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Abstract

In this paper, we introduce a novel approach for power allocation in cellular networks. In our model, we

use sigmoidal-like utility functions to represent different users’ modulation schemes. Each utility function is a

representation of the probability of successfully transmitted packets per unit of power consumed by a user, when

using a certain modulation scheme. We consider power allocation with utility proportional fairness policy, where the

fairness among users is in utility percentage i.e. percentage of successfully transmitted packets of the corresponding

modulation scheme. We formulate our network utility maximization problem as a product of utilities of all users and

prove that our power allocation optimization problem is convex and therefore the optimal solution is tractable. We

present a distributed algorithm to allocate base station (BS) powers optimally with priority given to users running

lower modulation schemes while ensuring non-zero power allocation to users running higher modulation schemes.

Our algorithm prevents fluctuation in the power allocation process and is capable of traffic and modulation dependent

pricing i.e. charges different price per unit power from different users depending in part on their modulation scheme

and total power available at the BS. This is used to flatten traffic and decrease the service price for users.

I. I NTRODUCTION

In the past, cellular networks were dominated by voice-onlytraffic. However, in recent years, there has been

a significant growth in the amount of multimedia-rich trafficover cellular networks. In order to support such

traffic, networks require higher data rates which can be achieved by using higher modulation schemes. This is the

reason current and emerging cellular standards are supporting various higher modulation schemes. For example,

Long term evolution (LTE), the fourth-generation (4G) wireless standard specified by 3rd Generation Partnership

Project (3GPP), supports higher modulation schemes such asQPSK, 16-QAM, and 64-QAM according to 3GPP

Release 10 or more commonly known as LTE-Advanced (LTE-A). The next evolution of LTE – LTE Release 12 and

beyond – also refereed to as LTE-B supports higher modulation schemes upto 256-QAM [1], [2]. Higher modulation

schemes require higher transmit power to achieve a certain signal-to-noise ratio (SNR) which can guarantee minimum

successful transmission probability of packets. This motivates numerous research efforts to optimally allocate power

for users seeking better quality-of-service (QoS), where QoS can be the minimum successful transmission probability
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of packets. In a cellular network, different users can run different services, requiring different modulation schemes,

and thus can have different power and QoS requirements.

One aspect of improving power allocation and achieving better QoS is to use network utility maximization

framework. This framework was first explored by the seminal works of Kelly et al. [3] and Low et al. [4] for wired

networks, such as the Internet, and later by Marbach et al. [5] and Lee et al. [6] for wireless networks, such as

Code Division Multiple Access (CDMA)-based systems. The utility function can be considered as a controlling

parameter through which a user’s QoS can be guaranteed. In this treatment, each user’s utility function is a function

of its power allocation and the goal is to allocate powers in order to maximize network utility, which is defined

as a product of all users’ utilities. The traditional approaches to model network utility maximization problem is by

the summation of users’ utility functions [5] [6]. However,such a formulation can drop users in order to maximize

system performance and thus all users are not treated fairly, as an example consult [6]. In this paper, we deviate

from this trend and introduce a novel network utility maximization framework which is a product of all users’ utility

functions. The motivation behind this approach is to ensurethat all users are entertained and no user is dropped in

order to maximize network utility and at the same time maintain minimum QoS for all users.

A utility function is a representation of QoS of a user. For example, utility functions have been defined to maximize

signal-to-interference-plus-noise ratio (SINR) [6], Shannon capacity [7], ratio of throughput to transmit power [8]

etc. Thus, the type of utility function represents each user’s QoS characteristics and it is possible that in a network

supporting different services we have to deal with various types of utility functions. The shape of a utility function

depends upon the characteristics of service it is representing and thus can have many shapes including concave,

convex, sigmoidal-like or S-shaped, and inverse-S-shaped[9]. The optimality of the solution of network utility

maximization problem depends upon the shape of a utility function. For example, services represented by concave

utility functions satisfy the convexity conditions of network utility maximization problem, when it is represented

by sum of users’ utility functions, and thus yields optimal solution. This is not the case for non-concave utility

functions. Moreover, algorithms proposed for downlink power allocation are utility function specific and can’t be

generalized to other utility functions due to the various shapes a utility function can take. Thus, an algorithm can

be optimal for one class of utility functions and at the same time sub-optimal for other classes of utility functions.

In this framework, not only our power allocation and pricingalgorithms are optimal but the solution to our network

utility maximization problem is also optimal.

In this paper we consider sigmoidal-like, or S-shaped, utility functions, which are first convex and then concave,

for network utility maximization problem because our QoS criterion is probability of successful packet transmission

and its cumulative distribution function is also S-shaped i.e. first convex and then concave. Thus, sigmoidal-like

utility function is a natural choice to represent probability of successful packet transmission which can be a function

of SINR [6] or signal-to-interference ratio (SIR) [10].

The wireless broadcast channel is random in nature and usersexperience independent and heterogeneous com-

munication environment. In such a challenging propagationenvironment it is difficult to design resource allocation

algorithms that maximize system efficiency, ensure fairness, and meet QoS requirements of all users. For example,
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in order to improve system efficiency, opportunistic resource allocation algorithms are used [11]. These algorithms

favor users with whom they share good channel quality or those typically closer to the BS, and tend to avoid users

that are in deep-fade or the ones at cell edges. Despite of maximizing system efficiency such algorithms fail to (a)

satisfy QoS requirements of users and (b) maintain fair allocation of resources among users. This can be avoided

by fair allocation of resources among all users and thus utility proportional fairness problems are of more interest

[12].

