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Abstract

We consider the use of random linear network coding in lossy packet networks. In particular, we consider the following simple
strategy: nodes store the packets that they receive and, whenever they have a transmission opportunity, they send out coded packets
formed from random linear combinations of stored packets. In such a strategy, intermediate nodes perform additional coding yet do
not decode nor wait for a block of packets before sending out coded packets. Moreover, all coding and decoding operations have
polynomial complexity.

We show that, provided packet headers can be used to carry an amount of side-information that grows arbitrarily large (but
independently of payload size), random linear network coding achieves packet-level capacity for both single unicast and single
multicast connections and for both wireline and wireless networks. This result holds as long as packets received on links arrive
according to processes that have average rates. Thus packet losses on links may exhibit correlations in time or with losses on other
links. In the special case of Poisson traffic with i.i.d. losses, we give error exponents that quantify the rate of decay of the probability
of error with coding delay. Our analysis of random linear network coding shows not only that it achieves packet-level capacity, but
also that the propagation of packets carrying “innovative” information follows the propagation of jobs through a queueing network,
thus implying that fluid flow models yield good approximations.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Network information theory generally focuses on
applications that, in the open systems interconnection
(OSI) model of network architecture, lie in the physical
layer. In this context, there are some networked
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systems, such as those represented by the multiple-
access channel and the broadcast channel, that are well
understood, but there are many that remain largely
intractable. Even some very simple networked systems,
such as those represented by the relay channel and the
interference channel, have unknown capacities.

However, the relevance of network information
theory is not limited to the physical layer. In practice,
the physical layer never provides a fully-reliable bit
pipe to higher layers, and reliability then falls on the
data link control, network, and transport layers. These
layers need to provide reliability not only because of
an unreliable physical layer, but also because of packet
losses resulting from causes such as congestion (which
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leads to buffer overflows) and interference (which leads
to collisions). Rather than coding over channel symbols,
though, coding is applied over packets, i.e. rather than
determining each node’s outgoing channel symbols
through arbitrary, causal mappings of their received
symbols, the contents of each node’s outgoing packets
are determined through arbitrary, causal mappings of
the contents of their received packets. Such packet-
level coding offers an alternative domain for network
information theory and an alternative opportunity for
efficiency gains resulting from cooperation, and it is the
subject of our paper.

Packet-level coding differs from symbol-level coding
in three principal ways. First, in most packetized
systems, packets received in error are dropped, so we
need to code only for resilience against erasures and
not for noise. Second, it is acceptable to append a
degree of side-information to packets by including it
in their headers. Third, packet transmissions are not
synchronized in the way that symbol transmissions
are—in particular, it is not reasonable to assume that
packet transmissions occur on every link in a network
at identical, regular intervals. These factors make for a
different, but related, problem to symbol-level coding.
Thus our work addresses a problem of importance in
its own right as well as possibly having implications to
network information theory in its regular, symbol-level
setting.

Aside from these three principal differences, packet-
level coding is simply symbol-level coding with packets
as the symbols. Thus, given a specification of network
use (i.e. a schedule specifying packet injection locations
and times), a code specifies the causal mappings that
nodes apply to packets to determine their contents;
and, given a specification of the probability distribution
of erasure patterns in addition to the specification of
network use, we can define capacity as the maximum
reliable rate (in packets per unit time) that can be
achieved. Thus, when we speak of capacity, we speak
of Shannon capacity as it is normally defined in network
information theory except with packets as the symbols.
We do not speak of the various other notions of capacity
in networking literature.

The prevailing approach to packet-level coding uses
a feedback code: automatic repeat request (ARQ) is
used to request the retransmission of lost packets
either on a link-by-link basis, an end-to-end basis,
or both. This approach often works well and has
a sound theoretical basis: it is well known that,
given perfect feedback, retransmission of lost packets
is a capacity-achieving strategy for reliability on a
point-to-point link (see, for example, [1, Section
8.1.5]). Thus, if achieving a network connection meant
transmitting packets over a series of uncongested
point-to-point links with reliable, delay-free feedback,
then retransmission is clearly optimal. This situation
is approximated in lightly-congested, highly-reliable
wireline networks, but it is not the case in general.
First, feedback may be unreliable or too slow, which is
often the case in satellite or wireless networks or when
servicing real-time applications. Second, congestion
can always arise in packet networks; hence the need for
retransmission on an end-to-end basis. But, if the links
are unreliable enough to also require retransmission
on a link-by-link basis, then the two feedback loops
can interact in complicated, and sometimes undesirable,
ways [2,3]. Moreover, such end-to-end retransmission
requests are not well-suited for multicast connections,
where, because requests are sent by each terminal
as packets are lost, there may be many requests,
placing an unnecessary load on the network and
possibly overwhelming the source; and packets that
are retransmitted are often only of use to a subset of
the terminals and therefore redundant to the remainder.
Third, we may not be dealing with point-to-point links
at all. Wireless networks are the obvious case in point.
Wireless links are often treated as point-to-point links,
with packets being routed hop-by-hop toward their
destinations, but, if the lossiness of the medium is
accounted for, this approach is sub-optimal. In general,
the broadcast nature of the links should be exploited;
and, in this case, a great deal of feedback would be
required to achieve reliable communication using a
retransmission-based scheme.

In this paper, therefore, we eschew this approach
in favor of one that operates mainly in a feedforward
manner. Specifically, we consider the following coding
scheme: nodes store the packets they receive into their
memories and, whenever they have a transmission
opportunity, they form coded packets with random
linear combinations of their memory contents. This
strategy, which we refer to as random linear network
coding, originates from [4–7], where it was applied
to the problem of multicast over lossless wireline
packet networks. We shall show that, provided the
side-information in packet headers is allowed to grow
arbitrarily large (but independently of payload size),
random linear network coding achieves packet-level
capacity for both single unicast and single multicast
connections and for models of both wireline and
wireless networks. Our erasure model assumes only
that packets received on each link arrive according to
a process that has an average rate, thus packet losses
on a link may exhibit correlation in time or with losses
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on other links, capturing various mechanisms for loss—
including collisions.

That we allow the side-information in packet
headers to grow arbitrarily large means that, in
practice, the capacity we find cannot be approached
arbitrarily closely for a finite payload size (since the
side-information overhead eventually overwhelms the
payload). Rather, a certain fraction of the capacity
can be achieved, and, because larger payloads can
accommodate larger amounts of side-information, this
fraction grows with the size of the payload and
approaches one as the size of the payload approaches
infinity. Thus our capacity results only truly hold in the
limit of infinitely-large payloads, which is an absurd
limit. Nevertheless, we believe that our results are useful
because they define a limit that can be approached with
large payload sizes.

Random linear network coding has several attractive
properties besides its ability to approach capacity: it is
decentralized, requiring no coordination among nodes;
and it can be operated ratelessly, i.e. it can be run
indefinitely until successful decoding (at which stage
that fact is signaled to other nodes, requiring an amount
of feedback that, compared to ARQ, is small), which
is a particularly useful property in packet networks,
where loss rates are often time-varying and not known
precisely.

Decoding can be done by matrix inversion, which is
a polynomial-time procedure. Thus, though we speak
of random coding, our work differs significantly from
that of Shannon [8,9] and Gallager [10] in that we do
not seek to demonstrate existence. Indeed, the existence
of capacity-achieving linear codes for the scenarios
we consider already follows from the results of [11].
Rather, we seek to show the asymptotic rate optimality
of a specific scheme that we believe may be practicable
and that can be considered as the prototype for a
family of related, improved schemes; for example, LT
codes [12], Raptor codes [13], Online codes [14], RT
oblivious erasure-correcting codes [15], and the greedy
random scheme proposed in [16] are related coding
schemes that apply only to specific, special networks
but, using varying degrees of feedback, achieve lower
decoding complexity or memory usage. Our work
therefore brings forth a natural code design problem,
namely to find such related, improved schemes.

