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Abstract

In this paper, we introduce a novel approach for power afionain cellular networks. In our model, we
use sigmoidal-like utility functions to represent diffateusers’ modulation schemes. Each utility function is a
representation of the probability of successfully trartedi packets per unit of power consumed by a user, when
using a certain modulation scheme. We consider power aitocavith utility proportional fairness policy, where the
fairness among users is in utility percentage i.e. pergentd successfully transmitted packets of the correspondin
modulation scheme. We formulate our network utility maxation problem as a product of utilities of all users and
prove that our power allocation optimization problem isw@nand therefore the optimal solution is tractable. We
present a distributed algorithm to allocate base statid®) (Bowers optimally with priority given to users running
lower modulation schemes while ensuring non-zero powarcation to users running higher modulation schemes.
Our algorithm prevents fluctuation in the power allocatioagess and is capable of traffic and modulation dependent
pricing i.e. charges different price per unit power fromfeliént users depending in part on their modulation scheme
and total power available at the BS. This is used to flattefficrand decrease the service price for users.

I. INTRODUCTION

In the past, cellular networks were dominated by voice-drdffic. However, in recent years, there has been
a significant growth in the amount of multimedia-rich traffieer cellular networks. In order to support such
traffic, networks require higher data rates which can beeseli by using higher modulation schemes. This is the
reason current and emerging cellular standards are supgedrious higher modulation schemes. For example,
Long term evolution (LTE), the fourth-generation (4G) viéss standard specified by? 35eneration Partnership
Project (3GPP), supports higher modulation schemes su@P&K, 16-QAM, and 64-QAM according to 3GPP
Release 10 or more commonly known as LTE-Advanced (LTE-Ag iiext evolution of LTE — LTE Release 12 and
beyond — also refereed to as LTE-B supports higher modulatbemes upto 256-QAM][1],][2]. Higher modulation
schemes require higher transmit power to achieve a ceitaialsto-noise ratio (SNR) which can guarantee minimum
successful transmission probability of packets. This watéis numerous research efforts to optimally allocate powe

for users seeking better quality-of-service (QoS), whes& @an be the minimum successful transmission probability
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of packets. In a cellular network, different users can rufecént services, requiring different modulation schemes
and thus can have different power and QoS requirements.

One aspect of improving power allocation and achievingebeQoS is to use network utility maximization
framework. This framework was first explored by the seminatks of Kelly et al. [3] and Low et all[4] for wired
networks, such as the Internet, and later by Marbach et hlarji Lee et al.[[6] for wireless networks, such as
Code Division Multiple Access (CDMA)-based systems. Thilitytfunction can be considered as a controlling
parameter through which a user’'s QoS can be guaranteedsltréaatment, each user’s utility function is a function
of its power allocation and the goal is to allocate powersrideo to maximize network utility, which is defined
as a product of all users’ utilities. The traditional approes to model network utility maximization problem is by
the summation of users’ utility functions|[5]1[6]. Howeverch a formulation can drop users in order to maximize
system performance and thus all users are not treated, faglgan example consult]/[6]. In this paper, we deviate
from this trend and introduce a novel network utility maxaation framework which is a product of all users’ utility
functions. The motivation behind this approach is to ensiiat all users are entertained and no user is dropped in
order to maximize network utility and at the same time mamtainimum QoS for all users.

A utility function is a representation of QoS of a user. Foammple, utility functions have been defined to maximize
signal-to-interference-plus-noise ratio (SINR) [6], 8han capacity([7], ratio of throughput to transmit powielr [8]
etc. Thus, the type of utility function represents each'8@oS characteristics and it is possible that in a network
supporting different services we have to deal with varigyees of utility functions. The shape of a utility function
depends upon the characteristics of service it is reprisgeand thus can have many shapes including concave,
convex, sigmoidal-like or S-shaped, and inverse-S-shd®kdrhe optimality of the solution of network utility
maximization problem depends upon the shape of a utilitgtion. For example, services represented by concave
utility functions satisfy the convexity conditions of nevk utility maximization problem, when it is represented
by sum of users’ utility functions, and thus yields optimaluion. This is not the case for non-concave utility
functions. Moreover, algorithms proposed for downlink govallocation are utility function specific and can’t be
generalized to other utility functions due to the variouapss a utility function can take. Thus, an algorithm can
be optimal for one class of utility functions and at the sameetsub-optimal for other classes of utility functions.
In this framework, not only our power allocation and pricimlgorithms are optimal but the solution to our network
utility maximization problem is also optimal.

In this paper we consider sigmoidal-like, or S-shapedityftilinctions, which are first convex and then concave,
for network utility maximization problem because our Qo$erion is probability of successful packet transmission
and its cumulative distribution function is also S-shaped first convex and then concave. Thus, sigmoidal-like
utility function is a natural choice to represent probapitif successful packet transmission which can be a function
of SINR [6] or signal-to-interference ratio (SIR)_[10].

The wireless broadcast channel is random in nature and ezpesience independent and heterogeneous com-
munication environment. In such a challenging propagatiovironment it is difficult to design resource allocation

algorithms that maximize system efficiency, ensure fasnasd meet QoS requirements of all users. For example,



in order to improve system efficiency, opportunistic reseuallocation algorithms are used [11]. These algorithms
favor users with whom they share good channel quality orehyggically closer to the BS, and tend to avoid users
that are in deep-fade or the ones at cell edges. Despite afmzxg system efficiency such algorithms fail to (a)
satisfy QoS requirements of users and (b) maintain faircation of resources among users. This can be avoided
by fair allocation of resources among all users and thugyuploportional fairness problems are of more interest
[12].

