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Abstract

This paper presents the first implementation of a two-way relay network based on
the principle of physical-layer network coding. To date, only a simplified version of
physical-layer network coding (PNC) method, called analog network coding (ANC),
has been successfully implemented. The advantage of ANC is that it is simple to
implement; the disadvantage, on the other hand, is that the relay amplifies the noise
along with the signal before forwarding the signal. PNC systems in which the relay
performs XOR or other denoising PNC mappings of the received signal have the
potential for significantly better performance. However, the implementation of such
PNC systems poses many challenges. For example, the relay must be able to deal with
symbol and carrier-phase asynchronies of the simultaneous signals received from the
two end nodes, and the relay must perform channel estimation before detecting the
signals. We investigate a PNC implementation in the frequency domain, referred to as
FPNC, to tackle these challenges. FPNC is based on OFDM. In FPNC, XOR mapping
is performed on the OFDM samples in each subcarrier rather than on the samples
in the time domain. We implement FPNC on the universal soft radio peripheral
(USRP) platform. Our implementation requires only moderate modifications of the
packet preamble design of 802.11a/g OFDM PHY. With the help of the cyclic prefix
(CP) in OFDM, symbol asynchrony and the multi-path fading effects can be dealt
with in a similar fashion. Our experimental results show that symbol-synchronous
and symbol-asynchronous FPNC have essentially the same BER performance, for
both channel-coded and unchannel-coded FPNC.
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1. Introduction

In this paper, we present the first implementation of physical-layer network coding
(PNC) on the software radio platform. We believe this prototyping effort moves the
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concept of PNC a step toward reality. Our implementation work also exposes and
raises some interesting issues for further research.

PNC, first proposed in ﬂ], is a subfield of network coding E] that is attracting
much attention recently. The simplest system in which PNC can be applied is the two-
way relay channel (TWRC), in which two end nodes A and B exchange information
with the help of a relay node R in the middle, as illustrated in Fig. [l Compared
with the conventional relay system, PNC could double the throughput of TWRC by
reducing the needed time slots for the exchange of one packet from four to two ﬂ] In
PNC, in the first time slot, end nodes A and B send signals simultaneously to relay R;
in the second phase, relay R processes the superimposed signals and maps them to a
network-coded packet for broadcast back to the end nodes. From the network-coded
packet, each end node then makes use of its self information to extract the packet
from the other end node ﬂ, 3, @]

Prior to this paper, only a simplified version of PNC, called analog network coding
(ANC) ﬂa], has been successfully implemented. The advantage of ANC is that it is
simple to implement; the disadvantage, on the other hand, is that the relay amplifies
the noise along with the signal before forwarding the signal, causing error propagation.

To our best knowledge, the implementation of the original PNC based on XOR
mapping as in ﬂ] has not been demonstrated, even though it could have significantly
better performance. A reason is that the implementation of XOR PNC poses a
number of challenges. For example, the relay must be able to deal with symbol
and carrier-phase asynchronies of the simultaneous signals received from the two end
nodes, and the relay must perform channel estimation before detecting the signals.

This paper presents a PNC implementation in the frequency domain, referred to as
FPNC, to tackle these challenges. In particular, FPNC is based on OFDM, and XOR
mapping is performed on OFDM samples in each subcarrier rather than the samples
in the time domain. We implement FPNC on the universal soft radio peripheral
(USRP) platform. Our implementation requires only moderate modifications of the
packet preamble design of 802.11a/g OFDM PHY. With the help the cyclic prefix
(CP) in OFDM, symbol asynchrony and the multi-path fading effects can be dealt
with in a similar fashion. Our experimental results show that symbol-synchronous
and symbol-asynchronous FPNC have nearly the same BER performance, for both
channel-coded and unchannel-coded FPNC.
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Figure 1: System model for physical-layer network coding.



Challenges

In the following, we briefly overview the challenges of PNC, and the implementa-
tion approaches taken by us to tackle them:

Asynchrony

There are two possible implementations for PNC: synchronous PNC and asyn-
chronous PNC. In synchronous PNC, end nodes A and B have the uplink channel
state information (CSI). They perform precoding and synchronize their transmissions
so that their signals arrive at relay R with symbol and carrier-phase alignments. For
high-speed transmission, such tight synchronization is challenging; in addition, timely
collection of CSI is difficult in fast fading scenarios.

Asynchronous PNC is less demanding. It does not require the two end nodes to
tightly synchronize and precode their transmissions. In particular, knowledge of the
uplink CSI is not needed at the two end nodes. The simplicity at the end nodes
comes with a cost. Without precoding and synchronization of the two end nodes,
their signals may arrive at the relay with symbol and carrier-phase misalignments.
A key issue in asynchronous PNC is how to deal with such signal asynchrony at the
relay [6, [7].

This paper focuses on the implementation of asynchronous PNC. To deal with
asynchrony, our FPNC implementation makes use of OFDM to lengthen the symbol
duration within each subcarrier. Then, independent XOR PNC mapping is performed
within each subcarrier. OFDM splits a high-rate data stream into a number of lower-
rate streams over a number of subcarriers. Thanks to the larger symbol duration
within each subcarrier, the relative amount of dispersion caused by the multipath
delay spread is decreased. The OFDM symbols of the two end nodes become more
aligned with respect to the total symbol duration, as illustrated in Fig. 2 In par-
ticular, if the relative symbol delay is within the length of the CP, the time-domain
misaligned samples will become aligned in the frequency domain after DF'T is applied.
This property will be further elaborated later in Section 2.

