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Abstract

Multiple-input multiple-output (MIMO) radar is a relatikenew concept in the field of radar signal processing.
Many novel MIMO radar waveforms have been developed by denisig various performance metrics and constraints.
In this paper, we show that finite alphabet constant-enee{BACE) quadrature-pulse shift keying (QPSK) waveforms
can be designed to realize a given covariance matrix by foemgg a constrained nonlinear optimization problem
into an unconstrained nonlinear optimization problem. didiion, we design QPSK waveforms in a way that they
don't cause interference to a cellular system, by steerimis nowards a selected base station (BS). The BS is
selected according to our algorithm which guarantees mimndegradation in radar performance due to null space
projection (NSP) of radar waveforms. We design QPSK wawes$owith spectrum sharing constraints for a stationary
and moving radar platform. We show that the waveform desigioe stationary MIMO radar matches the desired
beampattern closely, when the number of BS anteri&3is considerably less than the number of radar antennas
M, due to quasi-static interference channel. However, fovingoradar the difference between designed and desired
waveforms is larger than stationary radar, due to rapidgnging channel.

Index Terms

MIMO Radar, Constant Envelope Waveform, QPSK, Spectrunrifda

I. INTRODUCTION

An interesting concept for next generation of radars is iplekinput multiple-output (MIMO) radar systems; this
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has been an active area of research for the last couple of {HaMIMO radars have been classified into widely-
spaced([2], where antenna elements are placed widely agpattcolocated [3], where antenna elements are placed

next to each other. MIMO radars can transmit multiple signeia its antenna elements, that can be different from
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each other, thus, resulting in waveform diversity. ThisegiMIMO radars an advantage over traditional phased-
array radar systems which can only transmit scaled versibsmgle waveform and, thus, can’t exploit waveform
diversity.

Waveforms with constant-envelope (CE) are very desirahl@adar and communication system, from an im-
plementation perspective, i.e., they allow power ampéfigr operate at or near saturation levels. CE waveforms
are also popular due to their ability to be used with powecieffit class C and class E power amplifiers and also
with linear power amplifiers with no average power back-ntbipower amplifier. As a result, various researchers
have proposed CE waveforms for communication systems;Xamele, CE multi-carrier modulation waveforms
[4], such as CE orthogonal frequency division multiplexi@E-OFDM) waveforms|[[5]; and radar systems, for
example, CE waveform$[6], CE binary-phase shift keying -8HSK) waveforms[|7], and CE quadrature-phase
shift keying (CE-QPSK) waveforms][8].

Existing radar systems, depending upon their type and ws®e,be deployed any where between 3 MHz to
100 GHz of radio frequency (RF) spectrum. In this range, mainthe bands are very desirable for international
mobile telecommunication (IMT) purposes. For exampletipos of the 700-3600 MHz band are in use by various
second generation (2G), third generation (3G), and fouetiegation (4G) cellular standards throughout the world.
It is expected that mobile traffic volume will continue to iease as more and more devices will be connected to
wireless networks. The current allocation of spectrum teeless services is inadequate to support the growth in
traffic volume. A solution to this spectrum congestion pesblwas presented in a report by President’s Council of
Advisers on Science and Technology (PCAST), which advacatshare1000 MHz of government-held spectrum
[Q]. As a result, in the United States (U.S.), regulatoryodff are underway, by the Federal Communications
Commission (FCC) along with the National Telecommuniagaiand Information Administration (NTIA), to share
government-held spectrum with commercial entities in ttegfiency band 3550-3650 MHz |10]. In the U.S., this
frequency band is currently occupied by various serviceluding radio navigation services by radars. The future of
spectrum sharing in this band depends on novel interfereritigation methods to protect radars and commercial
cellular systems from each others’ interferencel [11]-[IBadar waveform design with interference mitigation

properties is one way to address this problem, and this isubgct of this paper.

A. Related Work

Transmit beampattern design problem, to realize a giveraré@vce matrix subject to various constraints, for
MIMO radars is an active area of research; many researclaes froposed algorithms to solve this beampattern
matching problem. Fuhrmann et al. proposed waveforms wibitrary cross-correlation matrix by solving beam-
pattern optimization problem, under the constant-moduwlusstraint, using various approachés][14]. Aittomaki
et al. proposed to solve beampattern optimization problewleu the total power constraint as a least squares
problem [15]. Gong et al. proposed an optimal algorithm fomadirectional beampattern design problem with the
constraint to have sidelobes smaller than some predetedhimeshold values [16]. Hua et al. proposed transmit

beampatterns with constraints on ripples, within the epdogusing section, and the transition bandwidth] [17].



However, many of the above approaches don't consider desigmaveforms with finite alphabet and constant-
envelope property, which is very desirable from an impletaton perspective. Ahmed et al. proposed a method to
synthesize covariance matrix of BPSK waveforms with finifghabet and constant-envelope property [7]. They also
proposed a similar solution for QPSK waveforms but it didsatisfy the constant-envelope property. A method to
synthesize covariance matrix of QPSK waveforms with finiplhabet and constant-envelope property was proposed
by Sodagari et al.[[8]. However, they did not prove that suamethod is possible. We prove the result in this
paper and show that it is possible to synthesize covariarateixrof QPSK waveforms with finite alphabet and
constant-envelope property.

As introduced earlier due to the congestion of frequencylbdnture communication systems will be deployed in
radar bands. Thus, radars and communication systems agetegto share spectrum without causing interference
to each other. For this purpose, radar waveforms should bigried in such a way that they not only mitigate
interference to them but also mitigate interference by thewther systems [18], [19]. Transmit beampattern design
by considering the spectrum sharing constraints is a faiehy problem. Sodagari et al. have proposed BPSK and
QPSK transmit beampatterns by considering the constdaattthe designed waveforms do not cause interference
to a single communication systeml [8]. This approach wasnelee to multiple communication systems, cellular
system with multiple base stations, by Khawar et al. for BR&smit beampatterns [20], [21]. We extend this

approach and consider optimizing QPSK transmit beampetter a cellular system with multiple base stations.