Pricing can be used as a control measure by network providersisers can be motivated to make rational
decisions on the usage of network resources in order to nizimetwork utility. It has been successfully applied
to control congestion in the Internét [13] and rate and poivewireless networks [14]/[[15]. In network utility
maximization problems it is typical of network providersdet shadow prices for its resources. Similarly, we set
shadow prices for powers with the goal of achieving optiriira of individual users’ QoS and the distributed
optimization of the power allocation process in order to mmze network performance. Therefore, we charge
price from the user depending upon the modulation schena arse the total power available at the BS. So users
using lower modulation schemes require less transmit pawdrthus pay lower prices as compared to users using
higher modulation schemes. Also, the price per unit poweickwithe users pay depends upon the total power
available at the BS. So at the time of high network utilizatizwhen the demand for power is high, powers will
be scarce and thus users will pay more for the same amountrainiepower as compared to the time of low
network utilization. Thus, pricing can be used by networkviers to flatten traffic i.e. users can be motivated to

use the network during off-peak hours as they pay less foséimee service.

A. Related Work

In [16], the authors consider a proportional fairness salied problem in a network supporting different
users’ modulation schemes. However, their approach igdahsince they propose a two-user opportunistic propor-
tional fairness scheduling and utility maximization predol. Their algorithm for opportunistic proportional faisse
scheduling is optimal but for utility maximization theirqposed algorithm is suboptimal.

Lee et al. consider a downlink utility-based power allomatialgorithm for Code Division Multiple Access
(CDMA)-based systems in [6]. The algorithm maximizes theltgystem utility but can drop users to maximize
the overall system utilization, therefore, it does not gmé&e minimum QoS for all users. Moreover, they use
an approximation to solve non-concave sigmoidal-likeitytinaximization problem which is Pareto optimal. An
alternate approach to approximate concave and non-comutdite functions using minimum mean-square error
was proposed by [17]. The approximated utility function &ed to solve the power allocation problem using a
modified version of the distributed power allocation algfon presented i [3]. The same problem is considered by
Tychogiorgos et al. with a non-convex optimization forntida for maximization of utility function([18],[[19]. The
proposed algorithm solves the problem when the duality gapero but doesn’t converge to the optimal solution
for a positive duality gap.

evolved NodeB (eNodeB) can also be used to allocate powahg #anong users by taking into account user



positions. This utility proportional fairness problem cahieve QoS targets both in terms of fairness and throughput
[20]. In addition, the authors have shown that their sigoaliterference-plus-noise ratio (SINR)-based fair powe
allocation algorithm, which starts from the cell-edge gs&nd converges to the center, can achieve maximum sum
rate and optimal fairness. On the other hand, an alterng@aph to improve the throughput for the cell-edge user,
an uplink power control and resource allocation scheme rsidered in[[2[1]. The algorithm takes into account
the interference to and from adjacent cells. It first allesatesources independently among the cells and then
adjusts resources and powers for the center users basedaurae allocation and users’ position among adjacent
cells. In [22], the authors propose a utility max-min fagagower allocation for users with elastic and real-time
traffic sharing a single path in the network. [n_[23], the authproposed a utility proportional fair optimization
formulation for high-SINR wireless networks using a ujilinax-min architecture. They compare their algorithm
to the traditional bandwidth proportional fair algorithri34] and present a closed form solution that prevents
oscillations in the network.

In [25], [26], the authors consider downlink power allooatifor semi-elastic applications, for example video
conferencing, in 4G cellular networks using a sigmoided-lutility function. They consider a utility maximization
problem over multiple time slots since their algorithm e#ites powers and subcarriers in each time slot in order
to optimize average user utility over time by an exchangerafepand demand among users, the network, and an
intermediate power allocation module. A similar networkityt maximization problem for video streaming over
cellular networks, for both uplink and downlink, is congigé in [27]. The authors consider a joint optimization
of video and network resources to maximize total video réeepquality of a limited number of users without
interrupting the service of other voice users. the convergef their algorithms.

In [28], the authors conduct a trial of time-dependent pgc{TDP) system called TUBE for iPhone or iPad
users, using 3G cellular services, who are charged acaptdithe proposed TDP algorithm. Our results show that
TDP benefits both operators and customers, flattening thpahfluctuation of demand while allowing users to
save money by choosing the time and volume of their usage.

For earlier studies on optimal rate allocation, we referi28][ Rate pricing was introduced in_[30] for single
cell model. Rate allocation with carrier aggregation isdstd in [31], [32]. Rate allocation with prioritization of
mobile users based on their subscription is investigatg83h Rate allocation with guaranteed bit rate (GBR) to

mobile users running specific services is discussed_ in [34].

B. Our Contributions
Our contributions in this paper are summarized as:
« Utility Proportional Fairness: We introduce a utility proportional fairness optimizatipmoblem, where
the fairness among users is in utility percentage. Utiligrgentage is the percentage of packet successful
transmission versus power. Each modulation is represémtaditility function that is a sigmoidal-like function.

We prove that the proposed optimization problem is conveithearefore the global optimal solution is tractable.



In addition, the optimization problem formulation givesagpity to lower modulation users when allocating
powers while ensuring non-zero power allocation to highedutation users.

