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Abstract 
In this paper we present a novel algorithm and efficient data structure for anomaly detection based on 
temporal data. Time-series data are represented by a sequence of symbolic time intervals, describing 
increasing and decreasing trends, in a compact way using gradient temporal abstraction technique. Then 
we identify unusual subsequences in the resulting sequence using dynamic data structure based on the 
geometric observations supporting polylogarithmic update and query times. Moreover, we introduce a 
new parameter to control the pairwise difference between the corresponding symbols in addition to a 
distance metric between the subsequences. Experimental results on a public DNS network traffic dataset 
show the superiority of our approach compared to the baselines. 

Keywords Anomaly Detection, Temporal Data Mining, Temporal Abstraction, Approximate String 
Matching, Dynamic Query Data Structure. 

1 Introduction 

Anomaly detection is a technique used to identify unusual deviations from the expected behavior, called 
often outliers. Identifying anomalies enables to detect potentially malicious activities in data. These 
include detection of unusual changes to the normal levels of network traffic [1], identification of normal 
pattern for transactions or revenue [2], recognizing temporal anomalies in vehicle traffic data [3], disease 
diagnosis in medical image analysis [4] as well as other [5]. There is a variety of techniques that are used 
to identify anomalies using different statistical methods and machine learning based approaches 
including recent supervised and unsupervised solutions [1, 6-10]. Each of the approaches has its own 
pros and cons and is suited to anomaly detection in a specific domain under the specific scenario.  

The typical approach to identify unusual subsequences of a given sequence is by using Euclidean 
distance as the similarity measure between the subsequences [12-15]. The major drawback of this ap-
proach for anomaly detection is that it might misinterpret differences in a few symbols. It means that for 
relatively long subsequences with a few different corresponding symbols, the Euclidean distance would 
be small while these differences indeed represent an anomaly.  In order to overcome this difficulty, our 
goal is to define an additional parameter to control the pairwise difference between the corresponding 
symbols of the subsequences.  

Temporal abstraction proposes to transform time point data [19] into symbolic time intervals. One of 
the main methods for temporal abstraction is gradient abstraction, in which according to the first 
derivative in each time point, adjacent symbols having the same value of I-Increasing/D-Decreasing/S-
Stable are concatenated into symbolic time intervals. Gradient abstraction has a great potential to be very 
effective in anomaly detection since the absolute time-points values have no meaning by themselves. 
Fortunately, when considering a trend, we can make a decisive conclusions. Any change in trend 
whether it is small or big could be a part of an abnormal behavior. Furthermore, usually, the information 
contains a large amount of data, with most of it being irrelevant for anomalies. The focus on trend rather 
than on data itself may greatly simplify the task of anomaly detection . 

 To identify unusual subsequences in the sequence, effective algorithms and data structures are used 
supporting polylogarithmic update and query times. We obtain a better theoretical worst-case runtime 
solution to the HOT SAX [20-21] approach which looks for the most unusual subsequence in a given 
sequence and have worst-case quadratic running time (in terms of sequence length). Subsequences 
comparison can be smartly ordered for effective pruning using various methods, see [20-25]; however, 
in the worst-case scenario, when we are interested in producing the perfect ordering, the running time 
remains quadratic. Our new data structure allows us to break this quadratic worst-case runtime barrier.  

mailto:mateless@post.bgu.ac.il
mailto:odedm%7D@il.ibm.com


2 

Our solution is fast in every step, easy to extend to different types of data, easy to maintain since 
there is no model to train, generic and relevant for various domains. The contributions of this paper are 
the following: 

1. THAAD – a new algorithm and an efficient data structure to identify anomalies in multivariate 

temporal data that went through temporal abstraction. 

2. This data structure can be adjusted to work under different distance measures and can be used to 

improve related results that identify outlier subsequences in time series, e.g. [20-21]. 

3. We introduce additional parameter (see Definition 10 and Section 4) that allows us to control the 

pairwise difference between the corresponding symbols in subsequences in addition to the standard 

distance metric. This provides more flexibility and better precision in the derived results. 

4. We support the theory by rigorous evaluation on a comprehensive DNS traffic public dataset, in-

cluding comparison of THAAD to the baselines. 

 
This paper is organized as follows. We start with the background, then we present our approach 

including formal definitions and the detailed algorithm explanation. In Section 4 we present the 
construction and analysis of efficient data structure allowing us significantly speed up the solution. Next, 
we evaluate the proposed solution with a number of experiments on network traffic, comparing it with a 
previously known relevant baselines. Finally, we conclude the paper. 

2 Background 

To make the basis for our research, we first review anomaly detection studies for temporal data. Next we 
discuss temporal abstraction techniques and, finally, relevant literature related to DNS anomalies 
identification including unsupervised methods is presented. 

2.1 Anomaly Detection for Temporal data 

In the last two decades, several studies provided an extensive overview of outlier detection techniques 
[26-28] and outlier detection based on temporal data [5]. Temporal outlier analysis that examines 
anomalies in the behavior of the data across time. In [5] the authors split the outlier analysis problems in 
temporal data to a few categoriess: Time series data, Data streams, Distributed data, Spatio-Temporal 
data and Network data. Time series data contains two topics, Time series Databases and Given time 
series, where the later are divided into point and subsequence outliers. 

Additional studies introduced several techniques to identify outlier subsequences in a given time 
series [78-80]. Keogh et al. [20-21] consider all possible subsequences s ∈ S of given sequence S and 
compute the distance of each such s with each other non-overlapping s’ ∈ S. The subsequence s is set as 
outlier if it has the largest distance among other subsequences s’ ∈ S [20]. Additionally, they suggested 
heuristic techniques to reduce the order of magnitude from quadradic runtime using Top-K pruning and 
heuristic reordering of candidate subsequences [21,29]. To compute the distance between subsequences, 
most methods use Euclidean distance while Compression based Dissimilarity Measure (CDM) is used as 
a distance measure in [30].  

