 1011

1
2

3
4

5
6

7
8

9
10

11
55

60

65

70

75

80

85

90
T
 
[
C
e
l
s
i
u
s
]

T
 
[
C
e
l
s
i
u
s
]

(a) One hour.

1 2 3 4 5 6 7 8 9 1011

1
2

3
4

5
6

7
8

9
10

11
55

60

65

70

75

80

85

90

T
 
[
C
e
l
s
i
u
s
]

T
 
[
C
e
l
s
i
u
s
]

(b) Five years.

1 2 3 4 5 6 7 8 9 10
11

1
2

3
4

5
6

7
8

9
10

11
55

60

65

70

75

80

85

90

T
 
[
C
e
l
s
i
u
s
]

T
 
[
C
e
l
s
i
u
s
]

(c) Ten years.

Figure 8: Average core temperature in B3 configuration at: a) t = 1 hour, b) t = 5 years and
c) t = 10 years.

increasing, even if the major critical point remains the endurance and reliability
due to wear-out. Although the model in not formally validated, and results
are not compared with measurement, all the parameters and effects have been
defined to match known behaviour and physical characteristics described in the
available literature. SSDs are the current alternative to traditional hard disk
drives (HDD) where rotating platters are replaced by NAND based memories.
They are non-volatile storage devices, generally composed by a controller and
one or more solid state memories [33]. SSDs use the same interfaces and form
factors of traditional HDD, so that they can easily fit in commodity infrastruc-
tures. Data is stored into array of NAND cells that are organised into pages
and blocks. Pages are the smallest unit that can be read or written in a single
command. They are usually from 4KB to 32KB of size, and are grouped into
blocks, generally consisting of NP×B = 64 to NP×B = 512 pages each, for a total
of 256KB to 16MB. For technical reasons, only empty pages can be written,
which must be erased before being updated. However, erasing can only occur
at the block level (i.e. group of 64 ∼ 512 pages), destroying all of its content. A
consequence of the particular read/write/erase structure of SSD is that pages
can be in three states: Empty, they do not contain data; Used, they store useful
data; Dirty, they contain invalid data.

As introduced, only empty pages can be written, and when the OS deletes a
file, its block is marked as dirty with a special command called TRIM. A page
cannot be overwritten without erasing the entire block first. Only dirty (and
empty) pages can be erased to free space, but this must be done at the block
level: as a consequence, all the pages in the block must be either dirty or empty.
If this is not the case, the controller must either move, or read into memory
and then write again the pages in use when erasing a block. The writes to
move valid data lead to a problem called Write Amplification Factor (WAF):
when no more empty pages are available, the controller must read and write
a larger number of pages to perform a single write operation. This effect has
serious impact on the SSD performance and endurance. In order to limit the
WAF, SSD controllers usually performs some sort of Garbage Collection (GC)
[7, 17, 32]: they harvest for dirty pages, consolidate the ones in use, and erase
blocks to create new empty pages.

When focusing about reliability [33], SSDs have a smaller error rate com-

15



pared to traditional HDD, since they do not involve mechanical parts. However
they suffer from severe aging problems. In particular, each block can support a
limited number of program/erase (PE) cycles, after which it becomes unusable.
For these reasons, SSD are characterised by a maximum amount of data that
can be written on a disk before all its pages reaches the maximum number of
PE cycles. Not all pages are erased and rewritten with the same rate, so it is
quite common that some pages wear out faster than other ones. To mitigate this
effect, SSDs usually apply a wear levelling algorithm to balance the utilisation
of all the pages.

E UDat

UApp

UTmp

D F

A

λDat φDat

ψ

λApp
φ
App

λ
Tmp φTm

p

γ

γ

γ

γ

γ

ψ

Figure 9: A Markovian Agent modeling the pages in a block of a SSD.

5.2. System model

The SSD has NB blocks of NP pages each. We model the time behaviour
of a single block with a MA composed by 6 conventional states that model the
the evolution of pages inside a single block. A reward state models the aging of
the pages in the block. The complete MA is reported in Figure 9. In this case,
to simplify the notation, dependencies of the rates have not been shown in the
picture.

The conventional states of the MA have the following meaning. State E

denotes empty pages, state Ux is split in 3 states (UApp, UDat and UTmp) that
denote pages in use, state D denotes dirty pages and state F failed pages.