We begin by describing random linear network
coding in the following section. In Section 3, we
describe our model and illustrate it with several
examples. In Section 4, we present coding theorems that
prove that random linear network coding is capacity-
achieving and, in Section 5, we strengthen these results
in the special case of Poisson traffic with i.i.d. losses by
giving error exponents. These error exponents allow us
to quantify the rate of decay of the probability of error
with coding delay and to determine the parameters of
importance in this decay.

2. Random linear network coding

The specific coding scheme we consider is as
follows. We suppose that, at the source node, we have
K message packets w1, w2, . . . , wK , which are vectors
of length λ over the finite field Fq . (If the packet length
is b bits, then we take λ = db/ log2 qe.) The message
packets are initially present in the memory of the source
node.

The coding operation performed by each node is
simple to describe and is the same for every node:
received packets are stored into the node’s memory,
and packets are formed for injection with random linear
combinations of its memory contents whenever a packet
injection occurs on an outgoing link. The coefficients of
the combination are drawn uniformly from Fq .

Since all coding is linear, we can write any
packet x in the network as a linear combination of
w1, w2, . . . , wK , namely, x =

∑K
k=1 γkwk . We call

γ the global encoding vector of x , and we assume
that it is sent along with x , as side-information in its
header. The overhead this incurs (namely, K log2 q bits)
is negligible if packets are sufficiently large.

Nodes are assumed to have unlimited memory.
The scheme can be modified so that received packets
are stored into memory only if their global encoding
vectors are linearly-independent of those already stored.
This modification keeps our results unchanged while
ensuring that nodes never need to store more than K
packets.

A sink node collects packets and, if it has K packets
with linearly-independent global encoding vectors, it is
able to recover the message packets. Decoding can be
done by Gaussian elimination. The scheme can be run
either for a predetermined duration or, in the case of
rateless operation, until successful decoding at the sink
nodes. We summarize the scheme in Fig. 1.

The scheme is carried out for a single block of K
message packets at the source. If the source has more
packets to send, then the scheme is repeated with all
nodes flushed of their memory contents.

Random linear network coding schemes similar to
the one described above are examined in [4–7] for the
application of multicast over lossless wireline packet
networks, in [17] for data dissemination, in [18] for
data storage, and in [19] for content distribution over
peer-to-peer overlay networks. Other coding schemes
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Fig. 1. Summary of the random linear network coding scheme we consider.
for lossy packet networks are described in [11,20];
the scheme described in the former requires placing
in the packet headers side-information that grows with
the size of the network, while that described in the
latter requires no side-information at all, but achieves
lower rates in general. Both of these coding schemes,
moreover, operate in a block-by-block manner, where
coded packets are sent by intermediate nodes only
after decoding a block of received packets—a strategy
that generally incurs more delay than the scheme we
consider, where intermediate nodes perform additional
coding yet do not decode [16].

3. Model

Existing models used in network information theory
(see, for example, [1, Section 14.10]) are generally
conceived for symbol-level coding and, given the
peculiarities of packet-level coding, are not suitable for
our purpose. One key difference, as we mentioned, is
that packet transmissions are not synchronized in the
way that symbol transmissions are. Thus we do not
have a slotted system where packets are injected on
every link at every slot, and we must therefore have a
schedule that determines when (in continuous time) and
where (i.e. on which link) each packets is injected. In
this paper, we assume that such a schedule is given,
and we do not address the problem of determining it.
This problem, of determining the schedule to use, is
called subgraph selection, and it is a difficult problem
in its own right, especially in wireless packet networks.
Various instances of the problem are treated in [21–27].

Given a schedule of packet injections, the network
responds with packet receptions at certain nodes.
The difference between wireline and wireless packet
networks, in our model, is that the reception of any
particular packet may only occur at a single node
in wireline packet networks while, in wireless packet
networks, it may occur at more than one node.

The model, which we now formally describe, is one
that we believe is an accurate abstraction of packet
networks as they are viewed at the level of packets,
given a schedule of packet injections. In particular,
our model captures various phenomena that complicate
the efficient operation of wireless packet networks,
including interference (insofar as it is manifested as lost
packets, i.e. as collisions), fading (again, insofar as it is
manifested as lost packets), and the broadcast nature of
the medium.

We begin with wireline packet networks. We model
a wireline packet network (or, rather, the portion of it
devoted to the connection we wish to establish) as a
directed graph G = (N ,A), whereN is the set of nodes
andA is the set of arcs. Each arc (i, j) represents a lossy
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point-to-point link. Some subset of the packets injected
into arc (i, j) by node i are lost; the rest are received
by node j without error. We denote by zi j the average
rate at which packets are received on arc (i, j). More
precisely, suppose that the arrival of received packets
on arc (i, j) is described by the counting process Ai j ,
i.e. for τ ≥ 0, Ai j (τ ) is the total number of packets
received between time 0 and time τ on arc (i, j). Then,
by assumption, limτ→∞ Ai j (τ )/τ = zi j a.s. We define
a lossy wireline packet network as a pair (G, z).

We assume that links are delay-free in the sense that
the arrival time of a received packet corresponds to the
time that it was injected into the link. Links with delay
can be transformed into delay-free links in a simple
way. Suppose that arc (i, j) represents a link with
delay. The counting process Ai j describes the arrival of
received packets on arc (i, j), and we use the counting
process A′

i j to describe the injection of these packets.
(Hence A′

i j counts a subset of the packets injected into
arc (i, j).) We insert a node i ′ into the network and
transform arc (i, j) into two arcs (i, i ′) and (i ′, j).
These two arcs, (i, i ′) and (i ′, j), represent delay-free
links where the arrival of received packets are described
by A′

i j and Ai j , respectively. We place the losses on arc
(i, j) onto arc (i, i ′), so arc (i ′, j) is lossless and node i ′

simply functions as a first-in first-out queue. It is clear
that functioning as a first-in first-out queue is an optimal
coding strategy for i ′ in terms of rate and complexity;
hence, treating i ′ as a node implementing the coding
scheme of Section 2 only deteriorates performance and
is adequate for deriving achievable connection rates.
Thus we can transform a link with delay and average
packet reception rate zi j into two delay-free links in
tandem with the same average packet reception rate,
and it will be evident that this transformation does not
change any of our conclusions.

For wireless packet networks, we model the network
as a directed hypergraph H = (N ,A), where N is the
set of nodes andA is the set of hyperarcs. A hypergraph
is a generalization of a graph where generalized arcs,
called hyperarcs, connect two or more nodes. Thus a
hyperarc is a pair (i, J ), where i , the head, is an element
of N , and J , the tail, is a non-empty subset of N .
Each hyperarc (i, J ) represents a lossy broadcast link.
For each K ⊂ J , some disjoint subset of the packets
injected into hyperarc (i, J ) by node i are received by
exactly the set of nodes K without error.

We denote by zi J K the average rate at which packets,
injected on hyperarc (i, J ), are received by exactly the
set of nodes K ⊂ J . More precisely, suppose that the
arrival of packets that are injected on hyperarc (i, J ) and
received by all nodes in K (and no nodes in N \ K )
is described by the counting process Ai J K . Then, by
assumption, limτ→∞ Ai J K (τ )/τ = zi J K a.s. We define
a lossy wireless packet network as a pair (H, z).

3.1. Examples

3.1.1. Network of independent transmission lines with
non-bursty losses

We begin with a simple example. We consider a wire-
line network where each transmission line experiences
losses independently of all other transmission lines, and
the loss process on each line is non-bursty, i.e. it is ac-
curately described by an i.i.d. process.