Channel Estimation

For good performance of asynchronous PNC, the relay must have the knowledge
of the uplink CSI. This has been the assumption in many prior works on PNC (e.g.,
@, ]) This means that in implementation, the relay will need to estimate the channel
gains. Most channel estimation techniques for the OFDM system assume point-to-
point communication in which only one channel needs to be estimated. In PNC, the
relay needs to estimate two channels based on simultaneous reception of signals (and
preambles) from the two end nodes. This poses the following two problems in PNC
that do not exist in point-to-point communication:

e Channel estimation in a point-to-point OFDM system (e.g., 802.11 ﬂg]) is gener-
ally facilitated by training symbols and pilots in the transmitted signal. If used
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Figure 2: PNC with time asynchrony: (a) frequency-domain physical-layer network coding (FPNC);
(b) time-domain physical-layer network coding (TPNC).

unaltered in the PNC system, the training symbols and pilots from the two end
nodes may overlap at the relay, complicating the task of channel estimation.
In our implementation, we solve this problem by assigning orthogonal training
symbols and pilots to the end nodes. The details will be given in Section 4.

e It is well known that carrier frequency offset (CFO) between the transmitter
and the receiver can cause inter-subcarrier interference (ICI) if left uncorrected.
In a point-to-point system, CFO can be estimated and compensated for. In
PNC, we have two CFOs at the relay, one with respect to each end node.
Even if the two CFOs can be estimated perfectly, their effects cannot be both
compensated for totally; the total elimination of the ICI of one end node will
inevitably lead to a larger ICI for the other end node. To strike a balance, our
solution is to compensate for the mean of the two CFOs (i.e., compensate for
(CFO, — CFOg)/2). The details will be elaborated in Section 4.

Joint Channel Decoding and Network Coding

For reliable communication in a practical PNC system, channel coding needs to
be incorporated. This paper considers link-by-link channel-coded PNC, in which the
relay maps the overlapped channel-coded symbols of the two end nodes M, ] to
the XOR of the source symbols ; after that, the relay channel-encodes the XOR
source symbols to channel-coded symbols for forwarding to the end nodes. Such a
link-by-link channel-coded PNC system has better performance than an end-to-end

channel-coded PNC system M, ]

IThis process is called Channel-decoding-Network-Coding (CNC) in [10] because it does two
things: channel decoding and network coding. Unlike the traditional multiuser detection (MUD)
in which the goal is to recover the individual source information from the two end nodes, CNC
aims to recover the XOR of the source information during the channel decoding process. CNC is a
component in link-by-link channel-coded PNC critical for its performance M, ﬂ
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In our FPNC design, we adopt the convolution code as defined in the 802.11
a/g standard. The relay first maps the overlapped channel-coded symbols to their
XOR on a symbol-by-symbol basis. After that it cleans up the noise by (i) channel-
decoding the XOR channel-coded symbols to the XOR source symbols, and then (ii)
re-channel-coding the XOR source symbols to the XOR channel-coded symbols for
forwarding to the two end nodes.

The remainder of this paper is organized as follows: Section 2 details the delay
asynchrony model of this paper. Section 3 presents the FPNC frame format design.
Section 4 addresses the key implementation challenges. Experimental results are given
in Section 5. Finally, Section 6 concludes this paper.

2. Effect of Delay Asynchrony in Frequency Domain

In asynchronous PNC, symbols of the two end nodes may arrive at the relay
misaligned. We mentioned in the introduction that if the relative symbol delay is
within the length of the CP in FPNC, then the time-domain misaligned samples
will become aligned in the frequency domain after DFT is applied. This section is
devoted to the mathematical derivation of this result. Here, we will derive a more
general result that takes into account multi-path channels as well.

2.1. Effective Discrete-time Channel Gains
We consider the following multi-path channel model. Suppose that there are M4

paths from node A to relay R with delays 74 < 7} < -+ < 7‘%“‘_1 and corresponding
channel gains a9, al,...,a’Y*™". The channel impulse response of A is ga(t) =

Ma—-1 )
> ao(t — 74). Similarly, there are Mp paths from node B to relay R with delays
i=0

7% <15 < --- < 7377 and channel gains o%, ok, ..., ay?"" with channel impulse
response gp(t) = Y. a'zd(t — 75). Without loss of generality, we assume that frame
i=0

A arrives earlier than frame B: specifically, 74 < 7%. Note that our model allows for
the case where nodes A and B do not exactly transmit at the same time. If one node
transmits slightly later than the other, we could simply add the lag time to all the
path delays of that node. We assume that the net effect is such that the signal of
A arrives earlier than the signal of B, whether this is due to earlier transmission or
shorter path delay of A .

We first derive the effective discrete-time channel gains for the uplink in FPNC. As
shown in Fig. B] the discrete-time channel gains capture not just the continuous-time
channel gains, but also the operations performed by pulse shaping and matched-
filtering-and-sampling. Let us assume that the pulse shaping function p(t) is of finite
length: specifically, we assume p(t) = 0 for ¢ < 0 and ¢t > Tp. The continuous-time
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Figure 3: (a) Continuous-time channel model for PNC, in which z4[n] and zp[n] are the time
domain source samples; y[n] is the time domain received samples; ga(t) and gp(t) are the wireless
multipath channel gains; p(t) is the pulse shaping function; w(t) is the receiver noise; and MF is the
matched filter and sampler at the relay node. (b) Equivalent discrete-time channel model for PNC,
in which ha[n] and h[n] denote the equivalent discrete time channel impose response (i.e., effective
discrete time channel gains), and w[n| is the equivalent discrete-time noise term.

baseband signal fed into the continuous-time channel is x4 (t) = > za[n]p(t — nT).