The number of pages in block v (v = 1, . . . , NB), in state X ( X= E, UApp,
UDat, UTmp,D,F) at time t and the total number of pages in state X at time t
in the SSD are denoted by, respectively πX(t, v), with

∑
X∈Ω πX(t, v) = NP ,

being Ω the state space of the conventional components of the MA, and πππX(t) =∑
v=1,NB

πX(t, v).
Initially, each block starts with all the pages in the empty state (πE(t, v) =

NP ). A writing request moves a page from the empty state E to one of the in-
use states Ux. Since writing requests may have very different characteristics, we
model a workload composed by three components to make the model flexible
enough and adaptable to different realistic situations. The first component

16



models the access to pages containing the operating system code and the main
applications that are seldom written and seldom modified, and are represented
by state UApp; the second component models pages that are written and deleted
at almost constant rate (i.e., temporary files) during the lifetime of the SSD
and are represented by state UTmp; the third component models pages that are
basically written only after the initial setup has been completed, and represents
the main data a user saves on her disk. Such data is deleted only when available
disk space starts becoming an issue and is represented by state UDat. Pages of
type x (with x ∈ {App,Dat, Tmp}) arrive at the SSD at a rate λx(t) and are
assigned to a block v according to an assignment function lx(v; [ΠV ]), so that :
λx(t; v; [ΠV ]) = λx(t) · lx(v; [ΠV ]).

Writing rates λx(t; v; [ΠV ]) depend on the type of page, on the elapsing of
time (to reflect that the writing rate may change during the life of the memory),
and on the entire state of the MAM (to support aging and wear-leveling algo-
rithms). Pages are deleted at rates φx(t). Deletion simply marks pages as dirty
and is represented in the BMA by the transitions from Ux to D. A deleted page
becomes invalid and cannot be overwritten. Mixing the relative consistency of
the Ux states with the write and delete rates, we can model a very wide variety
of workload conditions.

Dirty pages cannot be overwritten, but can be erased since contain invalid
data. When a block is full just of empty or dirty pages, it can be erased. Erasing
can also occur when there are no longer empty pages on the disk but still dirty
pages. In this case, the SSD dumps the used pages from the block into the main
memory, erases the entire block, and finally rewrites the old and the new data.
Erasing events are modeled by the transition that connects states D to state E,
occurring at rate ψ(t; v; [ΠV ]). Garbage collection erases dirty pages in a block
to increase available free space [7].

Blocks age at each PE cycle, and can be erased only for a limited number
of times: reward state A counts the number of erasures in a block. State A is
characterized by a drift ψ(t; v; [ΠV ]) that matches the transition from state D to
state E. In this way, πA(t; v) measures the cumulative number of erased pages
in block v up to time t. A page may fail from any state X (X /∈ F) to F at a
rate γ(t; v; [ΠV ]) that depends on the accumulated age of block v.

In particular, in this scenario γ(t; v; [ΠV ]) has been chosen to match the
hazard rate of a Weibull distribution according to Equation (10), where the
time variable has been replaced by the value of reward state A, πA(t; v):

γ(t; v; [ΠV ]) =
β

α

(
πA(t; v)

α

)β−1

(23)

In Equation (23), β and α are the shape and scale parameters, respectively.

5.3. Results

We derive a set of numerical experiments on an illustrative example of an
SSD composed by NB = 48 blocks, each one containing NP = 64 pages. The
aim of the numerical example on a small-scale case is to show the capabilities

17



and potentialities of the model in a wide range of application cases; scalability
of the model will be discussed in Section 6.

Page occupation is determined by the arrival rates λx(t) and by the assign-
ment function lx(v; [ΠV ]) that assigns incoming requests to blocks and pages.
To gain flexibility in the input conditions and make them time dependent, the
rates λApp(t), λDat(t) and φDat(t) are determined by the following function
ρ(t, y0, y1, t0, σ):

ρ(t, y0, y1, t0, σ) = y0 + (y1 − y0)
tan−1

(
t−t0
σ

)
− tan−1

(
− t0σ

)
π
2 − tan−1

(
− t0σ

) (24)

where y0 = limt→−∞ ρ(t, y0, y1, t0, σ), y1 = limt→+∞ ρ(t, y0, y1, t0, σ), t0 is the
time at which the function reaches the mean value ρ(t, y0, y1, t0, σ) = (y0 +y1)/2
and σ is the slope. In this way, we can modulate the time interval in which the
rates are active, their absolute value and the variation of the absolute value in
time.

