
Sequential community mode estimation

Shubham Anand Jaina, Shreyas Goenkaa, Divyam Bapnaa, Nikhil Karamchandania,
Jayakrishnan Naira

aDepartment of Electrical Engineering, IIT Bombay, India

Abstract

We consider a population, partitioned into a set of communities, and study the problem of iden-
tifying the largest community within the population via sequential, random sampling of indi-
viduals. There are multiple sampling domains, referred to as boxes, which also partition the
population. Each box may consist of individuals of different communities, and each commu-
nity may in turn be spread across multiple boxes. The learning agent can, at any time, sample
(with replacement) a random individual from any chosen box; when this is done, the agent learns
the community the sampled individual belongs to, and also whether or not this individual has
been sampled before. The goal of the agent is to minimize the probability of mis-identifying the
largest community in a fixed budget setting, by optimizing both the sampling strategy as well as
the decision rule. We propose and analyse novel algorithms for this problem, and also establish
information theoretic lower bounds on the probability of error under any algorithm. In several
cases of interest, the exponential decay rates of the probability of error under our algorithms are
shown to be optimal up to constant factors. The proposed algorithms are further validated via
simulations on real-world datasets.
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multi-armed bandits
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1. Introduction

Several applications in online learning involve sequential sampling/polling of an underlying pop-
ulation. A classical learning task in this space is online cardinality estimation, where the goal
is to estimate the size of a set by sequential sampling of elements from the set (see, for exam-
ple, [1, 2, 3]). The key idea here is to use ‘collisions,’ i.e., instances where the same element is
sampled more than once, to estimate the size of the set. Another recent application is commu-
nity exploration, where the goal of the learning agent is to sample as many distinct elements as
possible, given a family of sampling distributions/domains to poll from (see [4, 5]).
In this paper, we focus on the related problem of community mode estimation. Here, the goal
of the learning agent is to estimate the largest community within a population of individuals,
where each individual belongs to a unique community. The agent has access to a set of sampling
domains, referred to as boxes in this paper, which also partition the population. The agent can, at
any sampling epoch, choose which box to sample from. Having chosen one such box to sample
from, a random individual from this box gets revealed to the agent, along with the community
Preprint submitted to Performance Evaluation November 17, 2021
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that individual belongs to. After a fixed budget of samples is exhausted, the learning agent
reveals its estimate of the largest community (a.k.a., the community mode) in the population.
The goal of the agent is in turn to minimize the probability of mis-identifying the community
mode, by optimizing (i) the policy for sequential sampling of boxes, and (ii) the decision rule
that determines the agent’s response as a function of all observations.
One application that motivates this formulation is election polling. In this context, communities
might correspond to the party/candidate an individual votes for, while boxes might correspond,
for instance, to different cities/states that individuals reside in. In this case, community mode
identification corresponds to predicting the winning party/candidate. A related (and contempo-
rary) application is the detection of the dominant strain of a virus/pathogen within a population of
infected individuals. Here, communities would correspond to different strains, and boxes would
correspond to different regions/jurisdictions.
Another application of a different flavour is as follows. Consider a setting where an agent in-
teracts with a database which has several entries, each with an associated label, and the agent is
interested in identifying the most represented label in the database. For concreteness, consider a
user who polls a movie recommendation engine which hosts a large catalogue of movies, each
belonging to a particular genre, to discover the most prevalent genre in the catalogue.1 In each
round, the user might provide a genre (community) to the recommendation engine which then
suggests a movie (individual) from that genre (perhaps based on other user ratings). Depending
on the recommendations seen thus far, the user selects the next genre to poll and so on. Now,
either due to privacy considerations or simply the lack of knowledge of all the available genres,
it might not be feasible for the user to share the exact genre he/she wants to view in each round
and might only provide coarser directions (box). For example, while there might be specific gen-
res available such as dark comedy, romantic comedy, slapstick comedy etc., the user might only
indicate its choice as ‘comedy’ and then let the recommendation engine suggest some movie
belonging to any of the sub-genres in the broad genre. At one extreme, the user might prefer
complete privacy and not suggest any genre in each round, in which case the recommendation
engine will have to choose a movie over the entire database. This resembles the mixed community
setting studied in this paper. The opposite end of the spectrum is where the user does not care
about privacy and instead specifies a sub-genre in each round from which the recommendation
engine can then suggest a movie. This corresponds to the separated community setting. We refer
to the intermediate scenario where the user provides coarse directives as the community-disjoint
box setting.
The formulation we consider here has some parallels with the classical multi-armed bandit
(MAB) problem [6]; specifically, the fixed budget best arm identification formulation [7]. In-
deed, one may interpret communities in our formulation as arms in an MAB problem. However,
there are two crucial differences between the two formulations. The first difference lies in the
stochastic behavior of the reward/observation sequence. In the classical MAB problem, each pull
of an arm yields an i.i.d. reward drawn from an arm specific reward distribution. However, in the
community mode detection problem, the sequence of collisions (or equivalently, the evolution of
the number of distinct individuals seen) does not admit an i.i.d. description. (Indeed, whether
or not a certain sample from a box results in a collision depends in a non-stationary manner on
the history of observations from that box.) The second difference between the two formulations
lies in the extent of sampling control on part of the agent. In the MAB setting, the agent can pull

1Other relevant objectives, such as discovering the most popular genre in terms of ratings or the genre most ‘reward-
ing’ for the user, can be incorporated with some modifications to the framework studied here.

2



any arm it chooses at any sampling epoch. However, in our formulation, the agent cannot sample
directly from a community of its choice; it must instead choose a box to sample from, limiting
its ability to target specific communities to explore.
In terms of the extent of sampling control that the agent has, the opposite end of the spectrum
to the MAB setting is when samples are simply generated by an underlying distribution and the
agent can only use these observations to estimate some property of the underlying distribution.
This classical problem of property estimation from samples generated from an underlying distri-
bution has a long and rich history. There has been a lot of work recently on characterizing the
optimal sample complexity for estimating various properties of probability distributions includ-
ing entropy [8, 9], support size and coverage [10, 11], and ‘Lipschitz’ properties [12] amongst
others. Closer to the problem studied in this paper, the problem of mode estimation was orig-
inally studied in [13, 14] with the focus on statistical properties of various estimators such as
consistency. More recently, the instance-optimal sample complexity of mode estimation for any
discrete distribution was derived in [15]. Our formulation differs from this line of work in the
non-i.i.d. nature of the observations as well as the partial ability that the agent has to control the
sampling process, by being able to query any box at a given instant.
Our contributions are summarized as follows.

• We begin by considering a special case of our model where the entire population is con-
tained within a single box; we refer to this as the mixed community setting (see Section 3).
In this setting, the sampling process is not controlled, and the learning task involves only
the decision rule. We show that a simple decision rule, based on counting the number of
distinct individuals encountered from each community, is optimal, via comparison of an
upper bound on the probability of error (mis-identification of the community mode) under
the proposed algorithm with an information theoretic lower bound. For this setting, we also
highlight the impact of being able to identify sampled individuals (i.e., determine whether
or not the sampled individual has been seen before) on the achievable performance in com-
munity mode estimation.

• Next, we consider the case where each community lies in its own box; the so-called sepa-
rated community setting (see Section 4). Here, we show that the commonly used approach
of detecting pairwise collisions (see [4]) is sub-optimal. Next, a near-optimal algorithm is
proposed that borrows the sampling strategy of the classical successive rejects policies for
MABs [7], but differentiates communities based on the number of distinct individuals en-
countered (which is different from the classical MAB setting where arms are differentiated
based on their empirical average rewards).

• Next, we consider a setting that encompasses both the mixed community as well as the
separated community settings; we refer to it as the community-disjoint box setting (see
Section 5). Here, each community is contained within a single box (though a box might
contain multiple communities). For this case, we propose novel algorithms that combine
elements from the mixed and separated community settings. Finally, we show how the
algorithms designed for the community-disjoint box setting can be extended to the fully
general case, where communities are arbitrarily spread across boxes.

• Finally, we validate the algorithms proposed on both synthetic as well as real-world datasets
(see Section 6).
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We conclude this section by making a comparison between our contributions and the literature
on the fixed budget MAB problem. Near optimal algorithms for the fixed budget MAB problem
(see, for example, [7, 16]) follow a sampling strategy of successive rejection of arms, wherein the
sampling budget is split across multiple phases, and at the end of each phase, a certain number of
(worst performing) arms are eliminated from further consideration. Some of our algorithms for
the community mode estimation problem follow a similar sampling strategy and eliminate boxes
in phases; specifically, we often use the same sampling schedule as in the classical successive
rejects algorithm proposed in [7]. However, the elimination criterion we use is different: it is
based on the number of distinct individuals seen (so far) from each community. Given that
this statistic evolves in a non-stationary Markovian fashion over time, this distinction makes our
analysis more complex.
Our information theoretic lower bounds are inspired by the framework developed in [17] for the
fixed budget MAB problem. However, as before, the key distinction in our proofs stems from
the difference in stochastic nature of the observation process: while reward observations for each
arm in the classical MAB setup are i.i.d., the number of distinct individuals seen from each
community evolves as an absorbing Markov chain in the community mode estimation problem.

2. Problem Formulation

Consider a population consisting of N individuals. Each individual belongs to exactly one out
of m communities, labelled 1, 2, · · · ,m. Additionally, the population is partitioned across b sam-
pling domains, also referred to as ‘boxes’ in this paper. The boxes are labelled 1, 2, · · · , b. Our
learning goal is to identify, via random sequential sampling of the boxes, the largest community
(a.k.a., the community mode).
We represent the partitioning of the population across communities and boxes via a b × m ma-
trix D. The entry in the ith row and jth column of this matrix, denoted by di j, equals the number
of individuals in box i who are in community j. Throughout the paper, we refer to D as the
instance associated with the learning task. Let d j :=

∑
i di j denote the size of community j, and

Ni :=
∑

j di j denote the size of box i.
The learning agent a priori knows only the set of boxes and the set of communities. It can access
the population by querying an oracle. The input to this oracle is a box number, and the response
from the oracle is a (uniformly chosen) random individual from this box and the community that
individual belongs to. Individuals are sampled with replacement, i.e., the same individual can
be sampled multiple times. Additionally, we assume that the learning agent is able to ‘identify’
the sampled individual, such that it knows whether (and when) the sampled individual had been
seen before.2 For each query, the agent can decide which box to sample based on the oracle
responses received thus far. At the end of a fixed budget of t oracle queries, the agent outputs its
estimate ĥ∗ ∈ [m] of the community mode h∗(D) = arg max j∈[m] d j in the underlying instance D.3

The agent makes an error if ĥ∗ < h∗(D), and the broad goal of this paper is to design sequential
community mode estimation algorithms that minimize the probability of error.

2Note that this does not require the agent to store a unique identifier (like, say, the social security number) associated
with each sampled individual. The agent can simply assign its own pseudo-identity to an individual the first time the
individual is seen. This sampling model has been applied before in a variety of contexts, including cardinality estimation
(see [1, 2]) and community exploration (see [4]).