B. Our Contributions

In this paper, we make contributions in the areas of:

« Finite alphabet constant-envelope QPSK waveformin this area of MIMO radar waveform design, we make
the following contribution: we prove that covariance mawf finite alphabet constant-envelope QPSK wave-
form is positive semi-definite and the problem of designiray@form via solving a constrained optimization
problem can be transformed into an un-constrained optimizgroblem.

« MIMO radar waveform with spectrum sharing constraints: We design MIMO radar waveform for spectrum
sharing with cellular systems. We modify the newly desig@RISK radar waveform in a way that it doesn’t
cause interference to communication system. We design Qisform by considering the spectrum sharing
constraints, i.e., the radar waveform should be designadich a way that a cellular system experiences zero
interference. We consider two cases: first, stationary timagiMIMO radar is considered which experiences
a stationary or slowly moving interference channel. Fos thpe of radar, waveform is designed by including
the constraints in the unconstrained nonlinear optimoragiroblem, due to the tractability of the constraints.
Second, we consider a moving maritime MIMO radar which elgpees interference channels that are fast
enough not to be included in the optimization problem duehtirtintractability. For this type of radar,
FACE QPSK waveform is designed which is then projected dmeonull space of interference channel before

transmission.



TABLE |
TABLE OF NOTATIONS

Notation Description

x(n) Transmitted QPSK radar waveform

a(fk) Steering vector to steer signal to target angle
Tr(n) Received radar waveform from targetét

R Correlation matrix of QPSK waveforms

s;(n) Signal transmitted by thg¢!" UE in thes™ cell
L5 Total number of user equipments (UEs) in #fecell
X Total number of BSs

M Radar transmit/receive antennas

Ngs BS transmit/receive antennas

Nue UE transmit/receive antennas

H; ith interference channel

H, Hermite Polynomial

yi(n) Received signal at thé" BS

P; Projection matrix for the!" channel

C. Organization

This paper is organized as follows. System model, whichuihes radar, communication system, interference
channel, and cooperative RF environment model is discuss&ction[1l. Sectio 1l introduces finite alphabet
constant-envelope beampattern matching design probleatio81V introduces QPSK radar waveforms and Section
V] provides a proof of FACE QPSK waveform. Section VI discissspectrum sharing architecture along with BS
selection and projection algorithm. Section VIl designsSBPwaveforms with spectrum sharing constraints for
stationary and moving radar platforms. Secfion VIl dismsssimulation setup and results. Secfioh IX concludes

the paper.

D. Notations

Bold upper case letter#, denote matrices while bold lower case lettexsdenote vectors. Thex" column of
matrix is denoted by,,. For a matrixA, the conjugate and conjugate transposition are respgctiemoted byA*
andA”. Them™ row andn™ column element is denoted #y(m, n). Real and complex, vectors and matrices are

denoted by operatorB(-) and 3(+), respectively. A summary of notations is provided in Tdble |



Il. SYSTEM MODEL

In this section, we introduce our system models for MIMO raaiad cellular system. In addition, we introduce
the cooperative RF sharing environment between radar dhdacesystem along with the definition of interference

channel.

A. Radar Model

We consider waveform design for a colocated MIMO radar medrdgn a ship. The radar had colocated
transmit and receive antennas. The inter-element spa@hgelbn antenna elements is on the order of half the
wavelength. The radars with colocated elements give befiatial resolution and target parameter estimation as

compared to radars with widely spaced antenna element§3]2],

B. Communication System

We consider a MIMO cellular system, witf{ base stations, each equipped wilfys transmit and receive
antennas, with thé" BS supportingC; user equipments (UEs). Moreover, the UEs are also mulérara systems
with Nye transmit and receive antennasslf(n) is the signals transmitted by thd UE in thei" cell, then the

received signal at thé" BS receiver can be written as
yz(n):ZHm SJ(TL)—FW(TL), fOflSZSKﬁﬂdlS]SLZ
J

whereH; ; is the channel matrix between thi@ BS and thej™ user andw(n) is the additive white Gaussian

noise.

C. Interference Channel

In our spectrum sharing model, radar shakesnterference channels with cellular system. Let’s defireith

interference channel as

[ h§1’1) hEl,M) ]
H £ (Nes x M) 1)
hENBS,l) o h(NBS,M)
wherei =1,2,...,X, and hEl’k) denotes the channel coefficient from th#& antenna element at the MIMO radar

to the ! antenna element at th& BS. We assume that elements Hf are independent, identically distributed
(i.i.d.) and circularly symmetric complex Gaussian rand@riables with zero-mean and unit-variance, thus, having

a i.i.d. Rayleigh distribution.



D. Cooperative RF Environment

Spectrum sharing between radars and communication systamise envisioned in two types of RF environments,
i.e., military radars sharing spectrum with military commuation systems, we characterize it 82Mil sharing
and military radars sharing spectrum with commercial comication systems, we characterize it #2Com
sharing. InMil2Mil or Mil2Com sharing, interference-channel state information (IC@K be provided to radars
via feedback by military/commercial communication sysseiifi both systems are in a frequency division duplex
(FDD) configuration[[2P]. If both systems are in a time digisiduplex configuration, ICSI can be obtained via
exploiting channel reciprocity [22]. Regardless of the fagguration of radars and communication systems, there is
the incentive of zero interference, from radars, for comitation systems if they collaborate in providing ICSI.
Thus, we can safely assume the availability of ICSI for theesaf mitigating radar interference at communication

systems.