n=-—oo
The time domain received signal if only node A transmits is
oo Muy—1

yalt) =za(t) x galt) +wt) = Y > awalnlpt — 74 —nT) +w(t), (1)

n=—oo0 =0

where w(t) is the noise, assumed to be AWGN. Matched-Filtering (MF) and sampling
are then performed on ({I), by sampling at the first multipath channel tap of the uplink
channel between node A and relay R, to get the received samples

wali] = [ 00t = 73 + T — mT )
oo 0 Ma—1
= Z xaln] / Z ayp(t — 7y —nT)p(t — 74 + Tp — mT)dt p + wlm)|
n=-—oo o =0

= Z xa[nlhalm —n| + w[m, (2)

where wim] = [ w(t)p(t — 74 + Tp — mT')dt. We see that the effective discrete-time
- 00 Ma—1 )
channel of A issuch that ha[m—n] = [ > a'yp(t — 74 —nT)p(t — 74 + Tp — mT)dt.
—oo 1=0

Note that p(t—74—nT)p(t—74+Tp—mT) = 0if |74 — 74 +Tp — (m —n)T| > Tp.
In other words, hs[m —n] = 0 for (m —n)T > 744" — 7% + 2Tp and (m —n)T < 0.
Define Dy = ((T%A_l - 79+ 2Tp) /TW

Let us now consider what if both end nodes transmit. The received signal at the



relay node is
yr(t) = xa(t) * ga(t) + zp(t) * gp(t) + w(t). (3)

Sticking to the above MF that is defined with respect to first path delay of A, we
have

yr[n] = xa[n] x ha[n] + xp[n] x hg[n] + w(n], (4)

where ha[n] =0 for n < 0 and n > Dy 2 [(Tﬁ/[“_l — 794 2Tp) /T], and hp[n] =0
for n < [(19 — 79 + 2Tp) /T and n > D = [(7M2~1 — 79 + 213 /T1.
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Figure 4: Example of delay spread in FPNC.

2.2. Delay-Spread-Within-CP Requirement

The delay spread of node A is D4, and the delay spread of node B, with respect to
time n = 0, is Dp. We define the delay spread of the PNC system as (i.e., it combines
the delay spreads of A and B into a potentially larger delay spread, as illustrated in
Fig. DelaySpread)

delay spread = max [Dy, Dp| . (5)

The above derivation is general and do not have any requirement on the modulation.
This subsection, we will present the OFDM modulated PNC system. In particular,
we will present the “Delay-Spread-Within-CP Requirement” for FPNC. That is, we
combine the Cyclic Prefix (CP) and Discrete Fourier Transform (DFT) to show that
the time-domain symbol asynchrony of FPNC disappears in the frequency domain,
when the uplink frames satisfy the Delay-Spread-Within-CP Requirement.

First, let H[k] be the N-point DFT of h[n| given by ] (Note that, in the following

derivation, we assume the subcarrier indices start from 0, i.e, k =0,--- | N — 1)
N-1 .
-2mtnk
H[k] = DFT{h[n]} = > hln]e 7" ¥,  0<k<N-1. (6)
n=0



The N-point circular convolution of x,, and h,, is written as

=2

yln] = z[n] ©x hin] =} hlk]zn — Ky, (7)

B
Il

where [n — k|y denotes [n — k] modulo N. In other words, x[n — k] is a periodic
version of x[n — k] with period N. From the definition of DFT, circular convolution
in time leads to multiplication in the frequency ]:

DFT{a[n] @y h[n]} = X[KH[K], 0<k<N -1, 8)

The channel output, as in (), however, is not a circular convolution but a linear
convolution. The linear convolution between the channel input and impulse response
can be turned into a circular convolution by adding a special prefix to the input called
a cyclic prefix (CP) ﬂﬁ]

For FPNC, let Hulk] and Hglk] denote the frequency responses of the discrete-
time channels, and let C' denote the length of the CP. One OFDM symbol duration is
then NV + C. The CP for z4[n] is defined as z4[N — C|, ..., x4[N — 1]: it consists of
the last C values of the z 4 [n] sequence. For each input sequence of length N, these last
C samples are appended to the beginning of the sequence. This yields a new sequence

rQFPMIp], —C <n < N — 1, of length N + C, where 2QFPM[-C1, ... 2QFPM[N —
1] =2A[N = C],...,za[N — 1],24[0],...,24[IN — 1]. Note that with thls definition,
QP p] = x4(n)y for —C < n < N — 1, which implies that 2QFPM[p — k] =
xaln —kly for —=C <n—k<N—1.

Suppose xQFPM[n] and 8FPM[n] are inputs to a discrete-time channel with im-

pulse response h4[n] and hp[n], respectively. The channel output yg[n], 0 <n < N—1
is then (assuming that the delay spread of FPNC max [D,4, Dp] is no large than the
CP length ()

yr[n] = ZFDM[ | % haln ]+I§FDM[ ]*hB[ ] + w[n]
- hA[k] QFDM [y, +Zh3 23" PMn — k] + w(n]
= - hA[k]:zA[n—k]N+i:hB[k]xB[n—k]N+w[n]
= z4[n] N ha[n] + zp[n] @n hp[n] + wln], 9)

where the third equality follows from the fact that for 0 < k < O —1, 2QFPM[n— k| =
xaln — k]y for —C < n —k < N — 1. Thus, by appending a CP to the channel
input, the linear convolution associated with the channel impulse response yg[n| for
0 < n < N —1 becomes a circular convolution. Taking the DFT of the channel



output in the absense of noise then yields the following FPNC frequency domain
digital expression:

FPNC Frequency Domain Digital Expression:

Define C' as the length of the CP, and assuming FPNC delay spread = max [D 4, Dg| <
Ma—1 Mp—1

C (where Dy and Dp are functions of the multipath delays 7 and 7p re-
spectively) the received signal at subcarrier k is given by
Y[k| = Halk|Xalk] + Hglk| Xplk] + W K], k=0,...,N—1. (10)

Note that the time-domain delay spread has been incorporated into H4[k| and Hp[k]
respectively. In FPNC, we will map Y'[£] for each subcarrier k into the XOR, X 4[k] @
Xglk]. This will be detailed in Section 4.3. The main point here is in (I0), the signals
of different subcarriers k are isolated from each other, and we only need to perform
PNC mapping within each subcarrier.

