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Abstract

The problem of noncooperative resource allocation in a multipoint-to-
multipoint cellular network is considered in this paper. The considered sce-
nario is general enough to represent several key instances of modern wireless
networks such as a multicellular network, a peer-to-peer network (interfer-
ence channel), and a wireless network equipped with femtocells. In partic-
ular, the problem of joint transmit waveforms adaptation, linear receiver
design, and transmit power control is examined. Several utility functions to
be maximized are considered, and, among them, we cite the received SINR,
and the transmitter energy efficiency, which is measured in bit/Joule, and
represents the number of successfully delivered bits for each energy unit
used for transmission. Resorting to the theory of potential games, noncoop-
erative games admitting Nash equilibria in multipoint-to-multipoint cellu-
lar networks regardless of the channel coefficient realizations are designed.
Computer simulations confirm that the considered games are convergent,
and show the huge benefits that resource allocation schemes can bring to
the performance of wireless data networks.

Keywords:
Multicell networks, peer-to-peer networks, interference channel, femtocells,
potential games, energy efficiency, waveform adaptation, power control.

1. Introduction

The scarcity of natural resources, along with climate changes and earth
global warming has led the scientific community to take into serious account
the issues of energy efficiency and of energy saving. While traditionally these
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issues have mainly regarded areas such as civil engineering and electricity
generation methods, in recent years several disciplines are embracing a green
philosophy and energy efficiency concerns are becoming more and more fre-
quent. Communication theory makes no exception, and in the past few
years a new hot research topic has been coming out, i.e. the design of com-
munication schemes and resource allocation procedures able to improve the
energy efficiency of current communication networks. Indeed, although the
energy consumption of wireless communication devices is rather limited as
compared, for instance, to that of server farm and/or telephone exchanges,
improved energy efficiency results in longer battery life, reduced electro-
magnetic pollution, and larger amount of data delivered per energy-unit
consumed.

Pioneering early works in this area have been [1, 2, 3]; in [1] Gallager ex-
amined situations in which the primary constraint on the transmitted signal
comes from power limitations rather than from bandwidth limitations, and
derived the reliability function for binary on-off signaling; the study [2] is the
first wherein it was noticed that in the Gaussian channel the minimum en-
ergy per bit is equal toN0 ln 2 (withN0/2 being the power spectral density of
the additive white Gaussian noise), while in [3] the capacity per unit cost in
bits per joule (or in bits per photon) of the photon counting channel has been
derived. A decade later, the study [4] analyzed the case in which the input
alphabet contains a zero-cost symbol, while [5] has recently analyzed scal-
ing laws for the bit-per-joule capacity of an energy-limited wireless network
wherein each node is interested in communication with a randomly selected
partner. The aforementioned papers focus on an information-theoretic view
of energy efficiency, namely dealing with fundamental energy efficiency limits
that can be attained with optimal communication schemes.

A more pragmatic approach is instead adopted in [6], wherein energy
efficiency is defined as the ratio

R
L

M

f(γ)

p
, (1)

with R the transmit data rate, L/M the ratio between the payload length
and the total length of each data packet, p is the transmit power, and
f(·) the efficiency-function, which is an approximation of the probability of
error-free reception of a packet of M bits, and which is usually expressed
as f(γ) = (1− e−γ)M , with γ the received Signal-to-Interference plus Noise
Ratio (SINR). The efficiency-function (1) is measured in bit/joule, and rep-
resents the number of data bits that are delivered error-free at the receiver for
each Joule of energy used for transmission. In [6], a multiuser wireless net-
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work with a non-orthogonal access scheme is considered, and game-theoretic
tools are used to analyze the case in which each user tunes his transmit
power so as to maximize his own energy efficiency. The study [6] has been
a pioneering work that has paved the way to many interesting subsequent
works that have both adopted the energy efficiency definition reported in Eq.
(1), and used a game-theoretic approach. Indeed, game theory, a branch of
mathematics studying the interactions among several autonomous subjects
with contrasting interests, can be well used in multiuser wireless networks
to model the interactions between selfish active users, who are indeed in mu-
tual competition for the available bandwidth and, in general, for the shared
available network resources [7] (see also [8] for a collection of survey papers
dealing with the application of game theory in signal processing and com-
munications). As examples, the reader is referred to [6, 9, 10]. There, for
a multiple access wireless data network, non-cooperative and cooperative
games are introduced, wherein users choose their transmit powers in order
to maximize their energy efficiency. While the above studies consider the
issue of power control assuming that a conventional matched filter is avail-
able at the receiver, the paper [11] considers for the first time the problem of
joint linear receiver design and power control so as to maximize the utility of
each user. In particular, it is shown here that the inclusion of receiver design
in the considered game brings remarkable advantages. The approach of [11]
is then extended in [12], wherein transmitter optimization, i.e. spreading
code allocation, is also considered in addition to power allocation and linear
receiver choice, in [13], wherein a frequency-selective fading channel model
is adopted, and in [14], wherein the benefic impact of widely-linear process-
ing on energy efficiency is highlighted. On the other hand, a game-theoretic
framework for energy efficiency maximization has been also developed for
ultrawideband communication systems in [15].

While several studies and abundance of results are available on non-
cooperative resource allocation procedures for the uplink of single-cell data
networks (see the aforementioned papers and references therein for a non-
exhaustive list), the case in which there are multiple transmitters and re-
ceivers has been instead much less investigated, also due to the fact that
several non-cooperative resource allocation games conceived for single-cell
systems appear to be no longer convergent to a stable point in systems
with multiple receivers. As notable exceptions, we cite here the work [16],
wherein, for the uplink of a multi-cell wireless network, a non-cooperative
power control game for energy efficiency maximization is proposed, and the
recent paper [17] (see also [18, Chap. 5], wherein the same approach is
pursued), wherein, resorting to the theory of potential games [19], a non-
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cooperative spreading code allocation algorithm has been proposed, under
the assumption that a simple matched filter is used at the receiver. Roughly
speaking, in a potential game each change in the utility enjoyed by a given
player due to an unilateral change of strategy by that player is paired by a
similar change in a global function called the potential function. In a po-
tential game, the best response strategy always leads to a Nash equilibrium
(NE), and users, by acting selfishly, serve the greater good without knowing
it. Potential games are a quite recent discovery for the communications and
signal processing scientific community, and very few papers have considered
their application to resource allocation problems in this area [20, 21, 22, 23].