Il. FINITE ALPHABET CONSTANT-ENVELOPE BEAMPATTERN DESIGN

In this paper, we design QPSK waveforms having finite alptsabed constant-envelope property. We consider
a uniform linear array (ULA) ofM transmit antennas with inter-element spacing of half-wength. Then, the

transmitted QPSK signal is given as

whereZ,,(n) is the QPSK signal from the:™ transmit element at time index. Then, the received signal from a

target at locatiordy, is given as

M
Te(n) =Y e dm=Dmsinbeg (), k=1,2,..,K, (3)

m=1
where K is the total number of targets. We can write the receivedadigompactly as

7i(n) = a (0x)X(n) (4)

wherea(6;,) is the steering vector defined as
a(@k) = |1 e Jmsintp . efj(Mfl)rr sin 6y, . (5)

We can write the power received at the target locatef), as
P(6) = E{a” (6,) X(n) X" (n) a(6))}

=a' () Ra(by)

(6)

whereR is correlation matrix of the transmitted QPSK waveform. Hesired QPSK beampatte¢itdy, ) is formed

by minimizing the square of the error betweg,) and ¢(6;) through a cost function defined as

~ 1

K 2
J(R) = ; (a™ (00 Ra(0r) - () ) )



Since R is covariance matrix of the transmitted signal it must bdtpessemi-definite. Moreover, due to the interest
in constant-envelope property of waveforms, all antennastiransmit at the same power level. The optimization
problem in equation{7) has some constraints and, thust banthosen freely. In order to design finite alphabet

constant-envelope waveforms, we must satisfy the follgwdanstraints:
Clszf{VZO, Vv,
Cg:f{(m,m):c, m=1,2...,M,

whereC satisfies the ‘positive semi-definite’ constraint afigl satisfies the ‘constant-envelope’ constraint. Thus,

we have a constrained nonlinear optimization problem gagn

2
min — (0r) Ra 0 0
i Z ( k) k) — & k))
8
subjectto v#Rv > 0, Vv, ®

f{(m,m):c, m=1,2,.., M.
Ahmed et al. showed that, by using multi-dimensional spla¢iGoordinates, this constrained nonlinear optimization
can be transformed into an unconstrained nonlinear opitioiz [23]. OnceR is synthesized, the waveform matrix

X with N samples is given as
X= %) %) - xN)| - ®)
This can be realized from
X = XAY2WH (10)

where X € CN*M s a matrix of zero mean and unit variance Gaussian randomblas, A € RM*M js the
diagonal matrix of eigenvalues, aMl € ¢M>M is the matrix of eigenvectors at [24]. Note thatX has Gaussian

distribution due taX but the waveform produced is not guaranteed to have the Caepso

IV. FINITE ALPHABET CONSTANT-ENVELOPE QP SK WAVEFORMS

In [8], an algorithm to synthesize FACE QPSK waveforms tdizeaa given covariance matrig., with complex
entries was presented. However, it was not proved that sucbvariance matrix is positive semi-definite and
the constrained nonlinear optimization problem can besfammed into an un-constrained nonlinear optimization
problem, we prove the claim in this paper.

Consider zero mean and unit variance Gaussian random lexiéiRVs)z,, andy,, that can be mapped onto a
QPSK RV z,, through, as in[[B],

Z = % Sig(Z) + 7 SIgN(Gim) | (11)

Then, it is straight forward to write th@, ¢)th element of the complex covariance matrix as

E{Zp25} = Ypqg = Mpy + 77304 (12)



whereyy,, and~yg,, are the real and imaginary parts gf,, respectively. If, Gaussian RV, 74, y,, andy, are

chosen such that
E{zp7,} = E{ypyq}
E{Zpyq} = —E{upTq} (13)
then we can write the real and imaginary partsygf as
v, = B{sign(@, )sign(z,) }
75, = E{ sign(z; )signz,) (14)
Then, from equatior {77) Appendix B, we have
B{Z,Z,} = % lsml (E{:?,,Eq}) +gsin”? (E{g,@q})]. (15)
The complex Gaussian covariance maiRy is defined as
R, £ R(Ry) +3(Ry) (16)

whereR(R,) and &(R,) both have real entries, sind®, is a real Gaussian covariance matrix. Then, equation

(I5) can be written as
R-2 {sin_l (m(Rg)) +sin (S(Rg))} . (17)

In [8], it is proposed to construct complex Gaussian covemgamatrix via transfornﬁg = UHU, whereU is

given by equation[(20). ThefJ can be written as

U = R(U) + ,5(0) (18)

whereR(U) andS(U) are given by equation§ (1) arld[22), respectively. Alttmlyaf{g can also be expressed

as
R, = |R(U)TRU) + S(fJ)H%(INJ)} +7 {m(ﬁ)%(ﬁ) — S(U)IR(U)|. (19)
eIV el¥2sin(ihar)  €¥3 sin(thzr) sin(vhza) - - eI TIM L sin(varm)
0 e/¥2cos(tha1) €7¥3sin(vhz1) cos(hgy) - eIVM Hf\f;f sin(¢arm) cos(PYarar—1)
U=| o 0 e¥3 cos(1h31) (20)

eI sin(yar1) cos(Vare)

0 0 o oo eJ¥m cos(¢Par1)



cos(1) cos(tha) sin(we1)  cos(i3) sin(esy) sin(¢hsa) - - - cos(z/JM)H%:—ll sin(¢arm)

0 cos(12) cos(tha1)  cos(vs) sin(izy) cos(¢za) -+ COSWM)H%;fSin(me)COS(wM,M—l)

R(U) = 0 0 cos(¢3) cos(¢s1)
cos(¥ar) sin(¢arn ) cos(Yarz)
0 0 - e cos(thar) cos(Par1)
(21)
sin(tp1)  sin(tpz) sin(ehar)  sin(eps) sin(epsr) sin(ypzz) - sin(¢ar) Hi\n{;f sin(Yarm)

0 sin(1/)2) COS(?/JQl) Sin(i/lg) Sin(1/)31) COS(1/)32) s Sin(U)M) Hi\n{;f Sin(?/)Mm) COS(U)M_’Mfl)

%(U) = 0 0 sin(¢3) cos(s1)
sin(var) sin(¥par ) cos(¥ar2)
0 0 e e sin(¢ar) cos(¥ar1)
(22)
Lemma 1. If R, is a covariance matrix and
R, = R(R,) +13(Ry) (23)
then the complex covariance matiﬁ(g will always be positive semi-definite.
Proof: Please see Appendix C. [ ]

Lemmd_l satisfies constraiét andf{g also satisfies constraint, for ¢ = 1. This helps to transform constrained
nonlinear optimization into unconstrained nonlinear wation in the following section.