3We use the notation [a : b] to denote the set {a, a + 1, . . . , b} for any a, b ∈ Z, b ≥ a. For b ∈ N, [b] := [1 : b].
4



Formally, for any k ∈ [t], a sequential algorithm A has to specify a box bk to sample for
the kth query, this choice being a function of only past observations. The probability of er-
ror for an algorithm A under an instance D, with a budget of t oracle queries, is given by
Pe(D,A, t) ∆

= P(ĥ∗ < h∗(D)). An algorithm A is said to be consistent if, for any instance D,
limt→∞ Pe(D,A, t) = 0. We often suppress the dependence on the budget t and also the algo-
rithmA (when the algorithm under consideration is clear from the context) when expressing the
probability of error, denoting it simply as Pe(D).
For notational simplicity, we assume throughout that the instance D is has a unique largest com-
munity, with h∗(D) denoting the largest community; our results easily generalize to the case
where D has more than one largest community. In the following sections, for various settings
of interest, we prove instance-specific upper bounds on the probability of error of our proposed
algorithms. We are also able to prove information theoretic lower bounds on the probability of
error under any algorithm (within a broad class of reasonable algorithms). In some cases, we
show that the exponential decay rate of the information theoretic lower bound with respect to
the horizon matches (up to a factor that is logarithmic in the number of boxes) the correspond-
ing decay rate for our algorithm-specific upper bounds; this implies the near optimality of our
algorithms.
Remark: As is also the case with algorithms for the fixed budget MAB problem, the probability
of error under our proposed algorithms typically decays exponentially with respect to the bud-
get t, i.e., Pe(D) ≤ µ(D)e−λ(D)t, where µ(D), and λ(D) are instance (and algorithm) dependent
positive constants. Our primary goal would be to characterize and optimize the exponential de-
cay rate λ(D) above. With the focus thus being on the decay rate, the value of the exponential
pre-factor µ(D) in our bounds will often be loose; this is also the case in the fixed budget MAB
literature.
Remark: It is also important to note that in the classical fixed budget MAB problem, the de-
cay rates associated with the upper bounds on the probability of error under the best known
algorithms do not match exactly the decay rates corresponding to the best known information
theoretic lower bounds: the two decay rates differ by a multiplicative factor that is logarithmic in
the number of arms [18]. Given this fundamental gap in the state of the art, it is common practice
to refer an algorithm as near optimal if the decay rate associated with its upper bound is a loga-
rithmic (in the number of arms) factor away from the decay rate in the best known information
theoretic lower bound. Interestingly, we observe a similar multiplicative mismatch between the
decay rates in our upper and lower bound for the community mode estimation problem (as noted
above).
The remainder of this paper is organized as follows. We begin by considering the mixed commu-
nity setting in Section 3, where all individuals belong to a single box (b = 1); in this special case,
the instance matrix D has a single row. Note that in the mixed community setting, the agent has
no control on the sampling process. Next, in Section 4, we study the opposite end of the spectrum
with respect to sampling selectivity, where each community constitutes a unique box (b = m);
this corresponds to D being a diagonal matrix (up to row permutations). We refer to this special
case as the separated community setting. Next, in Section 5, we consider the intermediate set-
ting, where each community is entirely contained within a single box. This corresponds to each
column of D having exactly one non-zero entry. The algorithms presented in this section also
extend to the most general case, where each community may be spread across multiple boxes.
Finally, in Section 6, we present simulation results that compare the proposed algorithms on both
synthetic data as well as several real-world datasets. We conclude this section with a summary
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of our main results.

Summary of main results
In Tables 1, 2, and 3, we present a summary of our results, classified by setting. For ease of
presentation, only the decay rates associated with our (upper and lower) bounds on probability
of error are mentioned here.

Table 1: Summary of the mixed community setting (decay rates)

Sampling model Lower bound Algorithm Upper bound

Identityless log
 N

N−
(√

d1−
√

d2
)2

 SFM log
 N

N−
(√

d1−
√

d2
)2


(Theorem 2) (Theorem 1)

Identity log
(

N
N−(d1−d2+1)

)
DSM log

(
N

N−(d1−d2)

)
(Theorem 4) (Theorem 3)

Table 1 summarizes our results for the mixed-community setting, where for simplicity, we have
represented the community sizes as d1, d2, . . . , dm, with d1 > d2 ≥ d3 ≥ · · · ≥ dm. In this case, we
consider both an identityless sampling model, wherein the identity of the sampled individual is
not revealed to the learning agent, as well as the identity-based model described in our problem
formulation. As we point out in Section 3, the decay rate corresponding to the identity-based
sampling model exceeds that under the identityless model, indicating that identity information
helps to improve the performance of mode identification. Note that the decay rates corresponding
to our upper and lower bounds match exactly for the identity-based sampling model, and almost
exactly for the identity-based model. Since the mixed-community setting consists of a single
box, the multiplicative discrepancy described above between the decay rates in the upper and
lower bounds does not arise here.
In Table 2, we summarize our main results for the separated community setting. Since there
is a single community per box here, we once again represent the community/box sizes as
d1, d2, . . . , db, with d1 > d2 ≥ d3 ≥ · · · ≥ db. The decay rate in our lower bound is expressed
in terms of the instance-dependent complexity metric H2(D) :=

∑b
i=2

1
log(d1)−log(di)

, and that in
our upper bound is expressed in terms of the related complexity metric H(D), which is within a
log(b) = 1

2 +
∑b

i=2
1
i factor of H2(D) (see Lemma 7).

Table 3 summarizes our main results for the community-disjoint box setting. Here, d11 denotes
the size of the largest community, which is contained in Box 1, c1 denotes the size of the second
largest community in Box 1, and for i ≥ 2, ci denotes the size of the largest community in Box i.
The remaining constants in the decay rate expressions are defined in Section 5. The decay rates
corresponding to the upper and lower bounds are expressed as a minimum of two terms: the first
corresponds to the (sub)task of identifying the box containing the largest community, while the
second corresponds to the (sub)task of identifying the largest community within that box. As we
elaborate in Section 5, for a certain class of (reasonable) instances, the two decay rates can be
shown to be within constant factors of one another.

3. Mixed Community Setting

We first consider the mixed community setting, where b = 1, i.e., the instance matrix D has a
single row. In other words, the population is completely ‘mixed’ and for each query, the agent
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Table 2: Summary of the separated community setting (decay rates)

Lower Bound Algorithm Upper Bound
3

H2(D) DS-SR 1
log(b)H(D)

(Theorem 8) (Theorem 6)

Table 3: Summary of the community-disjoint box setting (decay rates)

Lower Bound Algorithms Upper Bound

min
(

Γ

Hb
2 (D)

, log
( N1

N1−(d11−c1+1)

))
DS-SR, ENDS-SR min

(
1

log(b)Hb(D)
, 1

2log(b)
log

( N1
N1−d11+c1

))
(Theorems 12, 13) (Theorem 10)

obtains a uniformly random sample from the entire population. Thus, the sampling process in
this case is uncontrolled, and the learning task is to simply identify the largest community based
on the t samples obtained.
In the mixed community setting, we also consider an identity-less sampling model, wherein
the agent only learns the community that the sampled individual belongs to, without any other
identifying information. Under this sampling model, the agent cannot tell whether or not an
individual who has been sampled has been seen before. This model not only forms a benchmark
for our subsequent analysis of identity-based sampling, but is also of independent interest, given
its privacy-preserving property.
Throughout this section, since there is a single box, we drop the first index in di j, and repre-
sent the instance simply as D = (d1, d1, · · · , dm). Also, without loss of generality, we order the
communities as d1 > d2 ≥ d3 ≥ · · · ≥ dm.

3.1. Identity-less sampling

We begin by analysing the identity-less sampling model in the mixed community setting. Note
that in this case, the response to each oracle query is community i, with a probability propor-
tional to the size of the ith community. Thus, the agent receives t i.i.d. samples from the discrete
distribution (p1, p2, · · · , pm), where pi = di/N. Hence, the learning task boils down to the identi-
fication of the mode of this distribution, using a fixed budget of t i.i.d. samples.4

3.1.1. Algorithm

We consider a natural algorithm in this setting, which we call the Sample Frequency Maximiza-
tion (SFM) algorithm: return the empirical mode, i.e., the community which has produced the
largest number of samples, with ties broken randomly. One would anticipate that this algorithm
is optimal, since the vector (µ̂ j(t), 1 ≤ j ≤ m), where µ̂ j(t) denotes the number of samples from
community j over t oracle queries, is a sufficient statistic for the distribution D. The probability
of error under the SFM algorithm is bounded from above as follows.

4The same mode identification problem was considered in the fixed confidence setting recently in [15].
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Theorem 1. Consider the mixed community setting, under the identity-less sampling model. For
any instance D, the Sample Frequency Maximization algorithm has a probability of error upper
bounded as

Pe(D) ≤ (m − 1)
(
1 −

(
√

d1 −
√

d2)2

N

)t

.

The proof, which follows from a straightforward application of the Chernoff bound, can be found
in Appendix A. Note that the probability of error under the SFM algorithm decays exponentially

with the budget t, the decay rate being (at least) log
(

N
N−(
√

d1−
√

d2)2

)
. The optimality of this decay

rate is established next, via an information-theoretic lower bound on the probability of error
under any consistent algorithm.

3.1.2. Lower Bound

The following theorem establishes an asymptotic lower bound on the probability of error un-
der any consistent algorithm which uses identity-less sampling. Recall that under a consistent
algorithm, for any underlying instance D the probability of error converges to zero as t → ∞.

Theorem 2. In the mixed community setting, under the identity-less sampling model, any con-
sistent algorithm on an instance D satisfies

lim inf
t→∞

1
t

log(Pe(D)) ≥ − log
(

N

N − (
√

d1 −
√

d2)2

)
.

The proof of this theorem, which uses ideas from the proof of [17, Theorem 12], can be found
in Appendix B. Since the exponential decay rate in the above lower bound matches that in the
upper bound corresponding to the SFM algorithm for any instance D, it follows that SFM is
asymptotically decay-rate optimal (under identity-less sampling).

3.2. Identity Sampling

Having considered the case of identity-less sampling in the previous section, we now revert to
the identity-based sampling model described in Section 2. We show that identity information
can be used to improve the accuracy of community mode estimation. We begin by proposing and
analysing a simple algorithm for community mode estimation, and then establish information-
theoretic lower bounds.

3.2.1. Algorithm
Under identity-based sampling, we propose a simple Distinct Samples Maximization (DSM) al-
gorithm: The DSM algorithm tracks the number of distinct individuals seen from each commu-
nity, and returns the community that has produced the greatest number over the t queries, with
ties broken randomly. As before, this is the natural algorithm to consider under identity-based
sampling, given that the vector (S j(t), 1 ≤ j ≤ m), where S j(t) denotes the number of distinct
individuals from community j seen over t oracle queries, is a sufficient statistic for D (see [2]).
The probability of error under the DSM algorithm is bounded as follows.

8



Theorem 3. In the mixed community setting, for any instance D, the Distinct Samples Maxi-
mization (DSM) algorithm has a probability of error upper bounded as

Pe(D) ≤ 2(m − 1) exp

− t
(
d1 −

∑m
i=2 di

m−1

)2

32Nd1

 for t ≤ min
{

d1 + dm

2d1
N,

16Nd1

(d1 − dm)2

}
, (1)

Pe(D) ≤
(
d1

d2

) (
1 −

d1 − d2

N

)t

=

(
d1

d2

)
exp

(
−t log

(
N

N − d1 + d2

))
∀t. (2)

Theorem 3 provides two upper bounds on the probability of error. The bound (2) holds for all val-
ues of budget t,while the bound (1) which is only applicable for small to moderate budget values,
tends to be tighter for small values of t. Note that (2) implies that the probability of error under
the DSM algorithm decays exponentially with t, with decay rate (at least) log

(
N

N−(d1−d2)

)
. Note

that this decay rate exceeds the optimal decay rate under identity-less sampling from Theorem 2,
since

d1 − d2 > (
√

d1 −
√

d2)2 ⇒ log
(

N
N − (d1 − d2)

)
> log

(
N

N − (
√

d1 −
√

d2)2

)
.

This shows that identity information indeed improves the accuracy of community mode estima-
tion.