Pricing can be used as a control measure by network providersi.e. users can be motivated to make rational

decisions on the usage of network resources in order to maximize network utility. It has been successfully applied

to control congestion in the Internet [13] and rate and powerin wireless networks [14], [15]. In network utility

maximization problems it is typical of network providers toset shadow prices for its resources. Similarly, we set

shadow prices for powers with the goal of achieving optimization of individual users’ QoS and the distributed

optimization of the power allocation process in order to maximize network performance. Therefore, we charge

price from the user depending upon the modulation scheme used and the total power available at the BS. So users

using lower modulation schemes require less transmit powerand thus pay lower prices as compared to users using

higher modulation schemes. Also, the price per unit power which the users pay depends upon the total power

available at the BS. So at the time of high network utilization, when the demand for power is high, powers will

be scarce and thus users will pay more for the same amount of per unit power as compared to the time of low

network utilization. Thus, pricing can be used by network providers to flatten traffic i.e. users can be motivated to

use the network during off-peak hours as they pay less for thesame service.

A. Related Work

In [16], the authors consider a proportional fairness scheduling problem in a network supporting different

users’ modulation schemes. However, their approach is limited since they propose a two-user opportunistic propor-

tional fairness scheduling and utility maximization problem. Their algorithm for opportunistic proportional fairness

scheduling is optimal but for utility maximization their proposed algorithm is suboptimal.

Lee et al. consider a downlink utility-based power allocation algorithm for Code Division Multiple Access

(CDMA)-based systems in [6]. The algorithm maximizes the total system utility but can drop users to maximize

the overall system utilization, therefore, it does not guarantee minimum QoS for all users. Moreover, they use

an approximation to solve non-concave sigmoidal-like utility maximization problem which is Pareto optimal. An

alternate approach to approximate concave and non-concaveutility functions using minimum mean-square error

was proposed by [17]. The approximated utility function is used to solve the power allocation problem using a

modified version of the distributed power allocation algorithm presented in [3]. The same problem is considered by

Tychogiorgos et al. with a non-convex optimization formulation for maximization of utility function [18], [19]. The

proposed algorithm solves the problem when the duality gap is zero but doesn’t converge to the optimal solution

for a positive duality gap.

evolved NodeB (eNodeB) can also be used to allocate powers fairly among users by taking into account user
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positions. This utility proportional fairness problem canachieve QoS targets both in terms of fairness and throughput

[20]. In addition, the authors have shown that their signal-to-interference-plus-noise ratio (SINR)-based fair power

allocation algorithm, which starts from the cell-edge users and converges to the center, can achieve maximum sum

rate and optimal fairness. On the other hand, an alternate approach to improve the throughput for the cell-edge user,

an uplink power control and resource allocation scheme is considered in [21]. The algorithm takes into account

the interference to and from adjacent cells. It first allocates resources independently among the cells and then

adjusts resources and powers for the center users based on resource allocation and users’ position among adjacent

cells. In [22], the authors propose a utility max-min fairness power allocation for users with elastic and real-time

traffic sharing a single path in the network. In [23], the authors proposed a utility proportional fair optimization

formulation for high-SINR wireless networks using a utility max-min architecture. They compare their algorithm

to the traditional bandwidth proportional fair algorithms[24] and present a closed form solution that prevents

oscillations in the network.

In [25], [26], the authors consider downlink power allocation for semi-elastic applications, for example video

conferencing, in 4G cellular networks using a sigmoidal-like utility function. They consider a utility maximization

problem over multiple time slots since their algorithm allocates powers and subcarriers in each time slot in order

to optimize average user utility over time by an exchange of price and demand among users, the network, and an

intermediate power allocation module. A similar network utility maximization problem for video streaming over

cellular networks, for both uplink and downlink, is considered in [27]. The authors consider a joint optimization

of video and network resources to maximize total video reception quality of a limited number of users without

interrupting the service of other voice users. the convergence of their algorithms.

In [28], the authors conduct a trial of time-dependent pricing (TDP) system called TUBE for iPhone or iPad

users, using 3G cellular services, who are charged according to the proposed TDP algorithm. Our results show that

TDP benefits both operators and customers, flattening the temporal fluctuation of demand while allowing users to

save money by choosing the time and volume of their usage.

For earlier studies on optimal rate allocation, we refer to [29]. Rate pricing was introduced in [30] for single

cell model. Rate allocation with carrier aggregation is studied in [31], [32]. Rate allocation with prioritization of

mobile users based on their subscription is investigated in[33]. Rate allocation with guaranteed bit rate (GBR) to

mobile users running specific services is discussed in [34].

B. Our Contributions

Our contributions in this paper are summarized as:

• Utility Proportional Fairness: We introduce a utility proportional fairness optimizationproblem, where

the fairness among users is in utility percentage. Utility percentage is the percentage of packet successful

transmission versus power. Each modulation is representedby a utility function that is a sigmoidal-like function.

We prove that the proposed optimization problem is convex and therefore the global optimal solution is tractable.
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In addition, the optimization problem formulation gives priority to lower modulation users when allocating

powers while ensuring non-zero power allocation to higher modulation users.

• Robust and Convergent Power Allocation Algorithm: We present a robust distributed power allocation

algorithm that converges to the optimal powers for users with lower and higher modulation schemes by

introducing a fluctuation decay function that damps the fluctuations. Our algorithm senses fluctuations and

tunes the fluctuation decay function to reach convergence.

• Traffic-dependent Bidding/Pricing: We present a pricing policy for network providers that can reduce the

demand in power i.e. flatten traffic load on the network and decrease the overall service cost to subscribers.

