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Abstract

During the last decade, it has been well understood that eormation over multiple antennas can increase
linearly the multiplexing capacity gain and provide largeeatral efficiency improvements. However, the majority
of studies in this area were carried out ignoring cochanmtelrierence. Only a small number of investigations have
considered cochannel interference, but even therein simpannel models were employed, assuming identically
distributed fading coefficients. In this paper, a generiadatdor a multi-antenna channel is presented incorporating
four impairments, namely additive white Gaussian noisd, fding, path loss and cochannel interference. Both
point-to-point and multiple-access MIMO channels are @ered, including the case of cooperating Base Station
clusters. The asymptotic capacity limit of this channelatcualated based on an asymptotic free probability approach
which exploits the additive and multiplicative free conwddn in the R- and S-transform domain respectively, as
well as properties of thg and Stieltjes transform. Numerical results are utilizededfy the accuracy of the derived
closed-form expressions and evaluate the effect of theatowH interference.

Index Terms

Information theory, Information Rates, Multiuser charmélliIMO systems, Cochannel Interference, Land mobile
radio cellular systems, Eigenvalues and eigenfunctions.

I. INTRODUCTION

In many cases, wireless communication systems have to tep@rdhe interference-limited regime, where the
cochannel interference is much more pronounced that tleveraoise. This applies to all modern cellular systems,
as well as in multi-spot beam satellites, where frequenageas employed over spatially separated geographical
areas. The capacity of those systems is interferenceeliingince by increasing the transmit power both received
signal and cochannel interference increase and eventtl\Signal over Interference and Noise Ratio (SINR)

saturates. Although a number of previous studies in theatitiee [1], [2], [3], [4], [5] have looked into the effect
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of cochannel interference, the majority of the employednded models were focused on specific cases, failing to
capture the wide range of affected systems.

In this context, this paper generalizes and studies theteffecochannel interference on multiantenna Gaussian

fading channels. More specifically, the main contributibesein are:

1) The introduction of a generic multidimensional channedel which encompasses four channel impairments,
namely additive white Gaussian noise (AWGN), flat fadinghgass and cochannel interference. The proposed
model can be employed as a generalization of point-to-pdIMO channels, as well as uplink and downlink
channels of MIMO cellular systems, cooperating Base Statlasters and multi-spot beam satellite systems.

2) The analytical calculation of the asymptotic eigenvaluebability distribution function (a.e.p.d.f.) based on
a free probability approach which exploits the additive amdltiplicative free convolution [6] in the?- and
S-transform domain respectively, as well as properties efittand Stieltjes transform.

3) The derivation of closed-form methods which calculatedhstem capacity based on the number of dimensions
and the transmit power of useful signals and cochannelfertamce.

4) Numerical results which verify the validity of the freegbability derivations and provide insights into the
capacity performance of cochannel-interfered systems.

The remainder of this paper is structured as follows: Sefflintroduces the generic channel model and provides

a detailed review of cochannel interference scenariosidgdll]describes the free probability derivations and the
capacity results, while cumbersome mathematical deomatiare postponed to the appendix. Sedfioh IV verifies
the accuracy of the analysis by comparing with Monte Cantousations and evaluates the effect of the cochannel

interference in the context of cooperating BS clustersti&eB/ concludes the paper.

A. Notation

Throughout the formulations of this papé&|:| denotes the expectatio(},)H denotes the conjugate transpose
matrix, (-)T denotes the transpose matrix,denotes the Hadammard product andlenotes the Kronecker product.
The Frobenius norm of a matrix or vector is denoted||b}; the absolute value of a scalar is denoted|hyand

the delta function is denoted h-). (-)* is equivalent tomax(0,-) and1{-} is the indicator function.