Proof. The proof of (1) relies on an argument using McDiarmid’s inequality, and is given in Ap-
pendix C. The proof of (2) is given by a coupon collector style argument. The error probability
is upper bounded by the probability of the event that there exists a subset of d1 − d2 individuals
in the largest community C1, such that none of them are sampled in the t queries. Thus we have

Pe(D) ≤
(
d1

d2

) (
1 −

d1 − d2

N

)t

.

The details can be found in Appendix C.

3.2.2. Lower Bounds
Next, we show that the exponential decay rate of the probability of error under the DSM algo-
rithm is (nearly) optimal via an information-theoretic lower bound.

Theorem 4. In the mixed community setting, for any consistent algorithm, the probability of
error corresponding to an instance D is bounded below asymptotically as

lim inf
t→∞

log(Pe(D))
t

≥ − log
(

N
N − (d1 − d2 + 1)

)
.

Note that Theorem 4 implies that the DSM algorithm is nearly decay-rate optimal; the small
discrepancy between the decay rate under DSM and that in the lower bound ((d1 − d2) replaced
by (d1 − d2 + 1)) stems from the discreteness of the space of alternative instances in our change
of measure argument. The proof of this Theorem can be found in Appendix D.
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4. Separated Community Setting

In this section, we consider the separated community setting, where each box contains a single
and unique community (so that b = m). Compared to the mixed community setting considered
in Section 3, this setting represents the opposite end of the spectrum with respect to sampling
selectivity on part of the agent—the agent can now choose exactly which community to sample
from at any time. Note that identity-less sampling is not meaningful in the separated community
setting, since the agent can only gauge the size of a community by observing ‘collisions,’ which
occur when the same individual is sampled again.
At a high level, the separated community setting has connections with the (fixed budget) multi-
armed bandit (MAB) problem, with boxes/communities corresponding to arms. However, the
reward structure in the separated community setting is different from that in a classical MAB
problem; indeed, whether or not a sample taken from any community represents a collision de-
pends on past samples from that community. Nevertheless, we show that tools from the MAB
literature can still be adapted to design near-optimal algorithms for estimating the largest com-
munity in our setting.
Throughout this section, we denote the size of the community in the bth box by db, dropping
the redundant second index since there is only one community in each box. Thus, an instance
can be defined by the vector D = (d1, d2, · · · , db). WLOG, we order the communities such that
d1 > d2 ≥ d3... ≥ db.
We begin by considering a simple approach, where at each decision epoch, the agent queries a
pair of samples from any chosen community, and checks whether or not a collision has occurred,
i.e., the same individual has been sampled both times. Since the event of such a (pairwise, con-
secutive) collision is independent of past samples, and its probability is inversely proportional to
the size of the community, this provides a direct mapping to the MAB setting, allowing off-the-
shelf MAB algorithms to be applied.5 However, we find that this approach, which has been used
before in the literature (for example, see [4] for an application of this approach to community
exploration), is sub-optimal. Next, we propose and analyse an algorithm that tracks the number
of distinct individuals seen from each community, and performs a successive elimination of com-
munities until one ‘winner’ remains. We show that this approach is near-optimal, by comparing
its performance to an information-theoretic lower bound.

4.1. Algorithms

We begin by describing the successive rejects (SR) algorithm for fixed-budget MABs, proposed
in [7] for best arm identification. The SR algorithm is known to be near-optimal in this set-
ting. Our algorithms for the estimation of the largest community, which borrow the sampling
framework of the SR algorithm, are described next.
Successive rejects algorithm: Consider an MAB problem with b arms. The class of successive
rejects (SR) algorithms is parameterized by natural numbers K1,K2, · · · ,Kb−1, satisfying 0 =:
K0 ≤ K1 ≤ K2 ≤ · · · ≤ Kb−1, and

∑b−2
j=1 K j + 2Kb−1 ≤ t, where t denotes the budget/horizon. The

algorithm proceeds in b−1 phases, with one arm being rejected from further consideration at the
end of each phase. Specifically, in Phase r, the b− r + 1 surviving arms are each pulled Kr −Kr−1

5Note that this approach only looks for ‘immediate’ collisions and does not track collisions across the entire observa-
tion history.
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Algorithm 1 Consecutive-collision SR algorithm

1: Set B = [b] . Set of surviving boxes
2: Set K0 = 0, Kr = d 1

log(b)
t/2−b
b−r+1 e (1 ≤ r ≤ b − 1)

3: for r = 1, 2, ..b − 1 do
4: For each box in B, perform (Kr − Kr−1) sample pairs
5: Set Cr

i as number of consecutive (within disjoint sample pairs) collisions in box i ∈ B
6: B = B \ {arg maxi∈BCr

i } (ties broken randomly)

7: Return ĥ∗ = lone surviving box in B

times. At the end of this round, the worst performing6 surviving arm, based on the Kr samples
seen so far, is rejected. The output of the algorithm is the arm that survives rejection at the end
of Phase b − 1. The original SR algorithm proposed in [7] used Kr ∝

t−b
b−r+1 , so that

Kr =

 1

log(b)

t − b
b − r + 1

 , (3)

where log(b) = 1
2 +

∑b
i=2

1
i . Other SR variants, including uniform exploration (Kr = bt/bc for

1 ≤ r ≤ b − 1) and successive halving (see [19]) have also been considered in the literature. In
the remainder of this paper, when we refer to the SR algorithm, we mean the specific algorithm
proposed in [7], with phases defined via (3).
Consecutive-collision SR algorithm: In this algorithm, we map the largest community identi-
fication problem to an MAB best arm identification problem. Each community is treated as an
arm, and an arm pull consists of two samples drawn from that community. The reward is binary,
being 1 if the arm pull does not result in a collision, and 0 if it does. Thus, the mean reward asso-
ciated with arm (community) i equals 1 − 1

di
, so that the best arm (the one with the highest mean

reward) corresponds to the largest community. Note that since each arm pull corresponds to 2
samples, the budget of the MAB reformulation equals t/2. On this MAB reformulation, we ap-
ply the SR algorithm of [7] to identify the largest community; this is formalized as Algorithm 1.
Adapting the proof of [7, Theorem 2] for our setting yields the following upper bound on the
probability of error under the Consecutive-collision SR (CC-SR) algorithm.

Theorem 5. In the separated community setting, for any instance D, the Consecutive-collision
SR (CC-SR) algorithm given in Algorithm 1 has a probability of error that is upper bounded as

Pe(D) ≤
b(b − 1)

2
exp

− (t/2 − b)

4log(b)Hc(D)

 ,
where ∆i = 1

di
− 1

d1
, and Hc(D) = max

i∈[2:b]

i∆−2
i

di
.

The proof of Theorem 5, which uses the Chernoff bound to concentrate the number of consecutive
collisions from each community, can be found in Appendix E.
Distinct Samples SR algorithm: We now present an algorithm that ranks communities by the
number of distinct individuals seen. Note that this involves tracking collisions across the entire

6In the classical setting where the best arm is defined as the one with the greatest mean reward, the worst performing
arm would be the one with the smallest empirical mean estimate.
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Algorithm 2 Distinct Samples SR algorithm (separated community setting)

1: Set B = [b] . Set of surviving boxes
2: Set K0 = 0, Kr = d 1

log(b)
t−b

b−r+1 e (1 ≤ r ≤ b − 1)
3: for r = 1, 2, ..b − 1 do
4: Sample each box in B, Kr − Kr−1 times
5: Set S r

i as number of distinct individuals seen so far from box i ∈ B
6: B = B \ {arg mini∈B S r

i } (ties broken randomly)

7: Set b̂ as lone surviving box in B
8: Return ĥ∗ = lone surviving box in B

observation history of each community. Specifically, we use the same sampling strategy as the
SR algorithm, and at the end of each phase, eliminate from further consideration that community
which has produced the least number of distinct individuals so far.7 This algorithm, which we
refer to as the Distinct Samples SR (DS-SR) algorithm, is stated formally as Algorithm 2.

Theorem 6. In the separated community setting, for any instance D the Distinct Samples SR
(DS-SR) algorithm given in Algorithm 2 has a probability of error that is upper bounded as

Pe(D) ≤

b−1∑
r=1

(
d1

db−r+1

) exp
− (t − b)

log(b)H(D)

 ,
where H(D) = max

i∈[2:b]
i

log(d1)−log(di)
.

Proof. We begin by noting that Pe(D) =
∑

r Pr
e(D), where Pr

e(D) is the probability that box 1 is
eliminated in phase r. Since at least one of the r smallest communities is guaranteed to survive
in phase r, box 1 will not be eliminated in the rth phase if the agent has seen at least db−r+1 + 1
distinct samples from box 1. Thus, Pr

e(D) is upper bounded by the probability of the event that
there exists a subset of d1 − db−r+1 individuals in box 1, such that none of them are sampled in
the Kr queries made until the end of the rth phase. Therefore,

Pr
e(D) ≤

(
d1

db−r+1

) (
1 −

(d1 − db−r+1)
d1

)Kr

=⇒ Pr
e(D) ≤

(
d1

db−r+1

)
exp

(
−Kr log

(
d1

db−r+1

))
Summing across r, we get that

Pe(D) ≤
b−1∑
r=1

(
d1

db−r+1

)
exp

(
−Kr log

(
d1

db−r+1

))
(4)

Using Kr = d 1
log(b)

t−b
b−r+1 e for 1 ≤ r ≤ b − 1, we note that

Kr log
(

d1

db−r+1

)
≥

(t − b) log
(

d1
db−r+1

)
log(b)(b − r + 1)

≥
(t − b)

log(b)H(D)
.

7Note however that in the original SR algorithm for MABs, the cumulative reward from each arm has i.i.d. increments.
In the present setting however, the cumulative number of distinct individuals seen from any community does not have
i.i.d. increments.
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Combining with (4), we have

Pe(D) ≤

b−1∑
r=1

(
d1

db−r+1

) exp
− (t − b)

log(b)H(D)

 .

Having analysed the CC-SR algorithm and the DS-SR algorithms, it is instructive to compare the
exponential decay rates corresponding to the upper bounds of the probability of error under these
algorithms. From Theorems 5 and 6, this boils down to comparing the instance-dependent pa-
rameters Hc(D) and H(D) respectively, which encode the ‘hardness’ of the underlying instance.
Note that the values of these parameters are larger for instances where the size of the largest
community is close to the sizes of the competing communities, and hence it would be harder for
an algorithm to correctly estimate the mode. Consequently, the achievable probability of error
from Theorems 5 and 6 is also higher for harder instances. Furthermore, note that

Hc(D) = max
i∈[2:b]

id2
1di

(d1 − di)2

(a)
> max

i∈[2:b]

d1di

d1 − di

i
log(d1) − log(di)

≥
d1db

d1 − db
max
i∈[2:b]

i
log(d1) − log(di)

=
d1db

d1 − db
H(D).

Here, the bound (a) follows from the fact that log(x) > x−1
x for x > 1. Since Hc(D) > d1db

d1−db
H(D),

this means that Hc(D) � H(D) for most instances of interest, which suggests that the DS-SR
algorithm has a far superior performance as compared to the CC-SR algorithm (at least for large
budget values). Our simulation results in Section 6 are also consistent with this observation.
Next, we establish the near optimality of the Distinct Samples SR algorithm via an information
theoretic lower bound.

4.2. Lower Bounds
While the decay rate in the upper bound of the DS-SR algorithm was expressed in terms of the
hardness parameter H(D), the information theoretic lower bound for the separated community
setting is expressed in terms of a related hardness parameter H2(D) :=

∑b
i=2

1
log(d1)−log(di)

. H(D)
and H2(D) are comparable upto a logarithmic (in the number of boxes) factor, as shown below.

Lemma 7. H(D)
2 ≤ H2(D) ≤ log(b)H(D).