We remark that our discussion so far in this section has assumed the absence of
CFO. When there is CFO, inter-carrier interference (ICI) may occur, and this will be
further discussed in Section 4.1.

3. FPNC Frame Format

10 short training symbols 320 samples
160 samples 2 long short training symbols
128 samples

Node A | sy |82 |83|S4|Ss5|8S6|87|85|So |s10/CP L, L, 0‘ 0 data

Node B || s |S2|S3|S4|S5/|86|S7]8s] So sl‘ 0 ‘CP‘ L, L, ‘0‘ data
>
Cyclic prefix
16 samples

Figure 5: FPNC preamble format.

This section focuses on the PHY frame design to enable asynchronous operation,
channel estimation, and frequency offset compensation in FPNC. As previously men-
tioned, the asynchronous operation requires the PNC delay spread to be within CP.
To ensure this, a simple MAC protocol as follows could be used to trigger near-
simultaneous transmissions by the two end nodes. The relay could send a short
polling frame (similar to the “beacon frame” in 802.11 that contains only 10 Bytes)
to the end nodes. Upon receiving the polling frame, the end nodes then transmit.
With this method, the symbols would arrive at the relay with a relative delay offset
of |RTTy — RTTg|, where RT'T is the round trip time, including the propagation
delay and the processing time at the end nodes. This delay offset is not harmful to
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Figure 6: Short Training Symbol design for FPNC

) i Figure 7: Long Training Symbol design for FPNC
(time domain).

(time domain).

our system as long as the sample misalignment of two end nodes is within the CP
length.

Given this loose synchronization, our training symbols and pilot designs described
below can then be used to facilitate channel estimation and frequency offset compen-
sation in FPNC. We modify the PHY preamble design of 802.11a/g for FPNC. The
overall FPNC frame format is shown in Fig. Bl The functions of the different com-
ponents in the PHY preamble are described in the next few subsections.

3.1. FPNC Short Training Symbol

In 802.11, the short training symbol (STS) sequence contains 160 time-domain
samples, in which 16 samples form one STS unit (sts) for a total of 10 identical
units, as shown in Fig. Bl FPNC adopts the same STS sequence as in 802.11, as
illustrated in Fig. [0 The STS sequence is used by the relay node to perform the
sample timing recovery on the received frame. In particular, the relay node applies
a cross-correlation to locate the sample boundary for the long training symbols that
follow the STS sequence. The normalized cross-correlation is defined as follows:

L—-1

> (sts*[ilyr[n +1])
Zln] = 177 : (11)

L—-1

;) (yrln +ilygln +1])

where n is the received sample index, yg[n] is the n-th sample at the relay R, and
L = 16 is the length of each sts. For FPNC, this cross-correlation will result in 20
peaks over the STS sequences (see Fig. B) of the two frames if the frames are not
synchronized. From this profile of peaks, we can identify the last two peaks. If the
Delay-Spread-Within-CP requirement is satisfied, then the last two peaks must be
the last peaks of A and B, respectively. This is because the CP as well as the sts are
of 16 samples in length. From there, we could locate the boundaries of the LTS of
A and B that follow. Note that when the STS sequences of nodes A and B overlap
exactly, we will have ten peaks only. In this case, the LTS boundaries of A and B also
overlap exactly, and we simply use the last peak to identify the common boundary.

10
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Figure 8: Cross-correlation of the STS for the uplink of FPNC.

3.2. FPNC Long Training Symbol

With reference to Fig. [0 the 802.11 LTS sequence contains 160 time-domain
samples in which there is a CP followed by two identical LTS units, Its. The receiver
uses the LTS sequence to perform channel estimation and CFO compensation.

For FPNC, in order to estimate two uplink channel gains, we design the LTS so
that it contains twice the length of LTS in 802.11a/g, as shown in Fig. [l In Fig. [1
we intentionally show the case in which the LTS sequences of the two end nodes are
not exactly synchronized. Note that we change the 802.11 LTS design by shortening
its original CP length from 32 to 16 to make sure that the two lts units of B will not
overlap with the data of A that follows under the condition that the delay spread is
less than the CP length of 16. This does not impose additional requirement on the
delay spread, since the CP of the data OFDM symbols in 802.11a/g (and FPNC) have
only 16 samples anyway (i.e., the delay spread must be within 16 samples anyway).
Section 4 will detail the CFO compensation and channel estimation methods for our
implementation.

53 subcarriers

802.11 Pilot Data ‘P‘ Data ‘P‘ Data

P‘ Data ‘P‘ Data

A Data ‘P‘ Data ‘0‘ Data ‘P‘ Data ‘O‘ Data

FPNC Pilot

B Data ‘0‘ Data ‘P‘ Data ‘0‘ Data ‘P‘ Data

Figure 9: Long Training Symbol design for FPNC (time domain).

11



3.3. FPNC' Pilot

There are four pilots for each OFDM symbol in 802.11, as shown in Fig. @ The
four pilots are used to fine-tune the channel gains estimated from LTS. In a frame,
there are multiple OFDM symbols, but only one LTS in the beginning. In practice,
the channel condition may have changed by the time the later OFDM symbols arrive
at the receiver. That is, the original channel gains as estimated by LTS may not be
accurate anymore for the later OFDM symbols. The pilots are used to track such
channel changes.

