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Abstract

One of the important problems for datacenter resource management is to place virtual

machines (VMs) to physical machines (PMs) such that certain cost, profit or perfor-

mance objective is optimized, subject to various constraints. In this paper, we con-

sider an interesting and difficult VM placement problem with disk anti-colocation con-

straints: a VM’s virtual disks should be spread out across the physical disks of its

assigned PM. For solutions, we use the mixed integer programming (MIP) formula-

tions and algorithms. However, a challenge is the potentially long computation time of

the MIP algorithms. In this paper, we explore how reformulation of the problem can

help to reduce the computation time. We develop two reformulations, by redefining

the variables, for our VM placement problem and evaluate the computation time of

all three formulations. We show that they have vastly different computation time. All

three formulations can be useful, but for different problem instances. They all should

be kept in the toolbox for tackling the problem. Out of the three, formulation COMB

is especially flexible and versatile, and it can solve large problem instances.
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1. Introduction

Cloud computing has gained firm traction in the marketplace as major high-tech

companies rush to offer cloud services, such as Amazon AWS, Google AppEngine,

Microsoft Azure, and Apple iCloud. For cloud providers, in order to get the best return

for investment and to provide the best possible service to customers, one critical task

is to manage the datacenter resources effectively. Today’s resource management in

datacenters involves a core problem, known as virtual machine (VM) placement. Each

customer specifies a desired number of VMs, as well as the resource requirements for

each VM, including CPU, memory, storage, I/O throughput, and possibly bandwidth

between VM pairs [1, 2, 3]. A cloud provider’s datacenters have a large number of

physical machines (PM) mounted on racks and connected through layers of switches

that form the datacenter network [4]. The VM placement problem is to assign the VMs

to the PMs so that certain cost, profit or performance objective is optimized, subject to

the PMs’ resource capacity constraints and possibly network bandwidth constraints.

There is a great variety of VM placement problems, depending on what clouds of-

fer, what customers need, and the performance/cost objectives of both parties. One cat-

egory of services that customers often request contains anti-colocation requirements,

which take the generic form that a set of requested resources should not be colocated

in a sense that depends on the precise specification. For instance, to improve the avail-

ability of its service, a customer may require some of its VMs not to be placed on the

same physical server or the same server rack [5].

This paper focuses on a special type of anti-colocation requirements – disk anti-

colocation. Many VM types offered by public clouds such as Amazon EC2 [6] have

multiple virtual disks per VM. When a customer requests such a VM, he may be in-

terested in the following disk anti-colocation requirement: No physical disk of the PM

to which the VM is assigned should contain more than one of the VM’s virtual disks.

That is, the VM’s virtual disks should be spread out across the physical disks of the

PM.

Our earlier paper [7] has discussed the use cases and benefits of disk anti-colocation

extensively. Here, we summarize that discussion. Cloud users often care a great deal
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about disk IO performance. Since local disks (or directly attached disks) to PMs have

numerous advantages over network-based storage, such as higher IO throughput, lower

latency, more predicable IO performance, lower cost and lower complexity [8, 9], they

are the preferred storage option for many high-valued, critical applications such as

NoSQL databases, Hadoop/MapReduce storage nodes, log or data-processing applica-

tions [9, 10, 11, 12]. For such applications, when a requested VM is assigned to a PM,

the VM’s virtual disks will be mapped to the local physical disks of the PM. When disk

anti-colocation is satisfied, accesses to different virtual disks do not interfere with each

other; the users of the VM can expect improved disk IO performance, especially when

RAID is used.

Although our problem adds only one complication – disk anti-colocation – to the

classical VM placement problem, it is far more difficult to solve than the classical

VM placement problem1. This greater difficulty can be seen later from the problem

formulations, for instance, by counting the number of decision variables. It can also be

seen intuitively. There are two levels of assignment to be made: One is to assign VMs

to PMs; the other is to assign virtual disks to physical disks. What makes the overall

problem especially difficult is that the two levels of assignment are intertwined. To the

best of our knowledge, there are no known optimal combinatorial algorithms to solve

the problem, other than naive enumeration (see Section 2 for detailed discussion).

We advocate the use of mixed integer programming (MIP) [14] formulations and

algorithms for our problem. The benefits of using MIP were argued in [7], and it

has been used in a number of prior studies on similar resource management problems

[15, 16, 17, 18]. The MIP approach should complement other approaches that are fre-

quently used for datacenter resource management, including specialized combinatorial

algorithms and heuristic algorithms.

The main challenge with the MIP approach is that the MIP algorithms can take a

long time to find an optimal solution. Typical strategies to cope with that challenge in-

1In this paper, we do not focus on theoretical computation complexity, but on usable algorithms. The

classical VM placement problem is a form of multi-dimensional bin packing problems. Even the basic

one-dimensional bin packing problem is NP-hard [13].
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clude finding better algorithms, using more powerful computers to run the algorithms,

or reformulating the problem differently. In this paper, we will explore the third strat-

egy – reformulation [19] – to reduce the computation time for the disk anti-colocation

problem. The paper presents three MIP formulations. The first one, F1, was the original

formulation developed in [7]; it is shown here for completeness and for comparison.

The main contributions of this paper are in developing two additional formulations,

F2 and COMB, and in evaluating and comparing the computation time of all three

formulations. Formulations F2 and COMB involve non-obvious reformulation of the

variables. That is, they define the variables very differently from what an obvious

formulation does (in our case, formulation F1 is the obvious formulation). As Trick

suggests, it is this type of reformulation that the modelers can make the most con-

tribution in reducing the computation time because MIP solvers are not sophisticated

enough to perform such reformulation [19].

From our evaluation of the formulations, we arrive at the following main observa-

tions. Different formulations lead to drastically different computation time. However,

which formulation has the least computation time depends on the problem instance.

All three formulations can be useful for the right instances. But, formulation COMB

is especially flexible and versatile, and it can solve large problem instances. Through-

out the paper, we have discussions about how to decide which formulation to use in

different situations.

Due to the inherent difficulty of our problem, when the problem size becomes large

enough, no algorithm will be able to solve it optimally. In that case, one has to resort

to non-optimal heuristic algorithm. Our earlier work [7] explores how to solve large

problem instances with a heuristic decomposition approach. The approach reported in

this paper and the approach in [7] are different but complementary.

The rest of the paper is organized as follows. In Section 2, we discuss additional

related work. In Section 3, we describe our VM placement problem and present three

MIP formulations. In Section 4, we present experimental results to compare the com-

putation time of the three formulations. Conclusions are given in Section 5.
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2. Additional Related Work

There is a large body of research on different VM placement problems, such as VM

placement with traffic awareness or network constraints [20, 21, 15, 22], with routing

[23, 17], with resource sharing by co-located VMs [24, 25, 18], with energy awareness

[16, 26, 27], with random or time-varying resource requirements [2, 28, 29]. Our

earlier work [7] and the follow-up paper by other authors [30] are the only papers that

consider disk anti-colocation. In [30], Hbaieb et al. propose a more scalable algorithm

combining a decomposition method with local search heuristic. Neither paper deals

with optimal algorithms.

Most VM placement problems, like ours, are superclasses of the vector bin packing

problem, which is well-known to be NP-hard. Even for the vector bin packing problem,

there have been relatively few exact (i.e., optimal) algorithms in the literature. Instead,

research has focused on approximation algorithms and online algorithms (see [31] for

a recent survey). Within the exact algorithms, nearly all are about 1 or 2-dimensional

vector packing with identical bins [32, 33], whereas practical VM placement problems

usually have more than two dimensions (i.e., resource types) and different bin (i.e.,

PM) types. More importantly, many VM placement problems like ours are more than

vector bin packing. In our case, even if we have an exact algorithm for general vector

bin packing with multiple bin types, it still won’t solve our problem in which disk

anti-colocation is coupled with vector bin packing.