In particular, we assign the following values to the parameters in Equation
(24). λApp(t) = ρ(t, 40, 0.001, 10, 2), λDat(t) = ρ(t, 1, 25, 15, 5) and φDat =
ρ(t, 0.0156, 0.1875, 400, 10) (see Figure 10). The other arrival and deletion rates
are considered to be constant and set to: λTmp = 8 req./day, φTmp = 1/8
req./day and φApp = 1.561̇0−5 req./day. With a shape parameter β = 40 and
scale parameter α = 800 in the Weibull distribution of Equation (23), the failure
rate becomes an increasing function of the age.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1  10  100  1000

p
a

g
e

 r
a

te

t [days]

λApp

λDat

10 φDat

Figure 10: Arrival and deletion rates as function of time.

Blocks are assigned in order of their increasing address with incoming re-
quests occupying the first available block, that is:

lx(v; [ΠV ]) =

{
1 if πE(t; v′) = 0 ∀ v′ < v ∧ (πE(t; v) > 0)
0 otherwise

(25)

18



To simplify the solution of the model, we suppose that garbage collection is
triggered every ∆GC , and operates when the number of dirty pages in a block
exceeds a threshold χ. All blocks with πD(t; v) > χ are erased generating valid
space but, at the same time, increasing the age of the block. The GC algorithm
is formulated in Equation (27).

if πD(t; v) > χ

if t = n ·∆GC , n ∈ N :

πE(t+; v) = πE(t−; v) + πD(t−; v)

πD(t+; v) = 0 (26)

πA(t+; v) = πA(t−; v) + πD(t−; v)

The procedure defined in Equation (26) assumes that the speed at which pages
are erased is performed in negligible time with respect to the time of the other
actions included in the model, and mathematically corresponds to setting func-
tion ψ to a Dirac’s delta whenever the conditions are verified and zero otherwise.
The numerical solution procedure implements the proposed technique by solv-
ing the differential equation (Equation (2)) for time steps of size ∆GC , and then
applying Equation (26) to define the initial condition of the next time step.
The threshold used in the evaluation is χ = 8 pages, and the time interval is
∆GC = 20 days.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  200  400  600  800  1000

p
a

g
e

s

t [days]

E

UApp

UDat

UTmp

D

Fail

Figure 11: Temporal evolution of the total number of pages in each state.

Figure 11 shows the evolution of the total number of pages in each state all
over the disk (i.e. πππX =

∑
v πX(t−; v) with X ∈ {E,D,F, UApp, UDat, UTmp}).

Initially, all pages are empty and then the three considered types of block start
filling the disk. The first time condition πD(t; v) > χ of Equation (27) is satisfied
occurs at t = 80 days: the selected time interval ∆GC makes the depicted line
having a saw-tooth shape in the empty and dirty pages. The number of failed

19



pages remains negligible until around t = 800 days, when the wear-out effect
becomes dominant, and pages rapidly start failing, making the disk not usable.

The distribution of the number of pages per block in the different states
with respect to time is shown in Figure 12. Several insights can be highlighted.
Figures 12a) and 12b) show the number of pages per block in states E and D,
respectively. The considered assignment policy leaves some of blocks almost
unused (i.e., those with index v > 40), and exploits them only when the disk
is close to is failure (Figure 12a). Application pages occupy the initial blocks
of the SSD (Figure 12c) (i.e., with index v < 10), while the other types of
pages occupy the remaining usable space of the disk in an almost uniform way
(Figure 12d-e). Failures then occur prevalently in the area where user data and
temporary files are stored (Figure 12f).

The system aging is shown in Figure 13 by reporting for each block the
cumulative number erased pages in state A, πA(t; v). As expected, blocks with
a low number of PE cycles like those that are almost not used (v > 40) or
those that contain mostly application data (v < 10) have a low level of wearing.
Data blocks or temporary blocks present an almost linear aging with time. The
increasing failure rate of the considered Weibull distribution makes them fail
when they approach the considered scale parameter α.

5.4. Wear leveling

Wear leveling algorithms transfer pages from one block to another to ob-
tain a more uniform distribution of the age among blocks, thus increasing its
endurance.