The pricing policy is dependent on users’ modulation schemes and the total available power at the BS. Thus,

network providers can charge higher for the same service when the demand for power is high and vice versa.

This serves as an incentive to subscribers to use the servicewhen the demand is low as they pay less for the

same service.

The remainder of this paper is organized as follows. SectionII motivates the use of utility proportional fairness

over other methods, introduces system topology, and discusses representation of modulations by sigmoidal-like utility

functions. Section III presents the problem formulation. Section IV proves the global optimal solution exists and

is tractable. In Section V, we introduce the dual problem. InSection VI, we present our distributed optimization

algorithm. Section VII analyzes the power allocation algorithm and discusses its convergence. In Section VIII,

we present a more robust distributed power allocation algorithm for the utility proportional fairness optimization

problem. Section IX discusses simulation setup and provides quantitative results along with the discussion. Section

X concludes the paper.

II. U TILITY PROPORTIONAL FAIRNESS

In this treatment, we consider utility proportional fairness rather than bandwidth proportional fairness network

utility maximization problem. Regular proportional fairness problem suits the case when all users have the same

modulation scheme [3]. However, modern cellular network’susers have different QoS needs and therefore can

handle different modulation schemes. Thus, one has to give up regular proportional fairness schemes in favor of

utility proportional fairness for power allocation in modern cellular systems [23], [35].

System Topology:In this paper, we consider, without loss of generality, a single cellular system consisting of a

single BS andM UEs. Our objective is to optimally allocate powers to UEs depending upon the modulation scheme

used and price paid for the power such that all UEs are served with non-zero allocation of power. We assume a

time-slotted system in which the power allocation algorithm executes in every time slot. We assume the time slot

is of arbitrary interval in which a single or several packetscan be transmitted and the propagation conditions such

as path loss, fading, noise and intercell interference staythe same for each UE. The BS allocates power within

the power limit available such that the power allocated to the ith UE by the BS is given byPi. Each UE has its

own utility functionUi(γi(Pi)) that corresponds to the type of modulation scheme being handled by the UE where

γi(Pi) is the “generic” signal quality metric for theith UE, as in [6]. For cellular systems, this metric is commonly
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Fig. 1. Adaptive modulation schemes are used to enhance highdata-rate access to users in 3G and 4G cellular networks. When the signal-

to-noise (SNR) ratio is the highest, a higher modulation scheme is used, for example 256-QAM. This usually happens for users near the BS

as they share good channel quality with the BS. Higher modulation schemes require higher transmit power to maintain an acceptable SNR for

successful transmission of packets, as seen from Fig. 2.

TABLE I

MATHEMATICAL NOTATIONS

Notation Description

M Total number of users in a cell

PT Total BS power available

Pi Power assigned to theith UE

P Vector of all users’ powers

γi(Pi) SINR of theith UE

Ui(γi(Pi)) Utility function of the ith UE

Gi Accounts for path loss, shadowing, and fading

between BS and theith UE

Ii Accounts for interference and background

noise at theith UE

zi Slack variable of theith UE

p Shadow price or the total price per unit power

for all UEs

fi(γi(Pi)) Probability of packet transmission success as a

function of user power
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Fig. 2. Cumulative distribution function of successful packet transmission for QPSK, 16-QAM, 64-QAM, and 256-QAM modulation schemes.

Each modulation represents a user’s utility functionUi(γi(Pi)) which is a function of power.

referred to as SINR as it not only depends on theith UE’s power allocation but also on the power allocation of all

other UEs. For CDMA systems, this metric represents the bit energy to interference density ratio of theith UE [6].

Sigmoidal-like Utility Functions: Our objective is to assign optimal power levels to the UEs so as to have a

minimum QoS for each UE. Therefore, we assume the utility functionsUi(γi(Pi)) to be sigmoidal-like functions.

The utility functions have the following properties:

• Ui(0) = 0 andUi(γi(Pi)) is an increasing function ofPi.

• Ui(γi(Pi)) is twice continuously differentiable inPi.

The SINRγi(Pi) is represented, as in [6]

γi(Pi) =
GiPi

Gi

∑M
m=1 Pm −GiPi + Ii

(1)

whereGi accounts for path loss, shadowing, and fading between the BSand theith UE and Ii accounts for

background noise and intercell interference to theith UE. In our model, we use the normalized sigmoidal-like

utility function, as in [6], [10], [36], that can be expressed as

Ui(γi(Pi)) = ci

( 1

1 + e−ai(Pi−bi)
− di

)

(2)

whereci = 1+eaibi

eaibi
anddi =

1
1+eaibi

. So, it satisfiesU(0) = 0 andU(∞) = 1. The values assigned toa and b

play a role in the total system utility. For example, a UE witha larger value ofa or a UE with a smaller value of

b requires less power to achieve the same utility, given that other conditions are same [6]. In addition, we can tune

parametersa andb to get an approximation of utility functions of various applications.

Link Adaptation in 4G Cellular Systems: Current and emerging cellular standards adapt to the RF transmission

conditions and select modulation and coding schemes which result in enhanced QoS for users. This is known as link
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adaptation. The choice of modulation and/or coding scheme is dynamically selected based on the channel-quality

between the base station and the user. For example, in LTE systems, each user sends a signal-quality level, known

as channel quality indicator (CQI) measurement, to the BS. The CQI measurement is based on the received signal-

strength of the reference signal, transmitted by the BS witha constant power level and fixed modulation scheme.