In order to generate QPSK waveforms we defivie< 2 matrix S, of Gaussian RVs, as
s [ﬁ ?] (24)
whereX andY are of each sizéV x M, representing real and imaginary parts of QPSK wavefornrirjathich

is given as

= 1 [, o e
Z = 7 {&gr‘(X) +35|gn(Y)]. (25)
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The covariance matrix of is given as
o Ry) SR
Rg = E{S"S} = . (26)

QPSK waveform matri¥Z can be realized by the matri of Gaussian RVs which can be generated using equation

(10) by utilizing Rg.

V. GAUSSIAN COVARIANCE MATRIX SYNTHESIS FORDESIRED QPSK BEAMPATTERN

In this section, we prove that the desired QPSK beampattmrbe directly synthesized by using the complex
covariance matrixf{g, for complex Gaussian RVs. This generatésQPSK waveforms for the desired beampattern
which satisfy the property of finite alphabet and constavietope. By exploiting the relationship between the

complex Gaussian RVs and QPSK RVs we have

sin~! (m(Rg)> +gsin? <<5(Rg))]. (27)

then R will always be positive semi-definite.

Proof: Please see AppendiX C. [ ]
Using equation[{27) we can rewrite the optimization problanequation[(B) as
12 ’
min — —aH(Hk){ sin~* (m(Rg)) + gsin™? <<5(Rg)) }a(@k) — (k)
R K 1 T
~ 28
subject to vHfRv >0, Vv, (28)
f{(m,m)zc, m=1,2,.. M.
1< [2
_ H so—1 TT\H T rT\H T
J(©) = ?; l;a (Ok){sm (%(U) R(U) + 3(U) %(U))

+ 7sin~! (%(6)%(6) - %(ﬁ)H%(ﬁ)) }aH(ek) - a¢(9k)] (29)

Since, the matrixU is already known, we can formulaﬁg via equation[(IB). We can also write tfg, ¢)th

element of the upper triangular matrﬁg by first writing the (p, ¢)th element of the upper triangular matrix
R(Ry(p,q)) as

q—1 . » q
R(Ry(p,q)) = [L=1 sin(Wa) [Tomy [Timy f(s5u), P >4 0

1, P=q
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where f(s,u) = cos(¥s)cos(¥,,) + sin(¥,)sin(¥,); and the(p, ¢)th element of the upper triangular matrix
%(R‘](paQ)) as

9~ sin
S(Rg(paQ)) = 9(p;9) Hl:l 5 (\I/ql)a p>q o

0, P=q
whereg(p, ¢) = cos(¥,) sin(¥,)+sin(¥,) cos(¥,). Thus, we can write thép, ¢)th element of the upper triangular

matrix R, as

. R(Ry(p, S(Rg(p,q)),
& (p.q) = (Ry(p,q)) +13(Ry(p,q)), p>4q @2)

1, p=q.

By utilizing the information ofU, the constrained optimization problem in equatiod (28) lsariransformed into

an unconstrained optimization problem that can be writteeguation[(29), where

T
and
T
T _
S =Wy Wy e Uy | o
T
~T
T Wy e Uy

The optimization is ovedM (M — 1)/2 + M elements¥,,,, and ¥;. The advantage of this approach lies in the
free selection of elements @ without effecting the positive semi-definite property andgibnal elements oﬁg.

Noting thatU and f{g are functions of®, we can alternately write the cost-function, in equatio8) (s

1 = 2 g o1 2) m o1 ?
J(@)_EZ[;a (6),) sin (%(Rg))a(%)—i—;a (6),) sin (%(Rg))a(Gk)—a(b(@k)] . (34)
k=1

First, the partial differentiation of (®) with respect to any element @, say¥,,,, can be found as

K
%\IIJ(SZ = l% Z {%aH(Hk) sin~! (R(Ry))a(b) + @aH(Gk) sin™? (S(Ry))a(bk) — 04(;5(9;@)}1

k=1 s
B\IJamn{z af! (0;)sin~! (R(R,))a(6y) + %aH(Qk)sin_l (%(Rg))a(ok)}]. )

The matrixR(R,) is real and symmetric, i.eR(Rq(p,q)) = R(R4(q,p)), at the same time(R,) has real
entries but is skew-symmetric, i.&(Ry(p, q)) = —S(R4(g,p)). These observations enables us to write equation

(38) in a simpler form

= |

o l Z{i () sin~ (R(R,))a(Br) + La’ (6) sin~ (3(R,))a <ek>—o«z><ek>}]

K
l2M - cos 7T|P_Q|Sln( )) (Q)%(Rg(PaQ))] (36)

T p=1 g=p+1 ace(Rz(pv )) OWrmn
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(lo

Fig. 1. Spectrum Sharing Scenario: Seaborne MIMO radairghapectrum with a cellular system.

Moreover,R(R,) contains only(M — 1) terms which depend o¥,,,,, thus, equation (36) further simplifies as

™

K
‘2‘;(33 :% [Z {%aH(Gk) sin~! (R(R))a(0:) + La (6) sin~! (S(Ry))a(6y) — a¢(9k)}

"W cos (m]p — m|sin(6y)) OR(Ry(p, m)) M. cos (n|m — g sin(fx)) OR(Ry(m, q))
v ap> v '
p=1 \/1 - R2 pa ) mn g=m+1 \/1 - %(Rg (ma q)) mn
(37)
Second, the partial differentiation of(®) with respect to any element of, say ¥;, can be found in the same

manner as was found fo¥,,,,, i.e.,

2J(©) 8 l

. AR Z{i a'’ (h),) sin™! (%(Rg))a(Gk)—F%aH(ﬂk)sin_l (s(Rg))a(ok)—agb(ok)}]

k=1

[Z gt e |p—q|sm<9k>) (a \P<l >)], (38)

p=1 q=p+1 g%(RQ(P Q))

Finally, the partial differentiation off (®) with respect tox is

K
0J(8) _ ~26(6x) [Z {%aH(Hk)sin_l (R(Ry))a(bk) + %aH(Ok)sin_l (S(Ry))a(bk) — a(b(@k)}]. (39)

k=1

Oa K

V1. RADAR-CELLULAR SYSTEM SPECTRUM SHARING

In the following sections, we will discuss our spectrum @iguarchitecture and spectrum sharing algorithms for

the 3550-3650 MHz band under consideration, which is coeshhy MIMO radar and cellular systems. .
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A. Architecture

Considering the coexistence scenario in [Fig. 1, where tdarris sharingX interference channels with the

cellular system, the received signal at #eBS can be written as
yi(n) = HX(n) + Y H,;s;(n) + w(n) (40)
J

In order to avoid interference to th& BS, the radar shapes its wavefosfi) such that it is in the null-space of
H,;, i.e. Hzi(n) =0.