It is worth underlining that all the cited papers concentrate on the issue
of energy efficiency at the physical and MAC layers of a wireless network,
while, on the other hand, a completely fair assessment of the energy efficiency
of a cellular system should take into account the whole amount of energy
spent to make it work, and in particular the amount of energy needed to
implement the considered energy-saving resource allocation schemes. The
research in this area is still at a very early stage. Indeed, preliminary results
are available in the very recent paper [24], where a parallel fading Gaussian
channel is considered. However, applying the approach of [24] to the more
complex scenario we consider is quite a huge task which is definitely out of
the scope of our work. In this paper thus, in keeping with previous work
in this area, we just focus on the investigation of “what can be gained” in
terms of energy efficiency by optimizing resource allocation at the physical
and MAC layers of a wireless network, deferring the evaluation of the whole
energy consumption of a mobile device to future research.

This paper is concerned with a multipoint-to-multipoint wireless data
network using a nonorthogonal multiple access strategy such as code division
multiple access (CDMA). The considered model, as will be better explained
in the sequel, is general enough to model the uplink of a standard multi-cell
wireless data network, an ad-hoc network with multiple peer-to-peer links
(the so-called interference channel), and a wireless network equipped with
femtocells [26].

Using [17] as our departure point, in this paper we make the following
contributions:

- Using the potential games framework, we propose and analyze several
non-cooperative games for joint transmitter and receiver optimization,
and aimed at maximizing utility functions strictly related to the signal-
to-interference plus noise ratio (SINR). For such games we analytically
prove that the best-response dynamics always converges to a Nash
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equilibrium (NE).

- We propose a non-cooperative joint transceiver optimization and
transmit power control game aimed at the maximization of the en-
ergy efficiency of each active user. For such a game, we prove that
a NE always exists, and provide extensive numerical evidence to sup-
port the conjecture that the proposed algorithm always converges to
the equilibrium.

- We provide extensive numerical results for the aforementioned relevant
scenarios, showing that the proposed games outperform competing al-
ternatives, and showing that a judicious adaptation of the transmitted
waveform and of the transmit power may lead to a dramatic increase
in the energy efficiency of wireless networks.

This paper is organized as follows. Next section contains some back-
ground material on potential games and a description of the considered
multipoint-to-multipoint wireless network. Section III is devoted to the ex-
position of transmitter and receiver non-cooperative adaptation games for
SINR maximization. Section IV considers the problem of energy-efficient
non-cooperative power control and transmitter waveform adaptation. Nu-
merical results are discussed in Section V, while brief concluding remarks
are given in Section VI.

2. Preliminaries and system model

In this section we give brief details on potential games, introduce the
general form of the system model for a multipoint-to-multipoint wireless
network and formulate the problem statement.

2.1. Strategic games and potential games

In its strategic form, a game G can be described as a triplet G =
[K, {Sk} , {uk}], wherein K is the set of players (e.g., the communicating
devices in a multiple access network), Sk is the set of all possible strategies
for the k-th player, and uk represents the utility function or payoff of the
k-th player; uk is a scalar function depending on the strategies taken by
all the players of the game. Thus, a change in strategy from one player
affects all other players as well, and triggers a dynamic process, in which
players iteratively update their own strategies as a reaction to changes in the
strategies of the other players. This process is usually referred to as best-
response dynamics, since in each iteration, given the strategies of the other
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players, each player responds by choosing the strategy that maximizes his
own utility function. The main question here is to understand whether an
equilibrium point can be reached or if the players indefinitely go on chang-
ing their strategies in a restless fashion. A key concept is thus the notion of
Nash equilibrium (NE) . Let

(s1, s2, . . . , sK) ∈ S1 × S2 × . . .SK

denote a certain strategy K-tuple for the active users. The point
(s1, s2, . . . , sK) is an NE if for every user k, we have

uk(sk, s−k) ≥ uk(s∗k, s−k) ,

∀s∗k 6= sk ., wherein the vector s−k, as customary in the game-theoretic
literature, denotes the vector of the strategies of all the users but the k-th
one. Otherwise stated, at a NE, no user can unilaterally improve its own
utility by taking a different strategy. Thus, at a NE, each user, provided
that the other users’ strategies do not change, is not interested in changing
his own strategy.

We give now the formal definition of a potential game [19]. A strategic
game G = [K, {Sk} , {uk}] is called an exact potential game if there exists a
function V : S1 × S2 × . . .SK → R such that for any k ∈ K and for any
(sk, s−k), (s

∗
k, s−k) ∈ S1 × S2 × . . .SK , we have

uk(sk, s−k)− uk(s∗k, s−k) = V (sk, s−k)− V (s∗k, s−k) . (2)

Likewise, the game G is an ordinal potential game if the aforementioned
function V is such that

uk(sk, s−k) > uk(s
∗
k, s−k)⇒ V (sk, s−k) > V (s∗k, s−k) . (3)

The function V is called the exact (respectively, ordinal) potential of the
game.

In an exact potential game, Nash equilibria include maximizers of the
potential function (note that generally, the reverse is not true), and, if the
utility functions are continuous and the strategy spaces are compact, the
best response dynamics will converge to an NE of the game. This inter-
esting feature follows from the fact that each time a player plays his best
response, thus maximizing his utility function, he is also increasing the po-
tential function. We remark that convergence holds also in the case in which
the players update their strategy one at a time at random epochs (note that
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a particular case is that in which the updates are performed in a round-
robin fashion). It is worthwhile to note that each player can also compute
his strategy at the NE by separately implementing (possibly off-line) the
entire best-response dynamics. Roughly said, in a potential game wherein
the potential function is bounded from above, any best response dynamic
will always converge to an NE: this is a very attractive property that can be
used, as we will be showing in the sequel of the paper, to obtain convergent
noncooperative games.