Other papers proposed to identify varying length anomalous subsequences. Chen et al. [31] proposed 
multi-scale anomaly detection algorithm based on infrequent pattern of time series. They defined that the 
anomaly pattern is the most infrequent time series pattern with the same slope and length, which is the 
lowest supported pattern. Senin et al. [32] used grammar induction to aid anomaly detection without any 
prior knowledge. The authors transformed time series values into symbolic form, inferred a context free 
grammar, and exploited its hierarchical structure to discover anomalies. 

2.2 Temporal Abstraction 

Temporal Abstraction proposes to transform time point based data [19] into symbolic time intervals, for 
which specific methods are being developed [33-35]. There are two main types of methods: state and 
gradient abstraction. In state-abstraction, the time point values are classified (discretized) into states 
(Low/Medium/High). These cut-offs can be based on common standards in the domain, or data driven. 
In gradient abstraction, they are discretized according to the first derivative (I-Increasing/D-
Decreasing/S-Stable). Then, after each time point is classified into the appropriate state or gradient 
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symbol, if adjacent symbols are the same, they are concatenated into symbolic time intervals. Obviously, 
the number of state/gradient symbols can be other than three depending on the required granularity and 
generalization. Unlike gradient abstraction, which is based on the first derivative of a sequence of 
values, state abstraction can be applied in different ways based on the values of the cut-offs, for which 
several sources are optional. The most intuitive source is knowledge-based (KB) [11], in which the cut-
off values come from the common practice in the domain knowledge. Alternatively, the cut-offs can be 
learned from the data. The simplest method is Equal Width Discretization (EWD), in which the range of 
values is split equally into states. Another intuitive method that has become increasingly popular is 
Symbolic Aggregate approXimation (SAX) [33], in which the Gaussian distribution of the time series 
determines the states and is defined by the mean and standard deviations. Persist [34] is an unsupervised 
method that was designed to maximize the duration of the resulting time intervals, to facilitate the later 
discovery of coinciding time interval patterns [35]. The Temporal Discretization for Classification 
(TD4C) is a supervised data-driven method [36], which determines the cut-offs that mostly differentiate 
classes based on the states distributions of each class along time. 

2.3 DNS Anomalies Identification 

Network traffic is based on multivariate time-series data, that describe packets flow over time. Common 
DNS attacks that are known to the community are: (D)DoS – when one or more attackers controlling 
one or more devices launch an avalanche of messages to one or more DNS servers; Cache poisoning – 
when a query is sent to a local DNS server and local DNS returns the fake response to the resolver and 
caches the forged mapping; Tunneling – when the DNS packets can be used to create a hidden data 
channel (covert channel); Fast-flux – when someone hides critical hosts behind a changing set of 
compromised hosts; Zone transfer hijacking – when the attacker just pretends that he is a slave and asks 
the master for a copy of the zone records; Dynamic update corruption – when a non-authorized machine 
can update the DNS record. 

Several studies dealt with the identification of DNS anomalies. As mentioned above, popular 
techniques used by cyber-criminals to hide their critical systems is fast-flux. The ICANN Security and 
Stability Advisory Committee [37] released a paper giving a clear explanation of the technique. Nazario 
and Holz [16] performed some interesting measurements on known fast-flux domains. Villamarn-
Salomn and Brustoloni [38] focused their detection on abnormally high or temporally concentrated 
query rates of dynamic DNS queries. The research by Choi et al. [39] created an algorithm that checks 
multiple botnet characteristics. The detection is based on Dynamic DNS, fixed group activity and a 
mechanism for detecting migrating C&C servers. Born and Gustafson [40] researched a method for 
detecting covert channels in DNS using character frequency analysis. Karasaridis [41] used the approach 
of histograms' calculations of request/response packet sizes using the fact that tracking and detecting the 
changes in the frequencies of non-conforming packets sizes lead to possible identification of DNS 
anomaly. Yuchi et al. [42] investigated DNS anomalies in the context of Heap’s law stating that a corpus 
of text containing N words typically contains on the order of cNβ distinct words, for constant c and 
0<β<1. Cermák et al. [43] identified that only four DNS packet fields are useful for most of the DNS 
traffic analyzing methods: queried domain name, queried record type, response return code and response 
itself. They use the concept of standard flow and extended flow to detect DNS attacks on large networks. 
The Statistical Feature String reflects statistical features of the domain name, similarly to ideas in [17-
18], and includes the domain name entropy, an occurrence of bigrams within the domain name, the 
domain name zone and the domain name length and is used to calculate similarity distance between two 
different domain names during the clustering phase. The research described in [44] aimed detect the 
botnet traffic by inspecting the following parameters: Time-Based Features (Access ratio), DNS 
Answer-Based Features (Number of distinct IP addresses), TTL Value-Based Features, Domain Name-
Based Features (% of numerical in domain name). In [45] the authors presented an approach in which 
the flow of DNS traffic between the source and the destination DNS server is used to detect attacks.  
They present Cross-Entropy Anomaly detection model which is used to detect anomalies in DNS packet 
sizes. For taking care of Feature-Based Detection, variations of entropy-based learning mechanisms 
were developed [46].  Based on the definition of context, there is a cause-effect relation among the 
features that characterize the context C and the corresponding consequences. In general, the features 
identifying context consequences are: numerical, descriptive and time/location-based features.  We note 
that some past attempts were made in order to bring unsupervised machine learning mechanisms to deal 
with DNS related anomalies, see [47-49].  
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3 Methods 

To define formally the problem of approximate string matching on temporal data for anomaly detection 
and to better understand the algorithm, we first present several basic definitions. These definitions will 
be used in the description of the methods. 

3.1 Definitions 

Definition 1. An entity e ϵ E is an object that we observe to determine whether its behavior is normal 
(e.g. IP in the context of network traffic). 