In FPNC, we design the FPNC pilots of nodes A and B by nulling certain pilots
to introduce orthogonality between them, as shown in Fig. [@ As will be detailed
in Section 4.2, this allows us to track the channel gains of A and B separately in
a disjoint manner in FPNC. We conducted some experiments for a point-to-point
communication system using the two-pilot design rather than the four-pilot design.
We find that for our linear interpolation channel tracking scheme described in Section

4.2, the BER performances of the two-pilot and four-pilot designs are comparable for
BPSK- and QPSK-modulated systems.

4. Addressing Key Implementation Challenges in FPNC

We next present our methods for carrier frequency offset compensation, channel
estimation, and FPNC mapping, assuming the use of the PHY frame format presented
in Section 3.

4.1. FPNC Carrier Frequency Offset (CFO) Compensation

For CFO compensation, we first estimate the two independent CFOs (namely
CFO4 and CFOgp) caused by the carrier frequency offsets between nodes A and B
and relay R, respectively. We then compensate for the mean of the two CFOs (i.e.,
CFOpnec = (CFO4+ CFOpg) /2 ). The details are presented below.

4.1.1. CFO Estimation

For the uplink phase, when there are CFOs, the received frames at relay R will
suffer from time-varying phase asynchronies. We need to compensate for the CFOs
to alleviate inter-carrier interference (ICI) among data on different subcarriers.

Recall that in Section 3, we mentioned that a loose synchronization MAC protocol
can be used to ensure that the difference of the arrival times of the frames from nodes
A and B are within CP. That means that the LTSs from nodes A and B will overlap
with each other substantially, with the non-overlapping part smaller than CP (see
Fig. B)). Recall also that we introduce orthogonality between the LTSs of nodes A
and B so that when the LTS units in A are active, the LTS in B are zeros, and vice
versa, as shown in Fig. [l This allows us to separately estimate CFO, and CFOg.

Without loss of generality, in the following we focus the estimation of CF O, using
LTSy.
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CFOy is given by Afa = fa — fr (i.e., the difference in the frequencies of the
oscillators of node A and relay R). We define the normalized CFOy4 to be ¢pa =
2r A fA% , where T is the duration of one OFDM symbol, and N is the number of
samples in one OFDM symbol not including CP. In other words, ¢4 is the additional
phase advance introduced by the CFO from one sample to the next sample.

To estimate ¢4, we multiply one sample in the first unit of LTSy (see Fig. [ by

the corresponding sample in the second unit of LTS to obtain (y,L%TSA [n])* y}L%TSA [n+

N]. Then, angle ((y}L%TSA [n])* y,L%TSA [n + N]) € (—m,m) is given by

angle <(y}L%TSA [n])* YRS + N]) +2mm = Noa, (12)

where m € {...,—2,-1,0,1,2,...}.
For our experimental test-bed, USRP, we found that the accuracies of the onboard
oscillators are such that they do not induce large CFOs so that m = 0 (interested

readers are referred to ﬂﬂ] for CFO estimation when m # 0.). Hence, we could write
([I2) as follows:

Noa = angle ((yéTSA [n])* y}LzTSA [n + N]) . (13)
Strictly speaking, (I3 is an expression for the noiseless case. Because of noise,
angle ((y}LzTSA [n])* YR oA+ N]) for different n € {0,..., N — 1} could be different.
Thus, in our computation, we first obtained ¢ 4[n] = angle <(yéTSA [n]) CyETSA I 4+ N ])
forn=0,...,N — 1, and then estimate ¢4 by

b4 = median (QEA[TL]) (14)

We obtain ¢p similarly.

The reason we use the median CFO instead of the mean values is that we find
the median is more stable. In particular, some samples of QASA[n] are outliers that
appear to be caused by unknown errors of significant magnitudes. We will show the

BER results comparing the use of mean and median for CFO compensation (in Fig.
T0(b)).

4.1.2. Compensation for Two CFOs
In FPNC, we adopt the mean of the two CFOs for compensation purposes:

CZE = (QASA + CZEB> /2. (15)

Experimental results show (see Fig. [I0{a)) that compensation by the mean ¢ in
(I3) is better than compensation by either ¢4 or ¢5. We believe a theoretical study
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Figure 10: Comparison of the different CFO compensation methods: (a) CFOy4 v.s.
(b) mean CFO v.s. median CFO.

to explore and compare different compensatation methods may be worthwhile in the
future. As far as we know, there have been no theoretical treatments of compensating
for two CFOs. Fig. [O(b) shows the BER performance of using median for the
estimate of ¢4 or ¢p as in (I4]), versus using mean. It shows that he use of median
results in better performance.

After compensation, our received data in the time domain is given by

Ur[n] = yR[n]e_j"qg. (16)
In the frequency domain, we have
Yu[k] = DFT(gr[n)). (17)
is possible.

is exactly the same as that of point-to-point communication, thus real-time decoding

We should emphasize that the computation complexity of FPNC CFO compensation
4.2. FPNC Channel Estimation

In this subsection, we present the channel estimation and tracking method for
FPNC. Note that CFO compensation was performed on the time-domain signal. For

14
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channel estimation, however, we are interested in the channel gains for different sub-
carriers in the frequency domain. This means that channel estimation will be per-
formed after DFT. Thus, in the following we look at the signal after CP removal and
DFT.

For FPNC channel estimation, we use the LTS to obtain a first estimate. Pilots
are used to obtain additional estimates for later OFDM symbols within the same
frame. In the following, we consider channel estimation of Halk]. Estimation of
Hpglk] is performed similarly.