« Robust and Convergent Power Allocation Algorithm: We present a robust distributed power allocation
algorithm that converges to the optimal powers for userd watver and higher modulation schemes by
introducing a fluctuation decay function that damps the flatbns. Our algorithm senses fluctuations and
tunes the fluctuation decay function to reach convergence.

« Traffic-dependent Bidding/Pricing: We present a pricing policy for network providers that caduee the
demand in power i.e. flatten traffic load on the network andesese the overall service cost to subscribers.
The pricing policy is dependent on users’ modulation sctearal the total available power at the BS. Thus,
network providers can charge higher for the same servicenwte demand for power is high and vice versa.
This serves as an incentive to subscribers to use the semier the demand is low as they pay less for the

same service.

The remainder of this paper is organized as follows. Sedfiomotivates the use of utility proportional fairness
over other methods, introduces system topology, and dissugpresentation of modulations by sigmoidal-likettili
functions. Section 1]l presents the problem formulatioect®n[TV proves the global optimal solution exists and
is tractable. In SectiohlV, we introduce the dual problemSattion[ V], we present our distributed optimization
algorithm. Sectio_VII analyzes the power allocation aion and discusses its convergence. In Sedfionl VIII,
we present a more robust distributed power allocation #lgarfor the utility proportional fairness optimization
problem. Sectiofi IK discusses simulation setup and previgientitative results along with the discussion. Section

[XIconcludes the paper.

II. UTILITY PROPORTIONAL FAIRNESS

In this treatment, we consider utility proportional faisserather than bandwidth proportional fairness network
utility maximization problem. Regular proportional fa@ss problem suits the case when all users have the same
modulation scheme [3]. However, modern cellular networksers have different QoS needs and therefore can
handle different modulation schemes. Thus, one has to giveegular proportional fairness schemes in favor of
utility proportional fairness for power allocation in madecellular systemd [23]/ [35].

System Topology:In this paper, we consider, without loss of generality, ajlgrcellular system consisting of a
single BS andV/ UEs. Our objective is to optimally allocate powers to UEsetefing upon the modulation scheme
used and price paid for the power such that all UEs are servibdnen-zero allocation of power. We assume a
time-slotted system in which the power allocation alganthxecutes in every time slot. We assume the time slot
is of arbitrary interval in which a single or several packeas be transmitted and the propagation conditions such
as path loss, fading, noise and intercell interference gtaysame for each UE. The BS allocates power within
the power limit available such that the power allocated ®ith UE by the BS is given byP,. Each UE has its
own utility functionU;(~;(F;)) that corresponds to the type of modulation scheme beinglbdmy the UE where

v:(P;) is the “generic” signal quality metric for thd' UE, as in [6]. For cellular systems, this metric is commonly
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Fig. 1. Adaptive modulation schemes are used to enhancedaghirate access to users in 3G and 4G cellular networksnWheesignal-
to-noise (SNR) ratio is the highest, a higher modulationestd is used, for example 256-QAM. This usually happens fersupear the BS
as they share good channel quality with the BS. Higher mdidulaschemes require higher transmit power to maintain aegtable SNR for

successful transmission of packets, as seen fromFig. 2.

TABLE |
MATHEMATICAL NOTATIONS

Notation Description

M Total number of users in a cell

Pr Total BS power available

P Power assigned to th&" UE

P Vector of all users’ powers

vi (Py) SINR of thes™ UE

U; (v (P;)) | Utility function of the i UE

G; Accounts for path loss, shadowing, and fadirjg
between BS and thé" UE

I; Accounts for interference and background
noise at the™ UE

2 Slack variable of thet" UE

P Shadow price or the total price per unit power
for all UEs

fi(vi(P;)) | Probability of packet transmission success as a
function of user power
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Fig. 2. Cumulative distribution function of successful ketctransmission for QPSK, 16-QAM, 64-QAM, and 256-QAM mizdion schemes.
Each modulation represents a user’s utility functidp(~y;(P;)) which is a function of power.

referred to as SINR as it not only depends on #AdJE’s power allocation but also on the power allocation of all
other UEs. For CDMA systems, this metric represents theristgy to interference density ratio of th& UE [6].

Sigmoidal-like Utility Functions: Our objective is to assign optimal power levels to the UEs sdoahave a
minimum QoS for each UE. Therefore, we assume the utilitycfions U;(v; (P;)) to be sigmoidal-like functions.
The utility functions have the following properties:

e U;(0) =0 andU;(v;(F;)) is an increasing function aoF;.

e U;(vi(P,)) is twice continuously differentiable if;.

The SINR~;(P;) is represented, as inl[6]

G P

TG PGPt

where G; accounts for path loss, shadowing, and fading between the®Sthe:"™ UE and I; accounts for

i (P:)

(1)

background noise and intercell interference to ieUE. In our model, we use the normalized sigmoidal-like

utility function, as in [6], [10], [36], that can be expresdsas

Uin(P) = (e — ) @

a;b;
wherec¢; = 1'% andd; =

eaibi

He% So, it satisfied/(0) = 0 andU(c0) = 1. The values assigned toandb
play a role in the total system utility. For example, a UE watlarger value ofi or a UE with a smaller value of
b requires less power to achieve the same utility, given thiaroconditions are samkl! [6]. In addition, we can tune
parameters, andb to get an approximation of utility functions of various aipptions.