Il. GENERIC CHANNEL MODEL & RELATED WORK
A. Generic Channel Model

The generic channel model which combines additive whitesSian noise, flat fading, path loss and cochannel
interference can be expressed as follows:

y = Hx + Hix; + z, (1)

wherey denotes the{ x 1 received symbol vector and th€ x 1 vectorz denotes AWGN withE[z] = 0 and

E[zz] = ]H The M x 1 vectorx denotes the transmitted symbol vector with Signal to Nois¢ddR(SNR)
1The variance of AWGN has been normalizeditdo simplify notations
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(E[xx!] = uI), while the N x 1 vectorx; denotes cochannel interference with Interference to NR&t#o (INR)
v (E[x;xff] = vI). It should be noted that represents the transmitted desired signal over noise poatier
(TSNR), whilev represents the transmitted interference over noise patier (TINR). The K x M channel matrix

H = X0 G comprises of the Hadammard product of a Gaussian matti¢G) ~ CA (0, ) including the flat fading
coefficients of the communication system and a variancelenofatrix 3 including the path loss coefficients of the
communication system. Similarly, th€ x N channel matrix; = X; ® G; comprises of the Hadammard product
of a Gaussian matrixec(Gp) ~ CN(0,1) including the flat fading coefficients of the cochannel ifeeznce and

a variance profile matriX; including the path loss coefficients of the cochannel ieterfice. The exact structure
of the varianceﬁprofile matrices depends on the consideregless scenario and it is discussed in detail in the

following sectiod. It is also assumed that:

o x andx; are Gaussian inputs
« Cochannel interference is treated as noise
« Channel State Information (CSI) is available at the reaeiug not at the transmitters. Therefore, no input
optimization takes place in order to avoid cochannel ieterice.
In the proposed model, the combined effect of receiver npigs cochannel interference can be represented by
a combined vectoz; = Hix; + z which is characterized as colored since its covaridDhez{I] =1+ uHIHfi
is no longer proportional to the identity matrix. The capadf the generic model normalized by the number of

receive dimensions is given by an expression of the foIIgv\i'mnH [8l, [, [2l:

C= %E [logdet (I—i—uHHH (I+VHIHIH)‘1)]. )

Remark 2.1:At this point, it should be noted that the variance profile neas should satisfy a number of

conditions for the analytical results of sectiod Il to bdida
o X andX; are assumed to have uniformly bounded entries with growingedsions and satisfy Lindeberg’s
condition.

o X and3; are assumed to be asymptotically row-regular.

Definition 2.1: An N x K matrix X is asymptotically row-regulat [6] if

K
1
. -
Khm — jgl 1{X,,; < a} 3)

is independent of for all o € R, as the aspect rati% converges to a constant.

2|n the previous notation, it is assumed that TSNR is idehfmaall desired dimensions and the TINR for all interferidgnensions. If this
is not the case, variations in the transmit power across thiépie dimensions can be incorporated in the variance Iprofiatrices® and 3
respectively.

31t should be noted that ed](2) can be also writterCas: +E[log det(I + uHH + vH{HH)] — LE[log det(I + vH{H)] as in [7].
However, this paper focuses on €gl (2) in order to distirigaisd exploit the structure of matric& and .
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To simplify the notations during the mathematical analysie following auxiliary variables are defined:
K = yHH” (1+/HH{)
M = (I+vHH}) ™
N = yHH"?

N = vHH}
B

==z =2

’y:
>
MK

=
NK

whereg, ~ are the ratios of horizontal to vertical dimensions of makii, H; respectively and, p are the squared

Frobenius norms of matrices, 3; respectively normalized by the matrix size.

B. Wireless Scenarios with Cochannel Interference

This generic model can encompass a wide range of point4tt-gd multiple-access MIMO channels by altering
the structure of the variance profile matrices and the mgaoirthe channel matrix dimensions, as described in
the following paragraphs.

