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Abstract—The paper revisits the performance evaluation of
caching in a Named Data Networking (NDN) router where the
content store (CS) is supplemented by a pending interest table
(PIT). The PIT aggregates requests for a given content that
arrive within the download delay and thus brings an additional
reduction in upstream bandwidth usage beyond that due to CS
hits. We extend prior work on caching with non-zero download
delay (non-ZDD) by proposing a novel mathematical framework
that is more easily applicable to general traffic models and
by considering alternative cache insertion policies. Specifically
we evaluate the use of an LRU filter to improve CS hit rate
performance in this non-ZDD context. We also consider the
impact of time locality in demand due to finite content lifetimes.
The models are used to quantify the impact of the PIT on
upstream bandwidth reduction, demonstrating notably that this
is significant only for relatively small content catalogues or high
average request rate per content. We further explore how the
effectiveness of the filter with finite content lifetimes depends on
catalogue size and traffic intensity.

Index Terms—Named Data Networking, Caching, Request
Aggregation, Content Popularity

I. INTRODUCTION

The well-known proposal for a clean-slate, Named Data

Networking (NDN) architecture for the future Internet [1],

[2] is still under active development and pre-standardization

at the IRTF. A major feature of NDN is the systematic use

of in-router, line rate caching meant to significantly reduce

upstream bandwidth requirements by storing local copies of

popular contents. NDN routers also perform collapsed for-

warding whereby a single content download can satisfy near

simultaneous requests from multiple users. The objective of

the present paper is to evaluate the effectiveness of collapsed

forwarding and to understand how it depends on the traffic

and popularity characteristics.

In NDN, small chunks of content in the form of Data

packets are requested by name by users who emit Interest

packets. If an Interest matches a content in the router Content

Store (CS), the request is a hit and the content is returned

directly. If the content is absent, the request is forwarded

to a Pending Interest Table (PIT). If there is no match in

the PIT, the request is forwarded towards a known external

source and the Interest is recorded in the PIT. If the PIT

already has a matching entry, the current Interest is added

to the record but not forwarded. The PIT entry is removed

when the content Data packet arrives from the external source

after a download delay and may then be stored in the CS. The

aggregation of Interests in the PIT during the download delay

thus realizes collapsed forwarding. The PIT can be regarded

as a supplementary meta cache that only stores names and not

actual contents and thus potentially alleviates some serious

challenges in realizing a CS of adequate capacity operating at

line rate.

To evaluate PIT effectiveness, it is clearly necessary to

forego the usual assumption that downloads occur instan-

taneously after a request cache miss, as if there was zero

download delay (ZDD). A non-ZDD assumption is required

to properly account for request aggregation. We also wish

to investigate the impact on performance of time locality

in the request process or, more specifically, of the fact that

content popularity is not constant but varies in time. Our

model builds on several pieces of prior work. The non-ZDD

CS-PIT system was first analyzed by Dehghan et al. [3]. We

propose an alternative approach that is computationally more

efficient when requests do not follow the usual independent

reference model (IRM) but are modelled using general renewal

processes.

We use renewal processes to model time locality illustrating

its generally beneficial impact on performance compared to

IRM input. The particular renewal processes considered are in-

spired by prior work on the analysis of ZDD systems with time

locality by Garetto and co-authors in [4] and [5]. Our analysis

is applied to a CS implementing the usual Least Recently Used

(LRU) replacement policy and also to a CS equipped with

a filter that improves hit rates by preferentially inserting the

most popular contents. The particular filter we propose is a

non-ZDD variant of the 2-LRU cache considered in [4]. We

use the analysis to perform extensive numerical evaluations,

whose accuracy is confirmed by simulation, to explore the

effectiveness of PIT aggregation and how this depends on

critical parameters characterizing system and demand.

Our main contributions are the following:

• We develop an original analytical framework to compute

the hit rate and collapsed forwarding performance of the

non-ZDD CS-PIT system using LRU replacement under

renewal traffic.

• The analysis is extended to a 2-LRU CS-PIT system

where an additional LRU meta cache filter is used to
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avoid caching the least popular contents.

• The accuracy of the analytical framework is demonstrated

by comparison with the results of simulations in an

extensive series of evaluations.

• These evaluations constitute an exhaustive investigation

of how the effectiveness of PIT aggregation depends on

download delay, CS capacity, traffic intensity and content

catalogue size.