Link Adaptation in 4G Cellular Systems: Current and emerging cellular standards adapt to the RErtr&sion

conditions and select modulation and coding schemes whglitrin enhanced QoS for users. This is known as link



adaptation. The choice of modulation and/or coding schesrdynamically selected based on the channel-quality
between the base station and the user. For example, in LTilEnsgseach user sends a signal-quality level, known
as channel quality indicator (CQI) measurement, to the B TQIl measurement is based on the received signal-
strength of the reference signal, transmitted by the BS wittonstant power level and fixed modulation scheme.
This CQI measurements aids the BS to assign modulation mndébing scheme to the user. Typically, a BS can
assign upto 256-QAM scheme to users that report the higladise wf CQI. This is usually for the users that share
good channel with the BS or are close to the BS, see[Fig. 1. i#enwkigher power needs to be allocated in order
to assure same QoS as that of a lower modulation scheme, s3i¢,@Be Fig[R.

Representing Modulations by Sigmoidal-like Utility Functions: In order to further motivate the use of
sigmoidal-like utility functions, in Fig[J2, we provide thgrobability of packet transmission success for different
modulation schemes such as QPSK, 16-QAM, 64-QAM, and 2564QAke assume that our packets consist of 800
symbols and we sePr = 31. The probability of packet success can be givenfhy; (P;)) = Prol(y;(F;) > T),
wherel is some pre-established threshold. This packet transmnissiccess probability depends on many parameters
including modulation schemes, coding rate, packet sizbrithautomatic repeat request (H-ARQ) schemes, SINR,
and power. It is important to note that the cumulative disttion function of modulation schemes has a sigmoidal-
like shape i.e. first convex and then concave. Thus, a madnlean indeed be represented by sigmoidal-like utility
function of its power allocation [6]. For this reason, we negent different user modulations by sigmoidal- like

utility functions.

I1l. PROBLEM FORMULATION

We consider the utility proportional fairness objectiveadtion given by

M
max H U:(vi(FP)) )
i=1

whereP = {Py, P, ..., Py;} and M is the number of UEs in the coverage area of the BS. The godli®fpbwer
allocation objective function is to allocate power to eadk tat maximizes the total mobile system objective (i.e.
the product of the utilities of all the UEs) while ensuringoportional fairness among individual utilities. This
power allocation objective function ensures non-zero posdecation for all users. Therefore, the corresponding
power allocation optimization problem guarantees mininf@a® for all users. In addition, this approach allocates
more power to users with lower modulation schemes providimgrovement in the QoS of cellular system.
Optimization Problem: The basic formulation of the utility proportional fairnegswer allocation problem is

given by the following optimization problem with two corsiints:

M
mac [ Uiu(r)
i=1

M
subject to Z P, < Pr

=1

P,>0, fori=1,2,...,M and Pr > 0.

(4)



where Pr is the total power of the BS covering the UEs, andP = {P;, P, ..., Py; }. Our optimization problem
has two constraints which are discussed as follows.

Total BS Power Constraint i.e. Zﬁl P, < Pr: The BS has to allocate powers to all users by staying within
its available power budget.

Minimum QoS Constraint i.e. P, > 0 for + = 1,2,...,M and Pr > 0. We ensure that all UEs are served
by the BS by allocating non-zero powers to all UEs, i.e., wiign= 0, P; > 0 for all users. This is to meet a
minimum QoS criteria for all users of the network. The c&%e= 0 is only whenPr = 0 and is included to make
the problem as general as possible.

We prove in Sectiof IV that there exists a tractable globainogl solution to the optimization problernl (4).

IV. THE GLOBAL OPTIMAL SOLUTION
In the optimization probleni{4), since the objective fuantirg max H?il U;(v:(FP;)) is equivalent targ max Zij\il log(U;(v:(P;))
it can be expressed as:
M
max 3 log(Ui:(P)

M
subject to Z P, < Pr
=1

(5)

P,>0, fori:¢=1,2,..,M and Pr > 0.
Lemma IV.1. The utility functiondog(U;(v:(P;))), in the optimization probleni{5), are strictly concave ftimes.
Proof: In this paper, we assume that all the utility functions of tHes are sigmoidal-like functions. The utility

function of the normalized sigmoidal-like function is givey equation[(R) a&/;(v;(P;)) = c(ﬁ — d).

For0 < P; < Pr, we have

1
0<1—di(1+e it
< (1+e ) < TFod
It follows that for0 < P; < Pr, we have the first and second derivative as
d aidie_ai(Pi_bi) aie_ai(Pi_bi)
log Ui (vi(P;)) = >0

dPZ 0og (7 ( )) 1— dl(l —+ efai(Pifbi)) + (1 4 e*lli(Pi*bi))

d? —a2d;e~(Fib) —q2e—ai(Pi=b;)
— logU;(v:(P;)) = i i <.

-2 2 7(11(P17b7,) 2

0 Ci (1 —di(1+ e—a<Pyz—bi))) (I+e )

Therefore, the sigmoidal-like utility function'®;(v;(P;)) natural logarithmlog(U;(v;(P;))) is strictly concave
function. Therefore, all the utility functions in our systemodel have strictly concave natural logarithms. =
The natural logarithms of the utility functions of Figurk B2ashown in Figuré€l4 and the derivatives of natural

logarithms of the utility functions are shown in Figure 5.