Definition 2. A variable v ϵ V is an attribute name, which represents the entity e (e.g. number of packets 
sent by some IP). 

Definition 3. A time-point tp is defined by a quadruple (entity, variable, timestamp, value). The value is 
a numeric field that belongs to the variable at specific timestamp. 

Definition 4. A time-points series (TPSe,v) is a set of time-points with entity e and variable v sorted by 
lexicographical order. (Given two different sequences of the same length, a1a2...ak and b1b2...bk, the first 
one is smaller than the second one for the lexicographical order, if ai<bi, for the first index 
i where ai and bi differ.) Time-points series suffix of TPSe,v having length t is denoted by TPSt

e,v. 

Definition 5. A symbolic time interval, STIe,v = <b, f, sym>, is time-points series TPSe,v having 
timestamps that represent continuous time range, where b represents the starting time-point timestamp 
and f represents the last time-point timestamp. The sym is determined roughly by the time-points series 
gradient. A symbolic time intervals series, STISe,v is a set of symbolic time intervals. 

Definition 6. An endpoint ep from STIe,v = <b, f, sym>, is defined by a quadruple < timestamp, variable, 
sym, open >, where the STIe,v is split to two endpoints, epb and epf. The open is a Boolean field 
representing whether it is epb or epf. The endpoint epb equals <b, v, sym, true> and epf equals <f, v, sym, 
false>. 

Definition 7. A string dse for entity e, is a list of endpoints sorted by lexicographical order. A numerical 
string se for entity e, is a list of numerical values, where each element is a transformation from 
<variable, sym, open> fields to a unique numerical value. Let |se| be the length of se. 

Definition 8. A pattern Px(s) contains the last x elements of some string s (i.e. Px(s) is the suffix of s and 
|Px(s)| = x). A time-pattern TPx(ds) contains the last x timestamp fields of elements from string s. 

Definition 9. A text T(s) for some string s is defined by s \ Px(s), i.e. T(s) is the prefix of s, having length 
n = |s| - x. 

Definition 10. We say that pattern Px(s) (α, β)-occurs with shift t in text T(s) if |T(s)[t+j] - Px(s)[j]| ≤ α, 
0≤j≤x-1 and ∑ⁿ

j=1
 |T(s)[t+j] - Px(s)[j]| ≤  β. The parameter α controls the possible difference between each 

element in Px(s) versus the corresponding element in T(s), while the parameter β gives an upper bound 
on the total difference between all elements in Px(s) versus all elements in T(s). This definition assumes 
that the elements of both pattern Px(s) and text T(s) are represented by numerical values. In general, if 
we take α=∞, we will obtain a definition measuring only the distance between Px(s) and the correspond-
ing subsequences in T(s); the value of parameter α allows us to restrict the subsequences in T(s) to have 
some specific form. 

Definition 11. An (α, β)-Approximate String Matching Problem of  Px(s) in T(s) is to determine whether 
a pattern Px(s) (α, β)-occurs with some shift in T(s). 

Definition 12. Anomalies are events in data that do not conform to a well-defined notion of normal 
behavior [27]. In our context we refer to Section III.F for anomaly identification. 

Definition 13. Approximate Matching on temporal data for Anomaly Detection: 

Given a set of entities E, where each entity e ϵ E is described by time-points series TPSe,v, the goal is to 
find, for each e ϵ E, a set of time ranges that represent anomalies. 
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3.2 Approximate Matching under Gradient Abstraction for anomaly detection Algorithm  

The algorithm for Approximate Matching under Gradient Abstraction for anomaly detection, as it is 
shown in Algorithm 1, includes the following. The input for the algorithm is a list of time-points, each 
time-point tp is represented by (entity, variable, timestamp, value), parameter x that represents the dura-
tion of pattern Px(s) (i.e. |Px(s)| = x) and α, β parameters that control the possible difference between the 
elements in Px(s) versus the corresponding elements in T(s). The output includes a list of anomalies with 
time-ranges associated to the entities in E. The main components of the algorithm, as shown in Fig. 1, 
are: (a) Gradient Abstraction which transforms the time-points series TPSe,v to symbolic time intervals 
series STISe,v, for each entity e and variable v; (b) Split operation that converts each symbolic time 
interval STIe,v to two endpoints epb and epf representing the start and finish time of STIe,v respectively; (c) 
Merge operation over the endpoints elements for entity e to a string se sorted by lexicographical order; 
(d) Approximate string matching based on efficient data structure (in polylogarithmic time) in order to 
produce a list of candidates patterns; (e) Filtering of candidates to reduce false-positive results by 
removing some candidates using the pattern Px(s) and time-pattern TPx(s). This algorithm runs online 
(every few minutes) to report recent anomalies. 

The following sections present detailed explanation of each step described above. 

3.3 Gradient abstraction 

In the gradient abstraction phase, the time-points series TPSe,v are transformed into symbolic time 
intervals series STISe,v for every entity e and variable v, according to the gradient abstraction technique. 
The main idea is to assign the symbols for the symbolic time intervals based on the time-points series 
gradient. The symbols could be Increasing (I), Decreasing (D) and Stable (S) according to the time-
points series trend, similarly to [11]. For better representation, I and D symbols are divided to three sub-
symbols: High (H), Medium (M) and Low (L), according to the trend intensity. An illustration is shown 
in Fig. 3.  