• The impact on CS-PIT performance of finite content

lifetimes (approximating varying popularity) is illustrated

through results for a particular choice of renewal input.

The rest of the paper is organized as follows. Sec. II

reviews related work. In Sec. III, we introduce the principal

concepts and notations. In Sec. IV, we analyse LRU and 2-

LRU replacement policies applied to the CS-PIT system and

derive performance metrics of interest. In Sec. V, we evaluate

the accuracy of our analysis through extensive simulations and

evaluate the performance of considered policies for contents

with finite lifetime. Finally, we conclude the paper in Sec. VI.

II. RELATED WORK

The literature on the modelling and analysis of caching

policies is vast, as exemplified by the recent survey paper [6].

We limit the present discussion to papers that are most directly

related to our work on the impact of PIT request aggregation

in an NDN router.

Our analysis is inspired by that proposed by Dehghan et

al. in [3]. Their analysis applies to non-ZDD CS-PIT systems

under the characteristic time approximation ( [7], [8]). The

authors derive expressions for hit rates and request forwarding

probabilities under a renewal traffic model for caching policies

including LRU. More recently, Dai et al. [9] have considered

a different implementation of LRU for the CS-PIT system

where the LRU list is updated on request arrival rather than

on content insertion after download. This approach makes

it possible to apply to non-ZDD caches previous theoretical

justifications of the characteristic time approximation for LRU

with IRM input ( [7], [8]), under the assumption that content

metadata is never evicted from the LRU list between request

arrival and download. However the assumption made in [9]

seems somehow artificial. This is the reason why in our paper

we prefer to restore the more natural assumptions made in [3].

We apply the characteristic time approximation to non-ZDD

caches, and we validate the accuracy of this approximation by

simulation.

Our work significantly extends the model of [3] by consid-

ering a more efficient cache insertion policy than simple LRU.

We also develop an original, computationally efficient mathe-

matical framework for the non-ZDD CS-PIT system under a

general renewal traffic model, notably enabling evaluation of

the impact of time locality.

III. SYSTEM ASSUMPTIONS

In this section, we introduce the principal concepts and

notation. We discuss the assumptions used to perform the

analysis in Sec. IV and the evaluations in Sec. V.

A. CS-PIT Interplay

Caching policies are usually analyzed under the assumption

that content downloads occur immediately after a cache miss

request. In practice, in an NDN router, the delay between a CS

miss and the content download can be significant and in this

time, one or more subsequent requests may be aggregated in

the PIT. In the following, such a request is referred to as a PIT

hit while any request arriving while the content is in the CS is

termed a CS hit. Let ppithit(k) denote the probability a request

for some content k is a PIT hit and pcshit(k) the probability it

is a CS hit. Any request that is neither a PIT hit nor a CS hit

is forwarded upstream so that the proportion of requests that

result in a download is

pfwd(k) = 1− ppithit(k)− pcshit(k). (1)

The round trip download delay for a forwarded request for

content k is assumed to be an independent random variable

denoted Dk. In this paper, we assume that each content

download request will have a response.

B. Insertion and Eviction Policies

Cache performance depends on the policies used to decide

if a given content should be inserted and, if so, which other

content must be evicted to make room. We limit our evaluation

to two variants of the well-known LRU policy. LRU eviction is

simple enough for operation at line speed and is more efficient

than alternatives like FIFO or Random [4]. The conclusions

we derive on the effectiveness of the PIT are broadly the same

for other policies.

We first consider the classical LRU policy where all down-

loaded contents are systematically inserted in the CS. We then

consider a more selective insertion policy intended to improve

hit rate performance. A content is only inserted on download if

its name is present in a list that preferentially records popular

items. We refer to this list and its update mechanism as a

‘filter’. Many possible filter designs have been proposed in

the literature (e.g., [10], [11], [12], [4]). The one we evaluate

here is a list of a certain length that is updated using LRU.

This insertion and eviction policy applied to a ZDD cache is

called 2-LRU in [4] and is shown to be an efficient solution.

Its precise specification for the non-ZDD CS-PIT system is

deferred to Sec. IV-B.