In this example, we introduce a simple wear leveling procedure inspired by
the age convergence mechanism proposed in [30]. Every ∆WL, the system swaps
the KWL most aged blocks with the KWL least aged ones. In more details, the
wear leveling procedure searches the subset VM ∈ V of KWL blocks for which the
age πA(t; v) is maximum, and the subset Vm ∈ V of KWL blocks for which the
age πA(t; v′) is minimum, then swaps any block v ∈ VM with a block v′ ∈ Vm.
Formally, the algorithms can be described as follows:

if t = n ·∆WL, n ∈ N :

VM = {KWL blocks v, with maximum πA(t−; v)}
Vm = {KWL blocks v′, with minimum πE(t−; v′)}

for any state X = E,UApp, UDat, UTmp, D and v ∈ VM wand v′ ∈ Vm
πX(t+; v) = πX(t−; v′), with v ∈ VM and v′ ∈ Vm (27)

πX(t+; v′) = πX(t−; v), with v ∈ VM and v′ ∈ Vm

This procedure assumes that block swapping takes a negligible amount of time
with respect to the other time scales of the model. As a further simplifying
assumption, we consider that wear leveling has not a relevant impact on the
aging of the blocks being swapped.

Figure 14 shows the evolution of the total number of pages in a given state
when wear leveling is applied. As it can be seen, the model behaves exactly as

20



 0 5 10 15 20 25 30 35 40 45

block

 0
 200

 400
 600

 800
 1000

t [days]

 0

 10

 20

 30

 40

 50

 60

pages

 0 5 10 15 20 25 30 35 40 45

block

 0
 200

 400
 600

 800
 1000

t [days]

 0

 10

 20

 30

 40

 50

 60

pages

a) Empty b) Dirty

 0 5 10 15 20 25 30 35 40 45

block

 0
 200

 400
 600

 800
 1000

t [days]

 0

 10

 20

 30

 40

 50

 60

pages

 0 5 10 15 20 25 30 35 40 45

block

 0
 200

 400
 600

 800
 1000

t [days]

 0

 10

 20

 30

 40

 50

 60

pages

c) Used by apps d) Used by data

 0 5 10 15 20 25 30 35 40 45

block

 0
 200

 400
 600

 800
 1000

t [days]

 0

 10

 20

 30

 40

 50

 60

pages

 0 5 10 15 20 25 30 35 40 45

block

 0
 200

 400
 600

 800
 1000

t [days]

 0

 10

 20

 30

 40

 50

 60

pages

e) Used by temp f) Failed

Figure 12: Temporal evolution of the states of the pages.

21



 0  5  10  15  20  25  30  35  40  45block  0
 200

 400
 600

 800
 1000

t [days]

 0
 100
 200
 300
 400
 500
 600
 700
 800

pages

Figure 13: Temporal evolution of the age of the pages.

the one shown in Figure 11, yet the disk starts deteriorating at t = 1000 days,
showing a 25% improvement in the expected lifetime of the SSD.

Figure 15 shows the distribution of aging among the blocks. Wear leveling
has spread aging more uniformly over the disk leading to a better utilization of
the blocks. In this case, when failures occur, they are evenly distributed over
the disk, as shown in Figure 16.

6. Complexity of the algorithms

Multi-Core System-on-Chip. The state space of the case study in Sec.
4 has the following size. Each of the n0 = 144 cores is represented by the MA
in Figure 3 composed by a total of NS = 4 states. The state space of the whole
system is obtained by the Cartesian product as:

NT = NS
n0 = 4144 ≈ 5.0 · 1086

which is a number that is hardly explored even by simulation. Our analytical
technique is feasible because we solve separately 144 equations of the form (2),
thus reducing an exponential complexity to a linear one. However, to achieve
such result we need to compute for each MA in position v the induced kernel
I(t; v; ΠV ) that accounts for the influence of other agents on the behavior of the
MA in position v. When all MAs influence each others according to their current
states, the computation of the induced kernel requires O(n0

2NS
2) operations.