For channel estimation based on LTS, define one FPNC LTS unit of node A (i.e.,
with respect to Fig. [[ one unit is Its4) in the frequency domain as X%T5[k], where
k =10,...,N — 1. Based on the first unit of ltss the received frequency domain
LTS, (i.e., V"4 k] = DFT (45 *[n])), we perform channel estimation of H4[k]
as follows:

R )’}LTSA [kf]
Hulk] = £~ (18)
XFTSTK
As mentioned in Section 3, each LTS contains two identical units in our design.
The uplink channel gain H4[k] between node A and relay R is estimated by taking
the average of the two units results

Halk] = (FIA[k] + Hylk + N]) /2. (19)

In general, the channel may have changed from the first OFDM symbol to the last
OFDM symbol within the same frame. The estimate based on LTS in ([[9]) applies
only for the earlier symbols. Pilots are used to track the channel changes for later
symbols. Our pilot design was shown in Fig. Pilot. In each FPNC OFDM symbol,
there are two pilots per end node. Note from Fig. [0 that the two pilots of node A and
the two pilots are node B are positioned at different subcarriers and non-overlapping
in the frequency domain. Therefore, we could separately track the changes in H 4[k]
and Hpglk]. In the following, we consider the tracking of Ha[k|. Tracking of Hp[k]|
can be done similarly.

Let & and k" denote the subcarriers occupied by the two pilots of A. Consider
OFDM symbol m. Let ?m[k’] and ?m[k”] be the received signal in the frequency
domain. Because the pilots of A and B do not overlap, Y (k'] and Y [k"] contain
only &gnals related to the pilots of A. We first multiply Y}'[K'] and YK"] by
(H7[K])~" and (H7}[K"])~" obtained from (I9), respectively. Let P4[k'] and Py[k”]
be the two pilots. Then, we compute

AR = (HRR) Y3 K] [ Palk

AFI{T[/{:"] = (Hm[k”]) k] /P [k"). (20)
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After that, we perform linear fitting to obtain AH7[k] for k # K, k" | as follows:

Mmmzmwm+<“m%t§MMUw—w. @)

To obtain the final channel estimation for the m-th OFDM symbol, we compute

1K = A AL 2
_ 5, @5 X, =C(S
Y R Channel- ! ’ ' o
‘ Channel
—— | decoding and "|  Encoder -
Network Coding

Figure 11: Link-by-link channel-coded PNC, including channel-decoding and network coding (CNC)
process and channel encoding.

4.3. FPNC' Mapping

For reliable communication, channel coding should be used. Channel coding in
PNC systems can be either done on an end-to-end basis or a link-by-link basisg@
@] The latter generally has better performance because the relay performs channel
decoding to remove noise before forwarding the network-coded signal.

The basic idea in link-by-link channel-coded PNC is shown in Fig. [ It con-
sists of two parts. Let Yz denote the vector representing the overall channel-coded
overlapped frames received by relay R. The operation performed by the first part is
referred to as the Channel-decoding and Network-Coding (CNC) process in ﬂﬁ] It
maps Yz to Su @ Sp, where S, and S are the vectors of source symbols from nodes
A and B, respectively, and the @ operation represents symbol-by-symbol XOR oper-
ation across corresponding symbols in S4 and Sp. Note that the number of symbols
in Yz is more than the number of symbols in S4 @ Sp because of channel coding.
Importantly, CNC involves both channel decoding and network coding. In particular,
CNC channel-decodes the received signal Yy not to S4 and Sp individually, but to
their XOR. The second part can be just any conventional channel coding operation
that channel code Sy ® Sp to Xp = C(S4 @ Sp) for broadcast to nodes A and B,
where C'(x) is the channel coding operation.

As mentioned in @] and M], the CNC component is unique to the PNC system,
and different designs can have different performance and different implementation
complexity. We refer the interested readers to M] for a discussion on different CNC
designs.

In this paper, we choose a design that is amenable to simple implementation, as
shown in Fig. [2] We refer to this CNC design as XOR-CD. In this design, any linear
channel code can be used. In our implementation, we choose to use the convolutional

Y
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Figure 12: XOR-CD design for CNC.

code. In XOR-CD, the channel-decoding and network coding operations in CNC are
performed in a disjoint manner. As shown in Fig. 2] based on the CFO-compensated
Yi[k] obtained as in ([T), we obtain the overall vector Yz = (Y[k]) k=01, We then
perform symbol-wise PNC mapping to get an estimate for the the channel-coded
XOR vector Xy @ Xp = (Xalk] ® Xp[k]),_o,. , where Xy = (Xa[k]),_o,  and
Xp = (Xg[k]) k—o.1,... are the channel-coded vectors from A and B, respectively. We
assume the same linear channel code is used at nodes A, B, and R. Note that since
we adopt the convolutional code, C(*) is linear. Therefore, we have X, @ Xp =
C(S4) @ O(Sp) = C(S4 @ Sp), and thus the same Viterbi channel decoder as used
in a conventional point-to-point communication link can be used in the second block
of Fig.