C. Content Popularity

Cache performance depends critically on how requests are

spread over the population of distinct content items. We

assume here that users request items from a total population of

K constant size chunks. The request rate for a given chunk is

determined by a popularity distribution {pk},
∑

1≤k≤K pk =
1, such that, if the overall request rate is λ, the request rate



for content k is λk = λpk. The content items are ordered such

that p1 ≥ p2 ≥ · · · ≥ pk and we consider Zipf popularities,

pk = k−α/
K∑

i=1

i−α. (2)

This choice is sufficiently general to explore the performance

of the CS-PIT system under a range of popularity profiles de-

termined by K and α. Appropriate values of these parameters

are discussed in Sec. V. For α < 1 and K large, note that ZDD

LRU hit rates for a cache of capacity C depend on C/K and

not separately on C and K [7].

Content popularities vary over time and to ignore this

variability can lead to significant errors in predicting cache

performance [13], [14]. The authors of [13] and [14] indepen-

dently proposed to account for varying popularities through a

so-called shot noise model. In this approach, contents appear

at the instants of a stochastic process and receive requests at a

rate that varies over time, eventually decreasing to zero at the

end of its ‘lifetime’. The analysis of this model is challenging,

however [14], [15]. We adopt a more tractable model first

proposed by Garetto et al. [5] .

In the model of [5], contents are alternately active and

inactive. An active phase has an exponentially distributed

duration and corresponds to the content lifetime. During its

active phases, requests for content k arrive as a Poisson

process of rate νk. The inactive phase also has an exponential

distribution of mean large enough that, with high probability,

any cached content is evicted before the next active phase.

The content thus appears in a new incarnation in each active

phase. This request arrival process is known as an Interrupted

Poisson process (IPP) [16]. The overall request rate for content

k is

λk =
νkTon

Ton + Toff

, (3)

where Ton and Toff are the mean durations of active (on-

period) and inactive (off-period) phases.

D. Request Process

We suppose requests for any content occur at the epochs

of a stationary renewal process [17]. Let ti for i ≥ 0 be

successive request times for content k. The distribution of the

inter-request intervals Xi = ti − ti−1 is denoted Fk(t) and

their density fk(t). The average request rate is then λk =
1/

∫∞

0 (1− Fk(t))dt. The age of a stationary renewal process

at time t, denoted At, is the time between t and the previous

request and its distribution is independent of t:

P(At(k) < a) = F̂k(a) = λk

∫ a

0

(1− Fk(x))dx, for a ≥ 0.

(4)

The residual life of the interval from t to the next request has

the same distribution. The number of requests in an arbitrary

interval of length t following a request arrival (e.g., in (ti, ti+
t]) is a random variable denoted Nt. The expectation of Nt

is called the renewal function that we denote by mk(t). It

satisfies the following equation,

mk(t) = F̂k(t) +

∫ t

0

mk(t− x)fk(x)dx. (5)

In our evaluations we consider some particular renewal

processes. The simplest is the Poisson process where Fk(t) =
1−e−λkt. This choice models the so-called independent refer-

ence model (IRM) where the probability an arbitrary request

is for content k is independent of all previous requests and

equal to pk. The IRM ignores variations in relative popularity

over time and all temporal locality between requests, i.e. the

fact that if a content is requested at some instant in time, then

the probability of a request for the same content arriving in

the near future increases.

As discussed in Sec. III-C, time varying popularity can

be modeled using the IPP. This is a renewal process where

intervals (ti+1− ti) have a hyper-exponential distribution with

two states [16]. In Sec. V we consider a particular hyper-

exponential renewal process to evaluate the accuracy of the

analysis before fitting the parameters of this model to statistics

derived from trace analyses.

E. The Characteristic Time Approximation

To evaluate CS-PIT system performance we adapt the now

well-known characteristic time approximation. This approx-

imation has become popular following its proposal by Che

et al. [18] for evaluating LRU under the IRM, and its later

analytical justification by Fricker et al. [8]. It was, however,

first derived as an accurate asymptotic limit by Fagin in a

neglected paper from 1977 [7]. It has more recently been

applied more extensively to other cache insertion and eviction

policies with IRM or renewal input, notably in [4].

For an LRU cache, the approximation consists in assum-

ing a content inserted at some instant and not subsequently

requested will be evicted after a deterministic characteristic

time TC . This represents the time for requests for C distinct

contents to occur where C is the cache capacity. For a renewal

request process, the probability an arbitrary request for content

k will be a hit is then

phit(k) = Fk(TC), (6)

while the probability the content is present in the cache at an

arbitrary instant is

pin(k) = F̂k(TC). (7)

TC is determined on numerically solving the equation

C =

K∑

k=1

pin(k). (8)

Note that the validity of the characteristic time approxi-

mation means the system can be considered as an unlimited

capacity cache where contents have a constant time to live

(TTL) equal to TC [4], [19]. The TTL is reset to TC when

the content is inserted and on every subsequent cache hit. This

interpretation is used in the following analysis.