1) Single MIMO Link with Equidistant Cochannel Interferenén this scenario, a single MIMO link is considered
whereas the receiver is impaired by a) a single cochannel®™iMerferer or b) a number of equidistant interferers.
An example for case (a) would be two point-to-point MIMO Ig&perating in close proximity, while for case (b) a
cell-edge multiple-antenna terminal at the downlink chemeceiving interference from adjacent equidistant Base
Stations (BSs). In the described scenarios, the path losBicents can be considered identical and therefore
the variance profile matrices are matrices of on8s= X; = I. In addition, K and M equal the number of
receive antennas and the number or transmit antennas aeiired! terminal respectivelyy equals the number
of transmit antennas at the interfering terminal in caseofathe number of interfering BSs in case (b). Authors
in [3] investigated the correlated MIMO capacity with cdated cochannel interference, as well as the optimum
signaling for fading channels. Using complex integrals &rdssman variables, the mutual information moments
have been derived and a method for optimizing the input sigoeariance based on the correlation matrices was
presented. It has been shown that in many cases, the inpuatipgtion yields capacities close to the closed-loop
capacity, where instantaneous channel state informasi@vailable at the receiver.

2) Single MIMO Link with Distributed Cochannel Interferendn this scenario, a MIMO link operating within
a traditional cellular system is assumed. In the uplinkheB8 receives cochannel interfering signals from the User
Terminals (UTs) of adjacent cells. Similarly, in the dowklieach UT receives cochannel interference from adjacent

BSs. The main differentiation between uplink and downligkhat in the former case interference originates from
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a large number of low-power randomly-distributed sour¢¢Bs), whereas in the latter case interference originated
from a small number of high-power regularly-distributediszes (BSs). In both uplink and downlink, the variance
profile matrix® is a matrix of onesE = I, while the structure of matriZ; = of ® I is dictated by the spatial
distribution of the interferers, whewe; is a vector including the path loss components of the interée Regarding
the uplink channel matrix dimension&, and M refer to the number of receive antennas at the BS and the numbe
of transmit antennas at the UT respectively, whNerefers to the number of interfering UTs multiplied by the
number of transmit antennas per UT. Authorslih [2] have itigated this scenario and have derived an asymptotic
closed-form expression as a function Bt M, N, p,q for AWGN and fading channels. According to this study
the spatial noise coloring due to cochannel interferencebeaexploited by the multiple-antenna receiver in order
to achieve higher channel capacities. Subsequently, ttiwrain [1] has studied the optimum signaling in MIMO
channels with cochannel interference. In this contexta# heen found that the optimal signaling converges to the
interference-free signaling only when interference idisigihtly weak of sufficiently strong.

3) MIMO Cellular System with Wideband Transmission Schefrtds scenario considers a single cell which
operates on wideband transmission scheme (i.e. supegposibding) and receives interference from adjacent
cells. The wideband transmission scheme implies that a#l ofTfthe cell of interest transmit over the same channel
dimensions using superposition coding [2].][10]. AssumB®jand UTs equipped with multiple antennas, the uplink
can be represented by a MIMO multiple-access channel. $nctge, the structure of mati® = o7 ®1 is dictated
by the spatial distribution of the intra-cell UTs, whi¥®; = o ® I is dictated by the inter-cell interferers, where
o is a vector including the path loss components of the desifEsl Regarding the channel matrix dimensioAs,
refers to the number of receive antennas at the BSefers and the number of UTs times the number of transmit
antennas at the UT anl refers to the number of interfering UTs times the number afigmit antennas per UT.
This scenario has been studied[inl[11], where various nadtitMIMO processing techniques are considered in the
presence of cochannel interference. Furthermore, it isvshtberein that linear MMSE (Minimum Mean Square
Error) filtering yields eq.[(2), assuming full CSI at the rives

4) Cooperating BS Clustertn this scenario, a cluster of cooperating BSs (or distetduintennas) is considered,
receiving interference from similar adjacent clusters.nilaariations of this scenario can be described by the
generic channel model. For example, the BSs and UTs may bippegliwith single or multiple antennas. In
addition, orthogonal (single transmitting UT per cluster) wideband (multiple transmitting UTs per cluster)
transmission scheme can be considered. In all aforementioases the variance profile matrices have a special
structure defined by the spatial distribution of BS clustand intra-cell/inter-cell UTs. The defining charactedsti
of all the aforementioned cases is that matri2eand 3; can no longer be expressed in terms of the veetar
o1. The reader is referred to [12] for a detailed review of vaci profile matrices for BS cooperation systems.
Cooperating BS clusters were also considered in [4], usitgr-cell scheduling to avoid cochannel interference.
Furthermore, the authors inl[5] consider BS clusters wiglyfiency reuse 1 on a circular Wyner array, although all
intra-cell UTs are assumed to have equal path loss coefficiarorder to provide mathematical tractability.