A majority of prior studies on VM placement avoid MIP formulations all together.

In the cases where MIP formulations are used, they are usually used to describe the

problem; the algorithms are usually not based on MIP. Instead, the effort is usually

on developing specialized combinatorial algorithms, such as multi-dimensional bin-

packing heuristics or approximation algorithms [34, 35, 2], graph algorithms [20, 21,

22] or other sophisticated heuristics [16]. None of these are exact algorithms. For VM

placement problems, changes to the problem specification often make the original al-

gorithm inapplicable, unless it is a general MIP algorithm. The above algorithms are

tailored to the special problems that the authors study, usually relying on certain struc-

tures of the problems. In our assessment, they cannot be adapted easily to our problem,
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due to the addition of the disk anti-colocation requirement, which poses difficult con-

straints of a different kind.

There is a small number of prior studies that do use MIP, but they consider very

different problems from our problem [26, 15, 16, 17, 36, 27, 18]. For instance, [16]

studies a problem of VM placement with energy-aware routing; [17] studies a problem

of placing customer-requested virtual networks into the datacenter’s physical substrate,

subject to the capacity constraints of physical nodes and physical links; [18] formulates

and solves an MIP problem for sharing-aware VM placement where colocated VMs can

share memory pages. These earlier studies provide only one MIP formulation, but do

not attempt problem reformulation.

Practical cloud systems usually adopt less sophisticated heuristics, such as round-

robin, first-fit or first-fit-decrease, as evidenced by open-source middleware stacks

[37, 38, 39]. While simple heuristics may find solutions quickly, they can also be under-

achieving in terms of performance. In particular, when a problem is sufficiently com-

plex or have difficult constraints, intuitions that are needed to develop sound heuristics

may fail. The anti-colocation constraints in our problem are difficult. It is not easy to

design a heuristic algorithm that always has good performance.

3. Three Problem Formulations

In this section, we present three MIP formulations of our VM placement problem

and discuss their complexity and applicability. In the next section, we will evaluate

their computation time when a standard MIP solver is used. In Table 1, we summarize

the major notation.

Consider N VMs and M PMs. Each VM has the following resource requirements:

memory, number of vCPUs, number of local disk volumes (virtual ones) and their

respective sizes. Each PM has certain memory capacity, number of vCPUs that it can

support, and number of local disks and their respective sizes. These local disks may be

in the PM or directly attached.

We first give an overview of the constraints for our problem.

• There are the usual capacity constraints for each resource: With respect to the
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vCPU or memory resource, the total amount of resource required by all the VMs

assigned to a PM cannot exceed the resource capacity of the PM.

• The next set of constraints is quite special, which makes our problem different

from the usual VM placement problems. When multiple virtual disks are re-

quested for a VM i, there is a disk anti-colocation constraint: No physical disk

of the PM (to which VM i is assigned) should contain more than one of VM i’s

requested virtual disks. The motivations for such a constraint have been given in

Section 1.

• A final set of constraints is that the aggregate size of all virtual disks assigned to

a physical disk cannot exceed the capacity of the physical disk.

The optimization objective will ultimately be decided by the cloud provider. For

concreteness, we assume that a fixed operation cost is incurred for a PM as long as the

PM is used by some VMs (that is, some VMs are assigned to the PM). Specifically,

when a PM j is turned on to host some VMs, there is a fixed cost ĉj associated with

running the PM; when the PM is off, there is zero cost. The operation cost may include

the average energy cost when a machine is running and typical maintenance cost. The

optimization objective is to minimize the total operation cost of all the used PMs.

The model can be enriched in many ways. With respect to the costs and objective,

we may include load-dependent costs in the optimization objective. For instance, the

energy cost of a PM may be larger when the CPU load is higher. The model can

also be extended to include local and network bandwidth constraints, although network

constraints pose great difficulty and require additional techniques for solutions [20, 16].

Those additional constraints depend on actual customers’ needs and cloud providers’

policies, and they vary across customers/providers and change over time. Given the

absence of details, we will not include those additional constraints in this paper. We

expect that disk anti-colocation is a class of distinct constraints. It is worthwhile to

single it out for a focused investigation.
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3.1. Formulation 1 - Direct Assignment

Let the sets of the VMs and PMs be denoted by V and P , respectively. For each

VM i, let αi be the number of vCPUs required and let βi be the memory requirement

(in GiB).2 For each VM i, a set of virtual disks is requested and the set is denoted by

Ri = {1, . . . , |Ri|}. For each of the requested virtual disks k ∈ Ri, let νik be the

requested disk volume size (in GB).

For each PM j, let Cj be the number of vCPUs it can support, Mj be the amount of

memory (in GiB), and Dj = {1, . . . , |Dj |} be the set of available physical disks. The

sizes of the physical disks are denoted by Sjl (GB) for l ∈ Dj .

For each i ∈ V and each j ∈ P , let xij be the binary assignment variable from VM

i to PM j, which takes the value 1 if VM i is assigned to PM j and 0 otherwise. The

binary variables yikjl are used for disk assignment: yikjl is set to 1 if VM i is assigned

to PM j and the requested virtual disk k, where k ∈ Ri, for VM i is assigned to the

physical disk l of PM j, where l ∈ Dj ; it is set to 0 otherwise. Let zj be a 0-1 variable

indicating whether PM j is used by some VMs. The following is our first formulation

for VM placement.

F1: min
x,y,z

∑

j∈P

ĉjzj (1)

s.t. yikjl ≤ xij , i ∈ V , j ∈ P , k ∈ Ri, l ∈ Dj (2)

∑

j∈P

∑

l∈Dj

yikjl = 1, i ∈ V , k ∈ Ri (3)

∑

j∈P

xij = 1, i ∈ V (4)

∑

k∈Ri

yikjl ≤ 1, i ∈ V , j ∈ P , l ∈ Dj (5)

∑

i∈V

∑

k∈Ri

νikyikjl ≤ Sjl, j ∈ P , l ∈ Dj (6)

21 GiB (gibibyte) is equal to 2
30 bytes, which is 1, 073, 741, 824 bytes; 1 GB (gigabyte) is equal to 10

9

bytes.
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∑

i∈V

αixij ≤ Cj , j ∈ P (7)

∑

i∈V

βixij ≤ Mj, j ∈ P . (8)

zj ≤
∑

i∈V

xij , j ∈ P (9)

Bzj ≥
∑

i∈V

xij , j ∈ P (10)

xij , yikjl, zj ∈ {0, 1}, i ∈ V , k ∈ Ri, j ∈ P , l ∈ Dj .

The following explains some of the constraints:

• (2) ensures that the requested virtual disks for VM i may be assigned to the

physical disks of PM j only if VM i is assigned to PM j.

• (3) ensures that every requested virtual disk must be assigned to exactly one

physical disk.

• (4) ensures that every VM is assigned to exactly one PM.

• (5) ensures that VM i cannot have more than one of its virtual disks assigned

to the same physical disk; (2) and (5) together enforce the disk anti-colocation

constraints.

• (6) is the disk capacity constraint.

• (7) and (8) are the resource capacity constraints posed by the number of vCPUs

and the total memory size of each PM j.

• (9) and (10) together ensure that zj = 1 if and only if xij = 1 for some i ∈ V .

In (10), B is a large enough constant (it is enough to take B = N ).