5

DZDMF

5

$

3

�

9

� ���

✁✂✄☎✆✄☎

✝✞✞✟✠✆✡

✁✂✄☎✆✄☎

✆✠✟✁☎✟✂✄

☛☞✌✍U

�

U

�

U

/

%

U

&

%

✌☞✎✎ ✏✑✒✓✔✟☎ ✕✖✓✔✟☎9

��/

%

U

��/

%

(a) tE = D + TC

9

� ���

✁✂✄☎✆✄☎

✝✞✞✟✠✆✡

9

��/

%

✁✂✄☎✆✄☎

✆✠✟✁☎✟✂✄

☛☞✌✍

���

U

�

U

�

U

��/

%

U

�//

%

U

&

5

DZDMF

%

9

���//

%

5

$3

�

U

/

%

(b) tE = tND+N + TC

Fig. 1: Request process and CS status for a given content under

non-ZDD LRU.

IV. PERFORMANCE OF NON-ZDD POLICIES

We derive characteristic time approximations for the hit rate

performance of a CS implemented as an LRU cache or as

an LRU cache with filter, accounting for non-zero download

delay.

A. LRU CS

The LRU CS is implemented as a double linked list of

pointers to stored content. Items are moved to the front of the

list on insertion following a download and at the instants of

subsequent requests that are hits. When a new item is inserted

at the front, the last item in the list is the least recently used

and is evicted. A non-ZDD LRU cache differs from classical

LRU in that insertion does not occur immediately following

a request miss but is deferred for a download delay D. Any

further requests occurring in this delay are aggregated in the

PIT.

To compute hit rates, we apply the characteristic time

approximation interpreting TC as the common ‘time to live’.

We consider the sojourn of any item in the CS-PIT system that,

in this interpretation, is independent of that of other items. For

brevity we omit the index k identifying the content in question

in previously introduced notation. Fig. 1 illustrates occupancy

cycles delimited by requests that are a miss for both CS and

PIT. As requests occur as a stationary renewal process, these

cycles are statistically independent and hit rate performance

can be derived from expected values in a typical cycle.

The cycle begins with a request miss at time t0 and

terminates with the next miss following content eviction at

time tE . Without loss of generality we set t0 = 0. The miss at

0 triggers an upstream request (the Interest packet is forwarded

towards a known source) and an initial registration in the

PIT. The content is downloaded and arrives after delay D.

Any request made between 0 and D are PIT hits and are not

forwarded. The number of such requests is ND.

Requests arriving between times D and tE are CS hits.

The number of such hits is N ≥ 0. We have N = 0 if the

remaining inter-request interval following D is greater than

TC and tE = D + TC (Fig. 1a). For N > 0, the content is

evicted after the first interval that is greater than TC . In this

case tE = tND+N + TC (Fig. 1b).

The performance of this system was analysed by Dehghan

et al. [3]. However, we found the equations derived for general

renewal processes were difficult to apply in practice (due to the

large computational cost) and have therefore derived a simpler,

novel approximation that we now describe.

To compute TC from (8) we need an expression for pcsin, the

probability the content is in the CS at an arbitrary instant t.
This occurs if one of the following holds:

(i) the last request before t was a CS hit and arrived in

[t− TC , t), or

(ii) the last request before t was not a CS hit, the content

download occurred before t and the content was not

evicted before t.

Event (i) occurs when the age of the request process At is less

than TC and, from (4), has probability F̂k(t). Let R be the

residual download time at the arrival time of the last request

before t. Event (ii) can then be expressed R < At < R+TC .

We deduce the expression

pcsin = pcshit · F̂ (TC) + (1− pcshit) · P(R < At < R+ TC). (9)

A similar argument can be applied to deduce an expression

for pcshit. In this case the situation of the content in events (i)

and (ii) is considered at a request instant yielding

pcshit = pcshit ·F (TC)+(1−pcshit) ·P(R < X < R+TC), (10)

where X represents the last inter-request interval.

In the above equations, R is a random variable distributed

like the remaining download time of a sample request arriving

at some time ti ∈ [0, D) with distribution R(.). Fig. 1

depicts R1, the remaining download time of the first request,

R1 = D− t1. We proceed by first approximating the moments

of R and then fitting a standard distribution using moment

matching.