Theorem IV.2. The optimization probleni{4) is a convex optimization peobland there exists a unigue tractable

global optimal solution.
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Fig. 3. The sigmoidal-like utility functions (represemgimisers with different modulation schemés)(~; (P;)). We use sigmoidal-like utility
functions as their shape resembles cumulative distributimction of successful packet transmission of modulatiohemes, see Figuié 2.
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Fig. 4. The natural logarithm of sigmoidal-like utility fations log U;(~;(P;)) which are strictly concave. Thus all modulation schemes
considered can be represented by sigmoidal-like utilitycfions that are strictly concave.

Proof: It follows from Lemma[1V1 that all UESs’ utility functions ar strictly concave. Therefore, the opti-
mization problem[(b) is a convex optimization probleém][3The optimization problem{5) is equivalent to the
optimization problem[{4), therefore it is also a convex myitiation problem. For a convex optimization problem

there exists a unigue tractable global optimal solutior].[37 ]
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Fig. 5. The first derivative of the natural logarithm of sigdad-like utility functions %}W.

V. THE DUAL PROBLEM

The key to a distributed and a decentralized optimal salutibthe primal problem in[{5) is to convert it to the
dual problem, similar to[[3] and[4]. The optimization prebi [3) can be divided into two simpler problems by

using the dual problem. We define the Lagrangian

M M
L(P,p) :Zlog(Uz‘(%(Pi))) —P(Z P+ zi — Pr)

M M

=" (log(Ui((P)) = ;) +p Y (Pr = =) (6)
i=1 i=1
M M

:Z Li(P;,p) +pZ(PT - z;)

wherez; > 0 is the slack variable anglis Lagrange multiplier or the shadow price (i.e. the tot&d@per unit power
for all the M channels). Therefore, th& UE bid for power can be given by; = pP; and we havezl.]‘i1 w; =
pzi]\il P,. The first term in equatior16) is separable itn. So we havemgx Ef\il(log(Ui(%(H))) —pP) =
Zi]\il m}%x(log(Ui(”yi(B))) — pP;). The dual problem objective function can be written as

D(p) =max L(P, p)

M M
= ZmPaX(log(Ui(%(H))) - pH) +py (Pr—z) ©)

’ i=1

i;l "
= Zm}%x(Li(Pi,p)) —i—pZ(PT — 2j).

i=1

11



The dual problem is given by

min D(p)
P (8)
subject to p > 0.
So we have o
9D(p)

=1
substituting by>" M, w; = p >V | P, we have
M
Zi:l ]LUZ . (10)
Pr =372 %
Now, we divide the primal probleni}5) into two simpler optiration problems in the UEs and the BS. THeUE

p:

optimization problem is given by:
max log Us(7i(F;)) — pFi
subjectto p >0 (11)

pP,>0, fori=1,2,...,M and Pr > 0.

The BS optimization problem is given by:

min D(p)
? (12)
subject to p > 0.

The minimization of shadow pricg is achieved by the minimization of the slack variable> 0 from equation
(10). Therefore, the maximum utilization of the availabl® Bower is achieved by setting the slack variahle- 0.

In this case, we replace the inequality in primal problém ¢6hstraint by equality constraint and so we have
Zi]\il w; = pPr. Therefore, we have = ZAile wherew; = pP; is transmitted by the" UE to the BS. The
utility proportional fairness in the objective function tife optimization problen{{4) is guaranteed in the solution
of the optimization problem$ (11) and {12).

VI. DISTRIBUTED ALGORITHM

We can directly construct a distributed power allocatiagoathm form the dual problem. The distributed power
allocation algorithm is an iterative solution for allocagithe network resources with bandwidth proportional fess
Our algorithm allocates powers with utility proportionaifess, which is the objective of our new problem
formulation. The algorithm is divided into an UE algorithiosvn in Algorithm [1) and an BS algorithm shown
in Algorithm (2). For the Algorithm in[{(lL) and12), each UE gtawith an initial bidw; (1) which is transmitted to
the BS. The BS calculates the difference between the retéidew; (n) and the previously received bigd; (n — 1)
and exits if it is less than a pre-specified threshbldVe setw;(0) = 0. If the value is greater than the threshold
d, BS calculates the shadow prigén) = M and sends that value to all the UEs. Each UE receives the

shadow price to solve for the powét; that maximizedog U; (v:(P;)) — p(n)P;. That power is used to calculate

12



Algorithm 1 UE Algorithm
Send initial bidw; (1) to BS

loop
Receive shadow pricg(n) from BS
if STOP from BSthen
Calculate allocated power,™ = ()
STOP

else
Solve P;(n) = arg m}gx(log Ui(v(P;)) — p(n)Pi)
Send new bidw;(n) = p(n)P;(n) to BS

end if

end loop

Algorithm 2 BS Algorithm
loop

Receive bidsw;(n) from UEs{Let w;(0) = 0 Vi}
if |w;(n) —w;(n—1)| <d§ Vi then

Allocate powers, P = i) o yser;

p(n)
STOP
else
Calculatep(n) = M
Send new shadow prigg(n) to all UEs
end if
end loop

the new bidw;(n) = p(n)P;(n). Each UE sends the value of its new higi(n) to the BS. This process is repeated
until |w;(n) — w;(n — 1)| is less than the pre-specified threshéld

The solutionP; of the optimization problen,(n) = argm}gx( log U; (i (P;)) — p(n)Pi) in Algorithm (1), is
the value ofP; that solves equatioﬁ% = p(n).