The proof of Lemma 7 can be found in Appendix I.
We now state a lower bound on the probability of error in the separate community setting for
any algorithm in a natural algorithm class. The lower bound is non-asymptotic and is expressed
in terms of the maximum of the probability of error under the original instance and an alternate
instance which has a lower ‘hardness’. This is similar in form to the corresponding lower bound
for the standard multi-armed bandit setting in [17, Theorem 16].

Theorem 8. In the separated community setting, consider any algorithm that only uses the num-
ber of distinct samples from each community (box) to decide which box to sample from at each
instant as well as to make the final estimate of the community mode. For any instance D, there
exists an alternate instance D[a], a ∈ [2 : b], such that H2(D[a]) ≤ H2(D) and

max
(
Pe(D), Pe(D[a])

)
≥

1
4

exp
(
−

3t
H2(D)

)
.
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In the alternate instance D[a], only the size of community a is changed from da to d d2
1

da
e.

The proof of Theorem 8 uses the following lemma.

Lemma 9. For any algorithmA and instance D, there exists a box (community) a ∈ [2 : b] such
that ED[Na(t)] ≤ t

(log(d1)−log(da))H2(D) , where Na(t) denotes the number of times box a is sampled in
t queries underA.

Proof. Assume there exists no such community. Then,

b∑
a=2

ED[Na(t)] >
b∑

a=2

t
(log(d1) − log(da))H2(D)

= t,

which is a contradiction.

Proof of Theorem 8. Consider an algorithm A which bases all decisions only on the number of
distinct individuals seen from each community (box). In this case, S j, the number of distinct
samples from box (community) j evolves as a Markov chain over [0 : d j], with transitions
occurring each time the box is pulled. From state s, this chain transitions to (the same) state s
with probability q j

D(s, s) = s
d j
, and to state s + 1 with probability q j

D(s, s) =
d j−s

d j
.

Now, from Lemma 9 there exist a box a ∈ [2 : b] which satisfies E[Na(t)] ≤ t
(log(d1)−log(da))H2(D) .

Consider the alternate instance D[a] = (d′1, d
′
2, . . . , d

′
b) mentioned in the statement of the theorem,

wherein d′a = dd2
1/dae, d′j = d j ∀ j , a. Note that the community mode under the alternate

instance D′ is a, different from that under the original instance D. Furthermore, note that under
the alternate instance D[a] the transition probabilities qk

D[a] (u, v) remain the same for all k , a.
For box a,

log
 qa

D(s, s)
qa

D[a] (s, s)

 = log
 dd2

1/dae

da

 ≤ log
d3

1

d3
a

 , (5)

log
 qa

D(s, s + 1)
qa

D[a] (s, s + 1)

 = log
 1 − s/da

1 − s/dd2
1/dae

 . (6)

Here, (5) because

dd2
1/dae ≤ 1 + d2

1/da = (da + d2
1)/da ⇒

dd2
1/dae

da
≤

da + d2
1

d2
a

=
d2

a + d2
1da

d3
a

≤
d3

1

d3
a
.

Next, let PD,PD[a] denote the probability measures induced by the algorithm under consideration
by the instances D, D[a], respectively. Then, given a trajectory x = (a(1), s(1), · · · , a(t), s(t)),
where a(k) denotes the box pulled on the kth query (action), and s(k) = (s j(k), j ∈ [b]) is the
vector of states corresponding to the arms after the kth query, the log-likelihood ratio is given by

log
PD(x)
PD[a] (x)

=
∑

k

∑
u,v

Nk(u, v, 0, t) log

 qk
D(u, v)

qk
D[a] (u, v)

 ,
14



where Nk(u, v, 0, t) represents the number of times the transition from state u to state v happens
in the Markov chain corresponding to box k over the t queries. Combining with (5), (6), we get

D(PD||PD[a] ) = ED

[
log

PD(x)
PD[a] (x)

]
≤

∑
s

ED[Na(s, s, 0, t)] log
d3

1

d3
a

 + ED[Na(s, s + 1, 0, t)] log
 1 − s/da

1 − s/dd2
1/dae


where D(·||·) denotes the Kullback-Leibler divergence. Note that

dd2
1/dae > da =⇒

1 − s/da

1 − s/dd2
1/dae

≤ 1 =⇒ log
 1 − s/da

1 − s/dd2
1/dae

 ≤ 0.

Thus, we have

D(PD||PD[a] ) ≤
∑

s

ED[Na(s, s, 0, t)] log
d3

1

d3
a

 ≤ ED[Na(t)] log
d3

1

d3
a


Next, we use Lemma 20 from [17] (alternatively, see Lemma 21 in Appendix I) to get that

max
(
Pe(D), Pe(D[a])

)
≥

1
4

exp (−D(PD||PD[a] )) ≥
1
4

exp
−ED[Na(t)] log

d3
1

d3
a

 ,
where Pe(D) is the probability of error under instance D. Finally, we use the bound on ED[Na(t)]
from Lemma 9 to get

max
(
Pe (D) , Pe(D[a])

)
≥

1
4

exp
(
−

3t
H2(D)

)
.

It now remains to show that H2(D[a]) ≤ H2(D). This is equivalent to showing∑
i∈[b],i,a

1

log(d d2
1

da
e) − log(di)

≤
∑

i∈[b],i,1

1
log(d1) − log(di)

.

This condition follows from the following term-by-term comparisons:

1

log(d d2
1

da
e) − log(di)

≤
1

log(d1) − log(di)
(i , 1, a)

1

log(d d2
1

da
e) − log(d1)

≤
1

log(d1) − log(da)

Comparing the upper and lower bounds on the probability of error for the separated community
setting in Theorems 6 and 8, we see that the expressions for the decay rates differ (ignoring
universal constants) in terms of H(D) vs H2(D), which from Lemma 7, are at most a factor of
log(b) apart. In other words, the decay rate under DS-SR is optimal, upto a logarithmic (in the
number of boxes) factor. This is similar to the optimality guarantees available in fixed-budget
MAB setting (see [7, 17]).
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Algorithm 3 Distinct Samples SR algorithm (community-disjoint box setting)

1: Set B = [b] . Set of surviving boxes
2: Set K0 = 0, Kr = d 1

log(b)
t−b

b−r+1 e (1 ≤ r ≤ b − 1)
3: for r = 1, 2, ..b − 1 do
4: Sample each box in B, Kr − Kr−1 times
5: Set S r

i j as number of distinct individuals seen so far from community j in box i ∈ B
6: Set, for i ∈ B, fi = max j S r

i j
7: B = B \ {arg mini∈B fi} (ties broken randomly)
8: Set b̂ as lone surviving box in B
9: Return ĥ∗ = arg max j S (b−1)

b̂ j
(ties broken randomly)

5. Community-disjoint Box Setting

In this section, we consider an intermediate setting that generalizes both the mixed and separated
community settings. Specifically, we consider the case where each community exists in exactly
one box; i.e, all the members of a community j are present in the same box. (Though any
box may contain multiple communities.) In this setting, which we refer to as the community-
disjoint box setting, we propose algorithms that combine elements from the algorithms presented
before for the mixed and separated community settings. For a class of reasonable instances, we
are also able to establish the near optimality of certain algorithms. Finally, we show that the
algorithms presented in this section can be generalized to handle the most general model, where
communities are arbitrarily spread across boxes.
Under the community-disjoint box setting, each column of the instance matrix D has exactly one
non-zero entry. Without loss of generality, we assume that d11 is the largest value in the matrix D;
hence, box 1 contains the largest community (also labeled 1). Also without loss of generality,
we order boxes by the sizes of the largest communities in them; i.e, if gi, 1 ≤ i ≤ b is the size of
the largest community in box i, then d11 = g1 > g2 ≥ g3 ≥ ... ≥ gb. Additionally, we define ci to
be the largest competing community in a box–that is, ci = gi, i , 1, and c1 is the second largest
community in the first box. We state our results in terms of d11 and (ci, i ∈ [b]).

5.1. Algorithms

The first algorithm we consider for this setting is a generalization of the Distinct Samples SR
algorithm from Algorithm 2, where we now eliminate boxes successively. Specifically, the algo-
rithm proceeds in b − 1 phases; one box being eliminated from subsequent consideration in each
of the phases. At the end of the final phase, the algorithm outputs the community that produced
the largest number of distinct samples from the last surviving box. Since we have multiple com-
munities in each box, our elimination criterion in each phase is based on the seemingly largest
community in each surviving box. In particular, let S r

i j denote the number of distinct individuals
encountered from community j in box i at the end of phase r. We eliminate, at the end of phase r,
the (surviving) box that minimizes max j S r

i j. This algorithm, which we continue to refer to as the
Distinct Samples SR (DS-SR) algorithm (with some abuse of notation), is presented formally in
Algorithm 3.
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Theorem 10. In the community-disjoint box setting, for any instance D, the Distinct Samples SR
(DS-SR) algorithm given in Algorithm 3 has a probability of error upper bounded as

Pe(D) ≤

 b∑
i=2

(
d11

ci

) exp
− (t − b)

log(b)Hb(D)

 +

(
d11

c1

)
exp

− (t − b) log
(

N1
N1−d11+c1

)
2log(b)

 , (7)

where Hb(D) = max
i∈[2:b]

i
log(N1)−log(N1−d11+ci)

.

The upper bound on the probability of error under the DS-SR algorithm above is a sum of two
terms. The first term in (7) bounds the probability of misidentifying the box containing the largest
community, while the second term in (7) bounds the probability of misidentifying the largest
community within the correct box (box 1). Not surprisingly, the second term is structurally
similar to the bound (2) we obtained in Theorem 3 for the mixed community setting (restricted
to box 1). The proof of Theorem 10 can be found in Appendix F.
The DS-SR algorithm works well in practice, particularly for large budget values. However, its
performance can be sub-par for moderate budget values on certain types of instances; particularly
instances where the largest community is contained within a very large box. In such cases, it can
happen that E

[
S r

11

]
< E

[
S r

i j

]
for another community j in a box i , 1, making it likely that box 1

gets eliminated early. We propose modified algorithms to resolve this issue, under the additional
assumption that the box sizes are known a priori to the learning agent.8 The first modification
replaces uniform exploration of boxes with a proportional exploration of the surviving boxes in
each phase, resulting in a sampling process (within each phase) somewhat analogous to the mixed
community setting considered in Section 3. A second class of algorithms retains uniform box
exploration, but normalizes S r

i j to reflect the size of each box (algorithms in this class differing
with respect to the specific normalization performed). This latter class of algorithm can also be
extended to the original setting where the box sizes are unknown, by replacing the box size by
its maximum likelihood estimator.
We begin by describing our first modification of the DS-SR algorithm, which we refer to as
the Distinct Samples Proportional SR (DS-PSR) algorithm. The DS-PSR algorithm apportions
the budget across phases in the same manner as DS-SR, but the queries within each phase are
distributed across surviving boxes in proportion to their sizes. Formally, this corresponds to the
same description as Algorithm 3, except that in Line 4, each box i ∈ B is sampled T (B, r, i) times,
where T (B, r, i) := b Ni∑

k∈B Nk
(Kr−Kr−1)(b− r +1)c. Experimentally, we find that DS-PSR performs

very well. However, a tight characterization of the decay rate corresponding to the probability of
error is challenging, since the number of queries available to each surviving box in phase r, for
1 < r ≤ b − 1, is a random quantity, that depends on the sequence of prior box eliminations.
Next, we describe the normalized variants of the DS-SR algorithm. The first, which we refer
to as the Normalized Distinct Samples SR (NDS-SR) algorithm, is described by changing the
definition of fi in Line 6 of Algorithm 3 to

f NDS−SR
i = max

j

S r
i j

S r
i

Ni,

8This is a natural assumption is several applications. For example, in the context of election polling, an agent might
know a priori the total number of voters in each city/state.
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where S r
i denotes the number of distinct individuals seen from box i (across different commu-

nities) by the end of phase r. This normalization is justified as follows: S r
i j/S

r
i is an unbiased

estimator of di j/Ni, i.e., the fraction of box i that is comprised by community j.
The final variant we propose, referred to as the Expectation-Normalized Distinct Samples SR
(ENDS-SR) algorithm, uses the following alternative normalization of fi in Line 6 of Algo-
rithm 3:

f ENDS−SR
i = max

j

S r
i j

E
[
S r

i

]Ni.