Remark. The difficulty of our problem is reflected first by the yikjl variables, which are

indexed by four subscripts, implying a large number of such variables. Moreover, there

are two levels of assignments, VM assignment and disk assignment, and (2) implies

that they cannot be separated. Finally, in formulation F1, we assume that each active

PM has a fixed cost. In reality, some cost may be load dependent. For instance, the
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energy cost of a PM may depend on the number of VMs assigned to it. If the load-

dependent energy cost needs to be incorporated and if the energy cost depends on the

load linearly, our model only requires a small modification: We only need to modify

the objective function by adding a linear term in the x variables. There will be no other

changes to the constraints.

3.2. Formulation 2 – Assign Configurations

The numbers of VM and PM types are often much smaller than the total numbers

of VMs and PMs, respectively. For example, in Amazon EC2 [6], there are only 40

VM types. Amazon does not disclose the detailed configurations of their PMs. From

[6], one can deduce that the PMs falls into a small number of types. For example, the

five m4-type VMs are all supported by 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) pro-

cessors; the five c4-type of VMs are all supported by Intel Xeon E5-2666 v3 (Haswell)

processors3.

Let T v denote the set of VM types. For each u ∈ T v, let mu be the total number

of type-u VMs that need to be placed. Let T p denote the set of PM types. For each

v ∈ T p, let Yv be the set of all type-v PMs. For different v, the sets Yv are disjoint.

A configuration with an ID t of a PM is a vector of non-negative integers, denoted

by wt = (wt
u)u∈T v , where each wt

u represents the number of type-u VMs assigned

to the PM in configuration t. We say a configuration is feasible with respect to a PM

if the configuration is supportable by the PM’s resources, including allowing the disk

anti-colocation constraints to be satisfied. For instance, suppose there are only 4 VM

types and suppose the vector (3, 5, 4, 0)′ is a feasible configuration for a PM. That

3We will see in Section 3.4 that, for formulation F2 and formulation COMB to work, having a small

number of VM types is more important than having a small number of PM types. With a small number of

VM types, the dimension of the configuration vectors is small. The formulations can still be effective even if

the number of PM types is in thousands. The number of PM types mainly affects the pre-computation time

spent on enumerating the number of feasible configurations that can be supported by each PM type. Since

this enumeration is one-time effort and it is done in advance, the time spent on it is not counted towards the

computation time for solving an instance of the VM placement problem. We will take advantage of the small

number of VM types.
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means the PM can support 3 type-1 VMs, 5 type-2 VMs, 4 type-3 VMs and 0 type-4

VMs simultaneously. For simplicity, we exclude the vector 0 as a valid configuration,

although this is not essential.

Since all PMs of the same type have the same amount of resources, a feasible

configuration is also with respect to a PM type. Note that a configuration can be feasible

to more than one PM types.

Suppose every configuration has a unique ID. For each PM type v ∈ T p, let Cv

be the ID set of all the feasible configurations with respect to a type-v PM. For this

formulation, the configurations in Cv are assumed to be known (by preprocessing) and

the number of them is assumed to be not too large, e.g., no more than hundreds of

thousands. There are problem instances for which the assumptions hold (see Section

3.4 for the applicability of F2). Note that the disk anti-collocation requirement must

be satisfied in any feasible configuration. In the preprocessing step where we enumer-

ate the feasible configurations for each PM type, we check the disk anti-collocation

requirement.

For each PM type v, each PM j ∈ Yv and each t ∈ Cv, let γjt be the 0-1 assignment

variable with γjt = 1 if and only if PM j is assigned to take the configuration t. The

second formulation is as follows.

F2:min
γ,z

∑

v∈T p,j∈Yv

ĉjzj (11)

s.t.
∑

t∈Cv

γjt ≤ 1, v ∈ T p, j ∈ Yv (12)

∑

v∈T p

∑

j∈Yv

∑

t∈Cv

γjtw
t
u ≥ mu, u ∈ T v (13)

zj ≤
∑

t∈Cv

γjt, v ∈ T p, j ∈ Yv (14)

Bzj ≥
∑

t∈Cv

γjt, v ∈ T p, j ∈ Yv (15)

γjt, zj ∈ {0, 1}, v ∈ T p, j ∈ Yv, t ∈ Cv.

The following explains some of the constraints:

• (12) ensures that, in a valid assignment, every PM must take at most one feasible
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configuration.

• (13) guarantees that all the VMs are assigned to some PMs.

• (14) and (15) are the same as (9) and (10) in F1, which together ensure that

zj = 1 if and only if some γjt = 1.

Formulation F2 is visibly very different from formulation F1. It is useful if, for

each PM type, the feasible configurations are enumerable and the number of them is

not too large. More detailed analysis on the formulations is deferred till Section 3.4.

3.3. Formulation 3 – Combined Formulation

For some PM types, the number of feasible configurations may be too large for

formulation F2 to be useful; i.e., F2 will have too many variables. For example, the

l6 PM type in Table 3 has millions of feasible configurations (see Section 4.1). For

other PM types, the number of feasible configurations may be small. For instance, if a

PM does not have a lot of physical resources (e.g., it can support a total of 8 vCPUs),

then the number of feasible configurations is usually small. The s1 PM type in Table 3

has only 10 feasible configurations. We next consider a hybrid approach that combines

formulations F1 and F2.

Let P2 be the set of PMs whose number of feasible configurations is not only

enumerable, but also not too large (say, up to hundreds of thousands). Let P1 denote

the set of the rest PMs, i.e., P1 = P\P2. The cutoff between the two sets should be

based on computational experiences in the actual environment where our method is

applied (see Section 3.4 for more discussion). The VM assignment to the PMs in P2 is

done by choosing a configuration for each PM, as in formulation F2. The assignment to

the PMs in P1 is done with the direct approach, i.e., by assigning VMs to PMs directly

as in formulation F1. This combined approach is expected to work well if the number

of PMs in P1 is not too large, say, up to several hundreds.

Let T p
2 be the set of PM types of all the PMs in the set P2. For each v ∈ T p

2 , let

Yv be the set of all type-v PMs (which must be in P2), and let Cv be the ID set of all

feasible configurations with respect to a type-v PM. For a VM i, let τ(i) denote its type.

Let γjt be the 0-1 assignment variable with γjt = 1 if and only if PM j is assigned to
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take the configuration t. The variables xij , yikjl and zj are as in formulation F1. The

combined formulation is as follows.

COMB: min
x,y,z,γ

∑

j∈P

ĉjzj (16)

s.t. yikjl ≤ xij , i ∈ V , j ∈ P1, k ∈ Ri, l ∈ Dj (17)

∑

j∈P1

∑

l∈Dj

yikjl =
∑

j∈P1

xij , i ∈ V , k ∈ Ri (18)

∑

j∈P1

xij ≤ 1, i ∈ V (19)

∑

k∈Ri

yikjl ≤ 1, i ∈ V , j ∈ P1, l ∈ Dj (20)
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∑

i∈V

∑

k∈Ri

νikyikjl ≤ Sjl, j ∈ P1, l ∈ Dj (21)

∑

i∈V

αixij ≤ Cj , j ∈ P1 (22)

∑

i∈V

βixij ≤ Mj, j ∈ P1 (23)

zj ≤
∑

i∈V

xij , j ∈ P1 (24)

Bzj ≥
∑

i∈V

xij , j ∈ P1 (25)

∑

t∈Cv

γjt ≤ 1, v ∈ T p
2 , j ∈ Yv (26)

zj ≤
∑

t∈Cv

γjt, v ∈ T p
2 , j ∈ Yv (27)

Bzj ≥
∑

t∈Cv

γjt, v ∈ T p
2 , j ∈ Yv (28)

∑

v∈T
p

2

∑

j∈Yv

∑

t∈Cv

γjtw
t
u

+
∑

i:τ(i)=l

∑

j∈P1

xij ≥ mu, u ∈ T v (29)

xij , yikjl ∈ {0, 1}, i ∈ V , k ∈ Ri, j ∈ P1, l ∈ Dj

γjt ∈ {0, 1}, v ∈ T p
2 , j ∈ Yv, t ∈ Cv

zj ∈ {0, 1}, j ∈ P .