This CQI measurements aids the BS to assign modulation and/or coding scheme to the user. Typically, a BS can

assign upto 256-QAM scheme to users that report the highest value of CQI. This is usually for the users that share

good channel with the BS or are close to the BS, see Fig. 1. However, higher power needs to be allocated in order

to assure same QoS as that of a lower modulation scheme, say QPSK, see Fig. 2.

Representing Modulations by Sigmoidal-like Utility Functions: In order to further motivate the use of

sigmoidal-like utility functions, in Fig. 2, we provide theprobability of packet transmission success for different

modulation schemes such as QPSK, 16-QAM, 64-QAM, and 256-QAM. We assume that our packets consist of 800

symbols and we setPT = 31. The probability of packet success can be given byfi(γi(Pi)) = Prob(γi(Pi) ≥ Γ),

whereΓ is some pre-established threshold. This packet transmission success probability depends on many parameters

including modulation schemes, coding rate, packet size, hybrid automatic repeat request (H-ARQ) schemes, SINR,

and power. It is important to note that the cumulative distribution function of modulation schemes has a sigmoidal-

like shape i.e. first convex and then concave. Thus, a modulation can indeed be represented by sigmoidal-like utility

function of its power allocation [6]. For this reason, we represent different user modulations by sigmoidal- like

utility functions.

III. PROBLEM FORMULATION

We consider the utility proportional fairness objective function given by

max
P

M
∏

i=1

Ui(γi(Pi)) (3)

whereP = {P1, P2, ..., PM} andM is the number of UEs in the coverage area of the BS. The goal of this power

allocation objective function is to allocate power to each UE that maximizes the total mobile system objective (i.e.

the product of the utilities of all the UEs) while ensuring proportional fairness among individual utilities. This

power allocation objective function ensures non-zero power allocation for all users. Therefore, the corresponding

power allocation optimization problem guarantees minimumQoS for all users. In addition, this approach allocates

more power to users with lower modulation schemes providingimprovement in the QoS of cellular system.

Optimization Problem: The basic formulation of the utility proportional fairnesspower allocation problem is

given by the following optimization problem with two constraints:

max
P

M
∏

i=1

Ui(γi(Pi))

subject to
M
∑

i=1

Pi ≤ PT

Pi ≥ 0, for i = 1, 2, ...,M and PT ≥ 0.

(4)
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wherePT is the total power of the BS covering theM UEs, andP = {P1, P2, ..., PM}. Our optimization problem

has two constraints which are discussed as follows.

Total BS Power Constraint i.e.
∑M

i=1 Pi ≤ PT : The BS has to allocate powers to all users by staying within

its available power budget.

Minimum QoS Constraint i.e. Pi ≥ 0 for i = 1, 2, ...,M and PT ≥ 0: We ensure that all UEs are served

by the BS by allocating non-zero powers to all UEs, i.e., whenPT 6= 0, Pi > 0 for all users. This is to meet a

minimum QoS criteria for all users of the network. The casePi = 0 is only whenPT = 0 and is included to make

the problem as general as possible.

We prove in Section IV that there exists a tractable global optimal solution to the optimization problem (4).

IV. T HE GLOBAL OPTIMAL SOLUTION

In the optimization problem (4), since the objective functionargmax
P

∏M
i=1 Ui(γi(Pi)) is equivalent toargmax

P

∑M
i=1 log(Ui(γi(Pi))),

it can be expressed as:

max
P

M
∑

i=1

log(Ui(γi(Pi)))

subject to
M
∑

i=1

Pi ≤ PT

Pi ≥ 0, for i = 1, 2, ...,M and PT ≥ 0.

(5)

Lemma IV.1. The utility functionslog(Ui(γi(Pi))), in the optimization problem (5), are strictly concave functions.

Proof: In this paper, we assume that all the utility functions of theUEs are sigmoidal-like functions. The utility

function of the normalized sigmoidal-like function is given by equation (2) asUi(γi(Pi)) = c
(

1
1+e−ai(Pi−bi)

− d
)

.

For 0 < Pi < PT , we have

0 < 1− di(1 + e−ai(Pi−bi)) <
1

1 + cidi

It follows that for 0 < Pi < PT , we have the first and second derivative as

d

dPi

logUi(γi(Pi)) =
aidie

−ai(Pi−bi)

1− di(1 + e−ai(Pi−bi))
+

aie
−ai(Pi−bi)

(1 + e−ai(Pi−bi))
> 0

d2

dP 2
i

logUi(γi(Pi)) =
−a2i die

−ai(Pi−bi)

ci

(

1− di(1 + e−a(Pi−bi))
)2 +

−a2i e
−ai(Pi−bi)

(1 + e−ai(Pi−bi))2
< 0.

Therefore, the sigmoidal-like utility function’sUi(γi(Pi)) natural logarithmlog(Ui(γi(Pi))) is strictly concave

function. Therefore, all the utility functions in our system model have strictly concave natural logarithms.

The natural logarithms of the utility functions of Figure 3 are shown in Figure 4 and the derivatives of natural

logarithms of the utility functions are shown in Figure 5.

Theorem IV.2. The optimization problem (4) is a convex optimization problem and there exists a unique tractable

global optimal solution.
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Fig. 3. The sigmoidal-like utility functions (representing users with different modulation schemes)Ui(γi(Pi)). We use sigmoidal-like utility

functions as their shape resembles cumulative distribution function of successful packet transmission of modulationschemes, see Figure 2.
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Fig. 4. The natural logarithm of sigmoidal-like utility functions logUi(γi(Pi)) which are strictly concave. Thus all modulation schemes

considered can be represented by sigmoidal-like utility functions that are strictly concave.