Such complexity is greatly reduced when the interactions of each MA are limited
to a restricted region around its position and to specific states of the agents.
In the simplified thermal model of the MCSoC example, the temperatures of
the cores in the W and I states are influenced only by the utilizations of the
side and corner neighbors, as computed in Eqs. (19) and (20). In this way
the induced kernel computation complexity is O(n0nI), where nI = 8 is the
maximum number of neighbors of an MA. Equation (2) is solved by using
standard numerical techniques over a dicretized time interval 0 . . . Th. Such

22



 0

 500

 1000

 1500

 2000

 2500

 3000

 0  200  400  600  800  1000  1200

p
a

g
e

s

t [days]

E

UApp

UDat

UTmp

D

Fail

Figure 14: Temporal evolution of the total number of pages in each state with wear leveling
algorithm.

interval is discretized in k0 = dTh/∆te time points, where ∆t is the size of the
integration step. The complexity of the algorithm is thus O(k0(n0NI + n0NS))
because for each time point and each MA is required to compute the influence of
its NI neighbors and to solve an equation of form (2) with a state vector π(t; v)
of size NS . We can observe that limiting and confining the interactions between
MAs is the principal way to reduce the complexity of the proposed technique.

Solid State Drive. In the example of Sec. 5, the 0 . . . Th time horizon of the
analysis is uniformly discretized with steps of size ∆GC yielding k1 = dTh/∆GCe
time points. For each point and for each block v in isolation: i) the evolution
of the block during an interval of size ∆GC is computed, then ii) if the resulting
number of dirty pages in the block is greater than the threshold χ, the pages
are updated according to Equation (26). Phase i) requires the computation of
equation (2) with a state probability vector πc(t; v) of sizeNS = 7. The equation
is solved over a time interval of size ∆GC discretized in k2 = d∆GC/∆te points.
The complexity of phase i) for a single block is O(k2NS), the complexity of
phase ii) is O(1) for a total of O(NBNSk1k2)=O(NBNSTh/∆t) operations for
the analysis of the whole system. In presence of the wear leveling algorithm
k3 = dTh/∆WLe block swapping operations are further required, which consist
in finding the KWL youngest and the KWL oldest blocks and exchanging their
pages as in Equation (27). Searching such blocks can be computed using an heap
data structure withO(KWLlogNB) operations, whereas the page exchanges take
O(NS), thus a total of O(k3(KWLlogNB + NS)) operations are additionally
required. Even with the addition of the wear leveling operations, the resulting
complexity is linear with respect to the number of blocks and the number of
states, moreover increasing the number of pages per block has no impact on the
complexity with a clear benefit on the scalability of the approach.

23



 0  5  10  15  20  25  30  35  40  45block  0
 200

 400
 600

 800
 1000

 1200

t [days]

 0
 100
 200
 300
 400
 500
 600
 700
 800

pages

Figure 15: Temporal evolution of the age of the pages with wear levelling algorithm.

 0 5 10 15 20 25 30 35 40 45

block

 0
 200

 400
 600

 800
 1000

 1200

t [days]

 0

 10

 20

 30

 40

 50

 60

pages

Figure 16: Temporal evolution of the failure for the pages with wear leveling algorithm.

However, care is needed during the solution of the differential equations due
to the arising of stiff Kc(t; v; [ΠV ]) matrices. In such a case, with basic resolu-
tion techniques a very small ∆t is required to keep the stability of the analysis,
thus largely increasing the solution time. To overcome this problem, advanced
multi-step and adaptive-stepsize techniques, such as Runge-Kutta methods, are
required to achieve a satisfying trade-off between accuracy and efficiency of the
solution.

7. Related works

Aging phenomena in integrated circuits have been widely investigated in the
literature; we will here discuss system level models and approaches for MCSoCs .
The industrial standard procedure for the estimation of the lifetime of a class of
devices has been proposed in [23] and is based on post-production accelerated
aging experiments. Such models generally consider the chip as a single unit,

24



thus considered damaged after the first failure, and assume a fixed worst-case
operating temperature. These two aspects represent a considerable limitation
in the early estimation of the lifetime of a modern computing system. Our pro-
posal allows considering the temporal evolution of the system, providing a more
detailed analysis than the worst case and models subsequent core failures. The
first dynamic reliability management strategy acting at system-level has been
proposed in [39]. The work combines the aging models defined in [23] with the
sum-of-failure-rates (SOFR) approach to take into account several aging mech-
anisms. However, it considers a single-core device, and, adopts an exponential
failure distribution, that is not very realistic. Various subsequent works [9, 24]
suffer from the same limitations. Our work instead aims at considering a large
number of cores to tackle possible future scenario where the parallelism in a
many-core system will grow dramatically.