The following explains some of the constraints:

• (17)-(25) deal with direct VM assignment to the PMs in the set P1, which should

be compared with (2)-(10) in formulation F1. More specifically, (17) ensures

that the requested virtual disks for VM i may be assigned to the physical disks

of PM j only if VM i is assigned to a PM j in P1. (18) ensures that every

requested virtual disk must be assigned to exactly one physical disk only if VM

i is assigned to a PM j in P1. (19) ensures that every VM is assigned to at most

one PM in P1. (20) ensures that VM i cannot have more than one of its virtual
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disks assigned to the same physical disk; (17) and (20) together enforce the disk

anti-colocation constraints. (21) is the disk capacity constraint. (22) and (23) are

the resource capacity constraints posed by the number of vCPUs and the total

memory size of each PM j. (24) and (25) together ensure that zj = 1 if and only

if xij = 1 for some i ∈ V , where B is a large enough constant (it is enough to

take B = N ).

• (18) (19) (20) are slightly different from their counterparts in formulation F1 –

(3) (4) (5) – because each VM i does not have to be assigned to a PM in the set

P1.

• (26)-(28) deal with VM assignment to the PMs in the set P2, which should be

compared with formulation F2. (26) ensures that, in a valid assignment, every

PM must take at most one feasible configuration. (27) and (28) together ensure

that zj = 1 if and only if some γjt = 1.

• The constraint (29) guarantees that all the VMs are assigned.

3.4. Analysis of the Formulations

Formulations F2 and COMB are derived by reformulating the variables. They ex-

ploit special structures of the problem and define the variables very differently from

what the obvious formulation, F1, does. As a result, the three formulations often

have drastically different numbers of variables and constraints for the same problem

instance. Our computational experiences have shown that the differences in computa-

tion time are often enormous. By counting the numbers of variables and constraints,

it is often easy to see which formulation may be suitable and which are definitely im-

practical4. For example, if the number of variables exceeds tens of millions, then the

4The branch-and-bound algorithm used by the MIP solvers involves visiting the nodes on a branch-and-

bound tree and solving a linear programming (LP) problem for each node visited. The numbers of variables

and constraints are good predictors for the computation time of each LP problem. The number of constraints

is a trickier criterion to use, as sophisticated MIP solvers often add more constraints in an attempt to “tighten

the constraints” of the LP problems. The objective is to solve the original MIP problem faster by reducing

the number of nodes visited on the branch-and-bound tree.
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formulation clearly will be difficult to solve. Similarly, if the number of variables in

formulation F2 exceeds that in formulation F1 by orders of magnitude, then F2 will

most likely be more difficult to solve. If the number of constraints in formulation F1

exceeds that in formulation F2 by orders of magnitude, then F1 will most likely be

more difficult to solve.

In order to use formulations F2 and COMB, the feasible configurations supported

by each PM type need to be pre-computed, by enumeration. Since this enumeration is

one-time effort and it is done in advance, the time spent on it is not counted towards the

computation time for solving an instance of the VM placement problem. For each PM

type, we only need to enumerate up to a million feasible configurations. If a PM type

has more than a million feasible configurations, formulation F2 will not be solvable.

We have to use formulation COMB and apply direct VM assignment to the PMs of that

type.

3.4.1. Formulation F1

The total number of variables is dominated by the number of the yikjl variables.

That number is equal to the product of the total number of all the virtual disks in the

problem with the total number of all the physical disks, i.e.,
(
∑

i∈V
|Ri|

)

×
(
∑

j∈P
|Dj |

)

.

The number of constraints is also roughly the same.

Based on our computational experiences, when both numbers exceed hundreds of

thousands, formulation F1 is impractical. When both numbers are below hundreds of

thousands but above tens of thousands, F1 is likely solvable but may take a long time.

When both numbers are less than tens of thousands, the formulation is often solvable

fairly fast.

3.4.2. Formulation F2

The total number of variables is dominated by the number of γjt variables, which

is also the total number of configurations supported by all the PMs in the set P , i.e.,
∑

k∈T p |Yk||Ck|. If that number is greater than millions, the formulation will be either

slow to solve or impossible to solve. Otherwise, the formulation is generally faster to

solve than formulation F1. The number of constraints is roughly equal to 3 times of the
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number of PMs, which is comparably small.

Formulation F2 is useful when the total number of configurations supported by all

the PM types is not too large, e.g., under hundreds of thousands. It is generally easy to

see when F2 is entirely impractical. For instance, a PM of a large type may have an ex-

ceedingly large number of feasible configurations, which will result in an exceedingly

large number of variables and make formulation F2 impractical. An example is given

in Section 4.1.

A small or moderate number of feasible configurations can happen if some combi-

nation of the following conditions is satisfied: (i) The number of VM types is small,

e.g., dozens or less; (ii) a PM has a small capacity in at least one type of resources, e.g.,

4-8 vCPUs; or (iii) there are policy-based restrictions ensuring that certain PM types

are used only for a small number of specific VM types.

As an example of (ii), all the PM types with 8 vCPUs cannot accommodate any

VM of the type i2.8xlarge, which demands 32 vCPUs (see Tables 2 and 3). In general,

for small or medium PM types, the number of feasible configurations is usually small

because (1) a subset of the VM types are ruled out, and (2) for each remaining VM type,

only a small number of such VMs can be assigned to a PM of the small or medium types

due to resource scarcity.

As an example of (iii), a cloud provider may have a policy that the PMs of the large

type are reserved for resource-intensive VM types. Such a policy is sensible for both

economic and performance reasons, e.g., meeting the performance goals of high-value

customers. More concretely, if each l2-type PM is only allowed to host the VM types

with at least 8 vCPUs requirement, then the number of feasible configurations reduces

from more than 2× 1012 to 427 (see Tables 2 and 3).

3.4.3. Formulation COMB

For some large PM types, the number of feasible configurations may be large (say,

more than hundreds of thousands). This is where formulation COMB is useful. We

regard formulation COMB as one of the key contributions of the paper because it can

treat large PMs separately by using direct VM assignment rather than using configura-

tions. In the meantime, it treats the small or medium PM types by using configurations.
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The total number of variables is roughly equal to the sum of the number of yikjl

variables and the number of γjt variables in formulation COMB. The number of yikjl

variables is equal to
(
∑

i∈V
|Ri|

)

×
(
∑

j∈P1
|Dj |

)

, which should be compared with

the case of F1. The number of γjt variables is equal to
∑

k∈T
p

2

|Yk||Ck|, which is the

number of feasible configurations supported by all the PMs in the set P2. The number

of constraints is roughly equal to
(
∑

i∈V
|Ri|

)

×
(
∑

j∈P1
|Dj |

)

+ 3|P2|.

Thus, for formulation COMB to be effective, it is necessary that P1 contains a

small number of PMs (e.g., no more than hundreds), and the PMs in P2 support a

small to moderate number of feasible configurations, e.g., no more than hundreds of

thousands. There is flexibility in setting the sets P1 and P2. Based on the above

discussion, P1 should contain a small number of “large” PMs, i.e., PMs with rich

resources. With respect to the PMs in P2, a small or moderate number of feasible

configurations can happen under the conditions (i)-(iii) given in Section 3.4.2. The

above discussion provides a guideline for narrowing down the choices of P1 and P2.

The final decision can be made based on computational experiences and by comparing

the actual numbers of variables and constraints for different choices of P1 and P2, as

the numbers can be easily computed.

Formulation COMB presents the most flexibility and applicability, because it con-

tains formulations F1 and F2 as special cases. One can design good formulation COMB

to speed up the computation or to solve larger instances.