Consider the link corresponding to arc (i, j).
Suppose the loss rate on this link is εi j , i.e. packets are
lost independently with probability εi j . Suppose further
that the injection of packets on arc (i, j) is described
by the counting process Bi j and has average rate ri j ,
i.e. limτ→∞ Bi j (τ )/τ = ri j a.s. The parameters ri j and
εi j are not necessarily independent and may well be
functions of each other.

For the arrival of received packets, we have

Ai j (τ ) =

Bi j (τ )∑
k=1

Xk,

where {Xk} is a sequence of i.i.d. Bernoulli random
variables with Pr(Xk = 0) = εi j . Therefore

lim
τ→∞

Ai j (τ )

τ
= lim

τ→∞

Bi j (τ )∑
k=1

Xk

τ

= lim
τ→∞

Bi j (τ )∑
k=1

Xk

Bi j (τ )

Bi j (τ )

τ
= (1 − εi j )ri j ,

which implies that

zi j = (1 − εi j )ri j .

In particular, if the injection processes for all links
are identical, regular, deterministic processes with unit
average rate (i.e. Bi j (τ ) = 1 + bτc for all (i, j)), then
we recover the model frequently used in information-
theoretic analyses (for example, in [11,20]).

A particularly simple case arises when the injection
processes are Poisson. In this case, Ai j (τ ) and Bi j (τ )

are Poisson random variables with parameters (1 −

εi j )ri jτ and ri jτ , respectively. We shall revisit this case
in Section 5.

3.1.2. Network of transmission lines with bursty losses
We now consider a more complicated example,

which attempts to model bursty losses. Bursty losses
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arise frequently in packet networks because losses often
result from phenomena that are time-correlated, for
example, fading and buffer overflows. (We mention
fading because a point-to-point wireless link is, for
our purposes, essentially equivalent to a transmission
line.) In the latter case, losses are also correlated
across separate links—all links coming into a node
experiencing a buffer overflow will be subjected to
losses.

To account for such correlations, Markov chains are
often used. Fading channels, for example, are often
modeled as finite-state Markov channels [28,29], such
as the Gilbert–Elliot channel [30]. In these models, a
Markov chain is used to model the time evolution of
the channel state, which governs its quality. Thus, if the
channel is in a bad state for some time, a burst of errors
or losses is likely to result.

We therefore associate with arc (i, j) a continuous-
time, irreducible Markov chain whose state at time τ is
Ei j (τ ). If Ei j (τ ) = k, then the probability that a packet

injected into (i, j) at time τ is lost is ε
(k)
i j . Suppose that

the steady-state probabilities of the chain are {π
(k)
i j }k .

Suppose further that the injection of packets on arc
(i, j) is described by the counting process Bi j and that,
conditioned on Ei j (τ ) = k, this injection has average

rate r (k)
i j . Then, we obtain

zi j = π ′

i j yi j ,

where πi j and yi j denote the column vectors with

components {π
(k)
i j }k and {(1 − ε

(k)
i j )r (k)

i j }k , respectively.
Our conclusions are not changed if the evolutions of
the Markov chains associated with separate arcs are
correlated, such as would arise from bursty losses
resulting from buffer overflows.

If the injection processes are Poisson, then arrivals
of received packets are described by Markov-modulated
Poisson processes (see, for example, [31]).

3.1.3. Slotted Aloha wireless network
We now move from wireline packet networks to

wireless packet networks or, more precisely, from
networks of point-to-point links (transmission lines) to
networks where links may be broadcast links.

In wireless packet networks, one of most important
issues is medium access, i.e. determining how radio
nodes share the wireless medium. One simple, yet
popular, method for medium access control is slotted
Aloha (see, for example, [32, Section 4.2]), where nodes
with packets to send follow simple random rules to
determine when they transmit. In this example, we
consider a wireless packet network using slotted Aloha
Fig. 2. The slotted Aloha relay channel. We wish to establish a unicast
connection from node 1 to node 3.

for medium access control. The example illustrates how
a high degree of correlation in the loss processes on
separate links sometimes exists.

For the coding scheme we consider, nodes transmit
whenever they are given the opportunity and thus
effectively always have packets to send. So suppose
that, in any given time slot, node i transmits a packet
on hyperarc (i, J ) with probability qi J . Let p′

i J K |C be
the probability that a packet transmitted on hyperarc
(i, J ) is received by exactly K ⊂ J given that
packets are transmitted on hyperarcs C ⊂ A in
the same slot. The distribution of p′

i J K |C depends on
many factors: in the simplest case, if two nodes close
to each other transmit in the same time slot, then
their transmissions interfere destructively, resulting in
a collision where neither node’s packet is received. It
is also possible that simultaneous transmission does not
necessarily result in collision, and one or more packets
are received—sometimes referred to as multipacket
reception capability [33]. It may even be the case
that physical-layer cooperative schemes, such as those
presented in [34–36], are used, where nodes that are not
transmitting packets are used to assist those that are.

Let pi J K be the unconditioned probability that a
packet transmitted on hyperarc (i, J ) is received by
exactly K ⊂ J . So

pi J K

=

∑
C⊂A

p′

i J K |C

( ∏
( j,L)∈C

q j L

) ∏
( j,L)∈A\C

(1 − q j L)

 .

Hence, assuming that time slots are of unit length, we
see that Ai J K (τ ) follows a binomial distribution and

zi J K = qi J pi J K .

A particular network topology of interest is shown in
Fig. 2. The problem of setting up a unicast connection
from node 1 to node 3 in a slotted Aloha wireless
network of this topology is a problem that we refer to
as the slotted Aloha relay channel, in analogy to the
symbol-level relay channel widely-studied in network
information theory. The latter problem is a well-known
open problem, while the former is, as we shall see,
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3 Note that, although we are ultimately concerned with recovering
w1, w2, . . . , wK rather than v1, v2, . . . , vN , we define packets to be
innovative with respect to v1, v2, . . . , vN . This serves to simplify our
proof. In particular, it means that we do not need to very strict in our
tracking of the propagation of innovative packets since the number of
innovative packets required at the sink is only a fraction of N .
Fig. 3. A network consisting of two links in tandem.

tractable and deals with the same issues of broadcast
and multiple access, albeit under different assumptions.

A case similar to that of slotted Aloha wireless
networks is that of untuned radio networks, which are
detailed in [37]. In such networks, nodes are designed to
be low-cost and low-power by sacrificing the ability for
accurate tuning of their carrier frequencies. Thus nodes
transmit on random frequencies, which leads to random
medium access and contention.

4. Coding theorems

In this section, we specify achievable rate regions for
random linear network coding in various scenarios. That
the regions we specify are the largest possible (i.e. that
random linear network coding is capacity-achieving)
can be seen by simply noting that the rate between any
source and any sink must be limited by the rate at which
distinct packets are received over any cut between that
source and that sink. A formal converse can be obtained
using the cut-set bound for multi-terminal networks
(see [1, Section 14.10]).

4.1. Wireline networks

4.1.1. Unicast connections
We develop our general result for unicast connec-

tions by extending from some special cases. We begin
with the simplest non-trivial case: that of two links in
tandem (see Fig. 3).

Suppose we wish to establish a connection of rate
arbitrarily close to R packets per unit time from node 1
to node 3. Suppose further that random linear network
coding is run for a total time ∆, from time 0 until time
∆, and that, in this time, a total of N packets is received
by node 2. We call these packets v1, v2, . . . , vN .

Any received packet x in the network is a linear
combination of v1, v2, . . . , vN , so we can write

x =

N∑
n=1

βnvn .

Since vn is formed by a random linear combination of
the message packets w1, w2, . . . , wK , we have

vn =

K∑
k=1

αnkwk

for n = 1, 2, . . . , N , where each αnk is drawn from a
uniform distribution over Fq . Hence
x =

K∑
k=1

(
N∑

n=1

βnαnk

)
wk,

and it follows that the kth component of the global
encoding vector of x is given by

γk =

N∑
n=1

βnαnk .