2.2. System model for a general multipoint-to-multipoint network

We consider a multipoint-to-multipoint wireless communication system
with K transmitters and B receivers. The considered multiple access tech-
nique is a generic non-orthogonal scheme, such as direct-sequence CDMA;
we denote by N the system processing gain. Let hi,j be the real channel
gain between the i-th transmitter and the j-th receiver; moreover, denote
by a(i) the index of the receiver assigned to the i-th transmitter1. After
chip-matched filtering and chip-rate sampling, the N -dimensional received
data vector at the `-th receiver, say r`, can be written as2

r` =

K∑
k=1

√
pkhk,`bksk + n` , ` = 1, . . . , B . (4)

where bk, pk, and sk are the k-th transmitter’s unit-modulus information
symbol, transmitted power, and unit-norm spreading code, respectively,
while n` is the thermal noise at the `-th receiver, modeled as a zero-mean,
white Gaussian process with covariance matrix σ2IN . Note that the above
model is general enough to include the following relevant scenarios.

- Uplink of a Multi-cell wireless network : If we assume that the B re-
ceivers are base stations (BSs) and/or access points (APs), and that
the transmitters are mobile users, model (4) does represent the uplink
of a multicellular network, like, for instance, the one considered in [16].

- Uplink of a Multi-cell wireless network with femtocells: Femtocells,
also known as home base stations [25, 26, 27], are low-power base
stations aimed at indoor coverage of a small number of users. Since

1Note that we are assuming here that each user is assigned to a certain receiver, i.e.
communicating groups have already been formed.

2Since we are sampling at the chip-rate, the received waveform, as observed in the
signaling interval, is converted into an N -dimensional vector.
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they are located very close to the mobile terminals that they serve,
their adoption has been shown to dramatically reduce the interference
in the network and to increase the overall network throughput due to
the possibility of spatial reuse of spreading codes and/or frequencies.
It is anticipated that femtocells will play a key role in future wireless
networks. Since a system equipped with femtocells is a particular
instance of a multi-cell wireless network, model (4) can be used to
assess the impact that the use of femtocells may have on the network
performance.

- Peer-to-peer networks (interference channel): If we assume that the
number K of transmitters equals the number of receivers B, and that
each transmitter is coupled with one receiver, we have a set of inter-
fering peer-to-peer wireless links, a scenario that is commonly referred
to as interference channel.

2.3. Problem statement

Given the model (4), we are interested in non-cooperative spreading code
adaptation and transmit power control tuning so as to optimize the wireless
network energy efficiency. For the sequel, we assume that a linear detector
is used at the receiver, so that the symbol bk is detected according to the
rule

b̂k = sgn
{
dTk ra(k)

}
, (5)

with dk the detection vector for the k-th user. Note that the estimate of the
symbol bk is obtained by processing the data ra(k) only: otherwise stated for
the sake of simplicity, we do not take into account soft-handover situations
wherein the data transmitted by a given source are decoded at multiple
receiver sites; note however that the subsequent derivations may be easily
extended to such a scenario.

Given the decision rule (5), the SINR for the k-th user is expressed as

γk =
pkh

2
k,a(k)(d

T
k sk)

2

dTk

σ2nI +
∑
j 6=k

pjh
2
j,a(k)sjs

T
j

dk

. (6)

3. Non-cooperative transmitter waveform adaptation

We start by considering the problem of non-cooperative spreading code
adaptation for the maximization of SINR-related utilities, reviewing some
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already available procedures and introducing new ones, with improved per-
formance. In all of the games in this section, for all k = 1, . . . ,K, the k-th
player’s strategy set is taken as Sk = {sk ∈ CN : ‖sk‖ = 1}. In other
words, the users’s spreading codes are constrained to have unit-norm. Note
that adapting the transmit waveform so as to maximize SINR may enable,
for a given target quality-of-service, reduction of the transmit power, thus
leading to increased energy efficiency. The material of this section is also
a prerequisite for the maximization of the energy efficiency utility function
(1) of the next Section.

3.1. Greedy spreading code allocation with LMMSE reception [29]

We start by reviewing the greedy spreading code allocation procedure
of [29], and proving a theorem about its convergence in multipoint-to-
multipoint networks. Consider the case in which a linear minimum mean
square error (LMMSE) filter is used at the receiver. In this case, through
standard linear algebra, the k-th user SINR can be expressed as

γk = pkh
2
k,a(k)s

T
k

σ2nI +
∑
j 6=k

pjh
2
j,a(k)sjs

T
j

−1 sk . (7)

Given the above expression, it is trivially shown that the SINR-maximizing
spreading code for the k-th user is the eigenvector associated to the minimum
eigenvalue of the matrixσ2nI +

∑
j 6=k

pjh
2
j,a(k)sjs

T
j

 ,

which is indeed the covariance matrix of the overall interference suffered by
the k-th user. The non-cooperative game wherein users cyclically update
their spreading code in order to maximize the SINR in Eq. (7) is widely
known as greedy interference avoidance procedure [29]. Such a procedure is
known to be always convergent in single-cell systems, and in the following
proposition we prove that it always converges in underloaded multipoint-to-
multipont systems.

Proposition 1. Consider the system model of Eq. (4), and assume K ≤ N .
Then, the greedy interference avoidance algorithm always converges to a set
of orthonormal signatures.
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Proof. Assume the spreading codes are initialized to s01, . . . , s
0
K . If K ≤ N ,

the minimum eigenvalue of the matrixσ2nI +
∑
j 6=k

pjh
2
j,a(k)sjs

T
j

 ,

is σ2, since the matrix
∑

j 6=k pjh
2
j,a(k)sjs

T
j is not full-rank. Note that for

any set of spreading codes, each user can compute a unit-norm eigenvector
corresponding to σ2 by choosing a spreading code orthogonal to the spread-
ing codes of the other users. Then, after one signature update for all users,
we are left with a set of orthonormal spreading codes, and convergence is
reached.

Unfortunately, the greedy interference avoidance algorithm does not al-
ways converge in overloaded multipoint-to-multipoint systems. However, for
comparison purposes in the forthcoming Section V on numerical results we
will include performance results for this technique as well.