 

 

Fig. 1. Approximate Matching under Gradient Abstraction for anomaly detection components 

Algorithm 1 – Approximate Matching under Gradient Abstraction for Anomaly Detection 

Input: time-points tps 

Input: pattern length x 

Input: approximation bounds α, β 

Output: list of reported anomalies with time ranges 

1: 

2: 

3: 

4: 

5: 

6: 

7: 

8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

19: 

20: 

21: 

found_list = [] 

cold_start_list = [] 

for e in E: 

    list_of_eps = [] 

    for v in V: 

        STIS = gradient_abstraction(tps) 

        list_of_eps.append(split_STIS (STIS)) 

    end for 

    dse  = merge_eps_to_string(list_of_eps)  

    se  = transform_to_numeric(dse)  

    T(s) = se [0: |se| - x] 

    Px(s) = se [|se| - x : |se| -1] 

    TPx(ds) = dse [|dse| - x : |dse| -1] 

    is_found = approx_string_matching(T(s), Px(s), α, β) 

    if (is_found):     

        found_list.append(Px(s), TPx(ds)) 

    else: 

      cold_start_list.append(Px(s), TPx(ds)) 

end for 

reported_anomalies=filter(found_list, cold_start_list) 

return reported_anomalies 
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The gradient abstraction phase is done by comparing the current time-point value to a previous time-
points series values and not only to the last time point value, in order to avoid being influenced by noisy 
data. For example, if we get time-points series values of (200, 190, 180, 170, 200) representing the 
number of packets in a minute for some particular IP, by considering only the last element value, we 
may think that there is an Increasing trend (I) from 170 to 200, but when we are looking at the entire 
series, we probably will get to conclusion that the trend is Stable (S).  

For gradient abstraction, we use the following angle, slope and relation definitions to create symbol-
ic time intervals.  

Definition 14. The angle(p1, p2) in the plane between the two points  p1 = (x1, y1) and p2 = (x1+1, y2), is 
defined by the angle between the line passing through these points and the axis X. In other words,  

angle(p1, p2) = cos−1 (
1

√(𝑦2−𝑦1)2+1
)  (1) 

Definition 15. A slope(TPSe,v, t) is defined by the average value of angles between pairs of the adjacent 
time-points series values of the last t time-points in TPSe,v. See pseudo-code in Fig. 2. 

Definition 16. A relation(TPSe,v, t) is defined by the current time-point value divided by the average 
value of the last t time-points values in TPSe,v. See pseudo-code in Fig. 2.  

Fig. 2. Slope and relation calculation pseudo-code 

Using slope and relation, we define seven symbols as it is shown in Table 1. We consider the 
relation value in addition to the slope value, since high slope values alone not necessarily indicate 
significant change in data trend. For example, the increase in data volume from 1 to 2 leads to 45° 
(relatively high value) of slope value without providing meaningful insight. In the evaluation, we set the 
thresholds for slope and relation values. For relation that equals to 1, we set the symbol as S. 

Table 1. Symbols creation according to slope and relation values 

Slope Relation Symbol 

High High (1 / High) I-H (D-H) 

High Medium (1 / Medium) I-M (D-M) 

High Low (1 / Low) I-L (D-L) 

Medium High (1 / High) I-M (D-M) 

Medium Medium (1 / Medium) I-M (D-M) 

Medium Low (1 / Low) I-L (D-L) 

Low High (1 / High) S (S) 

Low Medium (1 / Medium) S (S) 

Low Low (1 / Low) S (S) 

 

As we mentioned earlier, the gradient abstraction technique has a few advantages in our case. First, 
to find an anomaly, we are looking for a change, (e.g. increasing volume of traffic) while stable trend is 

slope(TPSe,v , t): 

      for tps1.value, tps2.value in TPSte,v : 

         p1 = (0, tps1.value), p2 = (1, tps2.value) 

         if tps1.value > tps2.value: 

             angle(p1, p2) = -angle(p1, p2)  

      sum_angle += angle(p1, p2) 

      slope = abs(sum_angle  / t-1)) 

      return slope 

 

relation(TPSe,v , t, cur_value):  

      avg_prev_tps_suffix_values= ∑(TPSte,v.value)/ t 

      relation = cur_value / avg_prev_tps_suffix_values  

      return relation  
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less relevant. Second, we significantly reduce the amount of data per each entity e, since instead of many 
time-points series TPSe,v, we look only on the change in data. Most entities behave normally and the 
original time-points series contain thousands of samples for a period, while with gradient abstraction we 
can represent this period of time with a small series of symbolic time intervals STISe,v, enabling to find 
anomalies very fast. 

3.4 Split STI to endpoints 

In the split phase, each symbolic time interval STIe,v is converted into two endpoints epb and epf, where b 
represents the begin time and f represents the finish time of STIe,v. We convert the symbolic time interval 
to two time-points, since we are interested in the periods, in which the change in the data starts and when 
it ends. This technique allows us to simply work with ordered data rather than work with time interval 
symbols and their relations. 

3.5 Merge endpoints to string 

In the merge phase, all the endpoints for entity e and each v ϵ V are sorted by a lexicographical order, to 
produce a string dse. The motivation to work with a string is coming from the fact that we are interested 
in finding occurrences of continuous patterns in the resulted string. Moreover, using a string 
representation allows us to perform approximate string matching as it is shown in the next section. 

3.6 Approximate String Matching 

In (α, β)-Approximate String Matching, we check if pattern Px(s) (α, β)-occurs with shift t in text T(s). If 
we found a match we insert the pattern to the found_list of potential anomalies, otherwise we insert it to 
the cold_start_list. The elements of Px(s) and T(s) are represented by numerical values in the following 
way. Note that an endpoint is defined as <timestamp, variable, sym, open>, in which the last triple fields 
should be transformed. We define a numeric representation using two digits for variable and sym  fields 
that allow us to handle 100 distinct values between ‘00’ to ‘99’ for each field and one digit for the open 
field. The overall numerical element is defined using five digits: the first digit is for the open field, the 
following two digits for the sym field and the last two digits for the variable field. For the sym field we 
convert the symbols <D-H, D-M, D-L, S, I-L, I-M, I-H> to <00, 01, 02, 03, 04, 05, 06>, respectively to 

 

Fig. 3. Illustration of the flow from time-points series TPSe,v to a string se 
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represent close trends by close values. For the variable field, related variables are represented by close 
values according to the specific domain and the open field is converted from true and false to 2 and 1, 
respectively.  The subtract operation, |T(s)[t+j]-Px(s)[j]| is a regular subtraction of two numeric values, 
e.g. v1-I-Hb – v2-I-Mb equals to 20600 – 20501 = 99. For α≥99 these two elements are matched. The 
parameter β is defined according to the L1 or L2 metrics (as described later) and upper bounded by x∙α. 
In the next section, the approximate string matching analysis is shown in detail.  