We call the vector β associated with x the auxiliary
encoding vector of x , and we see that any node that
receives bK (1 + ε)c or more packets with linearly-
independent auxiliary encoding vectors has bK (1 +

ε)c packets whose global encoding vectors collectively
form a random bK (1 + ε)c × K matrix over Fq ,
with all entries chosen uniformly. If this matrix has
rank K , then node 3 is able to recover the message
packets. The probability that a random bK (1 + ε)c × K
matrix has rank K is, by a simple counting argument,∏bK (1+ε)c

k=1+bK (1+ε)c−K (1 − 1/qk), which can be made
arbitrarily close to 1 by taking K arbitrarily large.
Therefore, to determine whether node 3 can recover the
message packets, we essentially need only to determine
whether it receives bK (1 + ε)c or more packets with
linearly-independent auxiliary encoding vectors.

Our proof is based on tracking the propagation
of what we call innovative packets. Such packets
are innovative in the sense that they carry new, as
yet unknown, information about v1, v2, . . . , vN to a
node.3It turns out that the propagation of innovative
packets through a network follows the propagation
of jobs through a queueing network, for which fluid
flow models give good approximations. We present the
following argument in terms of this fluid analogy and
defer the formal argument to Appendix A.1.

Since the packets being received by node 2 are the
packets v1, v2, . . . , vN themselves, it is clear that every
packet being received by node 2 is innovative. Thus
innovative packets arrive at node 2 at a rate of z12, and
this can be approximated by fluid flowing in at rate z12.
These innovative packets are stored in node 2’s memory,
so the fluid that flows in is stored in a reservoir.

Packets, now, are being received by node 3 at a rate
of z23, but whether these packets are innovative depends
on the contents of node 2’s memory. If node 2 has more
information about v1, v2, . . . , vN than node 3 does, then
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Fig. 4. Fluid flow system corresponding to two-link tandem network.

Fig. 5. A network consisting of L links in tandem.

it is highly likely that new information will be described
to node 3 in the next packet that it receives. Otherwise, if
node 2 and node 3 have the same degree of information
about v1, v2, . . . , vN , then packets received by node 3
cannot possibly be innovative. Thus the situation is as
though fluid flows into node 3’s reservoir at a rate of z23,
but the level of node 3’s reservoir is restricted from ever
exceeding that of node 2’s reservoir. The level of node
3’s reservoir, which is ultimately what we are concerned
with, can equivalently be determined by fluid flowing
out of node 2’s reservoir at rate z23.

We therefore see that the two-link tandem network
in Fig. 3 maps to the fluid flow system shown in Fig. 4.
It is clear that, in this system, fluid flows into node 3’s
reservoir at rate min(z12, z23). This rate determines the
rate at which innovative packets – packets with new
information about v1, v2, . . . , vN and, therefore, with
linearly-independent auxiliary encoding vectors – arrive
at node 3. Hence the time required for node 3 to receive
bK (1 + ε)c packets with linearly-independent auxiliary
encoding vectors is, for large K , approximately K (1 +

ε)/ min(z12, z23), which implies that a connection of
rate arbitrarily close to R packets per unit time can be
established provided that

R ≤ min(z12, z23). (1)

Thus we see that rate at which innovative packets
are received by the sink corresponds to an achievable
rate. Moreover, the right-hand side of (1) is indeed
the capacity of the two-link tandem network, and we
therefore have the desired result for this case.

We extend our result to another special case before
considering general unicast connections: we consider
the case of a tandem network consisting of L links and
L + 1 nodes (see Fig. 5).

This case is a straightforward extension of that of
the two-link tandem network. It maps to the fluid
flow system shown in Fig. 6. In this system, it is
clear that fluid flows into node (L + 1)’s reservoir
at rate min1≤i≤L{zi(i+1)}. Hence a connection of rate
arbitrarily close to R packets per unit time from node 1
Fig. 6. Fluid flow system corresponding to L-link tandem network.

to node L + 1 can be established provided that

R ≤ min
1≤i≤L

{zi(i+1)}. (2)

Since the right-hand side of (2) is indeed the capacity
of the L-link tandem network, we therefore have the
desired result for this case. A formal argument is in
Appendix A.2.

We now extend our result to general unicast
connections. The strategy here is simple: a general
unicast connection can be formulated as a flow, which
can be decomposed into a finite number of paths. Each
of these paths is a tandem network, which is the case
that we have just considered.

Suppose that we wish to establish a connection of
rate arbitrarily close to R packets per unit time from
source node s to sink node t . Suppose further that

R ≤ min
Q∈Q(s,t)

 ∑
(i, j)∈Γ+(Q)

zi j

 ,

where Q(s, t) is the set of all cuts between s and t , and
Γ+(Q) denotes the set of forward arcs of the cut Q, i.e.

Γ+(Q) := {(i, j) ∈ A | i ∈ Q, j 6∈ Q}.

Therefore, by the max-flow/min-cut theorem (see, for
example, [38, Section 3.1]), there exists a flow vector f
satisfying

∑
{ j |(i, j)∈A}

fi j −

∑
{ j |( j,i)∈A}

f j i =

R if i = s,
−R if i = t,
0 otherwise,

for all i ∈ N , and

0 ≤ fi j ≤ zi j

for all (i, j) ∈ A. We assume, without loss of generality,
that f is cycle-free in the sense that the subgraph
G′

= (N ,A′), where A′
:= {(i, j) ∈ A| fi j > 0}, is

acyclic. (If G′ has a cycle, then it can be eliminated by
subtracting flow from f around it.)

Using the conformal realization theorem (see, for
example, [38, Section 1.1]), we decompose f into
a finite set of paths {p1, p2, . . . , pM }, each carrying
positive flow Rm for m = 1, 2, . . . , M , such that
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∑M
m=1 Rm = R. We treat each path pm as a tandem

network and use it to deliver innovative packets at rate
arbitrarily close to Rm , resulting in an overall rate for
innovative packets arriving at node t that is arbitrarily
close to R. A formal argument is in Appendix A.3.

4.1.2. Multicast connections
The result for multicast connections is, in fact, a

straightforward extension of that for unicast connec-
tions. In this case, rather than a single sink t , we have
a set of sinks T . As in the framework of static broad-
casting (see [39,40]), we allow sink nodes to operate at
different rates. We suppose that sink t ∈ T wishes to
achieve rate arbitrarily close to Rt , i.e., to recover the
K message packets, sink t wishes to wait for a time ∆t
that is only marginally greater than K/Rt . We further
suppose that

Rt ≤ min
Q∈Q(s,t)

 ∑
(i, j)∈Γ+(Q)

zi j


for all t ∈ T . Therefore, by the max-flow/min-cut
theorem, there exists, for each t ∈ T , a flow vector f (t)

satisfying

∑
{ j |(i, j)∈A}

f (t)
i j −

∑
{ j |( j,i)∈A}

f (t)
j i =

Rt if i = s,
−Rt if i = t,
0 otherwise,

for all i ∈ N , and f (t)
i j ≤ zi j for all (i, j) ∈ A.

For each flow vector f (t), we go through the same
argument as that for a unicast connection, and we find
that the probability of error at every sink node can be
made arbitrarily small by taking K sufficiently large.

We summarize our results regarding wireline
networks with the following theorem statement.