3.2. Minimization of the individual MSE [28, 30]

As an alternative optimization criterion, we can consider minimization
of the individual MSE. The MSE for the k-th user, say ε2k, is expressed as

ε2k = E
{

(bk − dTk ra(k))
2
}

= 1− 2
√
pkhk,a(k)d

T
k sk−

−N0

2
‖dk‖2 + dTk

 K∑
j=1

pjh
2
j,a(k)sjs

T
j

dk .
(8)

Following [28, 30], it is easily seen that the minimizer of ε2k can be obtained
as the unique stable fixed point of the following iterations:dk =

√
pkhk,a(k)M

−1
ra(k)

sk ,

sk = dk/‖dk‖ ,
(9)

for any k = 1, . . . ,K. In the above equation Mra(k)
= E

{
ra(k)r

T
a(k)

}
is

the covariance matrix of the data vector received at the a(k)-th AP. Now,
it is well known that iterations (9) are always convergent in a single-cell
system, and using a similar proof as in Proposition 1, it can be shown that it
converges in underloaded multipoint-to-multipoint networks, too. However,
convergence is not guaranteed in overloaded multi-cell systems. Again, in
the following we will be including performance results also for this technique
for comparison purposes.
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3.2.1. A side result: waveform adaptation in the downlink of single-cell net-
works

It is worth mentioning that a slight modification of the considered system
model permits the analysis of the downlink of a single-cell network. Indeed,
assume that we have only one transmitter, and B distinct mobile receivers.
Denoting by p the transmit power, and by {gb}Bb=1 the channel coefficients
from the transmitter to the B receivers, the signal received by the b-th
receiver is expressed as

rb =
√
pgb

(
B∑
`=1

b`s`

)
+ nb , (10)

while its covariance matrix is M b = pg2bSS
H +σ2nI. The SINR achieved by

the b-th receiver can be expressed as

γb =
pg2b (d

T
b sb)

2

dTb

σ2nI + p
∑
j 6=b

g2bsjs
T
j

db

. (11)

In this scenario, iterations (9) can be written asdb =
√
pgbM

−1
b sb ,

sb = db/‖db‖ .
(12)

Generalizing the proof for the uplink scenario that is reported in [28], it is
easy to show that iterations (12) always converge, even if each user has a
different received data covariance matrix. We do not give further details
here for the sake of brevity.

3.3. Maximization of the opposite of the sum of inverse SINR [17]

As previously discussed, non-cooperative maximum SINR game with re-
spect to the spreading code and uplink receiver [29] is not always convergent
in overloaded multi-cell networks. In [17], instead, based on the theory of
potential games, a modification to the utility function to be considered has
been introduced, so as to have a guaranteed convergence for any channel
realizations. Let us thus assume that a matched filter (MF) is used at the
receiver and consider the negative sum of the inverse SINR, i.e.:

V = −
K∑
k=1

1

γk
. (13)
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Pointing out the dependence on the k-th spreading code sk, V can be ex-
pressed as

V = − sTk

 σ2n
pkh

2
k,a(k)

I +
∑
j 6=k

(
pjh

2
j,a(k)

pkh
2
k,a(k)

+
pkh

2
k,a(j)

pjh2j,a(j)

)
sjs

T
j

 sk −D ,

(14)
with D an additive term independent of sk. It is thus clear that a non-
cooperative game wherein the utility function to be maximized for the k-th
user is

uk = − sTk

 σ2n
pkh

2
k,a(k)

I +
∑
j 6=k

(
pjh

2
j,a(k)

pkh
2
k,a(k)

+
pkh

2
k,a(j)

pjh2j,a(j)

)
sjs

T
j

 sk , (15)

is a potential game with potential function V . Consequently, the associated
best-response dynamics will always converge to an NE.

3.4. Greedy interference avoidance revisited

We now propose a new non-cooperative game which will be shown to
achieve much superior performance levels than the previously discussed so-
lutions.

Since the greedy interference avoidance procedure is not always conver-
gent in multipoint-to-multipoint systems, we resort to the theory of po-
tential games in order to come up with a modified utility function whose
non-cooperative maximization leads to an NE. First of all, it is well-known
that the linear detector that maximizes the individual SINR is the LMMSE
detector. Hence, consider the case in which an LMMSE detector is used at
the receiver, so that the k-th user SINR can be shown to be written as

γk = pkh
2
k,a(k)s

T
k

σ2nI +
∑
j 6=k

pjh
2
j,a(k)sjs

T
j

−1 sk .
Considering the maximization of the opposite of the sum of the inverse
SINRs (as done in [17] for the case of a matched filter receiver) reveals to be
a complicated task in this case, and, also, maximization of the sum of the
SINRs turns out to be complicated as well. Based on intuitive reasoning,
we consider instead the following quantity

Q = −
K∑
m=1

ρm = −
K∑
m=1

pmh
2
m,a(m)s

T
m

σ2nI +
∑
j 6=m

pjh
2
j,a(m)sjs

T
j

 sm .

(16)
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Note that the above quantity leads to a mathematically manageable utility,
and is directly tied to the SINRs enjoyed by the active users in the network,
since it is easy to show that Q is an increasing function of the SINR of each
user. Upon straightforward algebraic manipulation, we find

Q = −
K∑
m=1

ρm =

−sTk

pkh2k,a(k)σ2nI +
∑
j 6=k

pkpjh
2
k,a(k)h

2
j,a(k)sjs

T
j +

∑
j 6=k

pkpjh
2
k,a(j)h

2
j,a(j)sjs

T
j

 sk︸ ︷︷ ︸
depends on sk

+

−
K∑

j=1,j 6=k
pjh

2
j,a(j)s

T
j

σ2nI +
∑
`6=k,j

plh
2
`,a(j)s`s

T
`

 sj︸ ︷︷ ︸
does not depend on sk

.