3.4.4. Summary of Formulation Analysis

• In F1, the number of variables and the number of constraints are comparable. If

F1 is impractical from the computation point of view, it is because both numbers

are large.

• F2 usually has a small number of constraints. If the number of variables is also

small, which depends on the PM types in the problem instance, then F2 is likely

to be faster to solve than F1. When F2 is impractical, it is usually because the

number of variables is too large, which in turn is due to the presence of some

resource-rich (”large”) PM types.
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• If F2 is impractical, one can consider formulation COMB. The key is to decide

the sets P1 and P2; the former contains the resource-rich PMs. In many problem

instances, it is possible to drastically reduce the number of variables, as com-

pared with F2, while only increase the number of constraints moderately. Then,

COMB will be effective. When COMB is impractical, it is usually because there

is a large number of resource-rich PMs, making the set P1 large. However, in

practice, that is unlikely to happen often because cloud providers prefer to use

commodity PMs for cost and ease-of-management reasons. Large PMs are rare,

specialty items for special customers.

• There will be problem instances for which none of the formulations are practical.

In those cases, one has to resort to other strategies, most likely using heuristic

algorithms; but the solutions will not be optimal.

4. Experiments

In this section, we will show problem instances and solve the three formulations

using the MIP solver Gurobi [40]. The main objective is to compare the computation

time and show the vast differences among the three formulations. The results will

reveal that formulation COMB can be used for large and complex problem instances.

4.1. Setup

We follow the VM and PM setup in Amazon’s EC2 [6] as close as we can. We

take a subset of the allowed VM types (classes) of Amazon’s EC2. Their resource re-

quirements are shown in Table 2. Cloud providers generally don’t disclose the detailed

capabilities of all their PMs. As discussed in Section 3.2, the number of PM types is

likely small. For the experiments, we assume the PM types are as shown in Table 3.

The amount of resources of each PM type is largely our guess based on the information

revealed on Amazon’s web site. The operation costs (in the 5th column) are also based

on our estimate5. The costs are normalized, with the lowest operation cost chosen to

5The large cost increase when the number of disks exceeds 4 reflects the cost of running separate DAS

(directed attached storage) devices.
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be 100. Since the problem is linear, it doesn’t matter what the chosen normalization

base cost is. If the base cost is chosen to be θ instead of 100, the optimal cost is simply

θ/100 times of the optimal cost under the base cost 100.

For Amazon EC2, each vCPU corresponds to a hyperthread of a physical core [41].

In our experiments, we assume the PMs all support two hyperthreads per physical core.

Hence, each physical core counts as 2 vCPUs. As an example, each Xeon E5-2680

processor has 8 cores and supports a total of 16 threads. A PM with one such processor

offers 16 vCPUs.

For the PM types s1-s4 and m1-m5, we pre-computed all their feasible configura-

tions. As stated earlier, the pre-computation step is a one-time effort and the required

time is not counted toward the final computation time. In fact, for these PM types,

the numbers of feasible configurations are quite small: s1–10, s2–36, s3–174, s4–174,

m1–315, m2–2113, m3–4247, m4–4247, m5–3199. For the PM types l1-l6, we did

not pre-compute their feasible configurations because they have much more resources

and the numbers of feasible configurations are large. For example, the l6 PM type has

millions of feasible configurations. Therefore, when PM types l1-l6 are involved in the

experiments, we use formulation COMB instead of formulation F2. Experiment I and

II are done with Gurobi-5.6.3 on a ThinkPad 220i laptop with 2 Intel i3 cores and 10G

RAM. The other experiments are done with Gurobi-6.5.2 on a ThinkPad 240 laptop

with 2 Intel i7 cores and 8G RAM. Gurobi is one of the highly regarded MIP solvers.

Comparison results suggest that Gurobi is at least competitive against two other major

commercial MIP solvers, CPLEX and XPRESS [42]. All these commercial solvers are

much faster than open-source alternatives.

4.2. Comparison with Greedy Randomized Heuristic Algorithm

As a target for performance comparison, we developed our own heuristic algorithm.

The heuristic algorithm is motivated by the general ideas of online heuristic algorithms

[43, 5, 26] but should achieve much lower costs than the latter due to two exhaustive

search steps, which we will describe.

Imagine that VM requests arrive dynamically. An online randomized algorithm

will assign a requested VM to some random PM one at a time in the arrival order of
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the VM requests. Note that, in our experiments, all the VMs to be placed are given

together in a batch. Our greedy randomized algorithm first randomly permutes the list

of all the requested VMs; this emulates the random arrival order of the VM requests.

For each VM in the permuted list, an attempt is made to assign the VM to a PM. The

greedy aspect is that, for assignment, the list of used PMs, which are those already

with some assigned VMs, is checked first; if the VM cannot be assigned to any PM in

the used list, then the list of unused PMs is checked. The greediness tends to lead to

more VM consolidation. In scanning either PM list, the order of scanning is uniformly

random to emulate random selection; the first PM in the list that can accommodate the

VM is selected (first-fit)6.

For each scanned PM, our heuristic algorithm checks whether it is possible to as-

sign the currently considered VM to that PM. For vCPU or memory, all that is needed

is to check whether the remaining number of vCPUs or the remaining memory is suffi-

cient for the VM. For disk assignment, the algorithm exhaustively enumerates different

disk assignment possibilities and uses the first one that is feasible7. If the disk assign-

ment (for the currently considered VM and PM) cannot be done by the algorithm, it is

because the assignment is infeasible.

4.3. Main Results

We summarize the computation time and achieved costs of all experiments in Table

6 and Table 8. For the randomized heuristic, each test case is repeated for 1000 times

6For a large datacenter, scalable online algorithms cannot afford to search through all the used PMs or

unused PMs for each VM request. A typical strategy is to randomly sample a few used PMs and, if that does

not work out, pick randomly a unused PM with sufficient resources. Our heuristic algorithm should do better

in the achievable objective value. A more sophisticated algorithm is to keep track of an ordered list of all

the PMs according to certain criterion and assign the VM to the first one on the list that fits. In this case,

exhaustive search is needed and scalability is limited. Our heuristic algorithm does not maintain an ordered

list because there is no obvious criterion for the order due to the difficult disk anti-colocation requirement.
7Checking the feasibility of disk assignment can be done by some standard assignment algorithm, which

may be faster than enumeration but still takes some time. Either way, our heuristic algorithm has limited

scalability, since in the worst case there is one disk assignment problem for every PM and for every VM

request. But, it should achieve a lower cost than more scalable online randomized algorithms that do not

check all the PMs for all possible disk assignment possibilities.
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and the average cost is reported. Note that, regardless of the VM-PM ratios (N : M )

that we have experimented with, typically not all the PMs are used by the VMs in

our solutions. The VMs are consolidated into fewer PMs because our optimization

objective is to minimize the total operation cost of the active (i.e., used) PMs. Out of

the M PMs, only those used PMs will incur costs.

4.3.1. Experiment I – 70 VMs and 50 PMs

We experimented with a problem of assigning 70 VMs to 50 PMs. The detailed

setup is in Table 4. In this problem instance, only the small and medium types of

PMs are used. Hence, we can compare formulations F1 and F2. Judging by the VM

and PM numbers, this is a small instance. However, formulation F1 involves 17950

binary variables and 26120 constraints, which make it non-trivial for any optimization

software. Formulation F2 involves 51597 variables and 168 constraints. Formulations

F1 and F2 are solved by Gurobi in 41.46 and 0.31 seconds, respectively, both yielding

the optimal cost 4540 with 24 PMs used. The results demonstrate that if all the feasible

configurations can be pre-computed and if their numbers are not too large, formulation

F2 may be solved much faster than formulation F1. The reason is that F2 has much

fewer constraints. We also experimented with the randomized heuristic algorithm. The

average cost obtained by the heuristic algorithm is 5431, which is about 19.6% higher

than the optimal cost of 4540.