Theorem 1. Consider the lossy wireline packet network
(G, z). The random linear network coding scheme
described in Section 2 is capacity-achieving for
multicast connections, i.e., for K sufficiently large, it
can achieve, with arbitrarily small error probability, a
multicast connection from source node s to sink nodes
in the set T at rate arbitrarily close to Rt packets per
unit time for each t ∈ T if

Rt ≤ min
Q∈Q(s,t)

 ∑
(i, j)∈Γ+(Q)

zi j


for all t ∈ T .4
4 In earlier versions of this work [41,42], we required the field size
q of the coding scheme to approach infinity for Theorem 1 to hold.
Remark. The capacity region is determined solely by
the average rate zi j at which packets are received
on each arc (i, j). Therefore the packet injection and
loss processes, which give rise to the packet reception
processes, can take any distribution, exhibiting arbitrary
correlations, as long as these average rates exist.

4.2. Wireless packet networks

The wireless case is actually very similar to the
wireline one. The main difference is that we now deal
with hypergraph flows rather than regular graph flows.

Suppose that we wish to establish a connection of
rate arbitrarily close to R packets per unit time from
source node s to sink node t . Suppose further that

R ≤ min
Q∈Q(s,t)

 ∑
(i,J )∈Γ+(Q)

∑
K 6⊂Q

zi J K

 ,

where Q(s, t) is the set of all cuts between s and t , and
Γ+(Q) denotes the set of forward hyperarcs of the cut
Q, i.e.

Γ+(Q) := {(i, J ) ∈ A | i ∈ Q, J \ Q 6= ∅}.

Therefore there exists a flow vector f satisfying∑
{ j |(i,J )∈A}

∑
j∈J

fi J j −

∑
{ j |( j,I )∈A,i∈I }

f j I i

=

R if i = s,
−R if i = t,
0 otherwise,

for all i ∈ N ,∑
j∈K

fi J j ≤

∑
{L⊂J |L∩K 6=∅}

zi J L (3)

for all (i, J ) ∈ A and K ⊂ J , and fi J j ≥ 0 for
all (i, J ) ∈ A and j ∈ J . We again decompose
f into a finite set of paths {p1, p2, . . . , pM }, each
carrying positive flow Rm for m = 1, 2, . . . , M , such
that

∑M
m=1 Rm = R. Some care must be taken in the

interpretation of the flow and its path decomposition
because, in a wireless transmission, the same packet
may be received by more than one node. The details
of the interpretation are in Appendix A.4 and, with it,
we can use path pm to deliver innovative packets at rate
arbitrarily close to Rm , yielding the following theorem.

Theorem 2. Consider the lossy wireless packet network
(H, z). The random linear network coding scheme
This requirement is in fact not necessary, and the formal arguments in
Appendix do not require it.
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described in Section 2 is capacity-achieving for
multicast connections, i.e., for K sufficiently large, it
can achieve, with arbitrarily small error probability, a
multicast connection from source node s to sink nodes
in the set T at rate arbitrarily close to Rt packets per
unit time for each t ∈ T if

Rt ≤ min
Q∈Q(s,t)

 ∑
(i,J )∈Γ+(Q)

∑
K 6⊂Q

zi J K


for all t ∈ T .

5. Error exponents for Poisson traffic with i.i.d.
losses

We now look at the rate of decay of the probability of
error pe in the coding delay ∆. In contrast to traditional
error exponents where coding delay is measured in
symbols, we measure coding delay in time units—time
τ = ∆ is the time at which the sink nodes attempt
to decode the message packets. The two methods of
measuring delay are essentially equivalent when packets
arrive in regular, deterministic intervals.

We specialize to the case of Poisson traffic with
i.i.d. losses. Hence, in the wireline case, the process Ai j
is a Poisson process with rate zi j and, in the wireless
case, the process Ai J K is a Poisson process with rate
zi J K . Consider the unicast case for now, and suppose
we wish to establish a connection of rate R. Let C be
the supremum of all asymptotically-achievable rates.

To derive exponentially-tight bounds on the proba-
bility of error, it is easiest to consider the case where the
links are in fact delay-free, and the transformation, de-
scribed in Section 3, for links with delay has not been
applied. The results we derive do, however, apply in the
latter case. We begin by deriving an upper bound on the
probability of error. To this end, we take a flow vec-
tor f from s to t of size C and, following the devel-
opment in Appendix, develop a queueing network from
it that describes the propagation of innovative packets
for a given innovation order ρ. This queueing network
now becomes a Jackson network. Moreover, as a con-
sequence of Burke’s theorem (see, for example, [43,
Section 2.1]) and the fact that the queueing network is
acyclic, the arrival and departure processes at all stations
are Poisson in steady-state.

Let Ψt (m) be the arrival time of the mth innovative
packet at t , and let C ′

:= (1 − q−ρ)C . When the
queueing network is in steady-state, the arrival of
innovative packets at t is described by a Poisson process
of rate C ′. Hence we have

lim
m→∞

1
m

log E[exp(θΨt (m))] = log
C ′

C ′ − θ
(4)
for θ < C ′ [44,45]. If an error occurs, then fewer than
dR∆e innovative packets are received by t by time τ =

∆, which is equivalent to saying that Ψt (dR∆e) > ∆.
Therefore

pe ≤ Pr(Ψt (dR∆e) > ∆),

and, using the Chernoff bound, we obtain

pe ≤ min
0≤θ<C ′

exp (−θ∆ + log E[exp(θΨt (dR∆e))]) .

Let ε be a positive real number. Then using Eq. (4) we
obtain, for ∆ sufficiently large,

pe ≤ min
0≤θ<C ′

exp
(

−θ∆ + R∆
{

log
C ′

C ′ − θ
+ ε

})
= exp(−∆(C ′

− R − R log(C ′/R)) + R∆ε).

Hence we conclude that

lim
∆→∞

− log pe

∆
≥ C ′

− R − R log(C ′/R). (5)

For the lower bound, we examine a cut whose flow
capacity is C . We take one such cut and denote it by
Q∗. It is clear that, if fewer than dR∆e distinct packets
are received across Q∗ in time τ = ∆, then an error
occurs. For both wireline and wireless networks, the
arrival of distinct packets across Q∗ is described by a
Poisson process of rate C . Thus we have

pe ≥ exp(−C∆)

dR∆e−1∑
l=0

(C∆)l

l!

≥ exp(−C∆)
(C∆)dR∆e−1

Γ (dR∆e)
,

and, using Stirling’s formula, we obtain

lim
∆→∞

− log pe

∆
≤ C − R − R log(C/R). (6)

Since (5) holds for all positive integers ρ, we
conclude from (5) and (6) that

lim
∆→∞

− log pe

∆
= C − R − R log(C/R). (7)

Eq. (7) defines the asymptotic rate of decay of
the probability of error in the coding delay ∆. This
asymptotic rate of decay is determined entirely by R
and C . Thus, for a packet network with Poisson traffic
and i.i.d. losses employing the coding scheme described
in Section 2, the flow capacity C of the minimum
cut of the network is essentially the sole figure of
merit of importance in determining the effectiveness of
the coding scheme for large, but finite, coding delay.
Hence, in deciding how to inject packets to support the
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desired connection, a sensible approach is to reduce our
attention to this figure of merit, which is indeed the
approach taken in [21].

Extending the result from unicast connections to
multicast connections is straightforward—we simply
obtain (7) for each sink.

6. Conclusion

We have considered the application of random linear
network coding to lossy packet networks and shown
that it achieves the capacity of single connections as
long as packets received on links arrive according to
processes that have average rates. In the special case
of Poisson traffic with i.i.d. losses, we have given
error exponents that quantify the rate of decay of the
probability of error with coding delay. Our analysis
took into account various peculiarities of packet-level
coding that distinguish it from symbol-level coding.
Thus our work intersects both with information theory
and networking theory and, as such, draws upon results
from the two usually-disparate fields [46]. Whether
our results have implications for particular problems in
either field remains to be explored.