Remark 2.2:It should be noted that the generic model and capacity deyivan this paper generalize all the
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aforementioned scenarios by making no simplifying assionptexcept the asymptotic row-regularity of the variance
profile matrices. In terms of wireless scenarios, asymptotv-regularity means that each receiving element callect
in total the same power from all transmitters. This is alwaye for multiple collocated omnidirectional receive
antennas, such as scenafios 1I-BI, TI-B2. However, foriafhatdistributed receive antennas such as in scenarios
[T-B3] M-B4] asymptotic row-regularity translates intorsynetric cells in terms of spatial user distributions. This

assumption becomes more valid for asymptotically large memof cells and users.

IIl. EIGENVALUE DISTRIBUTION ANALYSIS

As it can be seen, the generic channel model of[€qg. (1) andgtelie capacity in eq[{2) describe a wide range
of multiantenna and multiple-access channels impaireddoltige white Gaussian noise, flat fading, path loss and
cochannel interference. In order to tackle this problemyaically, we resort to asymptotic analysis which entails
that the dimensions of the channel matrices grow to infiniyuaing proper normalizations. It has already been
shown in many occasions that asymptotic analysis yielddteewhich are also valid for finite dimensions [€]] [2],
[13]. In other words, the capacity expression convergeskipito a deterministic value as the number of channel

matrix dimensions increases. EQl (2) can be written asyticptly as:

C= K.A}.igﬁoo %E [log det (I + /LHHH (I + VHIHIH)_lﬂ

lim E
K,M,N—c0

1 K
% Z log (1 + \; (K))]

- /0 T log (1+2) £ (2) da, )

where \; (K) is theith eigenvalue of matri¥K and f° is the a.e.p.d.f. oK. It should be noted that while the
channel dimension&’, M, N grow to infinity the ratios of horizontal to vertical dimeoss 3, v are kept constant.
More importantly, TSNR and TINR:, v grow small as the transmit dimensiodg, N grow large in order to
guarantee that the system TSNR and TINR= My, = Nv remain constant and do not grow infinite in the
context of asymptotic analysis. Based on the aforementia@mmventions, the following auxiliary variables are
defined:

To calculate the expression of efjl (4), it suffices to deffred.e.p.d.f. ofK, which can be achieved through the
principles of free probability theory [14]. [15], [16], [1as described in the following paragraphs.

Remark 3.1:It should be noted that other techniques have been also nsextént literature for large random
matrix analysis. Most notably, the replica analysis metfid@] and the deterministic equivalents methbdi [19] have

been applied in a range of wireless scenarios for deriviggdic, outage capacities and precoding methods.

October 28, 2018 DRAFT



A. Random Matrix Theory Preliminaries

Let fx(x) be the eigenvalue probability distribution function of atmaX.

Definition 3.1: The n-transform of a positive semidefinite matX is defined as

< 1
nx (7) /0 1+fo(x) x (5)
Definition 3.2: The X-transform of a positive semidefinite matrK is defined as
z+1 _
Ex () = ———nx 'z +1). (6)

Property 3.1: The Stieltjes-transform of a positive semidefinite maXixcan be derived by itg-transform using
[6l Equation 2.48]
—1/z
Sx(a) = XD, ¢

x

B. Free Probability Results

The asymptotic capacity limit of this channel is calculateased on an asymptotic free probability approach
which exploits the additive and multiplicative free corwiibn in the R- and X-transform domain respectively, as
well as properties of thg and Stieltjes transform. The derivation methodology irs thaper can be summarized
as follows:

1) Derivation of a.e.p.d.f. oN, N through additive free convolution (Theorém]3.1)

2) Derivation of inversej-transform ofM through Cauchy integration (Theorém13.2)

3) Derivation of Stieltjes transform oK through multiplicative free convolution in th8-transform domain