Let rn(t) be the sum of the n-th moments of the residual

download times/ages of all requests arriving in [0, t) for some

constant t ≤ D: rn(t) = E(
∑Nt

i=0(t− ti)
n), where the ti are

request times and Nt is the number of requests during interval

(0, t). To compute rn(t), we have,

rn(t) = tn +

∫ t

0

rn(t− x)dF (x)

= tn +

∫ t

0

(t− x)ndm(x),

where thanks to second equality we can rewrite the renewal

equation in terms of the renewal function [17]. The moments

of R satisfy

E[Rn] =
E[rn(D)]

E[m(D)] + 1
≈

rn(E[D])

m(E[D]) + 1
. (11)
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Fig. 2: Request process and CS status for a given content under

non-ZDD LRU with a filter.

These moments can be used to derive a phase type distribution

that fits the distribution of R arbitrarily closely [20]. In

practice, in our numerical evaluations, it has proved sufficient

to fit just the first two moments.

Solving (9) and (10), we have,

pcsin =
ρF̂ (TC) + ρ′(1− F (TC))

1− F (TC) + ρ
, (12)

pcshit =
ρ

1− F (TC) + ρ
, (13)

where

ρ =

∫ ∞

0

(F (r + TC)− F (r)) dR(r),

ρ′ =

∫ ∞

0

(
F̂ (r + TC)− F̂ (r)

)
dR(r). (14)

Finally, the forwarding probability is given by

pfwd =
(1− pcshit)

1 + E[m(D)]
, (15)

where E[m(D)] is computed with respect to the distribution

of download delay D.

B. LRU CS with Filter

To improve CS hit rates we preferentially insert more popu-

lar contents, as identified by a filter placed in front of the CS.

The filter consists in a double linked list of contents updated

using the standard LRU policy on every request arrival. Filter

performance can thus be derived using the classical LRU

characteristic time approximation: the filter hit probability for

content k of a filter of size M is pflthit(k) = Fk(TM ) where

characteristic time TM is such that
∑

K F̂k(TM ) = M .

A content is inserted in the CS only if on download at least

one of the requests in [0, D) was a filter hit. Fig. 2 illustrates

the cycle between two forwarded requests (at t0 and tND+1)

when the content is absent from the filter. This means the

content is added to the filter at epochs ti for 0 ≤ i ≤ ND but

always evicted before the next request at ti+1.

To approximate pcshit and pfwd we assume the filter and

CS-PIT states are independent [4]. Denoting the probability

of insertion by q and applying the arguments of Sec. IV-A

above, we deduce,

pcsin = pcshit · F̂ (TC) + q · (1 − pcshit) · ρ
′,

pcshit = pcshit · F (TC) + q · (1 − pcshit) · ρ,

where ρ and ρ′ are given by (14). Solving these equations

gives,

pcsin = q ·
ρF̂ (TC) + ρ′(1− F (TC))

1− F (TC) + ρ · q
, (16)

pcshit =
ρ · q

1− F (TC) + ρ · q
. (17)

Note that these formulas would apply to any filter for

which one can determine the insert probability q. They would

apply in particular if q were simply a constant probability

of insertion, as envisaged in the probabilistic cache policy,

called q−LRU in [4]. For the present LRU filter, the re-

quests illustrated in Fig. 2 delimit independent cycles and

q = E

[
1− (1− pflthit)

ND+1
]
. We approximate this as follows,

q ≈ 1− (1 − pflthit)
[E[m(D)]+1]

. (18)

Recall that we have omitted dependence on the content k but

in fact the above probabilities are all content specific. Given

expression (17) for the probability a given content is present

in the CS, we can determine TC numerically from (8) and

thereby, the CS hit probabilities. The forwarding probability

pfwd is given by (15), as before.

V. PERFORMANCE EVALUATION AND INSIGHTS

We first investigate the behavior of the CS-PIT system for

a range of parameter settings, confirming the accuracy of our

analysis by comparison with simulation results. We then use

the analytical model to evaluate performance when contents

have realistically long but finite lifetimes.