The obtained optimal solutions are useful for other purposes. For instance, they

give indications on what resources are likely to be critical for different PM types. In

Fig. 1 and Fig. 2, we show the resource utilization of the PMs in the optimal solutions

for formulations F1 and F2. For each resource and each PM, the utilization of that

resource on the PM is defined as the ratio of the total requested amount by all the

VMs assigned to that PM over the total available amount from that PM. For instance,

suppose two VMs are assigned to a PM, and suppose each VM requires 4 vCPUs and

the PM supports 8 vCPUs. Then, the vCPU utilization on the assigned PM is 100%.

Both solutions use 24 PMs - s1: 2; s2: 7; s3: 10; s4: 5. Both solutions show very

similar patterns of resource utilization. The vCPUs are critical resources for PM types

s2, s3 and s4. The number of local disks (labeled as ‘#lssd’) is a critical resource for
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Figure 1: Resource utilization resulted from formulation F1 for experiment I

PM types s1, s2 and s3, in the sense that all those disks tend to have some virtual

disks assigned to them. The memory utilization is high for PM types s1 and s2. The

utilization of the physical disk capacity (labeled as ‘lssd size’) is generally low (less

than 30%). However, we should caution that these observations may change if the PMs

have different resource configurations from what we are currently assuming.

We also examined a solution produced by the randomized heuristic algorithm with

a cost of 5160 and 27 active PMs. In Fig. 3, it shows that each PM type has a similar

pattern of resource utilization as that of the optimal solutions obtained by F1 and F2.

But the heuristic algorithm uses more s1-type PMs and fewer s2-type PMs. The s1

type has a larger vCPU-memory ratio compared with the s2 type. Therefore, the vCPU

utilization of the s1 type is generally lower than the s2 type. The optimal solutions

for F1 and F2 always use up all the available s2-type PMs. Meanwhile, the heuristic

algorithm assigns more VMs to the s1-type PMs. Hence, the overall performance of

the heuristic algorithm is worse.

With the objective of minimizing the total operation cost of the PMs, the optimal

solution always seeks to improve the resource utilization of the active PMs. Hence, for

almost every active PM, at least one resource is fully utilized. If that is not the case

for some active PM, it is because there are no more unassigned VMs that can fit in that

PM.

23



Figure 2: Resource utilization resulted from formulation F2 for experiment I
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Figure 3: Resource utilization resulted from randomized heuristic for experiment I

4.3.2. Experiment II – 77 VMs and 70 PMs

In this experiment, 77 VMs will be assigned to 70 PMs. Although the numbers of

VMs and PMs are not so different from the previous problem instance, the mixes of

the VM and PM types are quite different (see Table 4). Here, we have a fuller mix

of almost all types of VMs and PMs. Formulation F2 is impractical for this instance,

because the numbers of configurations for some large PM types are too great to be

pre-computed within a reasonable amount of time. Hence, we compare formulation

COMB with formulation F1. Formulation F1 has 55380 binary variables and 80825

constraints, quite a bit larger than the previous problem instance. Formulation COMB

has 97610 binary variables and 37538 constraints. Formulation F1 takes Gurobi about
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2778 seconds (about 46 minutes) to solve, which is much longer than for the previous

instance. Formulation COMB takes 955 seconds, which is about one third of the time

for Formulation F1. We see that, for this problem instance, formulation COMB has

a modest computation time advantage over F1, but a great advantage over F2. The

optimal assignment has a cost of 45300 and the average cost reported by the heuristic

is 51102.

With respect to resource utilization, the vCPUs and the number of disks are still

critical resources for most PM types. The memory utilization is very high for more

than half of the PMs. The disk capacity is often less than 50% utilized for all PM types

other than m3, l1 and l5.

4.3.3. Experiment III & IV – around 1000 VMs and 1000 PMs

We further experimented with a much larger example, where 1000 VMs are to be

assigned to 1000 PMs of different types. The mixes of VMs and PMs are described in

the part about Experiment III in Table 4. The results are summarized in Table 6.

For this experiment, formulation F1 fails to finish running due to the large number

of variables and constraints. Formulation F2 has 1099900 binary variables and 3018

constraints. It took 6.84 seconds to solve. We find that the vCPUs and the number of

disks are still critical resources for most PM types.

In the setup of Experiment III, there are not any large VMs and PMs. For Ex-

periment IV, we added 10 large VMs and 12 large PMs, as shown in Table 4. The

experiment emulates a scenario where an enterprise customer deploys around 1000

VMs for its workforce. Most of the VMs are ordinary (not very powerful), and they

are intended to be used by regular office workers. But, some large VMs are needed by

power users or larger servers, and they must be put on large PMs. For this experiment,

formulation F2 is impractical and formulation F1 fails to finish running. Formulation

COMB has 238932 binary variables and 124695 constraints. It takes 2336 seconds to

solve.

For the setup of Experiment III, we ran 10 additional experiments on random com-

binations of the VM and PM types. More specifically, we kept 1000 VMs and 1000

PMs. We randomly assigned the VMs into the m3 types and c3 types, and randomly
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assigned the PMs into the s types and m types. The results of using formulation F2

are reported in Table 7. There are 3018 constraints for each combination, and around

2, 000, 000 binary variables, depending on the specific PM types. The computation

time is around dozens of seconds.

4.3.4. Experiment V, VI and VII – Policy-Based Examples

As discussed earlier, the number of feasible configurations for the large PM types

can be very large, which limits the usefulness of formulations F2 and COMB. In re-

ality, for economic or performance reasons, datacenters may have policies that large

PMs are reserved for VMs that require a large amount of resources (see Section 3.4 for

more discussion). Under such policies, the number of feasible configurations for large

PMs can be drastically reduced, making formulation F2 and COMB more widely ap-

plicable. This group of experiments demonstrate the above points. The parameters for

Experiment V, VI and VII are given in Table 5. Experiment V has 6020 VMs and 2012

PMs, a fairly large deployment. Experiment VII has 7500 VMs and 6000 PMs, an even

larger deployment; moreover, all types of VMs and PMs are involved. Experiment VI

is a smaller deployment, but has some large VM and PM types.

Suppose a datacenter has the following policy restrictions for large PMs (l-type),

and suppose there are no restrictions for the small (s-type) or medium (m-type) PM

types.

• l1 is restricted to: m3.xlarge, m3.2xlarge, c3.xlarge, c3.2xlarge, c3.4xlarge, c3.8xlarge,

r3.xlarge, r3.2xlarge, r3.4xlarge, r3.8xlarge, i2.xlarge, i2.2xlarge, i2.4xlarge, i2.8xlarge.

• l2 and l3 are restricted to: m3.2xlarge, c3.2xlarge, c3.4xlarge, c3.8xlarge, r3.2xlarge,

r3.4xlarge, r3.8xlarge, i2.2xlarge, i2.4xlarge, i2.8xlarge.

• l4, l5 and l6 are restricted to: c3.4xlarge, c3.8xlarge, r3.4xlarge, r3.8xlarge,

i2.4xlarge, i2.8xlarge.

With the above policy, the number of configurations for each l-type PM is small

and we can use formulation F2 to solve the problems in Experiment V, VI and VII.

The results are summarized in Table 5. All the problems can be solved very quickly
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under formulation F2, from under 1 second to 261 seconds. In contrast, without the

policy-based restrictions, the two problems in Experiment V and VII cannot be solved

using any of the three formulations. The problem in Experiment VI cannot be solved

using formulation F1 or formulation F2.