VII. CONVERGENCE

In this section, we present the convergence analysis ofratgo (1) and [(2) for different values aPr.

Lemma VII.1. For sigmoidal-like utility functionU;(~;(F;)), the slope curvature functio log[ggi(m) has an

inflection point atP; = P? ~ b; and is convex fol?; > Pf.

~d). let 5,(P,) = 2slulP) pe

Proof: For the sigmoidal-like functiort/;(~;(P;)) = ci( 2

1
1+e—ai(Pi—b;)

13



the slope curvature function. Then, we have that

0S; —ald;e= @ (Fi=bi) aZe~@i(Fi=bi)

ap. 2 2
OF; ci(l—di(l—l-e*“i(Pi*bi))) (1+efai<Prbi>)

and (13)
0%S; _ abdiem s (Pb)(1 — dy(1 — em(Ph)))  glemailPb)(1 - gmalPb)
2 p— 3 3 :

We analyze the curvature of the slope of the natural logaritf sigmoidal-like utility function. For the first

derivative, we haveg3: < 0 V P;. The first termS} of %;fg in equation [(IB) can be written as

a?eaibi (eaibi + e*ai(Pifbi))

S; = (e%ibi — e~ ai(Pi—b:))3 (14)
and we have
Jim S} = oo, and Jim St =0 for b, > ai (15)
For second terns? of 362_2'; in equation[(IB), we have the following properties
SZ(b;) =0, S?(P;>b;) >0, and S?(P; < b;) < 0. (16)

From equation[(T5) and{lL6); has an inflection point ab, = P7 = b;. In addition, we have the curvature 6f
changes from a convex function close to origin to a concawetion before the inflection poin®; = P then to

a convex function after the inflection point. [ ]

Corollary VII.2. If Zj‘il PZ-inf < Pr then Algorithm in[(l) and{2) converges to the global optimpaivers which

correspond to the steady state shadow price < “ilma;dimx + Hmax Whereimayx = argmax; b;.

~@imax

Proof: For the sigmoidal-like functiod/;(v;(P;)) = cl(ﬁ — di), the optimal solution is achieved
by solving the optimization probleni](5). In Algorithral (1)n amportant step to reach to the optimal solution is
to solve the optimization problem®;(n) = arg m}gx(log Ui (v:(Py)) —p(n)H) for every UE. The solution of this
problem can be written, using Lagrange multipliers methodhe form

dlog Ui(vi(F%))
OP;
From equation[(15) and(116) in Lemma VIl.1, we have the cumeabf S;(P;) is convex forP;, > Pf =~ b;.

—p=28i(P)—-p=0. (7)

The Algorithm in [1) and[(2) is guaranteed to converges toglobal optimal solution when the slop$;(F;)

of all the utility functions’ natural logarithmog U;(v;(F;)) are in the convex region of the functions, similar to
the analysis of logarithmic functions inl[3] and [4]. Theyed, the natural logarithm of sigmoidal-like functions
log U;(v:(P;)) converge to the global optimal solution fé > P ~ b;. The inflection point of sigmoidal-like
function U; (v;(P;)) is at P = b,. For Y, P <« Py, Algorithm in (@) and [2) allocates poweid > b; for

all users. Sinces;(P;) is convex forP; > P? approxb; then the optimal solution can be achieved by Algorithm

(1) and [2). We have from equation {17) and®$P;) is convex forP; > Pf ~ b;, thatps, < S;(P; = maxb;)

whereS;(P; = max b;) = “max%imax Ymax andipmay = argmax; b;. u

1=dipax
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) aib; aib;
Corollary VII.3. For > P™ > Pr and the global optimal shadow prige, ~ —dic 2 | _ac T then
1-di(l4e 2°) (l4te =)

the solution by Algorithm in({1) and(2) fluctuates about th&bgl optimal solution.

Proof: It follows from lemmal VI that fory>M P > P, 3 i such that the optimal powet8™ < b;.

Therefore, ifp,, ~ —%die = 4 we 2 s the optimal shadow price for optimization probleml(12hef, a
1-d;(14+e72 ) (14e72 )

small change in the shadow pripén) in the n!" iteration can lead the powe;(n) (root of S;(P;) — p(n) = 0) to

fluctuate between the concave and convex curvature of tipe slorveS;(P;) for the ;™ user. Therefore, it causes
fluctuation in the bidw;(n) sent to the BS and fluctuation in the shadow pri¢e) set by BS. Therefore, the
iterative solution of Algorithm in[{(il) and{?2) fluctuates aivahe global optimal power@fpt. ]

Theorem VII.4. Algorithm in [1) and[(2) does not converge to the global optisolution for all values ofPr.

Proof: It follows from CorollarylVI.2 and VIL.3 that Algorithm in[f) and [2) does not converge to the global

optimal solution for all values oPy. [ |

A. Fluctuation Example

We consider an example of six users using sigmoidal-likiyufunctions. The sigmoidal-like utility functions’
parameters are = {4,3.5,3,2.5,1.5,1} andb = {5, 10, 15, 20, 25, 30}, respectively. We assume that the BS'’s
maximum power isPr = 100, therefore,Z?:1 PN =105 > Pr = 100. Hence, we can’t guarantee convergence
with Algorithm in (@) and [(2), as stated by Corolldry VII.3a Figure[6, we show that the shadow priger)
fluctuates between a concave and convex curvature OW curve. The fluctuation in the shadow price
p(n) causes fluctuation in the allocated powers and hinders theecgence to the optimal powers. Therefore, the

optimal power allocation is not achievable by Algorithm [@) @nd [2).