The mapping in the first block in Fig. could be performed as follows. Based
on the channel gains estimated in ([22]), we could perform the XOR mapping for the
k-th subcarrier in the m-th OFDM symbol (assuming BPSK modulation) according
to the decision rule below:

exp _|Y1?L[’f}—HXL[k}—HEL[k]|2} + exp {_|Y1’{L[k}+HXL[k]+HgL[k]|2

202 202

(23)

Xg k=1 YR+ HT R —H7 R Yok —H T R+ H k)|
> exp{—IR S |}+exp{—|R e a— |},
Xmik=—1

where we have assumed Gaussian noise with variance o2. The computation complex-
ity in (IZﬂ)ﬁ, however, is large. In our implementation, we adopt a simple “log-max
approximation” ﬂﬁ] (i.e., log(D> ", exp(z;)) ~ max z;) that yields the following decision

rule:
min { V(K] — HY[K] — HR[K]]*, |2 k] + HY K] + HE K]}

XEkl=—1 9 9
> min {|YR[K] + HE K — BRIV R — HE ] + B )

X7 kl=1

(24)

2Note that (Z3) is similar to (7) in Ref. [7], except that here we allow for the possibility that
[H K] # [HE (K]
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This decision rule can also be interpreted as in Table [Il where

1172

U arg min {|Y'[k] — U|2} : (25)

Ue{+HT[k]+HP K]}

Table 1: XOR mapping with BPSK modulation in FPNC.

U= arg min {|[YF'[H] = U} | | XR[K = XP[k] @ XE[K]
Ue{£+H} [k|+HE [k]}
H K] + HE[F] 1
H7'[k] — HEK] -1
—H[k] + Hy[K] 1
—H (k] — Hy[K] 1

Note here that this decision rule could be used even for non-Gaussian noise. This
is because (28) corresponds to finding the nearest point in the constellation map
(constructed by combining the two end nodes’ channel gains).

Based on the XORed samples detected using the decision rule of Table[Il we then
perform the channel decoding to get the XORed source samples. In our implemen-
tation, we use a Viterbi decoder with hard input and hard output. In general, a soft
Viterbi algorithm could also be used for potentially better BER performance @]

5. Experimental Results

This section presents details of our FPNC implementation over the software radio
platform and the experimental results.

5.1. FPNC Implementation over Software Radio Platform

We implement FPNC in a 3-node GNU Radio testbed, with Software Defined
Radio (SDR). The topology is shown in Fig. [l Each node is a commodity PC
connected to a USRP GNU radio ﬂﬁ]

e Hardware: We use the Universal Software Radio Peripheral (USRP) NE] as our
radio hardware. Specifically, we use the XCVR2450 daughterboard operating in
the 2.4/5GHz range as our RF frontend. We use the USRP1 motherboard for
baseband data processing. The largest bandwidth that USRP1 could support
is 8MHz. In our experiment, we use only use half of the total bandwidth for

FPNC (i.e., 4MHz bandwidth).

e Software: The software for baseband signal processing is based on the open
source of GNURadio project ﬂﬂ] We build our system by modifying the 802.11g
transmitter implementation in the FTW project @] The FTW project @],
however, does not have a 802.11g receiver. Therefore, we develop our own
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OFDM receiver, designed specifically to tackle various issues in the FPNC sys-
tem, such as CFO estimation and compensation, channel estimation, and CNC
processing as presented in Section 4.

5.2. Ezxperimental Results

We conduct our experiments over the channel one of 802.11g, with 2.412GHz being
the central frequency. For each transmitter power level (we vary the SNR from 5dB
to 20dB), we transmit 1000 packets and examine the resulting BER performance.
Both the symbol-synchronous and symbol-asynchronous cases are investigated. The
packet length is 1500Bytes, which is a normal Ethernet frame size.

5.2.1. Time-Synchronous FPNC versus Time-Asynchronous FPNC

In Section 2, we derived theoretically that as long as the Delay-Spread-Within-CP
requirement is satisfied, FPNC will not have asynchrony in the frequency domain. Of
interest is whether this reduces the asynchrony penalty in practice. In our first set
of experiments, we investigate this issue. We study both unchannel-coded as well as
channel-coded FPNC systems.

To create different levels of time asynchrony, we adjust the positions of the end
nodes. One of the set-ups corresponds to the perfectly synchronized case (the STS
correlation has only ten peaks in the perfectly synchronized case: see Section 3). Fig.
[3(a) shows the BER-SNR curves for the synchronous case, and Fig. [I3|(b) shows
the curves for the asynchronous case with eight samples offset between the early and
late frames. Note that this asynchrony still satisfies the Delay-Spread-Within-CP
requirement because the CP has of 16 samples. We find that the performance results
of the asynchronous cases with other time offset to be similar, and we therefore present
the results of the eight-sample offset only.

From Fig. [3(a) and (b), we see that the asynchronous FPNC has essentially the
same BER performance as that of the synchronous FPNC. Hence, we conclude that
FPNC is robust against time asynchrony as far as BER performance is concerned.

5.2.2. FPNC versus Other Approaches for TWRC

Our next set of experiments is geared toward the comparison of FPNC with other
TWRC schemes. Recall that FPNC TWRC is a two-phase scheme using two time
slots for the exchange of a pair of packets between two end nodes. We consider the
following two additional approaches M]

e SNC: The straightforward network coding (SNC) scheme makes use of conven-
tional network coding at the higher layer using three time slots. In SNC, node
A transmits to relay R in the first time slot; node B transmits to relay R in
the second time slot; relay R then XOR the two packets from A and B and
transmits the XOR packets to nodes A and B in the third time slot.
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Figure 13: BER of FPNC with and without sample synchronization. The 95% confidence intervals

are marked in the figures. Note that the BER here is related to whether the XOR bit is decoded
correctly, not whether the individual bits from the two end nodes are decoded correctly.

e TS: Traditional scheduling (TS) scheme uses four time slots. In the first time
slot, node A transmits to relay R; in the second time slot, relay R forwards the

packet from A to node B. Similarly, the packet from node B to node A uses
two additional times slots for its delivery.

Our overall goal is the compare the throughputs of the three schemes. To derive
the throughputs, we first measure the following three frame-error rates:

1) FERpnc = P;fplmk’PNC: frame-error rate of the uplink of FPNC.