4.3.5. Experiments with Different VM-PM Ratios

In the cloud environment, the ratio between the VMs and PMs may vary. In this set

of experiments, we start with the setup of Experiment III but vary the number of PMs.

More specifically, there are 300, 400, 600, 800 and 1000 PMs in each experiment,

where the proportion of each PM type is the same as that of Experiment III. We keep

the VM setup of Experiment III unchanged, which has 1000 VMs. The experiment

with 200 PMs is not feasible; hence we do not report its result. We summarize the

performance results in Table 9, and plot the number of active PMs and the number of

assigned VMs of each PM type in Fig. 4 and Fig. 5, respectively. The results show that

for the m3-type VMs, the PM types s2, s3, and s4 are more cost-efficient compared

with the s1-type and the m-type PMs. Thus, with more available PMs from each PM

type, the optimal solution shifts the VM assignments to the PM types s2, s3 and s4.

Though more PMs need to be turned on, the overall cost is decreased from 127, 120 to

66, 040.

5. Conclusions and Discussions

In this paper, we examine the approach of using MIP formulations and algorithms

for a special VM placement problem, which has difficult disk anti-colocation con-

straints. One of the key challenges is the potentially long computation time of MIP

algorithms. We explore how different problem formulations – by redefining variables

– can help to reduce the computation time. Our main effort is on developing the non-

obvious formulations F2 and COMB. For a given problem instance, the three formu-

lations often have drastically different numbers of variables and constraints, and the

differences in computation time are often enormous. For many problem instances, it is

easy to see which formulation may be suitable and which are definitely impractical, by

counting the number of variables and the number of constraints. In the end, all three
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formulations can be useful, but for different problem instances. They all should be

kept in the toolbox for tackling the problem. Out of the three, formulation COMB is

especially flexible and versatile, and it can solve large problem instances.

The approach used by the paper is extensible to other datacenter resource man-

agement problems. For a given problem, different formulations likely exist and they

can have very different computation time; which formulation has the least computa-

tion time depends on the problem instances. Thus, it is important to explore different

formulations and select suitable ones for different instances.

Even with proper formulations, MIP algorithms can only solve what might be con-

sidered small to medium problem instances in our application setting, good enough for

perhaps 1,000 – 10,000 PMs. To model problems for a large datacenter in its entirety,

an MIP formulation may involve trillions of variables and/or constraints, and there is

no hope to solve them optimally within acceptable time. In such cases, we show in

[7] that a hierarchical decomposition heuristic can be effective. The decomposition

method breaks a large, hard problem into many independent subproblems, which can

be solved in parallel by separate control servers. Each of the subproblems can be made

sufficiently small and solvable quickly using MIP algorithms. The material of this

paper is relevant to those subproblems.
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Finally, the VM placement problems encountered in practice will likely contain

multiple difficult components, expressed by different sets of constraints or require-

ments. Each of the difficult components may require different techniques to cope with.

A complete solution will need to combine those techniques together. This paper exam-

ines one such difficult component and provides one class of techniques, which can be

used as a building block for solving problems encountered in practice.
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A. Monje, On the optimal allocation of virtual resources in cloud computing net-

works, IEEE Transactions on Computers 62 (6) (2013) 1060–1071.

[18] S. Rampersaud, D. Grosu, Sharing-aware online virtual machine packing in het-

erogeneous resource clouds, IEEE Transactions on Parallel and Distributed Sys-

tems 28 (7) (2017) 2046–2059.

[19] M. Trick, Formulations and reformulations in integer programming, in: Interna-

tional Conference on Integration of Artificial Intelligence (AI) and Operations

Research (OR) Techniques in Constraint Programming, 2005.

31

http://www.datastax.com/dev/blog/what-is-the-story-with-aws-storage
http://www.datastax.com/dev/blog/what-is-the-story-with-aws-storage
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/
http://blog.cloudera.com/blog/2013/08/how-to-select-the-right-hardware-for-your-new-hadoop-cluster/


[20] X. Meng, V. Pappas, L. Zhang, Improving the scalability of data center networks

with traffic-aware virtual machine placement, in: Proceedings of IEEE INFO-

COM, 2010.

[21] M. Alicherry, T. Lakshman, Network aware resource allocation in distributed

clouds, in: Proc. of IEEE INFOCOM, IEEE, 2012, pp. 963–971.

[22] L. Zhang, X. Yin, Z. Li, C. Wu, Hierarchical virtual machine placement in mod-

ular data centers, in: IEEE 8th International Conference on Cloud Computing

(CLOUD 2015), 2015.

[23] J. Jiang, T. Lan, S. Ha, M. Chen, M. Chiang, Joint VM placement and routing for

data center traffic engineering, in: Proceedings of IEEE INFOCOM, 2012, pp.

2876–2880.

[24] M. Sindelar, R. K. Sitaraman, P. Shenoy, Sharing-aware algorithms for virtual

machine colocation, in: Proceedings of the ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA ’11), 2011.

[25] S. Rampersaud, D. Grosu, Sharing-aware online algorithms for virtual machine

packing in cloud environments, in: IEEE 8th International Conference on Cloud

Computing (CLOUD 2015), 2015.

[26] X. Li, Z. Qian, S. Lu, J. Wu, Energy efficient virtual machine placement algorithm

with balanced and improved resource utilization in a data center, Mathematical

and Computer Modelling 58 (5-6) (2013) 1222–1235.

[27] A. Marotta, S. Avallone, A simulated annealing based approach for power effi-

cient virtual machines consolidation, in: IEEE 8th International Conference on

Cloud Computing (CLOUD), IEEE, 2015, pp. 445–452.

[28] L. Chen, H. Shen, Consolidating complementary VMs with spatial/temporal-

awareness in cloud datacenters, in: IEEE INFOCOM, 2014.

[29] S. Maguluri, R. Srikant, L. Ying, Stochastic models of load balancing and

scheduling in cloud computing clusters, in: Proceedings of IEEE INFOCOM,

2012, pp. 702–710.

32



[30] A. Hbaieb, M. Khemakhem, M. B. Jemaa, Using decomposition and local search

to solve large-scale virtual machine placement problems with disk anti-colocation

constraints, in: 2017 IEEE/ACS 14th International Conference on Computer Sys-

tems and Applications (AICCSA), 2017, pp. 688–695.

[31] H. I. Christensen, A. Khan, S. Pokutta, P. Tetali, Approximation and online al-

gorithms for multidimensional bin packing: A survey, Computer Science Review

24 (2017) 63–79.

[32] B. Han, G. Diehr, J. Cook, Multiple-type, two-dimensional bin packing problems:

Applications and algorithms, Annals of Operations Research 50 (1994) 239–261.

[33] M. Delorme, M. Iori, S. Martello, Bin packing and cutting stock problems: Math-

ematical models and exact algorithms, European Journal of Operational Research

255 (1) (2016) 1–20.

[34] Y. Ajiro, A. Tanaka, Improving packing algorithms for server consolidation, in:

Proc. of Computer Measurement Group Conference (CMG), 2007.

[35] M. Chen, H. Zhang, Y. Y. Su, X. Wang, G. Jiang, K. Yoshihira, Effective VM siz-

ing in virtualized data centers, in: Proc. of IFIP/IEEE Integrated Network Man-

agement (IM), 2011.

[36] W. Wang, D. Niu, B. Li, B. Liang, Dynamic cloud resource reservation via cloud

brokerage, in: IEEE International Conference on Distributed Computing Systems

(ICDCS 2013), 2013.

[37] Apache CloudStack Project. [Online] http://cloudstack.org/.

[38] OpenStack Project. [Online] http://www.openstack.org/.

[39] Eucalyptus Systems. [Online] http://www.eucalyptus.com/.