Weibull or lognormal distributions have been later considered in [18, 43] to
track aging history. For computability reasons, the numerical solution of such
model is simplified: a subset of representative workload traces is extracted for
a reduced period of time with a fine granularity; from them, the average failure
rate [18, 43] is extrapolated to be considered during the MTTF computation.
Here we presented a novel way to include aging, factorized when possible to
avoid the explosion of the computational complexity of the model, but preserved
separately for the single cores.

When considering the occurrence of multiple subsequent core failures, MCSoC
are actually K-out-of-N:F systems. Such model is based on multiple inte-
grals [28], whose dimension is given by the number of failures the system can
tolerate. In practice, its analytic solution is unfeasible. Thus, many approaches
[18, 24] consider the entire system not to survive beyond the first failure, while
some other one [19, 43, 15, 4] adopt Monte Carlo simulation or the multi-armed
bandits approach [29] to quickly estimate the multiple integrals required to study
the time to failure in an analytic way. Such technique will become computation-
ally expensive when considering a temporal redistribution of the workload to
maintain a target service level: the MAM approach instead provides reasonably
accurate solutions in reduced computation times.

A major concern in the widespread diffusion of NAND flash memory tech-
nology as permanent storage devices is about performance, reliability, PE en-
durance and data retention time [14]. Various design techniques have been
investigated to achieve an acceptable bit error rate to enhance reliability and
endurance and to tradeoff between reliability and performance. Error correcting
codes, are systematically used at the controller level, to achieve an acceptable
raw-bit error rate. Publications proposing ECC based solutions for flash mem-
ories are in [8, 44]. Page is the smallest storage unit and write/read operations
are performed at page level. However, erase operations are performed at block
level. GC is a process required to create erased blocks [41] at the cost of in-
curring in a write amplification. A GC algorithm which reduces the WAF by
randomly selecting a number of blocks and acting on the block with the fewest
number of valid pages, is described in [16, 17]. Results from analytical models
are restricted to uniform random writes.

25



RAID architectures are essential for SSD [21, 27] to increase the reliability
and endurance of these storage devices. However, traditional RAID approach
may have a negative effect and specific RAID techniques must be studied in
conjunction with garbage collection [31, 32].

Analytical and simulation results are obtained from synthetic workloads,
but now consistent field studies from large samples of devices in real operating
conditions are available as documented in [38].

8. Conclusions

In this work, we have presented a MAM for studying the reliability of a
MCSoC CPU. With the proposed technique, we are able to study CPUs com-
posed by a large number of cores, and consider complex non-homogeneous non-
exponential time to failure distributions with respect to their expected lifetime
because of aging phenomena. Future work will focus on different application
scenarios, also trying to remove the simplifying assumption used both in the
thermal and in the aging models.

Acknowledgments

This work is original and has been partially supported by EUBra-BIGSEA
(690116), a Research and Innovation Action (RIA) funded by the European
Commission under the Cooperation Programme, Horizon 2020 and the Ministrio
de Cincia, Tecnologia e Inovao (MCTI), RNP/Brazil (grant GA-0000000650/04)
and has a financial support of the Università del Piemonte Orientale.

References

[1] A. Bobbio, C. Bolchini, D. Cerotti, M. Gribaudo, and A. Miele. Scalable
analytical model of the reliability of multi-core systems-on-chip by inter-
acting markovian agents. In EAI Int. Conf. on Performance Evaluation
Methodologies and Tools (VALUETOOLS), pages 1–9, 2017.

[2] A. Bobbio, D. Cerotti, M. Gribaudo, M. Iacono, and D. Manini. Markovian
agent models: A dynamic population of interdependent markovian agents.
In E. K. Al-Begain and A. B. (Eds.), editors, Seminal Contrib. to Modelling
and Simulation, pages 185–203. Springer, 2016.

[3] A. Bobbio and K. Trivedi. An aggregation technique for the transient
analysis of stiff Markov chains. IEEE Trans. on Computers, C-35:803–814,
1986.

[4] C. Bolchini, M. Carminati, M. Gribaudo, and A. Miele. A lightweight and
open-source framework for the lifetime estimation of multicore systems. In
Proc. Int. Conf. Computer Design, pages 166–172, 2014.

26



[5] D. Bruneo, M. Scarpa, A. Bobbio, D. Cerotti, and M. Gribaudo. Markovian
agent modeling swarm intelligence algorithms in wireless sensor networks.
Performance Evaluation, 69:135–149, 2012.