Proof: It follows from Lemma IV.1 that all UEs’ utility functions are strictly concave. Therefore, the opti-

mization problem (5) is a convex optimization problem [37].The optimization problem (5) is equivalent to the

optimization problem (4), therefore it is also a convex optimization problem. For a convex optimization problem

there exists a unique tractable global optimal solution [37].
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Fig. 5. The first derivative of the natural logarithm of sigmoidal-like utility functions ∂ logUi(γi(Pi))
∂Pi

.

V. THE DUAL PROBLEM

The key to a distributed and a decentralized optimal solution of the primal problem in (5) is to convert it to the

dual problem, similar to [3] and [4]. The optimization problem (5) can be divided into two simpler problems by

using the dual problem. We define the Lagrangian

L(P, p) =
M
∑

i=1

log(Ui(γi(Pi))) − p(

M
∑

i=1

Pi + zi − PT )

=

M
∑

i=1

(

log(Ui(γi(Pi)))− pPi

)

+ p

M
∑

i=1

(PT − zi)

=
M
∑

i=1

Li(Pi, p) + p

M
∑

i=1

(PT − zi)

(6)

wherezi ≥ 0 is the slack variable andp is Lagrange multiplier or the shadow price (i.e. the total price per unit power

for all theM channels). Therefore, theith UE bid for power can be given bywi = pPi and we have
∑M

i=1 wi =

p
∑M

i=1 Pi. The first term in equation (6) is separable inPi. So we havemax
P

∑M
i=1(log(Ui(γi(Pi)))− pPi) =

∑M
i=1 max

Pi

(log(Ui(γi(Pi)))− pPi). The dual problem objective function can be written as

D(p) =max
P

L(P, p)

=

M
∑

i=1

max
Pi

(

log(Ui(γi(Pi)))− pPi

)

+ p

M
∑

i=1

(PT − zi)

=
M
∑

i=1

max
Pi

(Li(Pi, p)) + p

M
∑

i=1

(PT − zi).

(7)
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The dual problem is given by

min
p

D(p)

subject to p ≥ 0.

(8)

So we have
∂D(p)

∂p
= PT −

M
∑

i=1

(Pi − zi) = 0 (9)

substituting by
∑M

i=1 wi = p
∑M

i=1 Pi we have

p =

∑M
i=1 wi

PT −
∑M

i=1 zi
· (10)

Now, we divide the primal problem (5) into two simpler optimization problems in the UEs and the BS. Theith UE

optimization problem is given by:

max
Pi

logUi(γi(Pi))− pPi

subject to p ≥ 0

Pi ≥ 0, for i = 1, 2, ...,M and PT ≥ 0.

(11)

The BS optimization problem is given by:

min
p

D(p)

subject to p ≥ 0.

(12)

The minimization of shadow pricep is achieved by the minimization of the slack variablezi ≥ 0 from equation

(10). Therefore, the maximum utilization of the available BS power is achieved by setting the slack variablezi = 0.

In this case, we replace the inequality in primal problem (5)constraint by equality constraint and so we have
∑M

i=1 wi = pPT . Therefore, we havep =
∑

M

i=1 wi

P
wherewi = pPi is transmitted by theith UE to the BS. The

utility proportional fairness in the objective function ofthe optimization problem (4) is guaranteed in the solution

of the optimization problems (11) and (12).

VI. D ISTRIBUTED ALGORITHM

We can directly construct a distributed power allocation algorithm form the dual problem. The distributed power

allocation algorithm is an iterative solution for allocating the network resources with bandwidth proportional fairness.

Our algorithm allocates powers with utility proportional fairness, which is the objective of our new problem

formulation. The algorithm is divided into an UE algorithm shown in Algorithm (1) and an BS algorithm shown

in Algorithm (2). For the Algorithm in (1) and (2), each UE starts with an initial bidwi(1) which is transmitted to

the BS. The BS calculates the difference between the received bidwi(n) and the previously received bidwi(n− 1)

and exits if it is less than a pre-specified thresholdδ. We setwi(0) = 0. If the value is greater than the threshold

δ, BS calculates the shadow pricep(n) =
∑

M

i=1 wi(n)

P
and sends that value to all the UEs. Each UE receives the

shadow price to solve for the powerPi that maximizeslogUi(γi(Pi)) − p(n)Pi. That power is used to calculate

12



Algorithm 1 UE Algorithm

Send initial bidwi(1) to BS

loop

Receive shadow pricep(n) from BS

if STOP from BSthen

Calculate allocated powerP opt
i = wi(n)

p(n)

STOP

else

SolvePi(n) = argmax
Pi

(

logUi(γi(Pi))− p(n)Pi

)

Send new bidwi(n) = p(n)Pi(n) to BS

end if

end loop

Algorithm 2 BS Algorithm
loop

Receive bidswi(n) from UEs{Let wi(0) = 0 ∀i}

if |wi(n)− wi(n− 1)| < δ ∀i then

Allocate powers,P opt
i = wi(n)

p(n) to useri

STOP

else

Calculatep(n) =
∑

M

i=1 wi(n)

P

Send new shadow pricep(n) to all UEs

end if

end loop

the new bidwi(n) = p(n)Pi(n). Each UE sends the value of its new bidwi(n) to the BS. This process is repeated

until |wi(n)− wi(n− 1)| is less than the pre-specified thresholdδ.

The solutionPi of the optimization problemPi(n) = argmax
Pi

(

logUi(γi(Pi)) − p(n)Pi

)

in Algorithm (1), is

the value ofPi that solves equation∂ logUi(γi(Pi))
∂Pi

= p(n).