B. Projection Matrix

In this section, we formulate a projection algorithm to puatjthe radar signal onto the null space of interference
channelH;. Assuming, the MIMO radar has ICSI for aHl; interference channels, either through feedback or
channel reciprocity, we can perform a singular value deasitipn (SVD) to find the null space @f; and use it

to construct a projector matrix. First, we find SVD Hf;, i.e.,

H, = UX, V. (41)
Now, let us define
ii £ diaq3i71,5i,2, Ceey 51',1,) (42)
wherep £ min(NBS M) anda; 1 > 6,2 > -+ > Gig > igi1 = Oigr2 = -+ 0ip = 0. Next, we define
S, £ diagd, 1,7, 5, -, 1) (43)
where
A0 for u < ¢,
Giu = (44)
1, foru>q.

Using above definitions we can now define our projection matr.,

P, 2V, EVH (45)
Below, we show two properties of projection matrices shgntimatP; is a valid projection matrix.
Property 1. P, € CM*M s a projection matrix if and only iP; = P/ = P2,

Proof: Let’s start by showing the ‘only if’ part. First, we shoR; = P, Taking Harmition of equatior{ (45)
we have

P — (VS VE)H —p,. (46)
Now, squaring equatioh_(#5) we have
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where above equation follows frolW”V,; = I (since they are orthonormal matrices) a(ﬁ;)Q = f]i (by
construction). From equations {46) amnd](47) it follows tRat= P¥ = P2Z. Next, we showP; is a projector by

showing that ifv € range P;), thenP,;v = v, i.e., for somew,v = P;w, then

Pv=P;(P,w) = P?W =P,w=v. (48)
Moreover,P;v — v € null(P;), i.e.,
P,(P;v—v)=Pv-P;v=P,v—P;v=0. (49)
This concludes our proof.
[ |

Property 2. P, € CM*M s an orthogonal projection matrix onto the null spacel®f ¢ CN®xM
Proof: SinceP; = PfI, we can write
P =U;3,VH x i~I'VH:0. 50
H,P? =UZ, VI x VX,

The above results follows from noting thﬁ):ii; = 0 by construction. [ ]

The formation of projection matrix in the waveform desigmogess is presented in the form of Algorittiin 1.

Algorithm 1 Projection Algorithm
if H; received from waveform design algorithiimen

Perform SVD onH; (i.e. H; = U, X, V)

Constructs; = diag(@;.1,5,.2,...,0ip)
Constructf); =diagd; 1,0} 25+, 0% ar)
Setup projection matriP; = VifJ;Vﬁ.
SendP; to waveform design algorithm.

end if

VII. WAVEFORM DESIGN FORSPECTRUM SHARING

In the previous section, we designed finite alphabet cotistarelope QPSK waveforms by solving a beampattern
matching optimization problem. In this section, we extehd beampattern matching optimization problem and
introduce new constraints in order to tailor waveforms tlah’t cause interference to communication systems
when MIMO radar and communication systems are sharing spactWe design spectrum sharing waveforms for
two cases: the first case is for a stationary maritime MIMQaraand the second case is for moving maritime

MIMO radar. The waveform design in these contexts is and ét$opmance is discussed in the next sections.
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A. Stationary maritime MIMO radar

Consider a naval ship docked at the harbor. The radar mowriethbp of that ship is also stationary. The
interference channels are also stationary due to non-mentof ship and BSs. In such a scenario, the CSI has
little to no variations and thus it is feasible to include thenstraint of NSP, equatiof (52), into the optimization

problem. Thus, the new optimization problem is formulated a

min - i Eank)Pi{ in~! (afe(ﬁ)Hére(ﬁ) + %(ﬁ)H%(ﬁ)) +sin! (?R(U)Hs(ﬁ) —sa?)Hére(ﬁ)) }

2
x P{Tal’ (0x) — a¢(9k)1 : (51)

A drawback of this approach is that it does not guaranteeneme constant-envelope radar waveform. However, the
designed waveform is in the null space of the interferen@nohbl, thus, satisfying spectrum sharing constraints.
The waveform generation process is shown using the blocljralia of Figure R. Note thatK waveforms are
designed, as we hauk interference channels that are static. Using the projeatiatrix P;, the NSP projected
waveform can be obtained as

Zynsp = ZPPH. (52)

The correlation matrix of the NSP waveform is given as

X 1 /xopt H  opt

R = (Zuse) Zner (53)
We propose to select the transmitted waveform with covagamatrixR; is as close as possible to the desired

covariance matrix, i.e.,

K
N . i H X,- 2
imn £ arg min [ - kz::l (a (01) R; a(0y) — ¢(9k)) (54)
ﬁ‘%pstp é f{”imin' (55)

Equivalently, we selecP; which projects maximum power at target locations. Thus,stationary MIMO radar

waveform with spectrum sharing constraints we propose dtdgn (2).

B. Moving maritime MIMO radar

Consider the case of a moving naval ship. The radar mountetbprof the ship is also moving, thus, the
interference channels are varying due to the motion of $hije to time-varying ICSI, it is not feasible to include the
NSP in the optimization problem. For this case, we first de§igite alphabet constant-envelope QPSK waveforms,
using the optimization problem in equatidn]29), and thee NSP to satisfy spectrum sharing constraints using
transform

Z; = 7P, (56)

The waveform generation process is shown using the blodairalia of Figurd B. Note that only one waveform is

designed using the optimization problem in equatfod (29)Xprojection operations are performed via equation
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Fig. 2. Block diagram of waveform generation process foraticztary MIMO radar with spectrum sharing constraints.