A. System Configuration

We consider two instances of the request process: the

Poisson process, corresponding to the IRM, and a process with

2-state hyper-exponential inter-request times: the inter-request

interval for content k is drawn from an exponential distribution

of rate zλk with probability z/(z + 1) and an exponential

distribution of rate λk/z with probability 1/(z + 1), where z
is a parameter that determines the degree of time locality in

the request process. We set z = 10 to model strong correlation

between requests. Observe that this process is also equivalent

to an IPP where requests arrive at rate νn ≈ 9 · λn in an on-

period and the off-period is almost 8 times longer than the on-

period [16, Sec. 2.3]. We call this process ‘hyper10’. Note that

when z = 1, the resulting renewal process is a Poisson process

and there is no time locality between requests. To validate the

analysis of Sec. IV and to investigate system behavior, we

TABLE I: Parameter Settings

Parameter Default Range

Zipf Parameter (α) 0.8
Catalogue Size (K) 106 105 - 109

[Catalog Size/CS Capacity] Ratio (C/K) 10−3 10−4 - 0.5
Download Delay (D) 100 ms 0 - 300 ms

Request Rate (λ rqt/s) 105 10 - 106

Filter Size (M ) C
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Fig. 3: The impact of download delay on CS hit probability

and forwarding probability under LRU and 2LRU for fixed

catalogue size K = 106, CS capacity C = 1000 and request

rate λ = 105 (rqt/s).

use the parameter settings in Tab. I. We have used constant

download delays, the same for all contents drawn from the

range reported in [21]. The Zipf parameter α is set to 0.8

for all evaluations though we discuss the impact of alternative

values in Sec. V-D. Results are systematically presented for

both LRU and 2-LRU policies.

B. Performance Impacts

Results are displayed for two performance measures: the

overall CS hit probability pcshit and the overall forwarding

probability pfwd. The probability of PIT hit can be derived

from (1). Throughout this section, we depict the results for

LRU CS with filter using the label 2-LRU. Simulation results

are plotted as crosses. We have simulated a sufficient number

of requests for each cross to ensure statistically stable results

(up to 109 requests). The plots, whose behavior is discussed

below, confirm that the analytical model is generally very

accurate. Note that 2-LRU is consistently better than LRU in

all cases depicted in Figures 3 to 6. Similarly, time locality

yields consistently higher hit probabilities and lower forward-

ing probabilities for hyper10 traffic compared to results for the

IRM. We now comment on specific impacts revealed by each

set of plots.

1) Download Delay: Fig. 3 shows how performance de-

pends on download delay D. The CS hit probability decreases

as D increases but this decrease is more than compensated

by an increase in PIT hits yielding a decreasing trend for

the forwarding probability. The effectiveness of the PIT is

clearly higher for the longer delays and may therefore bring

greater benefits in more remote areas of the Internet topology.

These results show the PIT plays the role of a supplementary
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Fig. 4: CS hit probability and forwarding probability versus CS

capacity under non-ZDD LRU and non-ZDD 2LRU for fixed

catalogue size K = 106 and request rate λ = 105 (rqt/s).

cache and can have a significant impact on performance. The

difference in pfwd between LRU and 2-LRU decreases as D
increases suggesting the PIT compensates for the absence of

filter.

2) CS Capacity: Fig. 4 illustrates the impact of CS ca-

pacity. Note that the gain in CS hits of 2-LRU over LRU is

especially significant for small caches where LRU is clearly

inadequate. On the other hand, with the default download delay

of 100 ms, the reduction in pcshit is compensated by an increase

in ppithit so that both policies yield nearly the same forwarding

rate, especially for hyper10 traffic. This further suggests that

temporal locality can also increase PIT hit probability in the

same condition compared to IRM.

3) Traffic Intensity: It is well known that cache perfor-

mance under the ZDD assumption is independent of traffic

intensity in requests/sec since it depends only on the order of

requests and not on their precise timing. This insensitivity is

not preserved under the present non-ZDD model. Fig. 5c for

IRM input shows that the forwarding probability decreases

significantly for high arrival rates thanks to an increasing

probability of PIT hit. As the duration a pending request

remains in the PIT is fixed at D the number of aggregated

requests increases in proportion to λ. Similar trends are

observed for the hyper10 request process. Temporal locality

of requests, however, further accentuates the dependence of

both CS and PIT performance on λ.