VII. C ONVERGENCE

In this section, we present the convergence analysis of Algorithm (1) and (2) for different values ofPT .

Lemma VII.1. For sigmoidal-like utility functionUi(γi(Pi)), the slope curvature function∂ logUi(γi(Pi))
∂Pi

has an

inflection point atPi = P s
i ≈ bi and is convex forPi > P s

i .

Proof: For the sigmoidal-like functionUi(γi(Pi)) = ci

(

1
1+e−ai(Pi−bi)

− di

)

, let Si(Pi) = ∂ logUi(γi(Pi))
∂Pi

be

13



the slope curvature function. Then, we have that

∂Si

∂Pi

=
−a2idie

−ai(Pi−bi)

ci

(

1− di(1 + e−ai(Pi−bi))
)2 −

a2i e
−ai(Pi−bi)

(

1 + e−ai(Pi−bi)
)2

and

∂2Si

∂P 2
i

=
a3i die

−ai(Pi−bi)(1− di(1− e−ai(Pi−bi)))

ci

(

1− di(1 + e−ai(Pi−bi))
)3 +

a3i e
−ai(Pi−bi)(1− e−ai(Pi−bi))
(

1 + e−ai(Pi−bi)
)3 .

(13)

We analyze the curvature of the slope of the natural logarithm of sigmoidal-like utility function. For the first

derivative, we have∂Si

∂Pi
< 0 ∀ Pi. The first termS1

i of ∂2Si

∂P 2
i

in equation (13) can be written as

S1
i =

a3i e
aibi(eaibi + e−ai(Pi−bi))

(eaibi − e−ai(Pi−bi))3
(14)

and we have

lim
Pi→0

S1
i = ∞, and lim

Pi→bi
S1
i = 0 for bi ≫

1

ai
. (15)

For second termS2
i of ∂2Si

∂P 2
i

in equation (13), we have the following properties

S2
i (bi) = 0, S2

i (Pi > bi) > 0, and S2
i (Pi < bi) < 0. (16)

From equation (15) and (16),Si has an inflection point atPi = P s
i ≈ bi. In addition, we have the curvature ofSi

changes from a convex function close to origin to a concave function before the inflection pointPi = P s
i then to

a convex function after the inflection point.

Corollary VII.2. If
∑M

i=1 P
inf
i ≪ PT then Algorithm in (1) and (2) converges to the global optimalpowers which

correspond to the steady state shadow pricepss <
aimaxdimax

1−dimax
+

aimax

2 whereimax = argmaxi bi.

Proof: For the sigmoidal-like functionUi(γi(Pi)) = ci

(

1
1+e−ai(Pi−bi)

− di

)

, the optimal solution is achieved

by solving the optimization problem (5). In Algorithm (1), an important step to reach to the optimal solution is

to solve the optimization problemPi(n) = argmax
Pi

(

logUi(γi(Pi))− p(n)Pi

)

for every UE. The solution of this

problem can be written, using Lagrange multipliers method,in the form

∂ logUi(γi(Pi))

∂Pi

− p = Si(Pi)− p = 0. (17)

From equation (15) and (16) in Lemma VII.1, we have the curvature of Si(Pi) is convex forPi > P s
i ≈ bi.

The Algorithm in (1) and (2) is guaranteed to converges to theglobal optimal solution when the slopeSi(Pi)

of all the utility functions’ natural logarithmlogUi(γi(Pi)) are in the convex region of the functions, similar to

the analysis of logarithmic functions in [3] and [4]. Therefore, the natural logarithm of sigmoidal-like functions

logUi(γi(Pi)) converge to the global optimal solution forPi > P s
i ≈ bi. The inflection point of sigmoidal-like

functionUi(γi(Pi)) is at P inf
i = bi. For

∑M
i=1 P

inf
i ≪ PT , Algorithm in (1) and (2) allocates powersPi > bi for

all users. SinceSi(Pi) is convex forPi > P s
i approxbi then the optimal solution can be achieved by Algorithm

(1) and (2). We have from equation (17) and asSi(Pi) is convex forPi > P s
i ≈ bi, that pss < Si(Pi = max bi)

whereSi(Pi = max bi) =
aimaxdimax

1−dimax
+

aimax

2 and imax = argmaxi bi.
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Corollary VII.3. For
∑M

i=1 P
inf
i > PT and the global optimal shadow pricepss ≈

aidie
aibi
2

1−di(1+e
aibi

2 )
+ aie

aibi
2

(1+e
aibi
2 )

, then

the solution by Algorithm in (1) and (2) fluctuates about the global optimal solution.

Proof: It follows from lemma VII.1 that for
∑M

i=1 P
inf
i > PT ∃ i such that the optimal powersP opt

i < bi.

Therefore, ifpss ≈ aidie
aibi
2

1−di(1+e
aibi

2 )
+ aie

aibi
2

(1+e
aibi
2 )

is the optimal shadow price for optimization problem (12). Then, a

small change in the shadow pricep(n) in thenth iteration can lead the powerPi(n) (root of Si(Pi)− p(n) = 0) to

fluctuate between the concave and convex curvature of the slope curveSi(Pi) for the ith user. Therefore, it causes

fluctuation in the bidwi(n) sent to the BS and fluctuation in the shadow pricep(n) set by BS. Therefore, the

iterative solution of Algorithm in (1) and (2) fluctuates about the global optimal powersP opt
i .