[6] D. Bruneo, M. Scarpa, A. Bobbio, D. Cerotti, and M. Gribaudo. An intelli-
gent swarm of markovian agents. In J. Kacprzyk and W. Pedrycz, editors,
Springer Handbook of Comp. Intelligence, pages 1345–1359. Springer Berlin
Heidelberg, 2015.

[7] L.-P. Chang, T.-W. Kuo, and S.-W. Lo. Real-time garbage collection for
flash-memory storage systems of real-time embedded systems. ACM Trans.
Embed. Comput. Syst., 3(4):837–863, Nov. 2004.

[8] H. Choi, W. Liu, and W. Sung. Vlsi implementation of bch error correction
for multilevel cell nand flash memory. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 18(5):843–847, May 2010.

[9] A. Coskun, T. Simunic, K. Mihic, G. D. Micheli, and Y. Leblebici. Analysis
and optimization of MPSoC reliability. J. Low Power Electr., pages 56–69,
2006.

[10] D. R. Cox. The analysis of non-markovian stochastic processes by the
inclusion of supplementary variables. Math. Proc. of the Cambridge
Philosophical Society, 51(3):433–441, 1955.

[11] Y. Deng, L. Lu, Q. Zou, S. Huang, and J. Zhou. Modeling the aging process
of flash storage by leveraging semantic i/o. Future Generation Computer
Systems, 32:338 – 344, 2014. Special Section: The Management of Cloud
Systems, Special Section: Cyber-Physical Society and Special Section: Spe-
cial Issue on Exploiting Semantic Technologies with Particularization on
Linked Data over Grid and Cloud Architectures.

[12] P. Desnoyers. Analytic modeling of ssd write performance. In Proceedings
of the 5th Annual International Systems and Storage Conference, SYSTOR
’12, pages 12:1–12:10, New York, NY, USA, 2012. ACM.

[13] M. Gribaudo, M. Sereno, A. Horvth, and A. Bobbio. Fluid stochastic petri
nets augmented with flush-out arcs: Modelling and analysis. Discrete Event
Dynamic Systems: Theory and Applications, 11(1-2):97–117, 2001. cited
By 42.

[14] L. M. Grupp, J. D. Davis, and S. Swanson. The bleak future of nand flash
memory. In 10th USENIX Conference on File and Storage Technologies
(FAST 12), page 2, 2012.

[15] A. Hartman and D. Thomas. Lifetime improvement through runtime wear-
based task mapping. In Int. Conf. Hardware/software codesign and system
synthesis, pages 13–22, 2012.

27



[16] B. V. Houdt. Performance of garbage collection algorithms for flash-based
solid state drives with hot/cold data. Performance Evaluation, 70(10):692
– 703, 2013. Proceedings of IFIP Performance 2013 Conference.

[17] B. V. Houdt. On the power of asymmetry and memory in flash-based ssd
garbage collection. Performance Evaluation, 97:1 – 15, 2016. Performance
Evaluation Methodologies and Tools: Selected Papers from VALUETOOLS
2013.

[18] L. Huang and Q. Xu. AgeSim: A simulation framework for evaluating the
lifetime reliability of processor-based SoCs. In Conf. Design Autom. & Test
in Europe, pages 51–56, 2010.

[19] L. Huang and Q. Xu. Lifetime reliability for load-sharing redundant systems
with arbitrary failure distributions. Trans. Reliability, 59(2):319–330, 2010.

[20] IEEE Reliability Society. Annual International Reliability Physics
Symposium. http://www.irps.org/.

[21] S. Im and D. Shin. Flash-aware raid techniques for dependable and
high-performance flash memory ssd. IEEE Transactions on Computers,
60(1):80–92, Jan 2011.

[22] ITRS. Int. Tech. Roadmap for Semiconductors. http://www.itrs2.net/,
2011.

[23] JEDEC Solid State Tech. Ass. Failure mechanisms and models for semi-
conductor devices. JEDEC Publ. JEP122G, 2010.

[24] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge. Multi-Mechanism Reli-
ability Modeling and Management in Dynamic Systems. Trans. on VLSI
Systems, 16(4):476–487, 2008.

[25] J. Keane and C. H. Kim. Transistor aging. IEEE Spectrum, Apr 2011.