Fig. 3 illustrates the components described above for some entity e. In the upper part, there are two 
lines of time-points series TPSe,v for two variables vs and vd, representing the volume of data over time. 
In the middle part, the gradient abstraction phase transforms time-points belonging to TPSe,v to symbolic 
time intervals series STISe,v. The symbols inside of solid line boxes belong to the variable vs and the 
symbols inside the dashed line boxes come from variable vd. At the bottom part, the split and merge 
phases are shown, where we first split each STIe,v to two endpoints (e.g. I-H symbol in solid line is split 
to vs-I-Hb and vs-I-Hf) and then merge all endpoints by lexicographical order to produce an ordered string 
dse for each entity e. Finally, we transform dse to numeric string se and extract Px(s) and T(s) to perform 
string matching. 

3.7 Filter candidates 

In the filter candidates’ phase, there are two input lists, the found_list containing the detected potential 
patterns and the cold_start_list containing mismatched patterns that may represent possible anomaly 
occurrence. In order to remove irrelevant candidates from further consideration, we perform the 
following actions: First, we seek for an increase or decrease in the data trend and remove pattern 
candidates that do not contain numerical values corresponding to either I-M, I-H, D-M and D-H. For the 
cold start candidates, we keep only patterns with significant change such as I-H and D-H. Second, 
candidates with a long duration are less likely to be an anomaly (and even if it is indeed such, the 
suspected anomaly duration is too long for effective investigation) and therefore can be removed. 

4 Approximate String Matching Analysis 

In order to identify a potential string matching, we can follow exact and approximate solutions. 

4.1 Exact matching 

There are several approaches that can allow us to perform string matching, however they work only 
under the assumption of exact matching which leads to significant deterioration in our ability to identify 
anomalies. The first and the simplest approach is to consider all possible continuous patterns in text T(s) 
(up to the length x of Px(s)) and to build a hash table containing all of them, where each pattern in hash 
table is associated with the value representing the number of times this pattern appears in text. Overall 
the construction expected time is O(nx2) and query expected time is O(x). The second approach is to 
use suffix tree, see [50]. This will allow us to preprocess the text in O(n) time and obtain query time 
O(x).  If we want to count all of the appearances of Px(s), the query time grows up to O(x + z), where z 
is the number of such appearances. We can also generalize the first approach to find the lower and upper 
bound on the number of appearances of Px(s)by considering, instead of all possible continuous patterns 

in T(s), only those having length i = 1,2, … , 2log x. Then, we can compute the upper and the lower 
bounds on the number of appearances using segment tree structure [51] in O(log x) query time after 
preprocessing time O(nx + n log n). 

4.2 Data structure for approximate pattern matching 

Here we propose an efficient data structure in order to perform approximate pattern matching queries. Of 
course, we can use a recent result obtained in [52] that solves the static version of the problem in linear 
time, but the goal is to obtain better bounds. 

 There are also three related results, although not exactly comparable with our goal. The paper by 
Cole et al. [53] presents result for approximate pattern matching under Hamming distance, up to k 

errors, and the query time is O(logk n) working only with static text. Dynamic text (changes in front and 
back) was done with a changing pattern, in other words, one has a given pattern and you can make 
changes in it.  The polylogarithmic update and query time were described in [54]. Here, no approximate 
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matching is considered. Finally, one can consider using some hashing technique, for example, locality-
sensitive hashing LSH (see [55]) or Learning to Hash methodology [56]. LSH hashes input items so that 
similar items map to the same “buckets” with high probability (the number of buckets being much 
smaller than the universe of possible input items). In this case, we indeed can perform an approximate 
matching search, but the algorithm is randomized, i.e. it succeeds in finding a match within distance 
𝑂(𝑅) from Px(s) (if there exists a match within distance R) with high probability. The preprocessing 
time is roughly 𝑂(𝑛1+𝜖𝑥) and query time is 𝑂(𝑛𝜖𝑥), for any given 𝜖 > 0. Moreover, in order to count 
all such matches (this is supported by our technique described later), the algorithm may require a linear 
time. Regarding learning to hash methodology – it's a data dependent hashing approach which aims to 
learn hash functions from a specific dataset so that the nearest neighbor search result in the hash coding 
space is as close as possible to the search result in the original space, and the search cost as well as the 
space cost are also small, see for example [57]. However, the all known results (see survey [56]) have 
only empirical performance bounds. 

Our data structure is based on efficient use of balanced binary search trees together with geometric 
observations that allow us to perform updates and queries efficiently. Let the length of Px(s) be x, and the 
length of T(s) is n (without inclusion of Px(s)). We consider the pattern Px(s) as the point in x-
dimensional space, where the i-th measurement in Px(s) corresponds to the i-th coordinate of the 
corresponding point. The text T(s) can be viewed as a collection of n-x+1 points in x-dimensional space, 
obtained be considering x consecutive measurements of T(s) starting from the beginning and sliding 
them each time by one position to the right. What does it mean geometrically that there is an 
approximate match between Px(s) represented by the point in x-dimensional space and some of the n-
x+1 points obtained from text T(s), from the point of view of the parameter α? It means that the distance 
from each coordinate value of Px(s) point can be at most α to the corresponding coordinate of value of 
other point. In other words, all the points that are located inside of x-dimensional cube centered at point 
Px(s) and having side length of 2α represent an approximate match for Px(s) in terms of parameter α. See 
Fig. 4 below for 2-dimensional case. 