Algorithm 2 Stationary MIMO Radar Waveform Design Algorithm with Speech Sharing Constraints
loop

forc=1:X do
Get CSI ofH; through feedback from thé" BS.

SendH; to Algorithm (1) for the formation of projection matriR;.

Receive the™ projection matrixP; from Algorithm ().

Design QPSK Waveforni;.’pt using the optimization problem in equatidn {51).

Project the QPSK waveform onto the null spacei'bfinterference channel usir%i,zpz ZP'pH,

end for
. . . 1 K H = 2
Find imp = arg min | — Y7, (a (01) R; a(0r) — ¢(9k)) .

1<i<K
SetRY%, = R, as the covariance matrix of the desired NSP QPSK wavefornbe twansmitted.

Tmin

end loop

(58). The transmitted waveform is selected on the basis afrmim Forbenius norm with respect to the designed

waveform using the optimization problem in equatibnl (29,,i

imin 2 arg min ||szI — Z||F (57)
1<i<K
Insp 2 Zi,. (58)

The correlation matrix of this transmitted waveform is givas

~H x

~ 1
Rnsp = N ZyspZnsp. (59)

Thus, for moving MIMO radar waveform with spectrum shariranstraints we propose Algorithral (3).
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Fig. 3. Block diagram of waveform generation process for aimpMIMO radar with spectrum sharing constraints.

Algorithm 3 Moving MIMO Radar Waveform Design Algorithm with Spectrurh&ing Constraints
Design FACE QPSK waveforrd using the optimization problem in equatidn(29).

loop
fori=1:%X do
Get CSI ofH; through feedback from thé" BS.
SendH; to Algorithm (@) for the formation of projection matriR;.
Receive the™ projection matrixP,; from Algorithm ().
Project the FACE QPSK waveform onto the null spacetinterference channel usir@ = ZP{I.
end for
Find imin = arg min ||ZPH — Z|| .
_ 1<i<K
SetRnsp as the covariance matrix of the desired NSP QPSK waveformhe twansmitted.

end loop

VIIl. SIMULATION

In order to design QPSK waveforms with spectrum sharing tcaimés, we use a uniform linear array (ULA) of
ten elements, i.e)/ = 10, with an inter-element spacing of half-wavelength. Eacteana transmits waveform
with unit power andV = 100 symbols. We average the resulting beampattern over 100evi@atlo trials of QPSK
waveforms. At each run of Monte Carlo simulation we geneaaiayleigh interference channel with dimensions
Ngs x M, calculate its null space, and solve the optimization @wbfor stationary and moving maritime MIMO

radar.
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Fig. 4. QPSK waveform for stationary MIMO radar, sharing Rivimnment with five BSs each equipped witiree antennas.

A. Waveform for stationary radar

In this section, we design the transmit beampattern for tostry MIMO radar. The desired beampattern has
two main lobes from-60° to —40° and from40° to 60°. The QPSK transmit beampattern for stationary maritime
MIMO radar is obtained by solving the optimization problemeiquation[(51). We give different examples to cover
various scenarios involving different number of BSs anéedént configuration of MIMO antennas at the BSs. We
also give one example to demonstrate the efficacy of Algmstifil) and[(R) in BS selection and its impact on the
waveform design problem.

Example 1: Cellular System with five BSs and{3,5,7} MIMO antennas and stationary MIMO radar

In this example, we design waveform for a stationary MIMOanaih the presence of a cellular system with five
BSs. We look at three cases where we vary the number of BS reagdrom{3, 5, 7}. In Figure[4, we show the
designed waveforms for all five BSs each equipped with 3 MIM{eanas. Note that, due to channel variations
there is a large variation in the amount of power projecteid darget locations for different BSs. But for certain
BSs, the projected waveform is close to the desired waveftarkigure[$, we show the designed waveforms for
all five BSs each equipped with 5 MIMO antennas. Similar to phevious case, due to channel variations there
is a large variation in the amount of power projected ontgeatocations for different BSs. However, the power
projected onto the target is less when compared with theigus\wase. We increase the number of antennas to
in Figure[®, and notice that the amount of power projected din¢ targets is least as compared to previous two
cases. This is because whézs < M we have a larger null space to project radar waveform andréfsislts in
the projected waveform closer to the desired waveform. HewavhenNgs < M, this is not the case.

Example 2: Performance of Algorithms (@) and (@) in BS selection for spectrum sharing with stationary
MIMO radar
In Examples 1, we designed waveforms for different numbeB®$ with different antenna configurations. As

we showed, for some BSs the designed waveform was close ttefieed waveform but for other it wasn't and the
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Fig. 5. QPSK waveform for stationary MIMO radar, sharing Rivimnment with five BSs each equipped witkie antennas.

35 ‘ ‘ ‘
Desired Beampattern
30 - = =QPSK Covariance Matrix R 4
—#—QPSK R, for BS#1
251 ——QPSK R, for BS#2 1
—e—QPSK RY%, for BS#3
20F QPSK R, for BS#4 1
e ——QPSK R, for BS#5

15

-80 80

Fig. 6. QPSK waveform for stationary MIMO radar, sharing Rivimnment with five BSs each equipped wibvenantennas.

projected waveform was closer to the desired waveform whgg < M then whenNgs < M. In Figure[T, we
use Algorithms[{lL) and{2) to select the waveform which prtgenaximum power on the targets or equivalently
the projected waveform is closest to the desired waveform.apply Algorithms[{ll) and{2) to the cases when
Ngs = {3,5,7} and select the waveform which projects maximum power on #ngets. It can be seen that
Algorithm (2) helps us to select waveform for stationary MDMadar which results in best performance for radar
in terms of projected waveform as close as possible to theedlesaveform in addition of meeting spectrum sharing

constraints.