4) Catalogue Size: Fig. 6 shows the impact of an increasing

catalogue size. Results for very large catalogues are derived

by analysis alone as simulation then becomes impractical. The

catalog size varies from 105 to 109 while other parameters

have the default settings. The case for D = 0 (i.e., the usual

ZDD assumption) is also shown for comparison. We observed
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Fig. 5: CS hit probability and forwarding probability versus

request rate under non-ZDD LRU and non-ZDD 2LRU for

fixed CS capacity C = 103 and catalogue size K = 106.

in the previous analysis that high traffic densities can lead

to a decrease of the CS hit probability as more requests

miss the CS during download time. In Fig. 6, the per-content

traffic intensity decreases as the catalogue size grows leading

therefore to a CS hit probability that increases and tends to the

ZDD value. Fig. 6c suggests that the PIT hit probability under

IRM input is negligible for large catalogues, i.e., under low

per-content traffic intensity. For hyper10 traffic, on the other

hand, request time locality means PIT aggregation remains

effective for bigger catalogues and the non-ZDD model is

necessary to accurately predict performance.

C. Impact of Finite Lifetime

We now complement the extensive evaluation scenarios of

the previous section using a more realistic model of popularity

variation. The hyper-z model can artificially model temporal

locality but hardly represents realistic variations since high

activity periods, representing finite lifetimes, have the same

mean number of requests so that content lifetime durations

are inversely proportional to popularity. In this section we

assume lifetimes have a given average duration. For illustration

purposes, we set the same lifetime for all contents though the

model would allow content specific durations.

Measurements reported in the literature show that the aver-

age lifetime of the most dynamic fraction of video on demand

content is around 2 days (see [13]). As it is clearly not

practical to simulate a system with such a wide difference

in timescales between lifetimes (> 1 day) and download

delays (< 1 sec), we rely here on analytical results. As

explained in Sec. III-D, we model time varying popularity

using IPP renewal processes. The lifetime is identified with

an exponential on-period of mean duration Ton while the

0

0.1

0.2

0.3

0.4

105 106 107 108 109

C
S 

H
it 

Pr
ob

. (
pcs hi

t)

Catalogue Size (K)

ZDD-LRU
ZDD-2LRU

0

0.1

0.2

0.3

0.4

105 106 107 108 109

C
S 

H
it 

Pr
ob

. (
pcs hi

t)

Catalogue Size (K)

LRU
2LRU

(a) IRM Traffic

0

0.1

0.2

0.3

0.4

105 106 107 108 109

C
S 

H
it 

Pr
ob

. (
pcs hi

t)

Catalogue Size (K)

ZDD-LRU
ZDD-2LRU

0

0.1

0.2

0.3

0.4

105 106 107 108 109

C
S 

H
it 

Pr
ob

. (
pcs hi

t)

Catalogue Size (K)

LRU
2LRU

(b) Hyper10 Traffic

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

105 106 107 108 109Fo
rw

ar
di

ng
 P

ro
b.

 (
p f

w
d)

Catalogue Size (K)

ZDD-LRU
ZDD-2LRU

LRU
2LRU

(c) IRM Traffic

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

105 106 107 108 109Fo
rw

ar
di

ng
 P

ro
b.

 (
p f

w
d)

Catalogue Size (K)

ZDD-LRU
ZDD-2LRU

LRU
2LRU

(d) Hyper10 Traffic

Fig. 6: CS hit probability and forwarding probability versus

catalogue size under LRU and 2LRU (ZDD and non-ZDD) for

fixed C/K ratio = 10−3 and request rate λ = 105 (rqt/s).

exponential off-period is of mean duration Toff = 9 · Ton.

Toff must be large enough that it is considerably larger than

the characteristic time TC so that each on-period appears as a

new content with respect to CS and PIT states.

We take parameter values from the paper [5] where the IPP

model was first proposed. Ton and catalogue size K are set so

that the rate at which ‘new’ contents occur, denoted γ, and the

mean number of active contents are fixed. Thus K = 10γTon.

We set γ = 5 · 104 contents per day, the value reported in

[5], and select Ton from 1, 7 and 30 days to explore a range

of scenarios. Cache size is set to C = 0.01K here and other

parameters take default values from Tab. I.

Fig. 7 plots pcshi and pfwd as functions of a measure of

request density, denoted ρ, for Ton = 1 day and Ton = 7
days. Request density is defined as the expected total number

of requests occurring in a time-window of duration equal to a

content lifetime:

ρ =
∑

νk/KTon = λ/γ.

Cases (a) and (b) behave similarly for small ρ. The CS hit

probability is small and, moreover, the 2LRU policy becomes

less effective than LRU. This is explained by the low reactivity

of these policies at low density: the first request and first two

requests in an on-period are necessarily misses for LRU and

2LRU, respectively, and the relative impact of these systematic

misses is significant when ρ < 10.