[40] Gurobi, Gurobi Web Site, [Online] http://www.gurobi.com/.

[41] M. Fielding, Virtual CPUs with Amazon web ser-

vices, [Online] http://www.pythian.com/blog/

virtual-cpus-with-amazon-web-services/ (June 2014).

33

http://cloudstack.org/
http://www.openstack.org/
http://www.eucalyptus.com/
http://www.gurobi.com/
http://www.pythian.com/blog/virtual-cpus-with-amazon-web-services/
http://www.pythian.com/blog/virtual-cpus-with-amazon-web-services/


[42] H. Mittelmann, Benchmarks for optimization software, [Online] http://

plato.la.asu.edu/bench.html.

[43] C. Tang, M. Steinder, M. Spreitzer, G. Pacifici, A scalable application placement

controller for enterprise datacenters, in: Proc. of WWW, 2007.

34

http://plato.la.asu.edu/bench.html
http://plato.la.asu.edu/bench.html


Table 1: Major Notation.

N number of VMs M number of PMs

i index of VM j index of PM

V the set of VMs P the set of PMs

k index of virtual disk l index of physical disk

T v the set of VM types T p the set of PM types

u index of VM type in T v v index of PM type in T p

t a configuration ID Yv the set of all type-v PMs

Cj the number of vCPUs that PM j can support

Mj the amount of memory (in GiB) of PM j

ĉj a fixed cost associated with running PM j

αi the number of vCPUs required by VM i

βi the memory requirement (in GiB) by VM i

Ri = {1, . . . , |Ri|} a set of virtual disks requested by VM i

νik the requested disk volume size (in GB) for the requested virtual disk k ∈ Ri

Dj = {1, . . . , |Dj|} the set of available physical disks of PM j

Sjl the size (in GB) of the physical disk l ∈ Dj

xij the binary assignment variable from VM i to PM j

yikjl a binary assignment variable for disk

zj the binary variable indicating whether PM j is used by some VMs

Cv the ID set of all the feasible configurations with respect to a type-v PM

mu the total number of type-u VMs that need to be placed

wt the vector representation of configuration t

wt
u the number of type-u VMs in configuration t

γjt a binary PM-to-configuration assignment variable

P2 the set of PMs with moderate numbers of feasible configurations

P1 P1 = P\P2

B a sufficient large constant
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Table 2: VM Types

VM Type vCPU Memory (GiB) Storage (all SSD; GB)

m3.medium 1 3.75 1 × 4

m3.large 2 7.5 1 × 32

m3.xlarge 4 15 2 × 40

m3.2xlarge 8 30 2 × 80

c3.large 2 3.75 2 × 16

c3.xlarge 4 7.5 2 × 40

c3.2xlarge 8 15 2 × 80

c3.4xlarge 16 30 2 × 160

c3.8xlarge 32 60 2 × 320

r3.large 2 15.25 1 × 32

r3.xlarge 4 30.5 1 × 80

r3.2xlarge 8 61 1 × 160

r3.4xlarge 16 122 1 × 320

r3.8xlarge 32 244 2 × 320

i2.xlarge 4 30.5 1 × 800

i2.2xlarge 8 61 2 × 800

i2.4xlarge 16 122 4 × 800

i2.8xlarge 32 244 8 × 800
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Table 3: PM Types

PM Type vCPU Memory Storage Operation Costs

(GiB) (all SSD; GB) (normalized)

s1 8 16 1 × 256 100

s2 8 32 1 × 512 120

s3 8 64 2 × 512 200

s4 8 64 4 × 512 300

m1 16 32 2 × 512 600

m2 16 64 4 × 512 700

m3 16 128 4 × 1000 900

m4 16 256 8 × 1000 1500

m5 16 256 16 × 512 1800

l1 32 256 4 × 1000 2500

l2 48 512 8 × 1000 3500

l3 64 1024 4 × 1000 5000

l4 80 2048 16 × 1600 7000

l5 120 4096 4 × 1000 9000

l6 120 4096 24 × 1600 12000
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Table 4: VM and PM Setup for Experiments I, II, III and IV

VM Type No. of VMs PM Type No. of PMs

Experiment I II III IV Experiment I II III IV

m3.medium 36 5 500 500 s1 7 5 150 150

m3.large 14 5 200 200 s2 7 5 150 150

m3.xlarge 10 5 150 150 s3 10 5 150 150

m3.2xlarge 10 5 150 150 s4 7 5 150 150

c3.large 5 2 m1 5 5 100 100

c3.xlarge 5 2 m2 5 5 100 100

c3.2xlarge 5 2 m3 5 5 100 100

c3.4xlarge 5 2 m4 2 5 50 50

c3.8xlarge 5 2 m5 2 5 50 50

r3.large 5 l1 5 2

r3.xlarge 5 l2 5 2

r3.2xlarge 5 l3 5 2

r3.4xlarge 5 l4 5 2

r3.8xlarge 5 l5 5 2

l6 2

i2.xlarge 2

i2.2xlarge 2

i2.4xlarge 3
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Table 5: VM and PM Setup for Experiment V, VI and VII

VM Type No. of VMs PM Type No. of PMs

Experiment V VI VII Experiment V VI VII

m3.medium 0 0 1875 s1 300 0 900

m3.large 4000 0 750 s2 300 0 900

m3.xlarge 2000 0 563 s3 300 0 900

m3.2xlarge 0 15 562 s4 300 0 900

c3.large 0 0 600 m1 200 10 450

c3.xlarge 0 0 600 m2 200 10 375

c3.2xlarge 0 0 150 m3 200 10 375

c3.4xlarge 3 15 75 m4 100 10 375

c3.8xlarge 3 15 75 m5 100 10 375

r3.large 0 0 600 l1 2 5 75

r3.xlarge 0 0 600 l2 2 5 75

r3.2xlarge 0 0 150 l3 2 5 75

r3.4xlarge 3 0 150 l4 2 5 75

r3.8xlarge 3 15 75 l5 2 5 75

l6 2 2 75

i2.xlarge 0 0 300

i2.2xlarge 3 15 300

i2.4xlarge 3 15 75

i2.8xlarge 2 15 75

Total 6020 105 7500 Total 2012 80 6000
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Table 6: Summary of Computation Time (seconds) and Achieved Costs: Experiment I, II, III and IV

Experiment I II III IV

Run Time of F1 41.46 2278 N/A N/A

Run Time of F2 0.31 N/A 6.84 N/A

Run Time of COMB N/A 955 N/A 2336

Cost by Optimization 4540 45300 66040 73340

Cost by Heuristics 5431 51102 78628 85930

Table 7: Summary of Computation Time (Seconds): Random Combination of VM Types and PM Types,

1000 VMs and 1000 PMs.

Combination Run Time (seconds) #Constraints #Binaries

1 6.84 3018 1099900

2 20.47 3018 1512195

3 13.71 3018 1804207

4 9.45 3018 1865270

5 14.99 3018 1719534

6 13.18 3018 2244564

7 11.48 3018 2090610

8 17.59 3018 2506636

9 16.35 3018 2009020

10 26.50 3018 2260166
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Table 8: Summary of Results: Experiment V, VI and VII

Experiment V VI VII

Run Time of F2 15s 0s 261s

Cost by Optimization 657200 170000 1046271

Cost by Heuristics 666805 184710 1851922

#Varialbes of F2 2207686 56 3747950

#Constraints of F2 6054 633 4018

Table 9: Summary of Tests with Skewed VM-PM Ratios; #VM = 1000

#PM 300 400 600 800 1000

Cost by Optimization 127120 92700 76100 69040 66040

Cost by Heuristics 128370 106091 101333 86380 78628

Active PMs 276 303 337 338 338
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