This normalization has a similar justification: indeed,
S r

i j

E[S r
i ]

is another (more tractable) unbiased
estimator of di j/Ni.

Both NDS-SR and ENDS-SR perform quite well in practice. It is challenging to analytically
bound the performance of NDS-SR, due to the difficulty in concentrating the fractions S r

i j/S
r
i .

However, the probability of error under ENDS-SR admits an upper bound analogous to that under
DS-SR (albeit more cumbersome). Interestingly, the exponential decay rate of the probability of
error under ENDS-SR is identical to that under DS-SR.

Theorem 11. In the community-disjoint box setting, for any instance D,

lim sup
t→∞

log Pe(D,ENDS-SR, t)
t

≤ −
1

log(b)
min

(
1

Hb(D)
,

1
2

log
(

N1

N1 − d11 + c1

))
.

The proof of Theorem 11 can be found in Appendix G. The intuition behind Theorem 11 is that
for large t, E

[
S r

i

]
≈ Ni, so that f ENDS−SR

i ≈ S r
i j,making the elimination criterion under ENDS-SR

nearly identical to that under DS-SR.

5.2. Lower Bounds

We now derive information theoretic lower bounds on the probability of error in the community-
disjoint box setting, and compare the decay rates suggested by the lower bounds to the decay rate
under DS-SR.
Our first lower bound captures the complexity of simply identifying the largest community from
within box 1.

Theorem 12. For any consistent algorithm, the probability of error corresponding to an in-
stance D in the community-disjoint box setting is asymptotically bounded below as

lim inf
t→∞

Pe(D)
t
≥ − log

(
N1

N1 − (d11 − c1 + 1)

)
.

Note that Theorem 12 follows directly from Theorem 3 for the mixed community setting.
Our second lower bound is complementary, in that it captures the complexity of identify-
ing the box containing the largest community. To state this bound, we define Hb

2(D) =∑b
i=2

1
log(N1)−log(N1−d11+ci)

. Then, following along similar lines as the proof of Theorem 6, we can
show that

Hb(D)
2

≤ Hb
2(D) ≤ log(b)Hb(D).
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Theorem 13. In the community-disjoint box setting, consider any algorithm that only uses the
number of distinct samples from each community to decide which box to sample from at each
instant as well as to make the final estimate for the community mode. For any instance D, there
exists an alternate instance D[a], a ∈ [2 : b], with Hb

2(D[a]) ≤ Hb
2(D) such that

max
(
Pe(D), Pe(D[a])

)
≥

1
4

exp
− tΓ

Hb
2(D)

 ,
where Γ = max

 log
(
d

N1(Na−ca+d11)
(N1−d11+ca ) e

)
−log(Na)

log
(

N1
N1−d11+ca

) ,maxb
i=2

log
(
d

N1(Na−ca+ci )
(N1−d11+ci ) e

)
−log(Na)

log
(

N1
N1−d11+ca

)
 . The alternate instance

D[a] is constructed by increasing the size of only the largest community in box a, such that the
new size of box a is N′a = max

(
dN1

(Na−ca+d11)
(N1−d11+ca) e,maxb

i=2dN1
(Na−ca+ci)
(N1−d11+ci)

e
)
.

The proof of Theorem 13 follows along similar lines as the proof of Theorem 8. Details can be
found in Appendix H.
Comparing the upper and lower bounds on the probability of error for the box setting in The-
orems 10, 12, and 13, we see that the expressions for the exponents differ primarily in i) the
presence of Hb(D) vs Hb

2(D), which differ by at most a factor of log(b); and ii) the presence of
an additional factor Γ in the lower bound. Note that

max
(
dN1

(Na − ca + d11)
(N1 − d11 + ca)

e,
b

max
i=2
dN1

(Na − ca + ci)
(N1 − d11 + ci)

e

)
≤ d

N1(Na − ca + d11)
N1 − d11 + cb

e

≤
N1(Na − ca + d11)

N1 − d11 + cb
+ 1 ≤

N1(Na − ca + d11 + 1)
N1 − d11 + cb

.

Using x−1
x ≤ log(x) ≤ x − 1 for all x > 0 and the above inequality, we get

Γ ≤
log(N1) + log(Na − ca + d11 + 1) − log(Na) − log(N1 − d11 + cb)

log(N1) − log(N1 − d11 + ca)

=
log(N1/(N1 − d11 + cb)) + log((Na − ca + d11 + 1)/Na)

log(N1/(N1 − d11 + ca))

≤
(d11 − cb)/(N1 − d11 + cb) + (d11 − ca + 1)/Na

(d11 − ca)/N1

≤
(d11 − cb)
(d11 − ca)

·
N1

(N1 − d11 + cb)
·

(2N1 + Na)
Na

.

In particular, the above inequality implies that Γ is bounded by a constant under the following
natural assumptions on the class of underlying instances: i) the largest community size is at most
a fraction of its corresponding box size, i.e., d11 ≤ (1 − δ1)N1 for some δ1 > 0; ii) the size of
the competing communities in other boxes is most a fraction of the largest community size, i.e.,
ca ≤ (1 − δ2)d11 for some δ2 > 0 ∀a , 1; and iii) all the box sizes are within a multiplicative
constant factor β of each other (β > 1). Under these assumptions, Γ ≤

2β+1
δ1δ2

.
We compare this lower bound to the first term in the upper bound given in Theorem 10. We
note that these terms only differ by an order of log(b)Γ. When Γ is bounded from above, such
as in the case described above, the DS-SR estimator matches the lower bound upto logarithmic
factors for the problem of picking the correct box in the final stage of the algorithm, and is hence
near-optimal. Comparing the second term in the upper bound from Theorem 10 to Theorem 12,
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we find a similar logarithmic factor between the decay rates. Thus, the DS-SR algorithm is decay
rate optimal up to logarithmic factors for the problem of picking the right community out of a
box, given the correct box. This is natural and intuitive, due to its similarity with the mixed
community DSM algorithm. Hence, the set of instances where DS-SR might not perform well
in comparison to other algorithms can be characterized as instances where it is hard to pick the
correct box containing the largest community; intuitively, these instances would produce a large
value of the parameter Γ.

5.3. The general setting

Finally, we consider the most general setting, where communities are arbitrarily spread across
boxes. From an algorithmic standpoint, the key challenge here is that it is no longer appropriate to
eliminate boxes from consideration sequentially as in SR algorithms, since the largest community
might be spread across multiple boxes. Accordingly, the algorithms we propose for the general
setting are ‘single phase’ variants of the algorithms proposed in Section 5.1.
The single phase variant of Algorithm 3, which we refer to as the Distinct Samples Uniform
Exploration (DS-UE) algorithm is stated as follows: sample each box bt/bc times, and return
the community that produces the largest number of distinct individuals. The probability of error
under this algorithm can be bounded using the ideas we have used before, only the bounds are
more cumbersome.
If the box sizes are known, one can also perform a single-phase proportional sampling of boxes,
resulting effectively in a sampling process similar to the mixed community setting (except the
budget is apportioned deterministically across boxes rather than the random allocation in the
mixed community setting) . We refer to the corresponding algorithm, which outputs the com-
munity that produced the largest number of distinct individuals after t queries, as the Distinct
Samples Proportional Exploration (DS-PE) algorithm.
Finally, we state the normalized single phase variant of DS-UE, which we refer to as NDS-UE:
Each box is sampled bt/bc times, and the output of NDS-UE is the community that maximizes∑

i
S i j

S i
Ni. ENDS-UE can be analogously defined.

To summarize, some of our algorithms for the disjoint box setting can indeed be applied and eval-
uated analytically in the general setting. However, we do not at present have a tight information
theoretic lower bound for the general setting (or indeed, even for the disjoint box setting); the
proof techinques we have used in the lower bounds for the mixed/separated community settings
appear to be insufficient to handle the general case. So even though our algorithms for the general
setting perform well in empirical evaluations (see Section 6), new methodological innovations
are required to close the gap between upper and lower bounds.

6. Experimental Results

In this section, we present extensive simulation results comparing the performance of various
algorithms discussed in the previous sections. We use both synthetic data as well as data gathered
from real-world datasets for our experiments. For each experiment, we averaged the results over
multiple runs (500-3000 depending on the complexity of the instance).

6.1. Mixed Community Mode Estimation

We begin with the mixed community setting studied in Section 3 where all individuals are placed
in a single box. We demonstrate the difference in performance of the identity-less Sample

20



(a) Instance: [1000, 990, 600, 500, 500, 410] (b) Instance: [1000, 900, 630, 520, 520, 430]

Figure 1: log(Pe(D)) vs t for mixed community setting

(a) Instance: [1000, 990, 600, 500, 500, 410] (b) Instance: [1000, 900, 630, 520, 520, 430]

Figure 2: log(Pe(D)) vs t for separated community setting

Frequency Maximization (SFM) and the identity-based Distinct Samples Maximization (DSM)
algorithms via simulations on synthetic data. We consider two instances, each with 4000 in-
dividuals in a single box, partitioned into communities as [1000, 990, 600, 500, 500, 410] and
[1000, 900, 630, 520, 520, 430] respectively. As suggested by Theorems 2 and 4, we find that the
difference in the convergence rates of the two estimators becomes more pronounced when the
two largest communities are close in size. See Figure 1 where we plot the probability of error
log(Pe) vs the query budget t for the two instances.

6.2. Separated Community Mode Estimation

Next, we consider the separated community setting studied in Section 4 where each commu-
nity is in a unique box. As above, we consider two instances with community sizes given by
[1000, 990, 600, 500, 500, 410] and [1000, 900, 630, 520, 520, 430] respectively. We plot the per-
formance of the Consecutive-Collision SR (CC-SR) and Distinct Samples SR (DS-SR) algo-
rithms in Figure 2. As indicated by our results in Theorems 5 and 6, the DS-SR algorithm
greatly outperforms the CC-SR algorithm.

21



6.3. Community-Disjoint Box Mode Estimation

Here, we look at the setting where the communities are partitioned across the boxes and thus
each box can have multiple communities, as described in Section 5. We use the following two
real-world datasets for comparing the performance of various estimators under this setting.

• Brazil Real Estate Dataset [20]: This dataset contains a total of 97353 apartment listings
spread across 26 states and 3273 municipalities in Brazil. Mapping it to our framework,
the apartments correspond to individual entities, the municipalities represent communities
and the states they are located in denote the boxes. Our goal is to identify the municipality
(community) with the largest number of listings by (randomly) sampling apartment listings
from various states.

Corresponding to this dataset, the four largest communities (municipalities with the most
listed apartments) are of sizes [3929, 2322, 2414, 1876]. The top five box sizes are [80935,
3551, 2035, 1871, 1646], with the largest box corresponding to the state of Sao Paolo. Thus,
one box has a much larger size than all others in this dataset and in fact, contains all of the
the four largest communities.

• Airbnb Rental Listing Dataset [21]: This dataset contains a total of 48895 rental listings
spread across 5 regions and 221 neighborhoods in New York city. Here, the apartments
correspond to individual entities, the neighbourhoods represent communities and the broad
regions they are located in denote the boxes.