(Theoren{3.B)
4) Calculation offg® through Lemma-312

5) Integration based on ed. (4) in order to calculate capacit
Theorem 3.1:The a.e.p.d.f. olN, N follows a scaled version of the Mar&enko-Pastur law, ag lasX, =; are

asymptotically row-regular.
Proof: Considering a Gaussian channel matix~ CA (0, I), the empirical eigenvalue distribution %fGGH

converges almost surely (a.s.) to the non-random limitiggrevalue distribution of the Mar€enko-Pastur law|[20],
whose density function is given by
fo%o(;(;H(I) = flVIP(Iaﬂ) (8)

V@—a) b-2)"

2rx

fup (2,8) = (1 - B)" 6 (x) +
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wherea = (1 — v/B)2,b = (1 + /B)? andn-transform,S-transform are given by [6]

o (a,8) = 1 - 20 ©
2
o (x,B) = (\/x(1+\/ﬁ)2+1—\/:c(1—\/3)2+1)
Suie (2.9) = 5 (10

and g is the ratio of the horizontal to the vertical dimension of B matrix.

According to [21], [22], [28], the channel covariance maLH" can be decomposed into a sum of unit rank
matrices which are assumed asymptoticHrelﬂsing additive free convolution in th&-transform domain, the
empirical eigenvalue distribution O};HHH is shown to converge almost surely (a.s.) to a scaled vexsfidhe

Marcenko-Pastur law [20], as long &% is asymptotically row-regular

FEaamn (@) =5 fare (g2, 8) (11)
or equivalently
N (@) == fup(qz, B) (12)
IR @) == fup(pz,7). (13)
]

Lemma 3.1:The S-transform ofN, N converges almost surely (a.s.) to:

Sn(z) = %Bix (14)
Yg(r) = %7 Jlr - (15)
Proof: According to Theorerh 311 and Definitign B.1,
() == e (g, B) (16)
i) =5 (. ) )
Using Definition[3.2 and eq[9),
Sn(r) = ~ Tl (@ 4 1)

EFN %2Mp(a¢, 5)
- (18)
A similar derivation can be followed foEg (v). [ |

4The reader is referred tb_[21], [22] for a complete proof okedten 3.1L.
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Theorem 3.2:The inversey-transform ofM is given by:

@-1 (Vi+ @'+ @y 4204146 -0))

—1 _
v (@) = oy . (29)
Proof: See AppendiXCA. [ |
Theorem 3.3:The inversey-transform ofK is given by:
-1 1 1 -1
S 20
' (2) = 2 g @) (20)

Proof: Assuming asymptotic freen&between matrice®N and M, the ¥-transform ofK is given by multi-

plicative free convolution:
Yk (z) = In(2)EMm () £

(—x+1)n{<1(w+1)=1 1 <—I+1)771§11($+1)

x 5[3 +x T
where step(a) combines Definitioli 3]2 and ed.{14). The variable subsiituy = = + 1 yields eq. [(2D). [ |

Lemma 3.2:The a.e.p.d.f. ofK is obtained by determining the imaginary part of the SgsltiransformS for
real arguments
F (@) = lim 23 (Suco +1y) ). 1)
where the Stieltjes-transfor$ of K is given by Propertj; 3]1 and thgetransform ofK is calculated by inverting
eq. (20).
Lemma 3.3:The a.e.p.d.f. ofM is obtained by determining the imaginary part of the StsltfransformS for

real arguments, where the Stieltjes-transf@nof M is given by Propert} 3]1 and thgtransform ofM is given
by eq. [27) in AppendikA.

IV. NUMERICAL RESULTS

In order to verify the accuracy of the derived closed-formpressions and gain some insights on the capacity
performance of the proposed generic model, a number of ricaheesults are presented in this section. In the
following figures, solid lines are plotted based on closearfexpressions, while bars and circle points are caladilate

based on Monte Carlo simulations.