VIIl. ROBUSTDISTRIBUTED ALGORITHM

In this section, we present a modified version of distribuségbrithm in Sectiori_ M| to avoid the drawback
discussed in section_VIl. The modified algorithm is robustl dnguarantees convergence for all values of the
BS maximum powerPr. Our algorithm allocates powers that coincide with the Aigpon in (I) and [2) for
ST P > Pr. For Y P" < Pr, our algorithm avoids fluctuations in the non-convergegtae, as discussed in
the previous section. This is achieved by adding a convememeasureAw(n) that senses the fluctuation in the
bids w;,. In the case of fluctuation, our algorithm decreases the s#pbetween the current and the previous bid
w;(n) —w;(n — 1) for every user usingfluctuation decay functiarirhe fluctuation decay function could be in the
following forms:

« Exponential functionlt takes the formAw(n) = e %z,

« Rational function It takes the formAw(n) = %
wherely, l2, I3 can be adjusted to change the power of decay of thebjd$he new algorithm with the fluctuation

decay function is in Algorithm[{3) and(2).
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Fig. 6. The%w curve of fluctuation example in Sectign VIFA and the shadaicgp(n) from Algorithm in () and [(2) for
Pr =100 (i.e. > Pli”f > Pr). When BS has scarce power, Algorithm [d (1) ahbl (2) don‘trgntee convergence for shadow price and thus
optimal power allocation is not if we rely on these algoritim

Remark VIII.1. The fluctuation decay function can be included in Algoritflip ¢f the UE or Algorithm[{R) of
the BS.

In our model, we add the decay part in Algorithid (1) of the UBu3, the modified UE algorithm with the
decay part becomes Algorithml (3).

IX. SIMULATION RESULTS

We present the simulation results of six utility functionsrresponding to six UEs, as shown in Figlie 3.
Algorithm in (3) and [2) was applied to sigmoidal-like utflifunctions with different parameters using MATLAB.

Our simulation results showed convergence to the optinaajlpowers for all values of the BS powgy-.

A. Convergence Dynamics fdtr = 45

In the following simulations, we sePr = 45 and the number of iterations= 40.

Algorithm (L) and (B): Non-convergent Powers and BidsHere, we choose the total BS powBr to be less
than the sum of users’ inflection poin}s b;. Therefore, Algorithm in[{1) and2) does not converge irs tteigion.
In Figure[7, we show the powerd (n) of different users with the number of iterationsfor Algorithm in (I) and

(2). It is shown that the powers fluctuate around the optinmavgrs and so the optimal powers are not achieved
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Algorithm 3 UE Algorithm
Send initial bidw; (1) to BS

loop
Receive shadow pricg(n) from BS
if STOP from BSthen

Calculate allocated power,™ = ()

else
Calculate new bidv;(n) = p(n)P;(n)
if |w;(n) —w;(n—1)| > Aw(n) then

wi(n) = w;(n — 1) + sign(w;(n) — w;(n — 1))Aw(n) {Aw =lie = or Aw = Lay
end if
Send new bidw;(n) to BS
end if
end loop

40
—e— user 1
35
—o— user 2
30 —o— user 3
—o— user 4
25
—— user5
Q:QO QA 6000000000000 o0 o user 6
15
10
5
0 A RAE MO Sl e el i Al e i e e e e S 4=...4=.,.~h.__~h.__~n;,4=...4=.,-.

0 5 10 15 20 25 30
n

Fig. 7. The convergence of powef(n) of Algorithm in (@) and [2) with number of iterations for different users and>r = 45. It can
be observed that powers don’t converge and fluctuate aroptichal powers. Thus the power allocation algorithm is ndfiropl even though
the power allocation optimization problem has optimal tofu

and the exit condition is not satisfied (i.e. endless iters). Similar behavior for bids);(n) with the number of
iterationsn is shown in Figuréls.

Algorithm (8) and (B): Convergent Powers and BidsThe behavior is more robust in Algorithin (3) ad (2) due
to the fluctuation decay function. It damps the fluctuatiothvévery iteration so the network reaches the optimal

powers of the optimization problern (11). The pow#}$n) and bidsw;(n) of Algorithm in (3) and[[2) are shown
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Fig. 8. The convergence of bids;(r) of Algorithm in (I) and [2) with number of iterations for different users and>r = 45. For these
algorithms the process of bidding doesn’t converge for séirs and bids fluctuate around optimal bid values.

in Figured® and_10, respectively.

Optimal Shadow Price p(n): In Figure[11, we show the new shadow prige:) of the fluctuation example
in Section[VII-A when using Algorithm in[{3) and](2). The shwd price p(n) fluctuation decreases with every
iteration n and converges to the optimal shadow price that correspandset optimal powers. On the contrary,

when using Algorithm in[{1) and{2), the shadow price fluotisaéind doesn't reach optimal value.

B. Power Allocation and Pricing fob < Pr < 100

In the following simulations, we set= 10—3 and the total power of the BB takes values between 5 and 100
with a step of 5.