Though we believe that random linear network
coding may be practicable, we also believe that, through
a greater degree of design or use of feedback, it can be
improved. Indeed, feedback can be readily employed
to reduce the memory requirements of intermediate
nodes by getting them to clear their memories
of information already known to their downstream
neighbors. Aside from memory requirements, we may
wish to improve coding and decoding complexity and
side-information overhead. (Some work in the direction
of improving coding and decoding complexity can be
found in [47].) We may also wish to improve delay—
a very important performance factor that we have not
explicitly considered, largely owing to the difficulty of
doing so. The margin for improvement is elucidated in
part in [16], which analyses various packet-level coding
schemes, including ARQ and the scheme of this paper,
and assesses their delay, throughput, memory usage,
and computational complexity for the two-link tandem
network of Fig. 3. In our search for such improved
schemes, we may be aided by the existing schemes
that we have mentioned that apply to specific, special
networks.

We should not, however, focus our attention solely
on the packet-level code. The packet-level code and
the symbol-level code collectively form a type of
concatenated code, and an endeavor to understand the
interaction of these two coding layers is worthwhile.
Some work in this direction can be found in [48].
Acknowledgments

The authors would like to thank Pramod Viswanath
and John Tsitsiklis for helpful discussions and
suggestions. This work was supported by the National
Science Foundation under grant nos. CCR-0093349,
CCR-0325496, and CCR-0325673; by the Army
Research Office through University of California
subaward no. S0176938; and by the Office of Naval
Research under grant no. N00014-05-1-0197. This
paper was presented in part at the 42nd Annual
Allerton Conference on Communication, Control, and
Computing, Monticello, IL, September–October 2004;
and in part at the 2005 International Symposium on
Information Theory, Adelaide, Australia, September
2005.

Appendix. Formal arguments for main result

Here, we give formal arguments for Theorems 1
and 2. Appendices A.1–A.3 give formal arguments for
three special cases of Theorem 1: the two-link tandem
network, the L-link tandem network, and general
unicast connections, respectively. Appendix A.4 gives
a formal argument for Theorem 2 in the case of general
unicast connections.

A.1. Two-link tandem network

We consider all packets received by node 2, namely
v1, v2, . . . , vN , to be innovative. We associate with node
2 the set of vectors U , which varies with time and is
initially empty, i.e. U (0) := ∅. If packet x is received
by node 2 at time τ , then its auxiliary encoding vector
β is added to U at time τ , i.e. U (τ+) := {β} ∪ U (τ ).

We associate with node 3 the set of vectors W ,
which again varies with time and is initially empty.
Suppose that packet x , with auxiliary encoding vector
β, is received by node 3 at time τ . Let ρ be a positive
integer, which we call the innovation order. Then we
say x is innovative if β 6∈ span(W (τ )) and |U (τ )| >

|W (τ )|+ρ − 1. If x is innovative, then β is added to W
at time τ .

The definition of innovative is designed to satisfy
two properties: first, we require that W (∆), the set of
vectors in W when the scheme terminates, is linearly-
independent; second, we require that, when a packet is
received by node 3 and |U (τ )| > |W (τ )| + ρ − 1, it is
innovative with high probability. The innovation order ρ

is an arbitrary factor that ensures that the latter property
is satisfied.

Suppose that packet x , with auxiliary encoding
vector β, is received by node 3 at time τ and that
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|U (τ )| > |W (τ )| + ρ − 1. Since β is a random
linear combination of vectors in U (τ ), it follows
that x is innovative with some non-trivial probability.
More precisely, because β is uniformly-distributed over
q |U (τ )| possibilities, of which at least q |U (τ )|

− q |W (τ )|

are not in span(W (τ )), it follows that

Pr(β 6∈ span(W (τ ))) ≥
q |U (τ )|

− q |W (τ )|

q |U (τ )|

= 1 − q |W (τ )|−|U (τ )|
≥ 1 − q−ρ .

Hence x is innovative with probability at least 1 − q−ρ .
Since we can always discard innovative packets, we
assume that the event occurs with probability exactly
1−q−ρ . If instead |U (τ )| ≤ |W (τ )|+ρ−1, then we see
that x cannot be innovative, and this remains true at least
until another arrival occurs at node 2. Therefore, for
an innovation order of ρ, the propagation of innovative
packets through node 2 is described by the propagation
of jobs through a single-server queueing station with
queue size (|U (τ )| − |W (τ )| − ρ + 1)+.

The queueing station is serviced with probability
1−q−ρ whenever the queue is non-empty and a received
packet arrives on arc (2, 3). We can equivalently
consider “candidate” packets that arrive with probability
1−q−ρ whenever a received packet arrives on arc (2, 3)

and say that the queueing station is serviced whenever
the queue is non-empty and a candidate packet arrives
on arc (2, 3). We consider all packets received on arc
(1, 2) to be candidate packets.

The system we wish to analyze, therefore, is the
following simple queueing system: jobs arrive at node
2 according to the arrival of received packets on arc
(1, 2) and, with the exception of the first ρ − 1 jobs,
enter node 2’s queue. The jobs in node 2’s queue are
serviced by the arrival of candidate packets on arc
(2, 3) and exit after being serviced. The number of
jobs exiting is a lower bound on the number of packets
with linearly-independent auxiliary encoding vectors
received by node 3.

We analyze the queueing system of interest using
the fluid approximation for discrete-flow networks (see,
for example, [49,50]). We do not explicitly account
for the fact that the first ρ − 1 jobs arriving at node
2 do not enter its queue because this fact has no
effect on job throughput. Let B1, B, and C be the
counting processes for the arrival of received packets
on arc (1, 2), of innovative packets on arc (2, 3), and of
candidate packets on arc (2, 3), respectively. Let Q(τ )

be the number of jobs queued for service at node 2 at
time τ . Hence Q = B1 − B. Let X := B1 − C and
Y := C − B. Then

Q = X + Y. (8)

Moreover, we have

Q(τ )dY (τ ) = 0, (9)

dY (τ ) ≥ 0, (10)

and

Q(τ ) ≥ 0 (11)

for all τ ≥ 0, and

Y (0) = 0. (12)

We observe now that Eqs. (8)–(12) give us
the conditions for a Skorohod problem (see, for
example, [49, Section 7.2]) and, by the oblique
reflection mapping theorem, there is a well-defined,
Lipschitz-continuous mapping Φ such that Q = Φ(X).

Let

C̄ (K )(τ ) :=
C(K τ)

K
,

X̄ (K )(τ ) :=
X (K τ)

K
,

and

Q̄(K )(τ ) :=
Q(K τ)

K
.

Recall that A23 is the counting process for the arrival
of received packets on arc (2, 3). Therefore C(τ ) is the
sum of A23(τ ) Bernoulli-distributed random variables
with parameter 1 − q−ρ . Hence

C̄(τ ) := lim
K→∞

C̄ (K )(τ )

= lim
K→∞

(1 − q−ρ)
A23(K τ)

K
a.s.

= (1 − q−ρ)z23τ a.s.,

where the last equality follows by the assumptions of
the model. Therefore

X̄(τ ) := lim
K→∞

X̄ (K )(τ ) = (z12 − (1 − q−ρ)z23)τ a.s.

By the Lipschitz-continuity of Φ, then, it follows that
Q̄ := limK→∞ Q̄(K )

= Φ(X̄), i.e. Q̄ is, almost surely,
the unique Q̄ that satisfies, for some Ȳ ,

Q̄(τ ) = (z12 − (1 − q−ρ)z23)τ + Ȳ , (13)

Q̄(τ )dȲ (τ ) = 0, (14)

dȲ (τ ) ≥ 0, (15)

and

Q̄(τ ) ≥ 0 (16)
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for all τ ≥ 0, and

Ȳ (0) = 0. (17)

A pair (Q̄, Ȳ ) that satisfies (13)–(17) is

Q̄(τ ) = (z12 − (1 − q−ρ)z23)
+τ (18)

and

Ȳ (τ ) = (z12 − (1 − q−ρ)z23)
−τ.