B. Waveform for moving radar

In this section, we design transmit beampattern for a moWtilO radar. The desired beampattern has two

main lobes from-60° to —40° and from40° to 60°. The QPSK transmit beampattern for moving maritime MIMO
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Fig. 7. Algorithm [2) is used to select the waveform whichjgcts maximum power on the targets whafas = {3, 5,7} in the presence of

five BSs.

radar is obtained by solving the optimization problem inaomn [34) and then projecting the resulting waveform
onto the null space df; using the projection matrix in equatidn_{56). We give difier examples to cover various
scenarios involving different number of BSs and differemfiguration of MIMO antennas at the BSs. We also give
one example to demonstrate the efficacy of Algorithinis (1) @)dn BS selection and its impact on the waveform
design problem.
Example 3: Cellular System with five BSs each with{3,5, 7} MIMO antennas and moving MIMO radar
In this example, we design waveform for a moving MIMO radarttie presence of a cellular system with five
BSs. We look at three cases where we vary the number of BS magdrom{3, 5, 7}. In Figure[8, we show the
designed waveforms for all five BSs each equipped with 3 MIM{eanas. Note that, due to channel variations
there is a large variation in the amount of power projectett) ¢target locations for different BSs. When compared
with Figure[4, the power projected onto the target by NSP vVeaaue is less due to the mobility of radar. In Figure
[, we show the designed waveforms for all five BSs each eqdipith 5 MIMO antennas. Similar to the previous
case, due to channel variations there is a large variatidchénamount of power projected onto target locations
for different BSs. However, the power projected onto thegehis less when compared with the previous case.
We increase the number of antennas7tin Figure[10, and notice that the amount of power projectet dime
targets is least as compared to previous two cases. Thic#@ibe whenVgs < M we have a larger null space to
project radar waveform and this results in the projectedef@w closer to the desired waveform. However, when
Ngs < M, this is not the case. Moreover, due to mobility of the ratlee,amount of power projected for all three
cases considered in this example are less than the simdanm@® considered for stationary radar.

Example 4: Performance of Algorithms (@) and (3) in BS selection for spectrum sharing with moving

MIMO radar
In Examples 3, we designed waveforms for different numbdB®$ with different antenna configurations. As we
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Fig. 8. QPSK waveform for moving MIMO radar, sharing RF eamiment with five BSs each equipped witiree antennas.
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Fig. 9. QPSK waveform for moving MIMO radar, sharing RF eamiment with five BSs each equipped witlie antennas.

showed, for some BSs the designed waveform was close to #ieedavaveform but for other it wasn’t and the
projected waveform was closer to the desired waveform wNigg < M then whenNgs < M. In Figure[11, we
use Algorithms[{ll) and{3) to select the waveform which haslélast Forbenius norm with respect to the designed
waveform. We apply Algorithmd{1) an@l(3) to the cases whégr = {3,5,7} and select the waveform which
has minimum Forbenius norm. It can be seen that Algorifiimrhé)s us to select waveform for stationary MIMO
radar which results in best performance for radar in termsrojfected waveform as close as possible to the desired

waveform in addition of meeting spectrum sharing constsain

IX. CONCLUSION

Waveform design for MIMO radar is an active topic of researcthe signal processing community. This work

addressed the problem of desighing MIMO radar waveformb adnstant-envelope, which are very desirable from
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Fig. 11. Algorithm [(8) is used to select the waveform whicbjects maximum power on the targets whfgs = {3, 5, 7} in the presence
of five BSs.
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practical perspectives, and waveforms which allow radarshiare spectrum with communication systems without

causing interference, which are very desirable for spetttongested RF environments.

In this paper, we first showed that it is possible to realizéefialphabet constant-envelope quadrature-pulse

shift keying (QPSK) MIMO radar waveforms. We proved thattstite covariance matrix for QPSK waveforms is

positive semi-definite and the constrained nonlinear apétion problem can be transformed into an un-constrained

nonlinear optimization problem, to realize finite alphabehstant-envelope QPSK waveforms. This result is of

importance for both communication and radar waveform desighere constant-envelope is highly desirable.
Second, we addressed the problem of radar waveform desigspéztrally congested RF environments where

radar and communication systems are sharing the same freguimand. We designed QPSK waveforms with

spectrum sharing constraints. The QPSK waveform was shiageday that it is in the null space of communication

system to avoid interference to communication system. Wesidered a multi-BS MIMO cellular system and
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proposed algorithms for the formation of projection masiand selection of interference channels. We designed
waveforms for stationary and moving MIMO radar systems. $tationary MIMO radar we presented an algorithm
for waveform design by considering the spectrum sharingitaimts. Our algorithm selected the waveform capable
to project maximum power at the targets. For moving MIMO raga presented another algorithm for waveform
design by considering spectrum sharing constraints. Ogorighm selected the waveform with the minimum
Forbenius norm with respect to the designed waveform. Tleisimhelped to select the projected waveform closest

to the designed waveform.

APPENDIXA

PRELIMINARIES

This section presents some preliminary results used inriafpthroughout the paper. For proofs of the following

theorems, please see the corresponding references.

Theorem 1. The matrixA € C™*" is positive semi-definite if and only (A is positive semi-definite [25].

Theorem 2. A necessary and sufficient condition fAre C"*™ to be positive definite is that the Hermitian part
Ap = % [A+ A"

be positive definite [25].

Theorem 3. If A € C"*™ and B € C"*" are positive semi-definite matrices then the mattix= A + B is

guaranteed to be positive semi-definite matrix| [26].

Theorem 4. If the matrix A € C**" is positive semi-definite then thetimes Schur product oA, denoted byA?,

will also be positive semi-definite [26].