Theorem VII.4. Algorithm in (1) and (2) does not converge to the global optimal solution for all values ofPT .

Proof: It follows from Corollary VII.2 and VII.3 that Algorithm in (1) and (2) does not converge to the global

optimal solution for all values ofPT .

A. Fluctuation Example

We consider an example of six users using sigmoidal-like utility functions. The sigmoidal-like utility functions’

parameters area = {4, 3.5, 3, 2.5, 1.5, 1} and b = {5, 10, 15, 20, 25, 30}, respectively. We assume that the BS’s

maximum power isPT = 100, therefore,
∑6

i=1 P
inf
i = 105 > PT = 100. Hence, we can’t guarantee convergence

with Algorithm in (1) and (2), as stated by Corollary VII.3. In Figure 6, we show that the shadow pricep(n)

fluctuates between a concave and convex curvature of the∂ logUi(γi(Pi))
∂Pi

curve. The fluctuation in the shadow price

p(n) causes fluctuation in the allocated powers and hinders the convergence to the optimal powers. Therefore, the

optimal power allocation is not achievable by Algorithm in (1) and (2).

VIII. R OBUST DISTRIBUTED ALGORITHM

In this section, we present a modified version of distributedalgorithm in Section VI to avoid the drawback

discussed in section VII. The modified algorithm is robust and it guarantees convergence for all values of the

BS maximum powerPT . Our algorithm allocates powers that coincide with the Algorithm in (1) and (2) for
∑

P inf
i > PT . For

∑

P inf
i ≪ PT , our algorithm avoids fluctuations in the non-convergent region, as discussed in

the previous section. This is achieved by adding a convergence measure∆w(n) that senses the fluctuation in the

bidswi. In the case of fluctuation, our algorithm decreases the stepsize between the current and the previous bid

wi(n)−wi(n− 1) for every useri usingfluctuation decay function. The fluctuation decay function could be in the

following forms:

• Exponential function: It takes the form∆w(n) = l1e
−

n

l2 .

• Rational function: It takes the form∆w(n) = l3
n

.

wherel1, l2, l3 can be adjusted to change the power of decay of the bidswi. The new algorithm with the fluctuation

decay function is in Algorithm (3) and (2).
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Fig. 6. The ∂ logUi(γi(Pi))
∂Pi

curve of fluctuation example in Section VII-A and the shadow price p(n) from Algorithm in (1) and (2) for

PT = 100 (i.e.
∑

P inf
i > PT ). When BS has scarce power, Algorithm in (1) and (2) don’t guarantee convergence for shadow price and thus

optimal power allocation is not if we rely on these algorithms.

Remark VIII.1. The fluctuation decay function can be included in Algorithm (1) of the UE or Algorithm (2) of

the BS.

In our model, we add the decay part in Algorithm (1) of the UE. Thus, the modified UE algorithm with the

decay part becomes Algorithm (3).

IX. SIMULATION RESULTS

We present the simulation results of six utility functions corresponding to six UEs, as shown in Figure 3.

Algorithm in (3) and (2) was applied to sigmoidal-like utility functions with different parameters using MATLAB.

Our simulation results showed convergence to the optimal global powers for all values of the BS powerPT .

A. Convergence Dynamics forPT = 45

In the following simulations, we setPT = 45 and the number of iterationsn = 40.

Algorithm (1) and (2): Non-convergent Powers and BidsHere, we choose the total BS powerPT to be less

than the sum of users’ inflection points
∑

bi. Therefore, Algorithm in (1) and (2) does not converge in this region.

In Figure 7, we show the powersPi(n) of different users with the number of iterationsn for Algorithm in (1) and

(2). It is shown that the powers fluctuate around the optimal powers and so the optimal powers are not achieved
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Algorithm 3 UE Algorithm

Send initial bidwi(1) to BS

loop

Receive shadow pricep(n) from BS

if STOP from BSthen

Calculate allocated powerP opt
i = wi(n)

p(n)

else

Calculate new bidwi(n) = p(n)Pi(n)

if |wi(n)− wi(n− 1)| > ∆w(n) then

wi(n) = wi(n− 1) + sign(wi(n)− wi(n− 1))∆w(n) {∆w = l1e
−

n

l2 or ∆w = l3
n
}

end if

Send new bidwi(n) to BS

end if

end loop
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Fig. 7. The convergence of powersPi(n) of Algorithm in (1) and (2) with number of iterationsn for different users andPT = 45. It can

be observed that powers don’t converge and fluctuate around optimal powers. Thus the power allocation algorithm is not optimal even though

the power allocation optimization problem has optimal solution.

and the exit condition is not satisfied (i.e. endless iterations). Similar behavior for bidswi(n) with the number of

iterationsn is shown in Figure 8.

Algorithm (3) and (2): Convergent Powers and BidsThe behavior is more robust in Algorithm (3) and (2) due

to the fluctuation decay function. It damps the fluctuation with every iteration so the network reaches the optimal

powers of the optimization problem (11). The powersPi(n) and bidswi(n) of Algorithm in (3) and (2) are shown
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Fig. 8. The convergence of bidswi(n) of Algorithm in (1) and (2) with number of iterationsn for different users andPT = 45. For these

algorithms the process of bidding doesn’t converge for all users and bids fluctuate around optimal bid values.

in Figures 9 and 10, respectively.

Optimal Shadow Price p(n): In Figure 11, we show the new shadow pricep(n) of the fluctuation example

in Section VII-A when using Algorithm in (3) and (2). The shadow price p(n) fluctuation decreases with every

iterationn and converges to the optimal shadow price that corresponds to the optimal powers. On the contrary,

when using Algorithm in (1) and (2), the shadow price fluctuates and doesn’t reach optimal value.