5Independent unitarily invariant matrices with compacilpgorted asymptotic spectid [6, Example 2.45], such asatfigind inverse Wishart
matrices with identity covariance matrik [24], are asyntigtly free. The matriceN and M are independent, but the unitary invariance is
not straightforward. More specificalllj is a Wishart matrix with a covariance matrix which dependssband thus its distribution belongs to
a more general class, called elliptically contoured madistribution [24]. In addition,M is the inverse of a non-central Wishart matrix as the
sum of the channel covariance and the identity matrix. Nbedss, the assumption of asymptotic freeness has beevatadtby the accuracy
of eigenvalue distributions and the fact that similar agprations have been already investigated in an informati@oretic context, providing
useful analytical insights and accurate numerical re§@g3, [26].
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A. A.e.p.d.f. Results

The accuracy of the derived closed-form expressions foricestKK, M, N is depicted in Figuré]1l. The solid
line in subfiguré 1(a) is drawn using Theorem]3.1 and spetifieq. (12), in subfigurg I(b) using LemrhaB.3 and
in subfigurg 1(¢) Lemm@=3.2. The histograms denote the mtimatriceskK, M, N calculated numerically based
on Monte Carlo simulations. More specifically, the matri€esind G are generated using independent identically
distributed (i.i.d.) complex circularly symmetric (c.9.elements forl03 fading instances and the matricEsand
3’1 using the following simplified model for diminishing off-atjonals:

1

whereo; ; is the (¢, j)th matrix element o or 3. It can be seen that there is a perfect agreement between the

(22)

two sets of results.

Figure[2 depicts the effect of transmit power, ¢) and channel dimensiong(y) on the a.e.p.d.f. of matrix
K. As it can be observed, the a.e.p.d.f. has four degrees efiéra, each one contributing to the shape of the
curve. The final shape would be determined by combining tifiagecontributions, namely the transmit power of
desired dimensiong, the transmit power of interfering dimensionsdesired transmit over receive dimensighs
and interfering transmit over receive dimensionsThe effect of the quantitieg, p is similar to that ofu, v and it

is not depicted for the sake of conciseness.

B. Capacity Results

In this paragraph, the focus is on cooperating BS clustethéncontext of a linear cellular array with single-
antenna BSs / UTs and wideband transmission scheme, asatkpidigurd 8. However, the presented closed-form
expressions can be straightforwardly applied to planayarand multiple-antenna BSs and UTs. The parameters
used for producing the capacity results are presented ite Tali he transmit power, the number of UTs per
cell 8 and the cell sizeR are kept constant while the number of celfs participating in the cluster varies. The
simulated system consideb® cells in total and10? Monte Carlo (MC) iterations. The UTs are assumed to be

distributed on a regular grid across the system coverage §i&N\R and TINR are calculated as follows:
(23)

while a power-law path loss modeél [27], 28], [12] is empldyfer constructing the variance profile matricgs3;:

d; ; -3
Ui,j = \/P() (1 —|— d:) B (24)

whereg; ; is the (i, 7)th matrix element and; ; is the spatial distance between thik receive dimension and the

jth transmit dimension. The quantitigsp can be calculated either numerically or based on closed-&xpressions
as described in_[29]/ [30] for linear and planar cellularage respectively. It should also be noted that scaling the
cluster sizeK affects the structure of matric&s, 31 and as a result the quantitiesp. In this direction, the capacity

plot versus cluster size in Figulé 4 includes two sets ofltestihe circle points denote values calculated based on
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11

simulating the channel matrices and averaging using[éq.T¢® solid line is plotted using ed.](4) and Theorem
[B.2. As it can be seen, the potential spectral efficiency opeoating BS clusters is very high even for moderate

cluster sizes.

V. CONCLUSION

In this paper, a generic multiantenna channel model wasdntred, incorporating Gaussian noise, flat fading,
path loss and cochannel interference. The proposed modetaees and extends previous models in the literature
by considering profile matrices which shape the variancéeffading coefficients for both desired and interfering
signal dimensions. As a result, it is possible to describédewange of cochannel interference scenarios, including
single-user and multi-user MIMO, as well as cooperating Bfsters, also known as distributed antenna systems.
Based on a free probability approach, the asymptotic egaewdistribution has been derived, resulting in closed-
form expressions which depend on TSNR, TINR, channel dilmassand norms of the variance profile matrices.
Furthermore, the derivations herein have demonstrateddoomplicated channel matrix expressions can be tackled
by additive and multiplicative free convolution in ti& and S-transform domain respectively, as well as properties
of the n and Stieltjes transform. Finally, the derived a.e.p.difth® matrix products in théogdet formula was
utilized to calculate the capacity of cooperating BS clisstey varying the size of the cluster and to provide an

estimation of the resulting spectral efficiencies.