The behavior of both cases is qualitatively similar for large

ρ though quantitatively different. This reflects the beneficial

impact of the PIT in aggregating requests when there is a large

number of requests per lifetime. The PIT is more effective

when the ratio of download delay to lifetime is larger and/or

the requests show more time locality, i.e., for Ton = 1. The
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Fig. 7: CS hit probability and forwarding probability versus

request density for different Ton durations under non-ZDD

LRU and non-ZDD 2LRU when CS capacity is fixed to C =
0.01K . Black dashed lines represent the case for D = 0.
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Fig. 8: CS hit probability and forwarding probability versus

CS capacity for different Ton durations under non-ZDD LRU

and non-ZDD 2LRU when request density is fixed to ρ = 106.

performance of the CS-PIT system has the same behavior as

a ZDD cache for low densities, ρ < 104, since collapsed

forwarding then becomes negligible.

Fig. 8 plots pcshit and pfwd as functions of CS capacity for

different values of the average on-period duration. We set the

request density to ρ = 106 in this scenario. The results show

that CS hit probability is roughly inversely proportional to

the length of on-period, i.e., content lifetime. On the other

hand PIT effectiveness increases when the on-period duration

is reduced for a fixed ρ value.

D. Discussion

The results of this section show that the effectiveness of PIT

aggregation varies widely depending on the chosen scenario.

It is useful therefore to discuss observed behavior in the light

of known demand and network characteristics.

The PIT is very effective in reducing forwarding rates when

demand is high and concentrated on a relatively small cata-

logue of contents (cf. Fig. 5 and Fig. 6). This may be true for

certain NDN deployments but perhaps not so for core routers

performing content retrieval from the entire Internet. Known

statistics on different types of content, like the web or YouTube

videos, suggest catalogues approaching the petabyte in total

volume [22], while traces from real traffic observations reveal

volumes of at least several tens of terabytes [23]. Converted to

NDN chunks (close in size to IP packets) suggests catalogues

K in excess of 1010. On the other hand, demand in a core NDN

router with multiple 10 Gb/s links might generate O(106)
requests per second at peak times. The request rate per content

item (O(10−4)) is still rather low for the PIT to be effective (in

Fig. 5, the same relative per content request rate would occur at

λ = 100). The scenario would clearly be more favorable with

a more skewed popularity distribution (e.g., Zipf(1)) though

most observations suggest this is not very likely (e.g., [23]).

The plots in Figures 3 to 6 demonstrate the generally

positive impact on hit rate performance of time locality. On the

other hand, Fig. 7 shows that finite lifetimes can significantly

reduce the effectiveness of reactive caching policies like LRU

and 2LRU when demand is relatively low. The critical param-

eter is the expected number of requests in a content lifetime.

If this is small, in an edge router delivering content from a

large catalogue say, it may be necessary to perform proactive

caching (i.e., to push the most popular contents to the CS) in

order to significantly reduce the forwarding rate.

VI. CONCLUSION

The characteristic time based analytical framework devel-

oped in this paper is both versatile and accurate. We have

modelled the CS-PIT system with non-zero download delay

applying LRU and 2-LRU cache replacement policies under

general renewal request processes. Analytical results, whose

accuracy is confirmed by simulations, enable an appraisal of

the effectiveness of the PIT in reducing network traffic through

the use of collapsed forwarding.

The effectiveness of the PIT naturally increases with the

duration of the download delay. The more complex 2-LRU

replacement policy gives higher CS hit rates than simple

LRU in all cases but this advantage is mitigated in non-ZDD

scenarios where the PIT is a meta cache that, like the filter,

tends to improve the performance of the most popular contents.

The PIT is most effective when demand per content is

relatively high such that several requests often occur in a

download delay. This happens when overall demand is high,

as in a core router, but only if this demand is not spread over

a very large content catalogue. If demand is low, as in an

access node or an enterprise router, and nevertheless spread

over a large catalogue, the PIT is hardly effective in realizing

collapsed forwarding.

When contents have a finite lifetime during which they

are popular and receive requests (an approximate model of

popularity variation), the above remarks on PIT effectiveness

still apply. In addition we observed that both reactive cache

policies, LRU and 2-LRU, can be ineffective when the ex-

pected number of requests per content per lifetime is small.



Whenever this case arises in practice it appears necessary to

implement a placement policy where the most popular contents

are proactively pushed to the CS.
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