The top five communities (neighbourhoods) have sizes [3920, 3741, 2658, 2465, 1971]. The
top 5 box sizes are [21661, 20104, 5666, 1091, 373]. Unlike the previous dataset, the two
largest boxes (corresponding to Manhattan and Brooklyn respectively) are of comparable
size here. Furthermore, the two boxes contain multiple competing communities of size
comparable to the largest community. The largest box contains the communities with sizes
2658 and 1971, while the second largest box contains communities of sizes 3920 (mode),
3714, and 2465.

Results We compare the performance of the various algorithms discussed in Section 5.1 on the
two datasets described above. These include the Distinct Samples-Successive Rejects (DS-SR)
and its generalization Distinct Samples Proportional SR (DS-PSR) when the box sizes are known.
We also consider the normalized variants of DS-SR, given by Normalized Distinct Samples SR
(NDS-SR) and Expectation-Normalized Distinct Samples SR (ENDS-SR) when box sizes are
known as well as Normalized Distinct Samples SR (NDS-SR (MLE)) when the box sizes are
unknown, by replacing the box size by its maximum likelihood estimator.
Figure 3a shows the performance of the various algorithms on the Brazil Real Estate dataset. DS-
SR which splits queries uniformly across all surviving boxes performs the worst while DS-PSR
which does the division in proportion to box sizes performs the best. This is to be expected since
there is one box which is much larger than all others and this box contains all of the competing
largest communities. Thus, because of the uniform exploration in DS-SR, there might be fewer
samples from the individual communities in the largest box in the initial rounds and it might get
eliminated, which explains the poor performance for moderate query budgets. This shortcoming
is addressed by DS-PSR which assign many more queries to the largest box which contains the
community mode. The normalized variants NDS-SR and ENDS-SR also perform much better
than DS-SR since they use the box sizes to determine the elimination criteria in each round. In
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(a) Brazil Real Estate Dataset (b) Airbnb Rental Listing Dataset

Figure 3: log(Pe(D)) vs t for box community setting

Figure 4: log(Pe(D)) vs t for the Youtube Video Dataset, General Box Setting

comparison to these, the NDS-SR (MLE) performs poorer for low query budget due to erroneous
box size estimates but demonstrates similar performance for larger budgets.
Figure 3b shows the performance of the various algorithms on the Airbnb Apartment Listing
dataset. Here again, DS-PSR performs the best since it allocates queries in proportion to box
sizes. However, unlike the previous dataset, all the other algorithms have comparable perfor-
mance. This includes DS-SR which does not use any box size information and is still able to
perform better since the box sizes are relatively closer to each other for this dataset and the num-
ber of communities in each box are also fewer which makes it unlikely that the box containing
the largest community is eliminated.

6.4. General Setting Mode Estimation

Finally, we consider the general setting where individuals in a community can be spread across
multiple boxes. Section 5.3 described various single-round algorithms for this setting, namely
the Distinct Samples Uniform Exploration (DS-UE) which doesn’t need any box size informa-
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tion and divides the query budget equally among all boxes; the Distinct Samples Proportional
Exploration (DS-PE) which assigns queries in proportion to the box sizes; and the various nor-
malized single phase variants of DS-UE, which we refer to as NDS-UE, ENDS-UE and NDS-UE
(MLE). To compare the performance of these different estimators under the general setting, we
use the following dataset.

• Trending Youtube Video Statistics Dataset [22]: This dataset contains the top trending
videos for different regions such as Canada, US, and Japan, out of which we consider six
regions. Mapped to our framework, a region corresponds to a box, a channel denotes a com-
munity, and each video represents an individual entity. The goal is to find the most popular
channel which has the largest number of trending videos across the six regions. Note that
a particular channel (community) can have trending videos (individuals) spread across dif-
ferent regions (boxes) and thus this dataset corresponds to the general setting. This dataset
contains 239662 videos, each associated with one of 17773 channels. Top 5 channels have
[870, 809, 752, 717, 712] top trending videos across regions. The boxes have comparable
size, given by [40881, 40840, 40724, 38916, 37352, 40949].

Figure 4 shows the performance of the various algorithms on the above dataset. Note that all
the estimators are able to achieve an exponential decay in the probability of error with the query
budget even in this general setting. Furthermore, here the rate of decay for all the estimators
is comparable since the box sizes are all similar and thus the knowledge of box sizes does not
provide a distinct advantage. However, in terms of the absolute value, DS-UE performs slightly
poorly as compared to the other algorithms which either use prior knowledge of box sizes or
learn estimates for them using samples.

Appendix A. Proof of Theorem 1

Let µ̂i(t) be the number of samples seen from Ci over the horizon. We have

µ̂i(t) =

t∑
j=1

1{person j ∈ Ci}

⇒ E[µ̂i(t)] = µi(t) =
tdi

N
.

Using the union bound on Pe(D), we get

Pe(D) ≤
m∑

i=2

P(µ̂i(t) − µ̂1(t) ≥ 0).

The Chernoff bound gives us

P (µ̂k(t) − µ̂1(t) − (µk(t) − µ1(t)) ≥ w) ≤ min
λ>0

e−λwE
[
eλ(µ̂k(t)−µ̂1(t)−(µk(t)−µ1(t))

]
= min

λ>0
e−λ[w+(µk(t)−µ1(1))]

[
dkeλ

N
+

d1e−λ

N
+

(
1 −

d1 + dk

N

)]t

.

Choosing w = µ1(t) − µk(t) and minimizing over λ,

P(µ̂k(t) − µ̂1(t) ≥ 0) ≤
[
1 −

(
√

d1 −
√

dk)2

N

]t

(A.1)
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⇒ Pe(D) ≤
m∑

i=2

P(µ̂i(t) − µ̂1(t) ≥ 0) ≤
m∑

i=2

[
1 −

(
√

d1 −
√

dk)2

N

]t

≤ (m − 1)
[
1 −

(
√

d1 −
√

d2)2

N

]t

.

Appendix B. Proof of Theorem 2

To prove the theorem, we consider two instances D = (d1, d2, . . . , dm) and D′ = (d′1, d
′
2, . . . , d

′
m),

where the optimal community in D is C1 and the optimal community in D′ is C2. We note that the
mixed community setting can be modelled as a probability distribution over communities, with
the probability of sampling Ci under D and D′ being pi = di/N and p′i = d′i/N respectively. Let
the probability distributions corresponding to instances D and D′ be Θ = (p1, p2, ...pm) and Θ′ =

(p′1, p′2, ...p
′
m) respectively. Further, let the sequence of t samples be denoted by X1, X2, . . . , Xt

where Xi is the index of the community that is sampled at time i, and let PΘ,PΘ′ denote the
probability measures induced on the sample sequence by the instances D, D′. Next, we state a
few lemmas which will help in the proof of the theorem.

Lemma 14. For every event E ∈ Ft, where Ft = σ(X1, X2, ...Xt),

PΘ′ (E) = EΘ[1E exp(−Lt)],

where Lt =
∑t

i=1 log
(

pXi
p′Xi

)
and 1 is the indicator random variable.

Proof. This is analogous to [17, Lemma 18].

Lemma 15. For every event E ∈ Ft,

EΘ[Lt |E] ≥ log
PΘ(E)
PΘ′ (E)

.

Proof. From Lemma 14, we know that PΘ′ (E) = EΘ[exp(−Lt)1E]. Then, using Jensen’s inequal-
ity on exp(−x), we have that

PΘ′ (E) = EΘ[exp(−Lt)1E] = EΘ[EΘ[exp(−Lt)|1E]1E] ≥ EΘ[exp(−EΘ[Lt |E])1E]
= exp(−EΘ[Lt |E])PΘ(E)

The last line above proves the lemma.

Lemma 16. If d(x, y) = x log
(

x
y

)
+ (1 − x) log

(
(1−x)
(1−y)

)
, then for every event E ∈ Ft,

EΘ′ [−Lt] ≥ d(PΘ′ (E),PΘ(E)).

Proof. From Lemma 15 we know that

EΘ′ [−Lt |E] ≥ log
(
PΘ′ (E)
PΘ(E)

)
,EΘ′ [−Lt |E

c] ≥ log
(
PΘ′ (Ec)
PΘ(Ec)

)
.

Using the total law of probability and the above inequality, we get

EΘ′ [−Lt] = EΘ′ [−Lt |E]PΘ′ (E) + EΘ′ [−Lt |E
c]PΘ′ (Ec) ≥ d(PΘ′ (E),PΘ(Ec)).
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Consider a consistent algorithm A, and let Pe(D) and Pe(D′) denote the probabilities of error
for A under the instances D and D′ respectively. Denote the community that is output by A
as ĥ∗, and let S be the event that ĥ∗ = 1. Thus, Pe(D) = 1 − PΘ(S ) and Pe(D′) ≥ PΘ′ (S ).
Since algorithmA is consistent and thus its probability of error on both D,D′ goes to zero as the
number of samples t grows large, we have that for every ε > 0 there exists t0(ε) such that for all
t ≥ t0(ε),PΘ′ (S ) ≤ ε ≤ PΘ(S ). For t ≥ t0(ε),

EΘ′ [−Lt] ≥ d(PΘ′ (S ),PΘ(S )) ≥ d(ε,PΘ(S )) ≥ ε log
(

ε

PΘ(S )

)
+ (1 − ε) log

(
(1 − ε)
Pe(D)

)
≥ ε log(ε) + (1 − ε) log

(
(1 − ε)
Pe(D)

)
Taking the limsup, using EΘ′ [−Lt] = t.D(Θ′||Θ) where D(·||·) denotes the Kullback-Leibler di-
vergence, and letting ε → 0, we get

lim sup
t→∞

−
1
t

log(Pe(D)) ≤ D(Θ′||Θ).

Consider Θ = (p1, p2, ...pm) and Θ′ = (
√

p1 p2−δ

C ,
√

p1 p2+δ

C , p3
C , ...

pm
C ), where C = 1 − (

√
p1 −

√
p2)2

and δ > 0 is sufficiently small so that Θ′ is a probability distribution. Then, we get

lim sup
t→∞

−
1
t

log(Pe(D)) ≤ log
(

1
C

)
+

( √
p1 p2 − δ

C

)
log

( √
p1 p2 − δ

p1

)
+

( √
p1 p2 + δ

C

)
log

( √
p1 p2 + δ

p2

)
=⇒ lim sup

t→∞
−

1
t

log(Pe(D)) ≤ log
(

1
C

)
(letting δ ↓ 0).

Appendix C. Proof of Theorem 3

We will begin by proving the first assertion in the theorem statement which provides an upper
bound on the probability of error for t ≤ min

{
d1+dm

2d1
N, 16Nd1

(d1−dm)2

}
. Let S i(t) denote the number of

distinct samples seen from community Ci in t samples. We have the following lemma:

Lemma 17. The probability of error of the DSM algorithm is bounded as

Pe(D) ≤
m∑

i=2

P(S i(t) − S 1(t) > 0) +
1
2

P(S i(t) = S 1(t)).

Proof. For any i ∈ 2, 3, . . . ,m, it is clear that when S i(t) − S 1(t) > 0, DSM will erroneously
output i as the index of the community mode. Furthermore, since DSM breaks ties arbitrarily,
with some positive probability (bounded by 1/2) it makes the same error when S i(t) = S 1(t).
Together with the union bound over all i ∈ 2, 3, . . . ,m, this gives the above result.