 

Fig. 4. Query point Px(s) and all the points inside of the square are 

at distance α 

This can be done by adopting Chazelle's [58-59] orthogonal range counting approach. Namely, given 
a set of n points in the plane and an orthogonal range, we want to find the number of points contained in 
the orthogonal range. Chazelle proposes a data structure that can be constructed in time 𝑂(𝑛 log𝑥−1 𝑛) 
and occupies 𝑂(𝑛) space, such that a range-counting answer for a query region can be answered in time 
𝑂(log𝑥−1 𝑛) with an update time of 𝑂(log𝑥 𝑛). The major idea is to keep x-dimensional balanced binary 
tree and to (sequentially) perform a number of binary searches in each one of the trees corresponding to 
separate dimensions by maintain the obtained filtered results in the canonical sets. The last level tree 
binary searches can be avoided by using fractional cascading technique, see [59]. However, this 
technique does not allow dynamic updates of the structure. In order to overcome the difficulty, an 
additional multiplicative factor of 𝑂(log log 𝑛) time should be added to the update operations [60]. 

So far, we have dealt only with the parameter α, but what happens with our second requirement that 
depends on the parameter β? Here it looks that the problem is more complicated since we need to 
consider the sum of the distances between the point Px(s) and all other points, and to bound this sum by 
β value. Fortunately, we observe the following. 

Observation 1. The sum of the distances between each coordinate of point Px(s) and any other point in 
x-dimensional space is actually the L1 distance between them. 

This observation, in fact, provides us an efficient way to count all the points in x-dimensional space 
that satisfy the limitation of β parameter. In this case, the query becomes the titled by 45° x-dimensional 
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cube, which is centered at Px(s), having the size length of β. See Fig. 5 for 2-dimensional case. We notice 
that this query is performed on the canonical subsets (their number is at most 𝑂(log𝑥−1 𝑛)) obtained 
after the step 1 for an appropriate selection according to the parameter α. 

 

Fig. 5. Query by titled shadowed square in order to satisfy constraint β 

Here we face the problem that in order to make the query by the titled square centered at Px(s) using 
the same approach as before, we need our points to be sorted according to the rotated axes; otherwise we 
cannot perform the standard binary search. We are not able to afford the rotation of axes since it may 
lead to a linear time query time, while our goal is to have polylogarithmic complexity. In order to 
understand how we can overcome this difficulty, we have to explain the specific construction of the 
multi-level balanced binary search tree that we use in the first step of the solution while searching the 
points having distance of at most α from one of the Px(s) coordinates. A range tree on a set of 1-
dimensional points is a balanced binary search tree on those points. The points stored in the tree are 
stored in the leaves of the tree; each internal node stores the largest value contained in its left subtree. A 
range tree on a set of points in x-dimensions is a recursively defined multi-level binary search tree. Each 
level of the data structure is a binary search tree on one of the x-dimensions. The first level is a binary 
search tree on the first of the x-coordinates. Each vertex v of this tree contains an associated structure 
that is a (x−1)-dimensional range tree on the last (x−1)-coordinates of the points stored in the subtree of 
v. Here comes the crux: in our case, each vertex v of the last level of our tree will contain an associated 
structure of x-dimensional range tree in the rotated system of axes. In this way, when we finish with the 
parameter α query having 𝑂(log𝑥−1 𝑛) canonical subsets, we will continue to work on parameter β 
having the same subsets but in rotated system of axes. Eventually, the number of subsets may become to 
be 𝑂(log2𝑥−1 𝑛) which will dominate the query time. The update time becomes 𝑂(log2𝑥 𝑛). Here we 
want to mention that we did not made an intensive attempt to reduce further the update and the query 
time of our operation. Our goal was to show that it is possible to perform approximate pattern matching 
queries in polylogarithmic time with similar update times. One possible direction to improve the time 
can be by dividing the titled square in to the number of wedges as follows: Let l1 be the line parallel to 
the x axis and passing through Px(s), l2 be a line whose slope is 45° passing through Px(s), l3 be the line 
parallel to the y axis and passing through Px(s) and l4 a line whose slope is 135° passing through Px(s). 
These lines define wedges (1) Q1 – the wedge of points between l1 and l2 whose x coordinates are larger 
than their y coordinates, (2) Q2 – the wedge of points between l2 and l3 whose y coordinates are larger 
than their x coordinates, and (3) Q3 – the wedge of points between l3 and l4 whose y coordinates are 
larger than their x coordinates. We can build in such fashion all 8 wedges around the point Px(s). Now, 
instead of looking for the sum of distances (as parameter β dictates), we can look, per each wedge, only 
for dominating coordinate that might be easier and may lead to the speedup in the solution. See [61] for 
the use of this technique. 

Note that while the parameter α controls the possible absolute difference between each measurement 
in Px(s) versus corresponding measurement in T(s), it can have a different interpretation. For example, it 
may measure the squared distance between each measurement in Px(s) versus corresponding 
measurement in T(s). The same holds for the parameter β that can provide an upper bound on, e.g. the 
rooted sum of squared differences between corresponding measurements of Px(s) and T(s). In other 
words, instead of computing the standard L1 β threshold, we can have a new L2 β threshold: 
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In our geometric interpretation, this case of β will mean that the titled square shown in Fig. 5 will 
become a disk centered at Px(s), having a diameter of 2β. 