B. Power Allocation and Pricing for5 ≤ PT ≤ 100

In the following simulations, we setδ = 10−3 and the total power of the BSPT takes values between 5 and 100

with a step of 5.

Optimal Power Allocation: In Figure 12, we show the final powers of different users with different BS power

PT . Our distributed algorithm is set to avoid the situation of allocating zero power to any user (i.e. no user is

dropped). However, the BS allocates the majority of the powers to the UEs running low modulation schemes until

they reach the inflection powerPi = bi. When the total powerPT exceeds the sum of the inflection powers
∑

bi

of all the users with lower modulation schemes, BS allocatesmore powers to the UEs with higher modulation

schemes, as shown in Figure 12, when BS power exceedsPT = 65. This behavior is similar to that in 1 but with

including BS powerPT < 60 where the power is scarce with respect to the users’ modulation schemes. In Figure

13, we show the sum of powers
∑

Pi for different BS powerPT values. When the total powerPT exceeds the sum

of the inflection power
∑

Pi =
∑

bi of all the users, the users demands are met and the power allocation reaches
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Fig. 9. The convergence of powersPi(n) of Algorithm in (3) and (2) with number of iterationsn for different users andPT = 45. It can be

observed that there is no fluctuation in powers when using Algorithm (3) and (2). This is due to the introduction of fluctuation decay function

in our algorithm which damps the fluctuations and the powers converge for all users.
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Fig. 10. The convergence of bidswi(n) of Algorithm in (3) and (2) with number of iterationsn for different users andPT = 45. It can

be observed that there is no fluctuation in bidswi(n) when using Algorithm (3) and (2). This is due to the introduction of fluctuation decay

function in our algorithm which damps the fluctuations and the bidding process converges for all users.

a steady state. This is similar in behavior to individual users, Figure 12, where after the inflection point the power

allocation is steady. However, Figure 13 gives an overall relation between total power available and demands of

users in the network.

Traffic-dependent Bidding/Pricing: In Figure 14, we show the final bids of different users with different BS
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Fig. 12. The allocated powersPi for different values ofPT , n0 = 20 and δ = 10−3 for Algorithm in (3) and (2). Our algorithm gives

priority to users running lower modulation schemes and thusfirst allocates powers to them until they reach their inflection point. Users running

higher modulation schemes are followed by this. However, our algorithm ensures non-zero allocation of powers to all users thus maintaining a

minimum QoS of all users.

total powerPT . The higher the user bids the higher the allocated power. Theusers with lower modulation schemes

bid higher when the resources are scarce and their bids decrease asPT increases. Therefore, the pricing which is

proportional to the bids is traffic-dependent. This gives service providers an option to increase the service price for

subscribers when the traffic load on the system is high. Therefore, service providers can motivate subscribers to

use the network when the traffic load on the network is low, as they pay less for the same service. The shadow

pricep(n) represents the total price per unit power for all users. In Figure 15, we show the shadow pricep(n) with
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Fig. 13. The sum of power
∑

Pi for different values ofPT and δ = 10−3 for Algorithm in (3) and (2). It can be seen that when the total

powerPT exceeds the sum of the inflection power
∑

Pi =
∑

bi of all the users, all the users are assigned power according to their desired

modulation scheme’s requirement. Thus satisfying users’ demands and the power allocation algorithm reaches a steady state.

BS powerPT . The price is high for high-traffic (i.e. fixed number of usersbut less resources,PT is small) which

decreases for low-traffic (i.e. same number of users but moreresources,PT is large). A large decrease in the price

is apparent afterP = {10, 30, 60} which are the points where one of the users utility exceed theinflection point.

This large decrease occurs at the sum of inflection points
∑k

i=1 P
inf
i , wherek = {1, 2, ...,M} is the users index

andM is the number of users.

X. CONCLUSION

In this paper, we addressed the problem of optimal allocation of BS powers to users running different modulation

schemes by taking into account the price paid per unit power by each user and the total power available at the BS.

We used sigmoidal-like utility functions to represent different users’ modulation schemes due to the resemblance

in shape of sigmoidal-like utility functions and the probability of packet transmission success of modulation

schemes. We showed that our network utility maximization problem is convex and thus has optimal solution.

Our distributed power allocation algorithm ensured fairness in the allocation of powers as we gave priority to users

running lower modulation schemes while ensuring non-zero power allocation to users running higher modulation

schemes. Moreover, the power allocation algorithm was convergent, for all network traffic conditions, and there

was no oscillation in the power allocation process due to theintroduction of fluctuation damping parameter in our

algorithm. We also illustrated that our algorithm provideda pricing approach for network providers that could be

used to reduce the demand in power i.e. flatten traffic loads during peak traffic hours. We showed that the price per

unit power, the power allocation algorithm charged from users depended upon the modulation scheme used and the

total power available at the BS. This provided an opportunity for network providers to flatten load on their network
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Fig. 14. The final bidswi for different values ofPT andδ = 10−3 for Algorithm in (3) and (2). It can be seen that as the users bid higher

they are allocated higher power. Since our algorithm gives priority to lower modulation schemes we start by allocating powers to users with

lower modulation schemes. The users with lower modulation schemes bid higher when the resources are scarce and their bids decrease asPT

increases. Therefore, the pricing which is proportional tothe bids is traffic-dependent.

by motivating users to use the network at off-peak hours as they paid more for the same amount of per unit power

in peak hours than in off-peak hours.
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