Next, for each k ∈ {2, 3, . . . ,m} let Zk be the random variable denoting the number of samples
observed from communities C1 and Ck.9 We note that the expected value of Zk is given by

E[Zk] =
(d1 + dk)t

N
. (C.1)

9Note that Zk corresponds to the total number of samples from communities C1 and Ck , not necessarily distinct.
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Define events Ek1 = {Zk ∈ [(1 − εk)E[Zk], (1 + εk)E[Zk]]} and Ek2 = Ec
k1, with

εk =

√
9
64β

4
k + 3

2β
2
k −

3
8β

2
k

2
where βk =

d1 − dk

d1 + dk
. (C.2)

It is easy to verify that βk < 1 and εk ≤ min{βk, 1/2}. Then, we have

P(S k(t) − S 1(t) > 0) +
1
2

P(S k(t) = S 1(t))

≤ P(S k(t) − S 1(t) > 0|Ek1)P(Ek1) + P(S k(t) − S 1(t) > 0|Ek2)P(Ek2)

+
1
2

P(S k(t) = S 1(t)|Ek1)P(Ek1) +
1
2

P(S k(t) = S 1(t)|Ek2)P(Ek2)

≤ P(S k(t) − S 1(t) ≥ 0|Ek1)P(Ek1) + P(S k(t) − S 1(t) > 0|Ek2)P(Ek2) +
1
2

P(S k(t) = S 1(t)|Ek2)P(Ek2).

(C.3)

Note that the LHS above appears for each k ∈ {2, 3, . . . ,m} in the upper bound on Pe(D) in
Lemma 17. We will bound the terms in the RHS separately, and then combine them together to
get an overall upper bound on Pe(D). To begin with, note that

E[S i(t)|Zk] = di

1 − (
1 −

1
d1 + dk

)Zk
 , for i ∈ {1, k}. (C.4)

We consider the function f (x1, x2, x3, ..., xt) = S k(t)−S 1(t) where xi is the identity of the individ-
ual sampled at the i-th instant. Note that for any i ∈ {1, 2, . . . , t} and for all x1, x2, x3, ..., xt, x′i ∈
{1, 2, . . . ,N}, we have | f (x1, x2, ..., xi, ..., xt) − f (x1, x2, ..., x′i , ..., xt)| ≤ ci , 21xi ∈ C1∪Ck . Then,
conditioning on Zk and applying McDiarmid’s inequality, we get

P( f − E[ f |Zk] ≥ t′|Zk) ≤ P(| f − E[ f |Zk]| ≥ t′|Zk) ≤ exp
− 2t′2∑t

i=1 c2
i

 = exp
(
−

t′2

2Zk

)
.

Plugging in t′ = −E[ f |Zk], and computing E[ f |Zk] using Equation (C.4), we obtain

P( f ≥ 0|Zk) = P(S k(t) − S 1(t) ≥ 0|Zk) ≤ exp

−
(d1 − dk)2

[
1 −

(
1 − 1

d1+dk

)Zk
]2

2Zk

 . (C.5)

We will start with deriving an upper bound on the first term in the RHS of equation (C.3) given by
P(S k(t) − S 1(t) ≥ 0|Ek1)P(Ek1). Conditioned on the event Ek1, we have Zk ∈ [(1 − εk)E[Zk], (1 +

εk)E[Zk]]. Furthermore, from the statement of the first part of the theorem statement and the
definitions of εk, βk from equation (C.2), we have the following sequence of assertions:

t ≤
d1 + dk

2d1
N ⇒ βk =

d1 − dk

d1 + dk
≤

N
t
− 1⇒ εk ≤

N
t
− 1⇒ Zk ≤ (1 + εk)

t(d1 + dk)
N

≤ d1 + dk.

Using the above inequalities and the Taylor series expansion, we have1 − (
1 −

1
d1 + dk

)Zk
 ≥ [

Zk

d1 + dk
−

Zk
2

2(d1 + dk)2

]
≥

Zk

2(d1 + dk)
. (C.6)
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Plugging the bound above in equation (C.5), and using Zk ≥ (1− εk)E[Zk] = (1− εk)(d1 + dk)t/N,
we have

P(S k(t) − S 1(t) ≥ 0|Ek1) × P(Ek1) ≤ P(S k(t) − S 1(t) ≥ 0|Ek1) ≤ exp
(
−

t(1 − εk)(d1 − dk)2

8N(d1 + dk)

)
,

(C.7)

thus giving us an upper bound on the first term in the RHS of equation (C.3).

For bounding the sum of the second and third terms in the RHS of equation (C.3), we use the
following lemma:

Lemma 18. For any k ∈ {2, 3, . . . ,m} so that dk ≤ d1 and for any l ≥ 0, we have

P(S k(t) − S 1(t) > 0|Zk = l) +
1
2

P(S k(t) = S 1(t)|Zk = l) ≤
1
2

Proof. Note that the theorem statement is equivalent to showing that, when dk ≤ d1,

P(S k(t) − S 1(t) > 0|Zk = l) ≤ P(S k(t) − S 1(t) < 0|Zk = l),

which says that, conditioned on the total number of samples from communities 1 and k together
being some fixed l, the likely event is that the community 1, whose size is at least that of com-
munity k, will have as many or more distinct individuals than community k. Given dk ≤ d1, this
is intuitive and while it can be argued formally, we skip the argument here for brevity.

Using Lemma 18, we get that the second and third terms in the RHS of equation (C.3) are
bounded as

P(S k(t) − S 1(t) > 0|Ek2)P(Ek2) +
1
2

P(S k(t) = S 1(t)|Ek2)P(Ek2) ≤
1
2

P(Ek2).

Further, using Chernoff’s inequality for P(Ek2) and E[Zk] = (d1 + dk)t/N, we have

1
2

P(Ek2) =
1
2

P(|Zk − E[Zk]| > εk) ≤ exp
− ε2

k (d1 + dk)t
3N

 . (C.8)

Finally, combining Lemma 17, equation (C.7), and equation (C.8), we get the following upper
bound on Pe(D).

Pe(D) ≤
m∑

k=2

exp
(
−

t(1 − εk)(d1 − dk)2

8N(d1 + dk)

)
+ exp

− ε2
k (d1 + dk)t

3N

 .
From the value of εk in equation (C.2), we have that the exponents in the two terms of the
summation above are equal. Thus, we have

Pe(D) ≤
m∑

k=2

2exp
(
−

t(1 − εk)(d1 − dk)2

8N(d1 + dk)

)
≤

m∑
k=2

2exp
(
−

t(d1 − dk)2

16N(d1 + dk)

)
≤

m∑
k=2

2exp
(
−

t(d1 − dk)2

32Nd1

)
,

(C.9)

where the first inequality is true because εk ≤ 1/2; and the second inequality follows since
dk ≤ d1 for all k ∈ {2, 3, . . . ,m}.
The next result comments on the shape of the function f (x) = exp(− t(d1−x)2

32Nd1
), which appears in

equation (C.9) above.
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Lemma 19. The function f (x) = exp
(
−

t(d1−x)2

32Nd1

)
is concave for any x ≥ dm and t ≤ 16Nd1

(d1−dm)2 .

Proof. We differentiate f (x) twice to confirm that it is concave.

f ′′(x) =
t

16Nd1
exp

(
−

t(d1 − x)2

32Nd1

) (
t

16Nd1
(d1 − x)2 − 1

)
Using the inequality t ≤ 16Nd1

(d1−dm)2 , we have that

f ′′(x) ≤
t

16Nd1
exp

(
−

t(d1 − x)2

32Nd1

) (
(d1 − x)2

(d1 − dm)2 − 1
)

which implies f ′′(x) ≤ 0 since x ≥ dm.

From (C.9) and using Lemma 19, we have from Jensen’s inequality that for t ≤

min
{

d1+dm
2d1

N, 16Nd1
(d1−dm)2

}

Pe(D) ≤ 2
m∑

k=2

exp
(
−

t(d1 − dk)2

32Nd1

)
≤ 2(m − 1)exp

− t
(
d1 −

∑m
k=2 di

m−1

)2

32Nd1

 ,
which proves the first assertion in the theorem statement.

For the second assertion in the theorem statement, note that the algorithm will certainly
not make an error if the number of distinct individuals seen from the i-th community,
S i(t) ≥ d2 + 1, where d2 denotes the size of the second-largest community. Hence, the
probability of error is bounded as Pe(D) ≤ P(S 1(t) ≤ d2). Further, note that if the event
{S 1(t) ≤ d2} occurs, then there exists a set of d1 − d2 individuals in C1 which remain unsampled
in the t samples. Thus, we have

Pe(D) ≤ P(S 1(t) ≤ d2) ≤
(
d1

d2

) (
1 −

d1 − d2

N

)t

.

Appendix D. Proof of Theorem 4

This proof is similar in spirit to the proof of [23, Theorem 1]. Consider an instance D =

(d1, d2, . . . , dm). First, we note that since (S j(t)), 1 ≤ j ≤ m) is a sufficient statistic for D, it
suffices to restrict attention to (consistent) algorithms whose output depends only on the vec-
tor (S j(t), 1 ≤ j ≤ m). Given this restriction, we track the temporal evolution of the vector
S (k) = (S j(k), 1 ≤ j ≤ m), where S j(k) is the number of distinct individuals from commu-
nity j seen in the first k oracle queries. This evolution can be modeled as an absorbing Markov
chain over state space

∏m
j=1{0, 1, · · · di}, with S (0) = (0, 0, · · · , 0). Next, let us write down the

transition probabilities qD(s, s′) for each state pair (s, s′). Note that from state s, the chain can
transition to the states s + e j for 1 ≤ j ≤ m, where the vector e j has 1 in the jth position and 0

elsewhere, or remain in state s. Moreover, qD(s, s + e j) = (d j − s j)/N, and qD(s, s) =

∑m
j=1 s j

N .
Recall that by assumption, community 1 is the largest community for the instance D. Let us
consider an alternate instance D′ = (d′1, d

′
2, . . . , d

′
m) such that d′1 = d2 − 1, d′j = d j ∀ j , 1, and
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N′ = N − d1 + d2 − 1. Note that the community mode under the alternate instance D′ is different
from that under the original instance D. Thus, for state s that is feasible under both D and D′,

log
(

qD′ (s, s)
qD(s, s)

)
= log

(
N

N − d1 + d2 − 1

)
.

Similarly, for state pair (s, s + e j) that is feasible under both D and D′,

log
(

qD′ (s, s + e j)
qD(s, s + e j)

)
= log

(
N

N − d1 + d2 − 1

)
, j , 1,

log
(

qD′ (s, s + e1)
qD(s, s + e1)

)
= log

(
N(d2 − 1 − s1)

(N − d1 + d2 − 1)(d1 − s1)

)
= log

(
N

N − d1 + d2 − 1

)
+ log

(
d2 − 1 − s1

d1 − s1

)
.