(17)
Accordingly, a non-cooperative game wherein each user aims at maximizing
the utility

uk = −sTk

σ2nI +
∑
j 6=k

pjh
2
j,a(k)sjs

T
j +

∑
j 6=k

pj
h2k,a(j)

h2k,a(k)
h2j,a(j)sjs

T
j

 sk , (18)

is a potential game whose potential function is Q, and therefore it always
admits an NE. Moreover, the best-response dynamics in which each player
iteratively maximizes (18) converges to an NE of the proposed potential
game. For all k = 1, . . . ,K, maximization of (18) with the constraint ‖sk‖ =
1 yields the unit-norm eigenvector ofσ2nI +

∑
j 6=k

pjh
2
j,a(k)sjs

T
j +

∑
j 6=k

pj
h2k,a(j)

h2k,a(k)
h2j,a(j)sjs

T
j

 (19)

corresponding to the minimum eigenvalue. Moreover, note that following
the same arguments as in Proposition 1, it can be proved that the proposed
potential game converges to a set of orthonormal signatures for K ≤ N ,
and is therefore equivalent to the greedy interference avoidance procedure
in underloaded systems.
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4. A non-cooperative game for energy-efficient communications

In the previous Section, we have analyzed the problem of non-cooperative
maximization of utility functions strictly related to the SINR, which is in-
directly tied to the system’s energy efficiency3. In what follows, we resume
the energy efficiency of Eq. (1), and consider the joint problem of transmit
power control, receiver design and transmit spreading code adaptation for
non-cooperative energy efficiency maximization.

As customary in the scientific literature from [6] on, the following utility
function should be thus considered for the k-th user

uk = R
L

M

f(γk)

pk
, (20)

with R the transmit data rate, L/M the ratio between the payload length
and the total length of each data packet, and f(·) the efficiency-function,
which is usually expressed as f(γk) = (1 − e−γk)M . We are here interested
in the non-cooperative maximization of uk with respect to pk, sk and dk.
Note that

max
pk,sk,dk

f(γk)

pk
= max

pk

f

(
max
skdk

γk

)
pk

. (21)

In the above equation we have exploited the fact that f(·) is an increasing
function, and that only the numerator (and not the denominator) depends
on the vectors dk and sk. Otherwise stated, each user can take care first of
SINR maximization with respect to sk and dk, and then of the maximiza-
tion of its energy efficiency, i.e. of the ratio f(γk)/pk. In [16], it is shown
that in a multi-cell network, the non-cooperative maximization of the energy
efficiency with respect to the transmit power only, always converges to an
NE when a plain matched filter is used at the receiver. Following the same
approach as in [16], it is easy to show that non-cooperative energy efficiency
maximization with respect to the transmit power converges to an NE also in
the case in which an LMMSE multiuser detector4 is used at the receiver (de-
tails are not given for the sake of brevity, but we will be providing simulation

3Indeed, recall that for a given target error probability and/or throughput, waveform
adaptation aimed at SINR maximization permits reducing the transmit power, and thus,
increases the system energy efficiency.

4Note that the LMMSE detector is the optimum energy-efficient receive filter, since
LMMSE filtering is well-known to maximize the received SINR.
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results for this strategy as well). Instead, if spreading code allocation comes
into play, things are more involved. Given (21), individual energy-efficiency
maximization should be carried out according to the following algorithm

Algorithm 1.
repeat

STEP 1: for fixed transmit powers, allocate the spreading codes and
detection vectors for individual SINR maximization;
STEP 2: for fixed spreading codes and detection vectors, play the power
control game in [16] for energy efficiency maximization (20);

until Convergence is reached.

While such a procedure always converges for single-cell networks, and indeed
results for this scenario are presented in [12], convergence is not guaranteed
in multipoint-to-multipoint networks because, as it has been pointed out in
Section 3.1, individual SINR maximization is not always convergent. Thus,
in order to obtain an energy efficiency game converging to an NE, spreading
codes allocation should not be carried out for SINR maximization. For this
reason, we consider a different approach to spreading codes and decoding
vectors allocation, as outlined in the following section.

4.1. Non-cooperative minimization of the TMSE

In this section, again we use the potential games framework to obtain
a convergent non-cooperative game for spreading code and detection vec-
tor design. As a potential function we consider the total MSE, defined as∑K

k=1 ε
2
k. Upon some straightforward algebraic manipulations, we have

K∑
m=1

ε2m =

1− 2
√
pkhk,a(k)d

T
k sk +

N0

2
‖dk‖2 + dTk

 K∑
j=1

pjh
2
j,a(k)sjs

T
j

dk +
∑
`6=k

dT`

(
pkh

2
k,a(l)sks

T
k

)
d`︸ ︷︷ ︸

depends on sk

+

(K − 1) +
∑
6̀=k

dT`

∑
j 6=k

pjh
2
j,a(`)sjs

T
j

d` − 2
∑
`6=k

√
p`h`,a(`)d

T
` s` +

∑
`6=k

N0

2
d`︸ ︷︷ ︸

does not depend on sk

.

(22)

15



It is easy to realize that the part dependent on sk, say L(sk), may be written
as

L(sk) = ε2k +
∑
`6=k

dT`

(
pkh

2
k,a(`)sks

T
k

)
d` , (23)

thus implying that a non-cooperative game in which each player maximizes
(23) is a potential game whose potential function is the system’s TMSE.
Consequently, the proposed game always admits an NE, and its associated
best-response dynamics will always converge to an NE. Summing up, we
thus consider the following game:

max
sk,dk

−L(sk,dk) , subject to: ‖sk‖2 = 1 . (24)

Now, maximization of −L(sk,dk) with respect to dk yields the LMMSE
receiver,

dk =
√
pkhk,a(k)

(
K∑
`=1

p`h
2
`,a(k)s`s

H
` + σ2IN

)−1
sk , (25)

whereas applying standard Lagrangian techniques, maximization with re-
spect to sk yields

sk =
√
pkhk,a(k)

(
λkIN +

K∑
`=1

pkh
2
k,a(`)d`d

T
`

)−1
dk , (26)

where the Lagrange multiplier λk is to be chosen such that ‖sk‖2 = 1.
The computational complexity of the above equations is basically O(N3),
due to the need for matrix inversion. Note that in (26) we have implic-
itly assumed that the matrix λkIN +

∑K
`=1 pkh

2
k,a(`)d`d

T
` is invertible. In-

deed, this is always the case since λkIN +
∑K

`=1 pkh
2
k,a(`)d`d

T
` is singular

only if the multiplier λk is equal to the opposite of one of the eigenvalues
of
∑K

`=1 pkh
2
k,a(`)d`d

T
` . However, for such values of λk, ‖sk‖ → +∞, thus

implying that these values of λk will never satisfy the norm constraint. Oth-
erwise stated, for any set of transmit powers, the resulting multiplier λk is
always such that the matrix λkIN +

∑K
`=1 pkh

2
k,a(`)d`d

T
` is invertible.