APPENDIXB

GENERATING CE QPSK RARNDOM PROCESSES-ROM GAUSSIAN RANDOM VARIABLES

Assuming identically distributed Gaussian R\Ws, y,,, Z, andy, that are mapped onto QPSK RVZ and z,

using
Zp = \}_ [S|gn< \/_0_) +g5|gn< \/ggaﬂ (60)
Zq = \}_ [S|gn< \/_O_) +gsign< \/ggaﬂ (61)

whereo? is the variance of Gaussian RVs. The cross-correlation dtw)PSK and Gaussian RVs can be derived

as

E{z,z;} = %E [{sign( 550) +gsign( \%’0) }{sign( 52‘10) +jsign(\/%a) H : (62)
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Using equation[(13) we can write the above equation as

5557) = i son( 22 Jsion( )|+ sin( L2 )sior( 22-) . =

The cross-correlation relationship between Gaussian #@8KRVs can be derived by first considering

{5|gn(\/_0_)3|gn( } / / l O_) ><S|gn(\/_0_) (:cp,a:q,pmpwq)] dz, dz, (64)
E{zp7;}

—00 — 00
wherep(z,, Z4, pz,z,) iS the joint probability density function af, andz,, and pz,z, = —=* is the cross-

correlation coefficient ok, andz,. Using Hermite polynomials [27], the above double integiah be transformed

as in [7]. Thus,

E{sign( g;’g)sign( "%2‘10_)} _,i % ><_7O sign(%)eiﬁ/2U2Hn(%) dz,
X 7OS|gn(\/_ )eiﬁ/zngn(\%‘ )d’:z?q (65)
20 g
where
Ho(@m) = (—1)e ¥ d%efi (66)

is the Hermite polynomial. By substituting, = andz, = % and splitting the limits of integration into

two parts, equatior (65) can be simplified as

o) 2
. N . ~ = pgpiq 72 ~ ~ ~
E{Slgr(:vp)SIQn(xq)} = Z g (/e P {Hn(:vp) - Hn(—xp)} d:ch) : (67)
n=0 ’ 0
Using H, (—,) = (—1)"H,(Z,) [28], equation[(67) can be written as
[e%s} 2
. ~ . N = pgpiq 72 N n ~
E{S|gr‘($p)5|gr(xq)} = Z ol </e PHn(xp)(l - (=1 ) dfp) : (68)
n=0 ’ 0
The above equation is non-zero for oddbnly, therefore, we can rewrite it as
00 p2n+1 0o 2
IE{Slgr(ip)SIgr(:i:q)} = ZJ m (/empHQnJrl('iP) dip) : (69)
n= 0

(2n)‘

Then using [ eingnH(:i:p) dep, = (-1)" from [28], we can write equatioh (69) as
0

T, = i n! ’
{S|gn( )S|g (\/_U)}znz_omc—l)"%)

Piz, 13035 1357 5
paq pq+"'

pTq

lpfﬁq‘Lz-?, 2.4-5 2.4-6-7

sin™* <E{§p’fq}) (70)
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In equation[(64), we expanded the first part of equafioh (88)v, similarly expanding the second part of equation

©3), i.e.,
E{sign(\/gg )

where p(y,, 74, pj,z,) 1S the joint probability density function of, andz,, and py,z, =

correlation coefficient ofj, andz,. Using Hermite polynomials, equation {66), we can write &pn [71) as

]E{sign(\/ggo)sign(jga)} _2% X / sign(\%’o_) X 652/202]{"(%) dyp

— 00

} //l&gn y” sign(%)p@pﬁq,pgﬁq)] dyp dzq (71)

— 00 — 00

E{§,7*} .
% is the cross-

o0

X /&gn(\/_o_) /207 pr (\/io—) di,. (72)

— 00

By substitutingy, = % andz, = f , and splitting the limits of integration into two parts, egion [72) can

be simplified as

0o n 00 2
N Py, 52 . . .
E{S@r(yp)S'gr(xq)} = Z % (/eyp {Hn(yp) - Hn(_yp)} dyp) ) (73)
n=0 : 0
Using H,(—9,) = (—1)"H,(y,), above equation can be written as
0 n 00 2
SN Py, 52 . ny ga
E{Slgr(yp)SIgr(xq)} =D (/eyPHn(yp)(l - (=1") dyp> : (74)
n=0 ’ 0
The above equation is non-zero for oddnly, therefore, we can rewrite it as
00 p2n+1 0 2
. N . A _ YpTq ,AZ 0 0 .
IE{S|gr‘(yp)S|gn(xq)} = z;) (20 + 1)1 </€y Hant1(9p) dyp> (75)
n= 0

n! !

~ 2t 2
o) EmE(-r3)

Then using [ €Q§H2n+1(yp) dy, = (—1)"(2 n)! we can write equatiod (75) as
0

3
N 2 ) N 05,3, 3p2 ~ 1-3- 5p77 %
YT 2.3 2-4-5 2-4-6-7
2
= —sin" (IE{%%&) (76)
m

Combining equationg (70) and {76), gives us the cross-ativa of equation[(63) as

E{Z,Z,} = % [sin_l <E{5p’fq}) +gsin~! (E{gp’fq})]- (77)
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APPENDIXC

PROOFs

Proof of Lemmé]1:To prove Lemm&]l, we note that the real parfbj is R, which is positive semi-definite
by definition, thus, by Theoref 1, the complex covariancerimeftg is also positive semi-definite. ]
Proof of Lemma&l2:To prove Lemmal, we can individually expand the seim;, * (&E(f{g)) 47 sin~! (S‘s(f{g)),
using Taylor series, i.e., first expandisig —* (?R(ﬁg))
1 3, 13 1-3-5
2.3 ° 2.-4.5 2-4-6-7

Then using Theorerfil 3, each term or matrix, on the right hadd, §5 positive semi-definite, sinc&(R,) is

sin~! (R(R,)) = R(R,) + 7= R(R,) R(R,)? + R(R,)T 4+ (78)

positive semi-definite by definition. Moreovesin ' (R(R,)) is also positive semi-definite since its a sum of
positive semi-definite matrices, this follows from Theor@m
Similarly, expanding sin~! (3(R,)) as

o 1-3 1-3-5
7 sin”! (S(Ry)) = J[S(Ry) + =—=S(Ry) + SR+ 5167

1 x 7
5.3 345> S(Rg)o + -] (79)
Now, R is positive semi-definite since real part of it is positivenggefinite, from equatior (78) and Theoré&m 4.
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