Hence Q̄ is given by Eq. (18).
Recall that node 3 can recover the message packets

with high probability if it receives bK (1 + ε)c packets
with linearly-independent auxiliary encoding vectors
and that the number of jobs exiting the queueing system
is a lower bound on the number of packets with linearly-
independent auxiliary encoding vectors received by
node 3. Therefore node 3 can recover the message
packets with high probability if bK (1+ε)c or more jobs
exit the queueing system. Let ν be the number of jobs
that have exited the queueing system by time ∆. Then

ν = B1(∆) − Q(∆).

Take K = d(1−q−ρ)∆Rc R/(1+ε)e, where 0 < Rc <

1. Then

lim
K→∞

ν

bK (1 + ε)c
= lim

K→∞

B1(∆) − Q(∆)

K (1 + ε)

=
z12 − (z12 − (1 − q−ρ)z23)

+

(1 − q−ρ)Rc R

=
min(z12, (1 − q−ρ)z23)

(1 − q−ρ)Rc R

≥
1
Rc

min(z12, z23)

R
> 1

provided that

R ≤ min(z12, z23). (19)

Hence, for all R satisfying (19), ν ≥ bK (1 + ε)c with
probability arbitrarily close to 1 for K sufficiently large.
The rate achieved is

K

∆
≥

(1 − q−ρ)Rc

1 + ε
R,

which can be made arbitrarily close to R by varying ρ,
Rc, and ε.

A.2. L-link tandem network

For i = 2, 3, . . . , L + 1, we associate with node
i the set of vectors Vi , which varies with time and is
initially empty. We define U := V2 and W := VL+1. As
in the case of the two-link tandem, all packets received
by node 2 are considered innovative and, if packet x is
received by node 2 at time τ , then its auxiliary encoding
vector β is added to U at time τ . For i = 3, 4, . . . , L+1,
if packet x , with auxiliary encoding vector β, is received
by node i at time τ , then we say x is innovative if
β 6∈ span(Vi (τ )) and |Vi−1(τ )| > |Vi (τ )| + ρ − 1. If x
is innovative, then β is added to Vi at time τ .

This definition of innovative is a straightforward
extension of that in Appendix A.1. The first property
remains the same: we continue to require that W (∆)

is a set of linearly-independent vectors. We extend the
second property so that, when a packet is received by
node i for any i = 3, 4, . . . , L + 1 and |Vi−1(τ )| >

|Vi (τ )| + ρ − 1, it is innovative with high probability.
Take some i ∈ {3, 4, . . . , L+1}. Suppose that packet

x , with auxiliary encoding vector β, is received by node
i at time τ and that |Vi−1(τ )| > |Vi (τ )| + ρ − 1.
Thus the auxiliary encoding vector β is a random linear
combination of vectors in some set V0 that contains
Vi−1(τ ). Hence, because β is uniformly-distributed
over q |V0| possibilities, of which at least q |V0| − q |Vi (τ )|

are not in span(Vi (τ )), it follows that

Pr(β 6∈ span(Vi (τ ))) ≥
q |V0| − q |Vi (τ )|

q |V0|

= 1 − q |Vi (τ )|−|V0| ≥ 1 − q |Vi (τ )|−|Vi−1(τ )|
≥ 1 − q−ρ .

Therefore x is innovative with probability at least 1 −

q−ρ .
Following the argument in Appendix A.1, we see, for

all i = 2, 3, . . . , L , that the propagation of innovative
packets through node i is described by the propagation
of jobs through a single-server queueing station with
queue size (|Vi (τ )| − |Vi+1(τ )| − ρ + 1)+ and that the
queueing station is serviced with probability 1 − q−ρ

whenever the queue is non-empty and a received packet
arrives on arc (i, i + 1). We again consider candidate
packets that arrive with probability 1 − q−ρ whenever a
received packet arrives on arc (i, i + 1) and say that the
queueing station is serviced whenever the queue is non-
empty and a candidate packet arrives on arc (i, i + 1).

The system we wish to analyze in this case is
therefore the following simple queueing network: jobs
arrive at node 2 according to the arrival of received
packets on arc (1, 2) and, with the exception of the first
ρ−1 jobs, enter node 2’s queue. For i = 2, 3, . . . , L−1,
the jobs in node i’s queue are serviced by the arrival
of candidate packets on arc (i, i + 1) and, with the
exception of the first ρ − 1 jobs, enter node (i + 1)’s
queue after being serviced. The jobs in node L’s queue
are serviced by the arrival of candidate packets on arc
(L , L + 1) and exit after being serviced. The number of
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jobs exiting is a lower bound on the number of packets
with linearly-independent auxiliary encoding vectors
received by node L + 1.

We again analyze the queueing network of inter-
est using the fluid approximation for discrete-flow net-
works, and we again do not explicitly account for the
fact that the first ρ − 1 jobs arriving at a queueing node
do not enter its queue. Let B1 be the counting process
for the arrival of received packets on arc (1, 2). For
i = 2, 3, . . . , L , let Bi , and Ci be the counting pro-
cesses for the arrival of innovative packets and candi-
date packets on arc (i, i + 1), respectively. Let Qi (τ ) be
the number of jobs queued for service at node i at time
τ . Hence, for i = 2, 3, . . . , L , Qi = Bi−1 − Bi . Let
X i := Ci−1 − Ci and Yi := Ci − Bi , where C1 := B1.
Then we obtain a Skorohod problem with the following
conditions: for all i = 2, 3, . . . , L ,

Qi = X i − Yi−1 + Yi ;

for all τ ≥ 0 and i = 2, 3, . . . , L ,

Qi (τ )dYi (τ ) = 0,

dYi (τ ) ≥ 0,

and

Qi (τ ) ≥ 0;

for all i = 2, 3, . . . , L ,

Yi (0) = 0.

Let

Q̄(K )
i (τ ) :=

Qi (K τ)

K

and Q̄i := limK→∞ Q̄(K )
i for i = 2, 3, . . . , L . Then the

vector Q̄ is, almost surely, the unique Q̄ that satisfies,
for some Ȳ ,

Q̄i (τ )

=


(z12 − (1 − q−ρ)z23)τ + Ȳ2(τ )

if i = 2,

(1 − q−ρ)(z(i−1)i − zi(i+1))τ + Ȳi (τ ) − Ȳi−1(τ )

otherwise,

(20)

Q̄i (τ )dȲi (τ ) = 0, (21)

dȲi (τ ) ≥ 0, (22)

and

Q̄i (τ ) ≥ 0 (23)

for all τ ≥ 0 and i = 2, 3, . . . , L , and

Ȳi (0) = 0 (24)
for all i = 2, 3, . . . , L . A pair (Q̄, Ȳ ) that satisfies (20)–
(24) is

Q̄i (τ ) = (min(z12, min
2≤ j<i

{(1 − q−ρ)z j ( j+1)})

− (1 − q−ρ)zi(i+1))
+τ (25)

and

Ȳi (τ ) = (min(z12, min
2≤ j<i

{(1 − q−ρ)z j ( j+1)})

− (1 − q−ρ)zi(i+1))
−τ.

Hence Q̄ is given by Eq. (25).
The number of jobs that have exited the queueing

network by time ∆ is given by

ν = B1(∆) −

L∑
i=2

Qi (∆).

Take K = d(1−q−ρ)∆Rc R/(1+ε)e, where 0 < Rc <

1. Then

lim
K→∞

ν

bK (1 + ε)c
= lim

K→∞

B1(∆) −

L∑
i=2

Q(∆)

K (1 + ε)

=

min(z12, min
2≤i≤L

{(1 − q−ρ)zi(i+1)})

(1 − q−ρ)Rc R

≥
1
Rc

min
1≤i≤L

{zi(i+1)}

R
> 1 (26)

provided that

R ≤ min
1≤i≤L

{zi(i+1)}. (27)

Hence, for all R satisfying (27), ν ≥ bK (1 + ε)c with
probability arbitrarily close to 1 for K sufficiently large.
The rate can again be made arbitrarily close to R by
varying ρ, Rc, and ε.