Defining the matrix M =
∑K

`=1 p`h
2
`,a(k)s`s

H
` + σ2IN , plugging (25) into

(26), and elaborating, for all k = 1, . . . ,K we obtain the signature update
rule as

sk(n+1) = pkh
2
k,a(k)

(
λkM(n) +

K∑
`=1

pkh
2
k,a(`)p`h

2
`,a(`)s`(n)sT` (n)M−T (n)

)−1
sk(n) .

(27)
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Now, we can modify Algorithm 1 replacing STEP 1 with the novel pro-
cedure devised in Section 4.1, and formally state our proposed algorithm for
energy-efficiency maximization, as follows.

Algorithm 2.
repeat

STEP 1: for fixed transmit powers, allocate the spreading codes and de-
tection vectors according to the non-cooperative game for TMSE mini-
mization, as explained in Section 4.1;
STEP 2: for fixed spreading codes and detection vectors, play the power
control game in [16] for energy efficiency maximization (20);

until Convergence is reached.

Unfortunately, we could not theoretically prove that Algorithm 2 always
converges for any channel realizations. However, in the following we prove
that Algorithm 2 always admits at least one fixed point, and that in the high-
SINR regime, the fixed points of Algorithm 2 tend to those of Algorithm 1.
Moreover, we point out that in all of our numerical simulations Algorithm
2 has always converged thus suggesting the conjecture that Algorithm 2 is
indeed always convergent.

4.2. Existence of fixed points

We will need the following result.

Theorem 1 (Brouwer’s Fixed-Point Theorem). Let Z ⊆ RK be com-
pact and convex, and F : Z −→ Z a continuos function. Then F admits
a fixed point z ∈ Z.

Then, the following proposition holds.

Proposition 2. Given any realization of channel coefficients {hk,a(j)}Kk,j=1,
Algorithm 2 always admits at least one fixed point.

Proof. Let us denote by CN×K1 the set of matrices in CN×K with unit-norm
columns. Denote by S0 the spreading code matrix used as starting point
of the sequence control game of STEP 1 of Algorithm 2, and consider the
function

S̃ : p = p1, . . . , pK ∈ [0;Pmax]K ,S0 ∈ CN×K1 −→ S̃(p,S0) = [s̃1, . . . , s̃K ] ∈ CN×K1 ,
(28)
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where S̃(p) is the NE5 of the sequence control game reached in STEP 1 of
Algorithm 2. Note that even if the NE of such a game is not unique, we are
defining S̃ as a function and not a multifunction. Indeed, we stress that the
output of S̃ is not the set of all the NE of the sequence control game, but
only the one NE that is obtained by running STEP 1 of Algorithm 2 with
the given channel realizations {hk,a(j)}Kk,j=1 and starting point S0. We also
remark that in the first iteration of Algorithm 2, the starting point S0 can
be chosen at will, whereas in iteration n, it is given by the spreading matrix
output by iteration n− 1. Moreover, we consider the function

p̃ : S ∈ CN×K1 , p ∈ [0;Pmax]K −→ p̃(S,p) = [p̃1, . . . , p̃K ] ∈ [0;Pmax]K ,
(29)

where, for all k = 1, . . . ,K, p̃k is the best-response of user k to the strategies
of the other players in the power control game of STEP 2 of Algorithm 2.
From [16] we know that, for all k = 1, . . . ,K

p̃k = min(Pmax, p̄k) , (30)

where p̄k is the power necessary for user k to achieve a SINR γ̄, with γ̄ being
the unique, positive solution to the equation xf ′(x) = f(x), i.e.

p̄k =
γ̄

h2k,a(k)s
T
k

(∑
` 6=k p`h

2
`,a(k)s`s

H
` + σ2IN

)−1
sk

. (31)

Algorithm 2 admits a fixed point if the composition

F : p ∈ [0;Pmax]K −→ F (p) = p̃(S̃(p,S0),p) ∈ [0;Pmax]K , (32)

admits a fixed point, i.e. if there exists a vector of powers p∗ such that
F (p∗) = p̃(S̃(p∗,S0),p

∗) = p∗. Since [0;Pmax]K is a convex and compact
subset of RK , if we can prove that F is a continuous mapping, we can
apply Theorem 1 to obtain the thesis. To this end, from (31) it is seen
that, for all k = 1, . . . ,K, (30) is continuous6 for any p and S ∈ CN×K1 ,
thus implying that p̃ is continuous in p, for any given spreading matrix.
Then, F is continuous if the internal function S̃(p,S0) is continuous. To see
this, consider the spreading code update function f of the sequence control
game, i.e. the function that takes as input a unit-norm spreading code sk

5As shown in Section 4.1, such an equilibrium always exists.
6Indeed, recall that when S ∈ CN×K

1 , the spreading codes are constrained to have
unit-norm, and hence the denominator of (31) can never be zero.

18



and outputs another unit-norm spreading code according to equation (27).
Clearly, f is a continuous function, since it is obtained as the composition
of (25) and (26), which both define continuous functions. Now, the NE
of the sequence control game is always obtained by iteratively applying the
function f a finite number of times, say ñ. Thus, the function S̃ is equivalent
to composing f with itself ñ times, and since the composition of a finite
number of continuous functions results in a continuous function, we obtain
the thesis.

4.3. High SINR regime

In this section we turn to the analysis of Algorithm 2 in the high SINR
regime. We will show that for high SINRs STEP 1 of Algorithm 2 reduces
to a game for individual SINR maximization, thus implying that the fixed
points of Algorithm 2, are the NE for the original energy efficiency game
in which each player selfishly maximizes (20). To begin with, note that the
MMSE filter for the `-th user can be written as

d` =
√
p`h`,a(`)

(∑K
j=1 pjh

2
j,a(`)sjs

T
j + σ2nIN

)−1
s`

=
√
p`h`,a(`)

(
pkh

2
k,a(`)sks

T
k + Qk,`

)−1
s` ,

(33)

where Qk,` =
∑K

j 6=k pjh
2
j,a(`)sjs

T
j + σ2nIN is the interference-plus-noise co-

variance matrix of the k-th user, at receiver a(`). Now, applying the matrix
inversion lemma, we obtain

d` =
√
p`h`,a(`)