Here, we would like to emphasize how our theoretical result relates to the HOT SAX [20-21] approach 
which looks for the “most unusual subsequence” in the given sequence and have worst-case quadratic 
running time. As we have shown, under L1 metric our solution has a subquadratic time and, in fact, 
works for any value of α, opposite to [20-21] assuming α=∞. But HOT SAX tries to compare subse-
quences under L2 metric which makes the problem harder. Still, using techniques from computational 
geometry, we can find the solution in subquadratic time, for any fixed, x-dimensional space. Below we 
describe a number of possible approaches to do that. First, we observe that our problem is equivalent to 
the following problem: given a set of n points in the x-dimensional space, we want to report one of given 
points having the Euclidean distance to its nearest neighbor point maximized over all possible choices. 
We can deal with this problem as follows: 

1) First approach 
 The papers [62-63] present solutions to the dynamic, bichromatic closest-pair problem in the plane. In 
the bichromatic closest-pair problem we are given two sets of points S and T and we are required to 
compute the closest pair of points (𝑢, 𝑣) such that 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑇. The dynamic data structure, 
allowing insertions and deletions of points, presented in [62-63] is used to find, given a point p, a point q 
∈T minimizing the Euclidean distance between p and all other points. Doing this for all 𝑛 choices of p 
and noticing that each update and query time is 𝑂(𝑛1/3+𝜀 ), we obtain a total subquadratic runtime of 
𝑂(𝑛4/3+𝜀 )for the planar case. This approach can be generalized to x-dimensional space using the 

techniques of [65,70] but the time bounds for exact nearest neighbors have the form 𝑂(𝑛1−𝜀(𝑥) ) for con-
stant 𝜀(𝑥) that get very small as x gets large. 

2) Second approach 
In a very recent paper [66] (see also [67]), Chan presents a data structure for the planar point set that can 
be preprocessed in 𝑂(𝑛 log 𝑛) time, having 𝑂(log2 𝑛) amortized insertion time, and 
𝑂(log4 𝑛) amortized deletion time, so that we can find the nearest neighbor to any query point in 
𝑂(log2 𝑛)time. It improves the first approach described above and has a total 𝑂(𝑛 log2 𝑛) runtime. 

3) Third approach 
Efrat et al. [68] presented a dynamic soft nearest-neighbor data structure that maintains a dynamic set of 
points in x-dimensional space, S, subject to insertions, deletions, and soft nearest-neighbor queries (all in 
𝑂(log 𝑛)time): given a query point q, return either of the following: the nearest neighbor p* of q in P or 
a pair of points in P having distance between them less than the distance between q and p*. Having this 
data structure, we can find the overall solution in O(n log n) time by identifying the point with the 
largest distance to its nearest neighbor. 

4) Fourth approach 
We can take an advantage of the fact that we need to compute the nearest neighbor to each of the given 
points. Thus, we can avoid doing queries and try to compute the entire solution without involving 
complicated data structures. The papers [64,69] solve the following problem: Given a fixed dimension, a 
semi-definite positive norm (thereby including every Lp norm), and n points in this space, the nearest 
neighbour of every point can be found in 𝑂(𝑛 log 𝑛) time and the 𝑚nearest neighbours of every point 
can be found in 𝑂(𝑚𝑛 log 𝑛) time. In our particular case, for a fixed x-dimensional space, we can have a 
solution in 𝑂(𝑛 log 𝑛) time. 

All these described solutions are exact; there are many geometric solutions that find approximate 
nearest neighbors in high dimensional space, see e.g. [71], that can be used if we are willing to speed-up 
the runtimes versus the accuracy we obtain. 

L1β-threshold(Px(s) , T(s)): 

        total = 0 

        for i in range(x): 

            total += abs(Px(s)[i] - T(s)[i])  

 

L2β-threshold(Px(s) , T(s)): 

        total = 0 

        for i in range(x): 

            total += (Px(s)[i] - T(s)[i])2  

        total = √total 
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5 Experimental Setup 

5.1 Dataset 

We have evaluated our method on the DARPA 2009 dataset from IMPACT Cyber database. The 
DARPA 2009 dataset is created with synthesized traffic to emulate traffic between 172.28.0.0/16 and the 
Internet. This dataset has been captured in 10 days between the 3rd and the 12th of November of the 
year 2009. It contains synthetic DNS background data traffic. The dataset has a variety of security events 
and attack types that describes the modern style of attacks. This dataset has been already evaluated using 
the supervised learning techniques, see for example [72].  

We have evaluated the raw traffic for a few IPs to see the anomalies. Fig. 6 shows the sum of packets 
for IP 172.28.10.6 which serves as the Firewall. The traffic trend is periodical, where from 14:00PM to 
12:00AM there are ~200K packets per hour and from 12:00AM to 14:00PM there are ~75K packets per 
hour. At the 3-Nov and at the 12-Nov there are two peaks in traffic, which are reported as DNS attacks. 

5.2 Baseline algorithms 

We compared our approach with the followings anomaly detection over time baselines, that were im-
plemented to run them on this dataset:  

1. Approximate String Matching (ASM) [52]—this approach is based on time-points, which means 

considering the real values summarized by unit time periods instead of trends. 

2. Auto-regression (AR) model [73] based on time-points—the model learns the best lag based on 

statistics tests. 

3. Linear regression (LR) based on time-points [74]. 

4. Lasso based on time-points [75]. 

5. Random Forest regressor (RF) based on time-points [76]. 

6. K-Nearest Neighbors (KNN) regressor based on time-points [77]. 

5.3 Experimental setting 

The variables we have looked at are: 

Variable A: The total number of DNS packets per minute in the traffic. 

Variable B: The number of transmitted DNS packets per minute, per each IP. 

 The evaluated dataset has been provided with the ground truth events by the dataset creators. If the 
anomaly has been detected by our method within time interval that overlaps with the corresponding time 
interval in ground truth events file, we report this as True Positive (TP). If there is no such overlapping 
interval in ground truth events file, we report this as False Positive (FP). If there is any interval in ground 
truth events file which was not hit by any of our identified intervals of anomalies, it is considered as 
False Negative (FN). All other cases had been treated as true negatives. Since we are looking for 
anomalies, we notice that the True Negative (TN) is a huge number and, thus, the classical metrics such 

 

Fig. 6. Traffic of specific IP with 2 anomalies 
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as accuracy, AUC, etc., are not well suited for this task 

 We fixed the parameters for the slope and relation for the entire evaluation:  high_slope_thresh = 
45°, low_slope_thresh = 15°, high_relation_thresh = 2, low_relation_thresh = 1.5. 