APPENDIXA

PrROOF OFTHEOREM[3.2

Since the a.e.p.d.fig’(x) is known, the a.e.p.d.f. of{;(y) can be calculated considering that= (1 + x)7L,
wherey andz represent the eigenvalues df and N respectively:
1 oo, —1
y’(yl(af))‘ Rl
1

- (). (25)

m(y(z)) =
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12

Following the definition ofy-transform [6, Definition 2.11],[31]:

+oo
m() = [ R

too —x
:/_Oo 1+wm2fN( x >d$

(a) T w—|—1
@ _ — T fe(w)d
/+OO 1+¢+wa(U))w

oo w1
:/m T

w1
:/& 71+1/)+w277wp\/ (b—w)(z —w)dw
® /”g 1+p(1+v+2/ycosw)

o ™(1+y+2/ycosw)(14+v+p(l+v+2,/7cosw))
- / (L4547 + A + e (e —e™)/20

o TH7+ A+ e @)+ 9T P47+ VA + e =)
©, 1 7{ L+pA+7+AC+HTHNE —¢H)?

=1 SA+7+VA(C+ )M+ +p(L+v+ (¢ +¢H)

sin® wdw

™

dg

4171'

1 ?{ (4P +9))¢ + AB(E* +1)(¢* —1)°
Tdim S A+ A+ D)CA + 9+ 5(1+7)) + AP + 1)
wherea = p(1 — /7)? andb = p(1 + V7)?. Step(a) requires the variable substitution= 1/(w + 1), dz =

d¢ (26)

—1/(1+w)*dw, step(b) requiresw = 1+vy+2,/y cosw, dw = 2,/7(— sinw)dw and step(c) ¢ = €™, d{ = i(dw.
Subsequently, a Cauchy integration is performed by caioglahe poles; and residueg; of eq. [26):

C071:07
Cos = —(1+y)+d-9)
) 2ﬁ )
QN1 (=P R 42 (14 9) (L +7) B+ (1+9)°
C4,5: ~ )
2p\y
_ Pttt
pPo = ~ 3
DY
_1
pl_\/’—y7
v—1
:ii
P2,3 PO

(= (5149 V (=D +2 (1) TH)p+IF9) + (= )5 +2 (14+9) (14+9)5+(14+9)? ) ¥
57 (14+9) (= (=152 +2 (14+9) (1+7)5+ (14+6) >+ (147)5+ 1+

Using the residues which are located within the unit disk, @auchy integration yields:

pas = =E

nm(Y) = —%(po + p2+ ps)

—(V?++04+7)P)+) VB2 (—149)2+2 (1+9) (7 Dp+(1+8) 2+ + (24 (242 7)5) v+ (14 (1472 52+ (2 v+3)p) ¥+ (v+1)p>+5
(149) (VA (— 147242 (1+9) (+ Dt (1+9)2 9+ 1+ (7+1)5)

(27)
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Inversion yields eq[{19).
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TABLE |
PARAMETERS FOR CAPACITY RESULTS

Parameter Symbol | Value/Range (units)
Cell Radius R 1 Km
Reference Distance do 1m
Reference Path Loss Py 34.5 dB
Path Loss Exponent n 3.5
UTs per Cell B 10
Cluster Size K 1-10
Total number of cells | K + % 50
UT Transmit Power Pr 200 mW
Thermal Noise Density Ny —169 dBm/Hz
Channel Bandwidth B 5 MHz
Number of MC iterations 103
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Fig. 1. A.e.p.d.f. plots of matriceK, M, N. Parameters8 = 5,y = 10,vq = 10, up = 5.
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