Q−1k,`s`

1 + pkh
2
k,a(`)s

T
kQ
−1
k,`sk

, (34)

and hence we can write

dT` sk =
√
p`h`,a(`)

[
sT` Q

−1
k,`sk

1 + pkh
2
k,a(`)s

T
kQ
−1
k,`sk

]
(35)

Then, plugging (35) into the second summand of the TMSE in (23), we
obtain

pk
∑
` 6=k

h2k,a(`)
(
dT` sk

)2
= pk

∑
`6=k

h2k,a(`)p`h
2
`,a(`)

[
sT` Q

−1
k,`sk

1 + pkh
2
k,a(`)s

T
kQ
−1
k,`sk

]2
=

pk
∑
6̀=k
h2k,a(`)p`h

2
`,a(`)

[
sT` Q

−1
k,`sk

1 + γk,a(`)

]2
(36)
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where γk,a(`) is the SINR of the k-th user at the `-th access point. As a
consequence, for large SINR, we see that (36) vanishes, thus implying that
the utility function (23) can be approximated by ε2k, the MSE of the k-
th user. As a consequence, in this scenario, the game for non-cooperative
TMSE minimization that is implemented in STEP 1 of Algorithm 2, is also
a convergent game for individual MSE minimization. Then, recalling that in
CDMA systems the k-th user’s MSE and SINR are linked by the following
formula [32]

ε2k =
1

1 + γk
, (37)

it is easy to see that individual MSE minimization is equivalent to individual
SINR maximization, thus implying that STEP 1 of Algorithm 2 is a conver-
gent game for individual SINR maximization, too. Hence, Algorithm 2 is
equivalent to Algorithm 1. Moreover, in this scenario it can be shown that
the energy-efficiency game is a separable game [31], and similarly to [12, 14]
it can be proved that it admits a unique NE, which is also Pareto-efficient
in underloaded systems.

The remarkable performance advantage that the proposed strategy
brings with respect to competing resource allocation methods is addressed
in the following section.

5. Numerical results

In what follows we give extensive simulation results showing the merits
of the proposed non-cooperative resource allocation procedures. As antic-
ipated, we have considered three interesting instances of a multipoint-to-
multipoint wireless network, as detailed in the following. We set the pro-
cessing gain to N = 8. Users’ location have been randomly generated in a
square of 106 sq. meters, while the channel coefficients h2i,j have been gener-

ated according to an exponential distribution with mean equal to d−2i,j , with
di,j the distance between the i-th user and the j-th access point. The results
that we present have been obtained through averaging over 1000 indepen-
dent realizations of the channel coefficients, users’ locations, and starting
set of spreading codes.

5.1. Peer to Peer channel (Interference channel)

We considered a DS/CDMA peer to peer channel with K = B active
links. It is assumed that the distance between each transmitter and the
corresponding receiver is not larger than half of the cell side, i.e. 500 meters.
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In Figs. 1 and 2, spreading code allocation is addressed by confronting the
following algorithms.

1. The proposed spreading code allocation algorithm (Sec. 3.4).

2. The algorithm proposed in [17] (Sec. 3.3).

3. The greedy interference avoidance (Sec. 3.1).

4. The greedy MSE minimization (Sec. 3.2).

Since the last two procedures are not always convergent in the considered
scenario, in our simulations the maximum number of iterations has been lim-
ited to 5000. Fig. 1 shows the achieved SINR at the NE versus the number
of active links. We also report the initial SINR that is obtained when ran-
dom spreading codes and MMSE detection vectors are employed. It is seen
that for K ≤ N all the algorithms have similar performance, thus confirming
that in underloaded systems all algorithms converge to a set of orthonormal
signatures, and are therefore equivalent. Instead, in overloaded scenarios
the proposed procedure largely outperforms all competing alternatives, thus
allowing a huge energy conservation for a given target quality-of-service. In
Fig. 2 the number of iterations needed for convergence is plotted versus the
number of active links. It is seen that the proposed procedure and that from
[17] require the same number of iterations to reach convergence, while the
greedy interference avoidance and the greedy MSE minimization reach the
maximum allowed number of iterations.

In Figs. 3 and 4 we address the performance of Algorithm 2 by contrast-
ing the following algorithms.

1. The proposed Algorithm 2.

2. For the sake of comparison, we included the performance of a modified
version of Algorithm 2 where the spreading code allocation in STEP
1 is not implemented according to the newly proposed procedure of
Section 4.1, but is instead implemented according to the spreading
allocation game from [17] by Menon et alii, that we outlined in Section
3.3. For this reason, this algorithm has been labeled as “Menon joint
optimization” in the presented illustrations.

3. In order to address the gain granted by spreading code optimization,
we consider the performance obtained with power control and uplink
receiver design, but no spreading code optimization.

4. Power control with a matched filter at the receiver [16].

Fig. 3 shows the achieved utility (20) at the NE versus the number of
active links. The results indicate that the proposed algorithm grants a
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huge performance gain with respect to other algorithms for energy efficiency.
In particular the gain increases with the number of users, implying that
the proposed technique is more resilient to heavy multi-user interference
scenarios than its competitors. In Fig. 4 a similar scenario is considered,
with the difference that the achieved SINR at the NE is shown. Again,
we see that the proposed method achieves better performance than other
solutions.

In Tab. 1, the computational complexity of Algorithm 1 is addressed in
terms of number of iterations needed to reach convergence. In particular,
defining the vector p(n) = [p1(n), . . . , pK(n)] containing the users’ transmit
powers at the n-th iterations of Algorithm 1, Tab. 1 shows the quantity

E(n) =
‖p(n)−p(n−1)‖

‖p(n)‖ versus n, for a number of users K = 3; 10; 25; 30.

Note that E(n) is the normalized error between the power vector at the
n-th iteration with respect to the previous iteration. Convergence in our
simulations was declared when E(n) < 10−3. The results indicate that a very
low number of iterations is needed to reach convergence even in overloaded
scenarios in which K is a little bit higher than the processing gain. Of
course, the required number of iterations increases, but is still satisfactory,
in heavily loaded scenarios in which the number of users is much higher than
the processing gain.