6 Results 

6.1 Experiment 1 – THAAD vs. Anomaly detection baselines 

We compare our proposed method to the baselines as shown in Table 2 by also studying True Positive 
and False Negative rates (TPR/FNR). As we can learn from the table, our approach outperformed the 
others, with the next best method being ASM, which uses similar strategy based on time-points. Since 
THAAD and ASM are the only methods that use approximate matching, we run THAAD with exact 
matching (α=0), which we can see that it is better from other exact methods. 

Table 2. Comparison of THAAD to baselines 

Method FP FN TPR FNR 

THAAD 3 4 0.991 0.008 
ASM 3 12 0.974 0.025 
Exact THAAD 1 19 0.958 0.041 
AR 1 30 0.935 0.064 
KNN 1 35 0.924 0.075 
LR 1 53 0.885 0.114 
LASSO 1 53 0.885 0.114 

6.2 Experiment 2 – approximate matching analysis 

We define several accumulated levels for the parameter α: 

1. α=0, for exact matching. 

2. α=1, for close variables substitution. We allow matching between A and B variables with the same 

symbol. 

3. α=100, for close trend. We allow matching between High to Medium, Medium to Low and Low to 

Stable. 

4. α=750, for unrestricted α, i.e. only β parameter is applied. 

 

Obviously, if α value goes up, flexible matching between the symbols trends is allowed. We ran this 

experiment using parameter β as L1 and L2 metrics. The obtained results were identical for both met-

rics.   
 

The approximation was evaluated by α and β parameters using the entire dataset as shown in Table 3 
and Fig. 7. If α and β values grow up, the False Positive results are increased and the False Negative 
results are decreased, since more patterns are reported as anomalies (some of them are real and some are 
not). The best result was obtained with α=100, having β>=200, which means that both feature 
substitution and close trend are allowed. 
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Fig. 7. Performances for  α, β values. α={0,1,100,200,450,750} and β ={1∙α,2∙α,3∙α,4∙α} 

 

Table 3. Approximate Matching  

α Β TP FP FN TPR FNR F1 

0 0 444 1 19 0.959 0.041 0.978 
1 1 451 1 12 0.974 0.026 0.986 
1 2 451 2 12 0.974 0.026 0.985 
1 3 451 2 12 0.974 0.026 0.985 
1 4 451 2 12 0.974 0.026 0.985 
100 100 451 2 12 0.974 0.026 0.985 
100 200 459 3 4 0.991 0.009 0.992 
100 300 459 3 4 0.991 0.009 0.992 
100 400 459 3 4 0.991 0.009 0.992 
200 200 459 6 4 0.991 0.009 0.989 
200 400 459 6 4 0.991 0.009 0.989 
200 600 459 6 4 0.991 0.009 0.989 
200 800 459 6 4 0.991 0.009 0.989 
450 450 459 7 4 0.991 0.009 0.988 
450 900 459 7 4 0.991 0.009 0.988 
450 1350 459 7 4 0.991 0.009 0.988 
450 1800 459 7 4 0.991 0.009 0.988 
750 750 459 7 4 0.991 0.009 0.988 
750 1500 459 7 4 0.991 0.009 0.988 
750 2250 459 7 4 0.991 0.009 0.988 
750 3000 459 7 4 0.991 0.009 0.988 

 

For unrestricted α value (i.e. α=750), only β was applied to bound the subsequences matching. As it 
shown in Fig. 8a, the best performance is achieved using β in the range from 90 to 300 with FP=6 and 
FN=4. For the same β values with restricted α values, the performance is better (e.g. for α=100, β =300 
the results are FP=3 and FN=4 as shown in Table 3). Moreover, from Fig. 8b we can learn that for a 
fixed value of β=600, the value of α has a large impact on the performance. In this case, the equilibrium 
(between FP and FN) is by using α=100. It supports our claim that the parameter α has a significant 
influence on the precision of the results. 
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Fig. 8. (a) Performances for unresticted α=750. (b) Performances for β=600 

Additionally, we evaluated the length x of Px(s), which means how many symbols are in Px(s). The 
results depending on pattern length (x) are shown in Fig. 9. This experiment ran with α=100 and β=300. 
Length 5, performed the best with 3 and 4 for FP and FN results, respectively. 

 

Fig. 9. Pattern length x (α=100, β=300) 

7 CONCLUSIONS 

In this paper we had introduced the idea of identifying unusual subsequences efficiently using a new 
distance metric an addition to the Euclidean distance (β). The overall process starts with gradient ab-
straction to represent multivariate time series in a more abstract and compact fashion. After the data is 
transformed into a symbolic time intervals representation, we transform it into a sequence-based repre-
sentation of the resulted time intervals’ end points (begin and finish times). Then we identify unusual 
subsequences in the obtained sequence using effective algorithms and data structure based on geometric 
observations that supports polylogarithmic update and query times. We have introduced a new parame-
ter (α) to control the pairwise difference between the symbols that belong to subsequences in addition to 
the standard distance metric – this allowed us to obtain more precise results in the context of anomalies. 
We evaluated the contribution of the additional parameter α and found that the False Positive was im-
proved, since α filters some false patterns that can pass β parameter when using alone.  

 By product, the new data structure produces a theoretically better worst-case runtime solution to the 
HOT SAX approach, breaking the quadratic worst-case runtime barrier. It would be interesting to run 
the HOT SAX solution combined with our data structure to understand the practical importance of im-
proved worst-case running time scenarios. By using gradient abstraction in combination with 
approximate string matching we have shown simulatively that the detection of anomaly events in DNS 
data traffic can be done very accurately and efficiently, compared with previously known approaches.  

The future steps for improvements will include: consideration of α and β parameters in the context of 
different distance measures (e.g. [81]) and identification of additional hidden trends in the historical 
data, e.g. by considering the historical data in reverse order. 
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