Optimal Power Allocation: In Figure[1I2, we show the final powers of different users wiffetent BS power
Pr. Our distributed algorithm is set to avoid the situation 8beating zero power to any user (i.e. no user is
dropped). However, the BS allocates the majority of the pewe the UEs running low modulation schemes until
they reach the inflection powd?; = b;. When the total powePr exceeds the sum of the inflection powérsh;
of all the users with lower modulation schemes, BS allocatese powers to the UEs with higher modulation
schemes, as shown in Figurel 12, when BS power excBgeds 65. This behavior is similar to that inl 1 but with
including BS powerPr < 60 where the power is scarce with respect to the users’ modulathemes. In Figure
[I3, we show the sum of powe}s P; for different BS powerPr values. When the total powé?r exceeds the sum

of the inflection powey~ P, = Y b, of all the users, the users demands are met and the poweat@loceaches
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Fig. 9. The convergence of powef(n) of Algorithm in (3) and [2) with number of iterations for different users and>r = 45. It can be
observed that there is no fluctuation in powers when usinguttyn [3) and[(R). This is due to the introduction of fluctoatdecay function
in our algorithm which damps the fluctuations and the powers/erge for all users.

60

Fig. 10. The convergence of bids;(n) of Algorithm in (3) and [2) with number of iterations for different users and®>r = 45. It can
be observed that there is no fluctuation in bidgn) when using Algorithm[{8) and2). This is due to the introdartof fluctuation decay
function in our algorithm which damps the fluctuations anel lidding process converges for all users.

a steady state. This is similar in behavior to individualras€&igure 1R, where after the inflection point the power
allocation is steady. However, Figure] 13 gives an overdditi@n between total power available and demands of
users in the network.

Traffic-dependent Bidding/Pricing: In Figure[I4, we show the final bids of different users withfatiént BS
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Fig. 11. The convergence of shadow prigg:) with the number of iterations. There is fluctuation in the shadow prig€n) when using
Algorithm (@) and[[2). However, there is no fluctuation in gtedow pricer(n) when using Algorithm[{8) and[12). This is due to the introdiret
of fluctuation decay function in our algorithm which dampe ftuctuations and the optimal price converges.
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Fig. 12. The allocated power®; for different values ofPr, no = 20 andé = 10~3 for Algorithm in {3) and [2). Our algorithm gives
priority to users running lower modulation schemes and fivasallocates powers to them until they reach their infe@ctpoint. Users running
higher modulation schemes are followed by this. However,adgorithm ensures non-zero allocation of powers to alfsieus maintaining a
minimum QoS of all users.

total powerPr. The higher the user bids the higher the allocated power.ubkes with lower modulation schemes
bid higher when the resources are scarce and their bidsatecesPr increases. Therefore, the pricing which is
proportional to the bids is traffic-dependent. This givawise providers an option to increase the service price for
subscribers when the traffic load on the system is high. Toexeservice providers can motivate subscribers to
use the network when the traffic load on the network is low,h&y tpay less for the same service. The shadow

price p(n) represents the total price per unit power for all users. gufe[1b, we show the shadow prigér) with
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Fig. 13. The sum of powe}_ P; for different values ofPr and§ = 103 for Algorithm in (3) and [2). It can be seen that when the total
power P exceeds the sum of the inflection powel P, = > b; of all the users, all the users are assigned power accorditigetr desired
modulation scheme’s requirement. Thus satisfying useesiahds and the power allocation algorithm reaches a steatdy s

BS powerPr. The price is high for high-traffic (i.e. fixed number of usérg less resourceg?; is small) which
decreases for low-traffic (i.e. same number of users but meseurcespPr is large). A large decrease in the price
is apparent afte” = {10, 30,60} which are the points where one of the users utility exceedrtfiection point.
This large decrease occurs at the sum of inflection poEf§1 PN wherek = {1,2,..., M} is the users index

and M is the number of users.

X. CONCLUSION

In this paper, we addressed the problem of optimal allonaifdBS powers to users running different modulation
schemes by taking into account the price paid per unit powerdeh user and the total power available at the BS.
We used sigmoidal-like utility functions to represent €i#int users’ modulation schemes due to the resemblance
in shape of sigmoidal-like utility functions and the proBiyp of packet transmission success of modulation
schemes. We showed that our network utility maximizatioabfgm is convex and thus has optimal solution.
Our distributed power allocation algorithm ensured faésan the allocation of powers as we gave priority to users
running lower modulation schemes while ensuring non-zenwep allocation to users running higher modulation
schemes. Moreover, the power allocation algorithm was em®nt, for all network traffic conditions, and there
was no oscillation in the power allocation process due tairitreduction of fluctuation damping parameter in our
algorithm. We also illustrated that our algorithm providegbricing approach for network providers that could be
used to reduce the demand in power i.e. flatten traffic loadsgpeak traffic hours. We showed that the price per
unit power, the power allocation algorithm charged fromrsstepended upon the modulation scheme used and the

total power available at the BS. This provided an opporjufuit network providers to flatten load on their network
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Fig. 14. The final biday; for different values ofPr and§ = 10~3 for Algorithm in (3) and [(2). It can be seen that as the usedshigher
they are allocated higher power. Since our algorithm giveésrify to lower modulation schemes we start by allocatirmyprs to users with

lower modulation schemes. The users with lower modulatirees bid higher when the resources are scarce and theidéidease a®r

increases. Therefore, the pricing which is proportionathi® bids is traffic-dependent.

by motivating users to use the network at off-peak hours ag pfaid more for the same amount of per unit power

in peak hours than in off-peak hours.
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