Therefore, for any state pair (s, s′) such that qD(s, s′), qD′ (s, s′) > 0, we have

log
(

qD′ (s, s′)
qD(s, s′)

)
≤ log

(
N

N − d1 + d2 − 1

)
. (D.1)

Next, let PD,PD′ denote the probability measures induced by the algorithm under consider-
ation under the instances D and D′, respectively. Then, given a state evolution sequence
(S (1), · · · , S (t)), the log-likelihood ratio is given by

log
PD′ (S (1), · · · , S (t))
PD(S (1), · · · , S (t))

=
∑
s,s′

N(s, s′, t) log
(

qD′ (s, s′)
qD(s, s′)

)
,

where N(s, s′, t) represents the number of times the transition from state s to state s occurs over
the course of t queries. Combining with (D.1), we get

log
PD′ (S (1), · · · , S (t))
PD(S (1), · · · , S (t))

≤ t log
(

N
N − d1 + d2 − 1

)
,

which implies

D(PD′ ||PD) = ED′

[
log

PD′ (S (1), · · · , S (t))
PD(S (1), · · · , S (t))

]
≤ t log

(
N

N − d1 + d2 − 1

)
, (D.2)

where D(·||·) denotes the Kullback-Leibler divergence. On the other hand, since the algorithm
produces an estimate ĥ∗ of the community mode based solely on S (t), we have from the data-
processing inequality (see [24]) that

D(PD′ ||PD) ≥ D
(
Ber(PD′ (ĥ∗ = 1))||Ber(PD(ĥ∗ = 1))

)
, (D.3)

where Ber(x) denotes the Bernoulli distribution with parameter x ∈ (0, 1). Recall that the com-
munity mode under D is community 1, while it is community 2 under D′. Then from the defini-
tion of consistent algorithms, for every ε > 0, ∃ t0(ε) such that for t ≥ t0(ε),PD′ (ĥ∗ = 1) ≤ ε ≤
PD(ĥ∗ = 1). Thus, we have

D(Ber(PD′ (ĥ∗ = 1))||Ber(PD(ĥ∗ = 1))) ≥ D(Ber(ε)||Ber(PD(ĥ∗ = 1)))

≥ ε log
(

ε

PD(ĥ∗ = 1)

)
+ (1 − ε) log

(
1 − ε

PD(ĥ∗ , 1)

)
≥ ε log(ε) + (1 − ε) log

(
1 − ε

PD(ĥ∗ , 1)

)
.
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Using ε → 0 and PD(ĥ∗ , 1) = Pe(D), we have

D(Ber(PD′ (ĥ∗ = 1))||Ber(PD(ĥ∗ = 1))) ≥ − log(Pe(D)).

Finally, combining with (D.2) and (D.3), we have that

lim inf
t→∞

log(Pe(D))
t

≥ − log
(

N
N − (d1 − d2 + 1)

)
.

Appendix E. Proof of Theorem 5

Note that

Pe(D) ≤
b−1∑
r=1

P(C1 gets eliminated in round r).

Let S i(K) denote the number of (immediate pairwise) collisions recorded in Ci after K pairs of
samples. Since at least one of the smallest r communities is guaranteed to be present during
round r,

Pe(D) ≤
b−1∑
r=1

b∑
j=b+1−r

P(S j(Kr) − S 1(Kr) ≤ 0)

≤

b−1∑
r=1

rP(S b+1−r(Kr) − S 1(Kr) ≤ 0). (E.1)

Denoting, for i , 1, fi(K) := S i(K) − S 1(K), we now derive an upper bound on P( fi(K) ≤ 0).
Applying Chernoff’s inequality, for λ ≤ 0,

P( fi(K) ≤ 0) ≤ E
[
eλ fi(K)

]
=

[ 1
d1di

+

(
1 −

1
d1

) (
1 −

1
di

)
+ eλ

(
1 −

1
d1

)
1
di

+ e−λ
(
1 −

1
di

)
1
d1

]K
.

Setting eλ =

√
di−1
d1−1 ,

P( fi(K) ≤ 0) ≤
(
1 −

(
√

d1 − 1 −
√

di − 1)2

d1di

)K

≤ exp
(
−

K(
√

d1 − 1 −
√

di − 1)2

d1di

)
.

Since d1 > di, (
√

d1 − 1 −
√

di − 1)2 > ((d1−1)−(di−1))2

4(d1−1) > ((d1−1)−(di−1))2

4d1
=

(d1−di)2

4d1
.

⇒ P( fi(K) ≤ 0) ≤ exp
−K(d1 − di)2

4d2
1di

 .
Substituting the above into (E.1),

Pe(D) ≤
b−1∑
r=1

r exp
−Kr(d1 − db+1−r)2

4d2
1db+1−r

 .
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Since Kr =

⌈
1

log(b)
t/2−b
b+1−r

⌉
, where log(b) = 1

2 +
∑b

i=2
1
i and ∆i = 1

di
− 1

d1
,

Pe(D) ≤
b−1∑
r=1

r exp

−Krdb+1−r∆
2
(b+1−r)

4

 .
For Hc(D) = max

i∈[2:b]

i∆−2
i

di
,

Krdb+1−r∆
2
(b+1−r) ≥

(t/2 − b)

log(b)Hc(D)

⇒ Pe(D) ≤
b(b − 1)

2
exp

− (t/2 − b)

4log(b)Hc(D)

 .
Appendix F. Proof of Theorem 10

Let Pi
e(D) denote the probability of the community mode being eliminated at the ith step; i.e, for

i ≤ b − 1, Pi
e(D) denotes the probability of removing box 1 in phase i of SR, and Pb

e(D) denotes
the probability of choosing the wrong community from box 1 after this box survived the (b − 1)
SR phases. Then, we have

Pe(D) =

b−1∑
i=1

Pi
e(D) + Pb

e(D),

Pi
e(D) ≤

(
d11

cb−i+1

)
exp

(
−Ki log

(
N1

N1 − d11 + cb−i+1

))
(1 ≤ i ≤ b − 1),

Pb
e(D) ≤

(
d11

c1

)
exp

(
−Kb−1 log

(
N1

N1 − d11 + c1

))
,

where the second and third statements are based on a coupon collector argument, similar to the
one employed in the proof of Theorem 6 for the separated community setting. The proof is now
completed by substituting the values of Kr, and using the definition of Hb(D).

Appendix G. Proof of Theorem 11

We show that ENDS-SR has the same decay rate as DS-SR. Recall that the comparison function
used in ENDS-SR is

S i jNi

E[S i]
,

where S i j is the number of distinct samples from community i in box j, and S i is the number of
distinct samples from box i. At the end of r rounds,

E[S i] = Ni

1 − (
1 −

1
Ni

)Kr
 .
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Similar to the coupon collector argument in the proof of Theorem 10, we let Pi
e(D) be the prob-

ability of the community mode being eliminated in the ith step. We have that

Pe(D) ≤
b∑

i=1

Pi
e(D).

After r ≤ b − 1 rounds/phases, the comparison function for the largest community equals

S 11(
1 −

(
1 − 1

N1

)Kr
) .

For some community j in box i, the comparison function is

S i j(
1 −

(
1 − 1

Ni

)Kr
) ≤ ci(

1 −
(
1 − 1

Nm

)Kr
) ,

where Nm = maxi Ni. Thus, if we have

S 11 >
cb−r+1

(
1 −

(
1 − 1

N1

)Kr
)

(
1 −

(
1 − 1

Nm

)Kr
) ,

then the community mode cannot be eliminated in the rth round. For round r = b, we just note
that

S 11 > c1

is sufficient for the community mode estimate to be correct. Applying the coupon collector
argument on these events, by using the notation

fi(K) :=
ci

(
1 −

(
1 − 1

N1

)K
)

(
1 −

(
1 − 1

Nm

)K
) ,

we have

Pe(D) ≤
b−1∑
i=1

(
d11

fb−i+1(Ki)

)
exp

(
−Ki log

(
N1

N1 − d11 + fb−i+1(Ki)

))
+

(
d11

c1

)
exp

(
−Kb log

(
N1

N1 − d11 + c1

))
.

We note that, as t → ∞, fi(t)→ ci, which then implies the statement of the theorem.

Appendix H. Proof of Theorem 13

We first state the following lemma (analogous to Lemma 9) for this setting (the proof is straight-
forward and omitted):
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Lemma 20. For any algorithm A and instance D, there must exist a box a ∈ [2 : b] such that
ED[Na(t)] ≤ t

(log(N1)−log(N1−d11+ca))Hb
2 (D) , where Na(t) denotes the number of times box a is sampled

in t queries underA.

Proof of Theorem 13. Given an instance D, we construct an alternate instance D[a] by changing
the size of the largest community in box a (corresponding to the one specified by Lemma 20)
from ca to g′a = ca + N′a−Na.

10 Note that the size of box a changes from Na to N′a = Na + g′a− ca.
Furthermore, we can see that the community mode under instance D[a] is different from the one
under the original instance D, since

g′a = ca + N′a − Na ≥ ca +
N1(Na − ca + d11)

(N1 − d11 + ca)
− Na > ca + (Na − ca + d11) − Na = d11.

Following steps similar to the proof of Theorem 8, we get

D(PD,PD[a] ) ≤ ED[Na(t)] log
(

N′a
Na

)
.

From the definition of Γ, it follows that N′a
Na

=
(

N1
N1−d11+ca

)Γ
. Thus, invoking Lemma 20, we have

D(PD,PD[a] ) ≤
tΓ

Hb
2(D)

.

Finally, similar to the proof of Theorem 8, we use Lemma 21 to get

max
(
Pe(D), Pe(D[a])

)
≥

1
4

exp
− tΓ

Hb
2(D)


which matches the statement of the theorem.

Finally, we show that

Hb
2(D[a]) ≤ Hb

2(D)⇔
∑
i,a

1
log(N′a) − log(N′a − g′a + c′i)

≤
∑
i,1

1
log(N1) − log(N1 − d11 + ci)

We do this in two steps:
1. Firstly, for each i < {1, a}, we show that the term corresponding to box i in the sum on the

left is smaller than the corresponding term in the sum on the right, i.e.,

1
log(N′a) − log(N′a − g′a + c′i)

≤
1

log(N1) − log(N1 − d11 + ci)

or equivalently,
N1

N1 − d11 + ci
≤

N′a
N′a − g′a + c′i

.

This follows from the following sequence of inequalities.

N1

(N1 − d11 + ci)
=

N1(Na − ca + ci)
(N1 − d11 + ci)(Na − ca + ci)

≤
N′a

Na − ca + ci
=

N′a
N′a − g′a + c′i

where the last step follows since N′a = Na + g′a − ca and c′i = ci for i < {1, a}.

10We use g′a and not c′a to denote the new size of this community because in the alternate instance D[a], this community
is the largest community, and is thus no longer the competing community in box a.
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2. Secondly, we show that the term corresponding to box 1 in the sum on the left is smaller
than the term corresponding to box a in the sum on the right, i.e,

1
log(N′a) − log(N′a − g′a + c′1)

≤
1

log(N1) − log(N1 − d11 + ca)

or equivalently,
N1

(N1 − d11 + ca)
≤

N′a
N′a − g′a + d11

.

This follows from the following sequence of inequalities.

N1

N1 − d11 + ca
=

N1(Na − ca + d11)
(Na − ca + d11)(N1 − d11 + ca)

≤
N′a

Na − ca + d11
=

N′a
N′a − g′a + d11

,

where the last step is true because N′a − g′a = Na − ca.

This completes the proof.

Appendix I. Other Lemmas

Lemma 21. Let ρ0 and ρ1 be two probability distributions supported on some set χ, with ρ1
absolutely continuous with respect to ρ0. Then for any measurable function φ : χ→ {0, 1},

PX∼ρ0 (φ(X) = 1) + PX∼ρ1 (φ(X) = 0) ≥
1
2

exp (−D(ρ0||ρ1))

Proof. This is [17, Lemma 20].

Lemma 22. H(D)
2 ≤ H2(D) ≤ log(b)H(D).

Proof. For the inequality on the left, we note that

H2(D) =

b∑
i=2

1
log(d1) − log(di)

≥

j∑
i=2

1
log(d1) − log(di)

≥
j − 1

log(d1) − log(d j)
∀ j ∈ [2 : b]

Since this is true for all j ∈ [2 : b], taking the max of these values and using that j− 1 ≥ j
2 , j ≥ 2

we have

H2(D) ≥ max
j,1

j/2
log(d1) − log(d j)

=
H(D)

2

For the inequality on the right, we multiply and divide each term in the summation of H2(D) by
i:

H2(D) =

b∑
i=2

i
i(log(d1) − log(di))

≤

b∑
i=2

H(D)
i
≤ log(b)H(D)

This completes the proof of both inequalities in the statement of the lemma.
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