5.2. Uplink of a multi-cell wireless network

We have considered a multi-cell wireless network with B = 4 APs. It
is assumed that each user’s data are decoded at the AP with the largest
channel coefficient, namely a(k) = arg max

`=1,...,B

(
h2k,`
)
.

In Fig. 5 and 6 the efficiency of Algorithm 2 is addressed by contrasting
the same algorithms as for the peer to peer channel case. In Fig. 5 the
achieved SINR at the NE is shown, whereas in Fig. 6 the average transmit
power at the NE is plotted. From the inspection of these two figures, it
can be concluded that the newly proposed algorithm for energy-efficiency
achieves a higher SINR than its competitors, while requiring a lower transmit
power.

As for the number of iterations needed for Algorithm 2 to reach conver-
gence, similar results as in Tab 1 have been obtained, but we omit details
for the sake of brevity.

5.3. Uplink of a multi-cell wireless network with femtocells

We now focus on the comparison between the multicell scenario in which
there are 2 APs, and the scenario in which we have 2 APs and 4 femtocell
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APs serving an area of radius 100m. The channel coefficients h2i,j have been

generated according to an exponential distribution with mean equal to d−2i,j ,
with di,j the distance between the i-th user and the j-th access point. Again,
it is assumed that each user’s data are decoded at the AP with the largest
channel coefficient, namely a(k) = arg max

`=1,...,B

(
h2k,`
)
.

First of all, we consider the waveform adaptation games discussed in
Section 3. Fig. 7 shows the achieved SINR at the NE for the same algo-
rithms considered in the peer to peer channel case, versus the number of
active users. Also in this case, a maximum of 5000 iterations has been in-
cluded in the simulation program in order to have a stopping rule for the
resource allocation games of Sections 3.1 and 3.2, and again it is seen that
all the algorithms exhibit similar performance when K ≤ N , whereas the
newly proposed resource allocation strategy of Section 3.4 achieves the best
performance when K > N , and similar remarks as those made for the peer
to peer channel hold. It is also seen that when femtocells are active, much
better performance are obtained, and hence much more transmit energy can
be saved.

Next, in Fig. 8 we compare the performance of Algorithm 2 to the case
in which spreading code optimization is not carried out, and to the case
in which only power control is performed, [16]. Fig. 8 shows the achieved
utility at the NE versus the number of active users. Again, we see that the
newly proposed joint procedure greatly outperforms the competing alter-
natives, and that femtocells bring substantial (up to ten-fold) performance
improvements.

6. Conclusions

This paper has considered the problem of energy-efficient non-
cooperative resource allocation in a multipoint-to-multipoint multiuser wire-
less data network. Leveraging on the study [17], wherein it has been revealed
that the theory of potential games can be used to obtain convergent non-
cooperative resource allocation games in multi-cell networks, we have pro-
posed resource allocation procedures that have been shown to outperform
competing alternatives. Although our paper deals with the CDMA access
technique, the same concepts and the potential games framework may be
applied, with ordinary efforts, to different multiple access strategies, such as
orthogonal frequency division multiple access (OFDMA) strategy, to obtain
noncooperative transmit power control and carrier allocation procedures.
These topics form the object of ongoing research.
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Table 1: E(n) achieved by Algorithm 2, for K = 3; 10; 25; 30. System parameters: N = 8.
Convergence was declared when E(n) < 10−3

K 3 10 25 30

n = 1 783 284 4.37 2.31

n = 2 0.7688 0.6682 0.0233 0.0886

n = 3 0.0180 0.0076 0.0088 0.0038

n = 4 2.06× 10−6 0.0046 0.0044 0.0150

n = 5 – 1.92× 10−4 0.0027 0.0107

n = 6 – – 0.0020 0.0073

n = 7 – – 0.0016 0.0059

n = 8 – – 0.0011 0.0040

n = 9 – – 7.9× 10−4 0.0036

n = 10 – – – 0.0023

n = 11 – – – 0.0012

n = 12 – – – 8.26× 10−4
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Figure 1: Peer to Peer channel. N = 8. Achieved SINR at the NE for the considered
spreading code allocation procedures versus the number of active users.
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Figure 2: Peer to Peer channel. N = 8. Number of iterations needed to reach the NE for
the considered spreading code allocation procedures versus the number of active users. A
maximum of 5000 iterations has been included in the simulation program.
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Figure 3: Peer to Peer channel. N = 8. Achieved energy efficiency (bit/Joule) at the
NE versus the number of active users for four different non-cooperative games, i.e. (a)
Algorithm 2, (b) Modified version of Algorithm 2 that employs [17] for spreading code
allocation, (c) joint power control and uplink receiver design, (d) power control with a
matched filter at the receiver [16].
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Figure 4: Peer to Peer channel. N = 8. Achieved SINR at the NE versus the number of
active users for four different non-cooperative games, i.e. (a) Algorithm 2, (b) Modified
version of Algorithm 2 that employs [17] for spreading code allocation, (c) joint power
control and uplink receiver design, (d) power control with a matched filter at the receiver
[16].
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Figure 5: Uplink of a multicell network. N = 8. B = 4. Achieved SINR at the NE versus
the number of active users for four different non-cooperative games, i.e. (a) Algorithm 2,
(b) Modified version of Algorithm 2 that employs [17] for spreading code allocation, (c)
joint power control and uplink receiver design, (d) power control with a matched filter at
the receiver [16].
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Figure 6: Uplink of a multicell network. N = 8. B = 4. Average transmit power at the
NE versus the number of active users for four different non-cooperative games, i.e. (a)
Algorithm 2, (b) Modified version of Algorithm 2 that employs [17] for spreading code
allocation, (c) joint power control and uplink receiver design, (d) power control with a
matched filter at the receiver [16].
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Figure 7: Uplink of a multicell network with femtocells. N = 8. B = 2. 4 Femtocell APs.
Achieved SINR at the NE for the considered spreading code allocation procedures versus
the number of active users.
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Figure 8: Uplink of a multicell network with femtocells. N = 8. B = 2. 4 Femtocell APs.
Achieved energy efficiency (bit/Joule) at the NE versus the number of active users for
three different non-cooperative games, i.e. (a) Algorithm 2, (b) joint power control and
uplink receiver design, (c) power control with a matched filter at the receiver [16].
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