[26] D. Kececioglu. Reliab. Eng. Handbook (Vol. 1). Prentice-Hall, Upper
Saddle River, NJ, USA, 1991.

[27] J. Kim, E. Lee, J. Choi, D. Lee, and S. H. Noh. Chip-level raid with
flexible stripe size and parity placement for enhanced ssd reliability. IEEE
Transactions on Computers, 65(4):1116–1130, April 2016.

[28] H. Liu. Reliability of a load-sharing k-out-of-n:G system: non-iid compo-
nents with arbitrary distributions. Trans. Reliability, 47(3):279–284, 1998.

[29] C. Ma, A. Mahajan, and B. H. Meyer. Multi-armed bandits for efficient
lifetime estimation in MPSoC design. In Proc. of Design, Automation Test
in Europe Conf., pages 1540–1545, 2017.

[30] A. A. McEwan, , and I. F. Mrl. Age distribution convergence mechanisms
for flash based file systems. Journal of Computers, 7(4):988–997, 2012.

28



[31] A. A. McEwan and M. Z. Komsul. Reliability and performance enhance-
ments for ssd raid. Microprocessors and Microsystems, 52:461 – 469, 2017.

[32] A. A. McEwan and M. Z. Komsul. Age aware pre-emptive garbage collec-
tion for ssd raid. Microprocessors and Microsystems, 56:13 – 21, 2018.

[33] N. R. Mielke, R. E. Frickey, I. Kalastirsky, M. Quan, D. Ustinov, and V. J.
Vasudevan. Reliability of solid-state drives based on nand flash memory.
Proceedings of the IEEE, 105(9):1725–1750, Sept 2017.

[34] A. Prodromakis, S. Korkotsides, and T. Antonakopoulos. MLC NAND
flash memory: Aging effect and chip/channel emulation. Microprocessors
and Microsystems, 39(8):1052 – 1062, 2015.

[35] A. M. Rahmani, M. H. Haghbayan, A. Miele, P. Liljeberg, A. Jantsch, and
H. Tenhunen. Reliability-aware runtime power management for many-core
systems in the dark silicon era. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 25(2):427–440, Feb 2017.

[36] S. S. Sapatnekar. What happens when circuits grow old: Aging issues
in cmos design. In 2013 International Symposium on VLSI Technology,
Systems and Application (VLSI-TSA), pages 1–2, April 2013.

[37] B. Schroeder, R. Lagisetty, and A. Merchant. Flash reliability in produc-
tion: The expected and the unexpected. In 14th USENIX Conference on
File and Storage Technologies (FAST 16), pages 67–80, Santa Clara, CA,
2016. USENIX Association.

[38] B. Schroeder, A. Merchant, and R. Lagisetty. Reliability of nand-based
ssds: What field studies tell us. Proceedings of the IEEE, 105(9):1751–
1769, Sept 2017.

[39] J. Srinivasan, S. Adve, P. Bose, and J.A.Rivers. The case for lifetime
reliability-aware microprocessors. In Int. Symp. Comp. Arch., pages 276–
287, 2004.

[40] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The impact of tech-
nology scaling on lifetime reliability. In Int. Conf. on Dependable Systems
and Networks, pages 177–186, June 2004.

[41] R. Subramani, H. Swapnil, N. Thakur, B. Radhakrishnan, and K. Puttaiah.
Garbage collection algorithms for nand flash memory devices – an overview.
In 2013 European Modelling Symposium, pages 81–86, Nov 2013.

[42] R. Verschoren and B. V. Houdt. On the impact of garbage collec-
tion on flash-based SSD endurance. In 4th Workshop on Interactions of
NVM/Flash with Operating Systems and Workloads (INFLOW 16), Sa-
vannah, GA, 2016. USENIX Association.

29



[43] Y. Xiang, T. Chantem, R. Dick, X. Hu, and L. Shang. System-level reli-
ability modeling for MPSoCs. In Conf. Hardware/Software Codesign and
System Synthesis, pages 297–306, 2010.

[44] C. Zambelli, M. Indaco, M. Fabiano, S. D. Carlo, P. Prinetto, P. Olivo,
and D. Bertozzi. A cross-layer approach for new reliability-performance
trade-offs in mlc nand flash memories. In 2012 Design, Automation Test
in Europe Conference Exhibition (DATE), pages 881–886, March 2012.

30