2) FERsnc = P, Hink.SNC. - frame-error rate computed from the two uplink time
slots in SNC

3) FERpyp = P}D 2P frame-error rate of a point-to-point link.

Channel coded systems are considered in our implementation. All three systems use

the convolutional channel code with 1/2 coding rate, as specified in the 802.11a/g
standard ﬂg]
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Note for 1) and 2), FERpyc and FERgyc refers to the error rate of the XOR
of the two source frames. That is the error rate for the frame Sp = S4 & Sg.
For FERgyc, we gather the decoded S4 and Sp from the two uplink time slots,
and the compute their XOR before checking whether there is an error in the XOR
frame. For FERpyc, the CNC scheme as described in Section 4.3 is used to decode
Sk directly based on the simultaneously received signals. In Fig. [4{(a), we plot
FERpnc, FERsne, and FFERpyp versus SNR obtained from our experiments. The
FER measurements are all from channel-coded systems.

The throughputs per direction of the three TWRC schemes are computed as
follows:

1 .
ThFPNC _ 5(1 . P}Lplmk,PNC)(l . szp)u

1 uplin
1
Thrs = 7(1- PP, (26)

In Fig. [[4(b), we plot the throughputs (Thrpne, Thene, and Thrg) of FPNC,
SNC and TS versus SNR based on the FERppnc, FERcne, and FERps in Fig.
M4d(a). With reference to Fig. [@4l(b), for the high SNR regime (above 19dB), the
throughput of PNC is approximately 99% higher than that of the T'S scheme, and
49% higher than that of the SNC scheme. This is essentially the same as the ideal
100% and 50% throughput gains derived by slot counting in @] (i.e., the error-free
case), with the difference that we have channel coding here to ensure reliable com-
munication. If we use the guideline that the common decodable 802.11 link usually
works at an SNR regime that is higher than 20dB , ], we can conclude that our
FPNC implementation has very good performance in this regime. We note that for
this regime, B] mentions that ANC can achieve 70% and 30% throughput gains rel-
ative to TS and SNC. Hence, FPNC has better performance in this SNR regime by
comparison.

We note from Fig. [4[b) that the performance of FPNC is not as good as that
of SNC or TS at the lower SNR regime (say below 17dB). This is most likely due
to our specific implementation of FPNC in this paper rather than a fundamental
limitation of FPNC in general. In particular, recall that we implement the CNC
function in FPNC mapping (see Section 4.3) using the so-called XOR-CD approach.
In XOR-CD, (i) we first perform XOR mapping for the channel-coded symbol pairs
from the two end nodes; (ii) after that channel decoding is applied on the channel-
coded XOR symbols to get the XOR of the source symbols. Step (i) loses information
that could be useful for the decoding of the XOR of the source symbols, and may
lead to inferior performance in the low SNR regime. This phenomenon is explained in
m, @], and an joint CNC scheme ﬂﬁ, @] for the PNC system can potentially achieve
better performance than the XOR-CD scheme implemented in this paper, at the cost
of higher implementation complexity.
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Figure 14: Frame error rate and throughput comparison of FPNC with straight-forward network
coding and traditional secluding. (a) FER comparison of three approaches; (b) throughput compar-
ison of three approaches.

6. Conclusion and Future Work

This paper presents the first implementation of a PNC system in which the relay
performs the XOR mapping on the simultaneously received signals as originally en-
visioned in @] In particular, in our implementation, the XOR mapping is performed
in the frequency domain of an OFDM PNC system. We refer to the OFDM PNC
system as FPNC. The implementation of FPNC requires us to tackle a number of
implementation challenges, including carrier frequency offset (CFO) compensation,
channel estimation, and FPNC mapping.

A major advantage of FPNC compared with PNC in the time domain is that
FPNC can deal with the different arrival times of the signals from the two end nodes
in a natural way. We show by theoretical derivation that if the simultaneously received
signals in FPNC have a maximum delay spread that is less than the length of the
OFDM cyclic prefix (CP), then after the Discrete Fourier Transform, the frequency-
domain signals on the different subcarrier are isolated from each other. That is, in the
frequency domain, the signals are synchronous. Then, straightforward XOR mapping
can be applied on the different subcarrier signals separately in a disjoint manner.
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To validate the advantage of FPNC, we present experimental results showing that
time-domain symbol asynchrony does not cause performance degradation in FPNC.

To date, most work related to PNC focuses on its potential superior performance
as derived from theory. In this paper, we evaluate the throughput gain of PNC
relative to other two-way relay schemes. Our implementation indicates that PNC
can have a throughput gain of 99% compared with traditional scheduling (TS), and
a 49% throughput gain compared with strait-forward network coding (SNC), in the
high SNR regime (above 19 dB) in which practical technology such as Wi-Fi typically
operates.

Going forward, there are many rooms for improvement in our FPNC implemen-
tation. In this paper, when faced with alternative design choices, we opt for imple-
mentation simplicity than performance superiority. For example, we choose to use
a simple PNC mapping method called XOR-CD in this paper, which is simple to
implement but has inferior performance compared with other known methods M] in
the low SNR regime. In addition, our implementation exercise reveals a number of
problems with no good theoretical solutions yet, and further theoretical analysis is
needed; in such cases, we use simple heuristics to tackle the problems. For example,
CFO compensation for FPNC is an area that is not well understood yet, because we
have to deal with CFOs of more than one transmitter relative to the receiver. In this
paper, we simply compensate for the mean of the CFOs of the two end nodes. Better
methods await further theoretical studies. Last but not least, we base our design on
the 802.11 standard to a large extent with only moderate modifications. If we do not
limit our design within the framework of 802.11, there could be other alternatives
with potentially better performance.
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