A.3. General unicast connection

As described in Section 4.1.1, we decompose the
flow vector f associated with a unicast connection into
a finite set of paths {p1, p2, . . . , pM }, each carrying
positive flow Rm for m = 1, 2, . . . , M such that∑M

m=1 Rm = R. We now rigorously show how each
path pm can be treated as a separate tandem network
used to deliver innovative packets at rate arbitrarily
close to Rm .

Consider a single path pm . We write pm =

{i1, i2, . . . , iLm , iLm+1}, where i1 = s and iLm+1 = t .
For l = 2, 3, . . . , Lm + 1, we associate with node
il the set of vectors V (pm )

l , which varies with time

and is initially empty. We define U (pm )
:= V (pm )

2 and
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W (pm )
:= V (pm )

Lm+1. Suppose packet x , with auxiliary
encoding vector β, is received by node i2 at time τ .
We associate with x the independent random variable
Px , which takes the value m with probability Rm/zsi2 .
If Px = m, then we say x is innovative on path pm , and
β is added to U (pm ) at time τ . Now suppose packet x ,
with auxiliary encoding vector β, is received by node il
at time τ , where l ∈ {3, 4, . . . , Lm + 1}. We associate
with x the independent random variable Px , which takes
the value m with probability Rm/zil−1il . We say x is

innovative on path pm if Px = m, β 6∈ span(V (pm )
l (τ ) ∪

Ṽ\m), and |V (pm )

l−1 (τ )| > |V (pm )
l (τ )| + ρ − 1, where

Ṽ\m := ∪
m−1
n=1 W (pn)(∆) ∪ ∪

M
n=m+1 U (pn)(∆).

This definition of innovative is somewhat more
complicated than that in Appendices A.1 and A.2
because we now have M paths that we wish to analyze
separately. We have again designed the definition
to satisfy two properties. First, we require that
∪

M
m=1 W (pm )(∆) is linearly-independent. This is easily

verified: vectors are added to W (p1)(τ ) only if they are
linearly-independent of existing ones; vectors are added
to W (p2)(τ ) only if they are linearly-independent of
existing ones and ones in W (p1)(∆); and so on. Second,
we require that, when a packet is received by node il ,
Px = m, and |V (pm )

l−1 (τ )| > |V (pm )
l (τ )| + ρ − 1, it is

innovative on path pm with high probability.
Take l ∈ {3, 4, . . . , Lm + 1}. Suppose that packet x ,

with auxiliary encoding vector β, is received by node
il at time τ , that Px = m, and that |V (pm )

l−1 (τ )| >

|V (pm )
l (τ )| + ρ − 1. Thus the auxiliary encoding vector

β is a random linear combination of vectors in some
set V0 that contains V (pm )

l−1 (τ ). Hence β is uniformly-
distributed over q |V0| possibilities, of which at least
q |V0| − qd are not in span(V (pm )

l (τ ) ∪ Ṽ\m), where

d := dim(span(V0) ∩ span(V (pm )
l (τ ) ∪ Ṽ\m)). We have

d = dim(span(V0)) + dim(span(V (pm )
l (τ ) ∪ Ṽ\m))

− dim(span(V0 ∪ V (pm )
l (τ ) ∪ Ṽ\m))

≤ dim(span(V0 \ V (pm )

l−1 (τ )))

+ dim(span(V (pm )

l−1 (τ )))

+ dim(span(V (pm )
l (τ ) ∪ Ṽ\m))

− dim(span(V0 ∪ V (pm )
l (τ ) ∪ Ṽ\m))

≤ dim(span(V0 \ V (pm )

l−1 (τ )))

+ dim(span(V (pm )

l−1 (τ )))

+ dim(span(V (pm )
l (τ ) ∪ Ṽ\m))

− dim(span(V (pm )

l−1 (τ ) ∪ V (pm )
l (τ ) ∪ Ṽ\m)).
Since V (pm )

l−1 (τ ) ∪ Ṽ\m and V (pm )
l (τ ) ∪ Ṽ\m both form

linearly-independent sets,

dim(span(V (pm )

l−1 (τ ))) + dim(span(V (pm )
l (τ ) ∪ Ṽ\m))

= dim(span(V (pm )

l−1 (τ ))) + dim(span(V (pm )
l (τ )))

+ dim(span(Ṽ\m))

= dim(span(V (pm )
l (τ )))

+ dim(span(V (pm )

l−1 (τ ) ∪ Ṽ\m)).

Hence it follows that

d ≤ dim(span(V0 \ V (pm )

l−1 (τ )))

+ dim(span(V (pm )
l (τ )))

+ dim(span(V (pm )

l−1 (τ ) ∪ Ṽ\m))

− dim(span(V (pm )

l−1 (τ ) ∪ V (pm )
l (τ ) ∪ Ṽ\m))

≤ dim(span(V0 \ V (pm )

l−1 (τ )))

+ dim(span(V (pm )
l (τ )))

≤ |V0 \ V (pm )

l−1 (τ )| + |V (pm )
l (τ )|

= |V0| − |V (pm )

l−1 (τ )| + |V (pm )
l (τ )|,

which yields

d − |V0| ≤ |V (pm )
l (τ )| − |V (pm )

l−1 (τ )| ≤ −ρ.

Therefore

Pr(β 6∈ span(V (pm )
l (τ ) ∪ Ṽ\m)) ≥

q |V0| − qd

q |V0|

= 1 − qd−|V0| ≥ 1 − q−ρ .

We see then that, if we consider only those packets
such that Px = m, the conditions that govern the
propagation of innovative packets are exactly those of
an Lm-link tandem network, which we dealt with in
Appendix A.2. By recalling the distribution of Px , it
follows that the propagation of innovative packets along
path pm behaves like an Lm-link tandem network with
average arrival rate Rm on every link. Since we have
assumed nothing special about m, this statement applies
for all m = 1, 2, . . . , M .

Take K = d(1 − q−ρ)∆Rc R/(1 + ε)e, where 0 <

Rc < 1. Then, by Eq. (26),

lim
K→∞

|W (pm )(∆)|

bK (1 + ε)c
>

Rm

R
.
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Hence

lim
K→∞

|∪
M
m=1W (pm )(∆)|

bK (1 + ε)c
=

M∑
m=1

|W (pm )(∆)|

bK (1 + ε)c

>

M∑
m=1

Rm

R
= 1.

As before, the rate can be made arbitrarily close to R by
varying ρ, Rc, and ε.

A.4. Wireless packet networks

The constraint (3) can also be written as

fi J j ≤

∑
{L⊂J | j∈L}

α
( j)
i J L zi J L

for all (i, J ) ∈ A and j ∈ J , where
∑

j∈L α
( j)
i J L = 1

for all (i, J ) ∈ A and L ⊂ J , and α
( j)
i J L ≥ 0 for all

(i, J ) ∈ A, L ⊂ J , and j ∈ L . Suppose packet x is
placed on hyperarc (i, J ) and received by K ⊂ J at
time τ . We associate with x the independent random
variable Px , which takes the value m with probability
Rmα

( j)
i J K /

∑
{L⊂J | j∈L}

α
( j)
i J L zi J L , where j is the outward

neighbor of i on pm . Using this definition of Px in place
of that used in Appendix A.3 in the case of wireline
packet networks, we find that the two cases become
identical, with the propagation of innovative packets
along each path pm behaving like a tandem network
with average arrival rate Rm on every link.
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