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Abstract

Multiple-input multiple-output (MIMO) radar is a relatively new concept in the field of radar signal processing.

Many novel MIMO radar waveforms have been developed by considering various performance metrics and constraints.

In this paper, we show that finite alphabet constant-envelope (FACE) quadrature-pulse shift keying (QPSK) waveforms

can be designed to realize a given covariance matrix by transforming a constrained nonlinear optimization problem

into an unconstrained nonlinear optimization problem. In addition, we design QPSK waveforms in a way that they

don’t cause interference to a cellular system, by steering nulls towards a selected base station (BS). The BS is

selected according to our algorithm which guarantees minimum degradation in radar performance due to null space

projection (NSP) of radar waveforms. We design QPSK waveforms with spectrum sharing constraints for a stationary

and moving radar platform. We show that the waveform designed for stationary MIMO radar matches the desired

beampattern closely, when the number of BS antennasN
BS is considerably less than the number of radar antennas

M , due to quasi-static interference channel. However, for moving radar the difference between designed and desired

waveforms is larger than stationary radar, due to rapidly changing channel.

Index Terms

MIMO Radar, Constant Envelope Waveform, QPSK, Spectrum Sharing

I. I NTRODUCTION

An interesting concept for next generation of radars is multiple-input multiple-output (MIMO) radar systems; this

has been an active area of research for the last couple of years [1]. MIMO radars have been classified into widely-

spaced [2], where antenna elements are placed widely apart,and colocated [3], where antenna elements are placed

next to each other. MIMO radars can transmit multiple signals, via its antenna elements, that can be different from
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each other, thus, resulting in waveform diversity. This gives MIMO radars an advantage over traditional phased-

array radar systems which can only transmit scaled versionsof single waveform and, thus, can’t exploit waveform

diversity.

Waveforms with constant-envelope (CE) are very desirable,in radar and communication system, from an im-

plementation perspective, i.e., they allow power amplifiers to operate at or near saturation levels. CE waveforms

are also popular due to their ability to be used with power efficient class C and class E power amplifiers and also

with linear power amplifiers with no average power back-off into power amplifier. As a result, various researchers

have proposed CE waveforms for communication systems; for example, CE multi-carrier modulation waveforms

[4], such as CE orthogonal frequency division multiplexing(CE-OFDM) waveforms [5]; and radar systems, for

example, CE waveforms [6], CE binary-phase shift keying (CE-BPSK) waveforms [7], and CE quadrature-phase

shift keying (CE-QPSK) waveforms [8].

Existing radar systems, depending upon their type and use, can be deployed any where between 3 MHz to

100 GHz of radio frequency (RF) spectrum. In this range, manyof the bands are very desirable for international

mobile telecommunication (IMT) purposes. For example, portions of the 700-3600 MHz band are in use by various

second generation (2G), third generation (3G), and fourth generation (4G) cellular standards throughout the world.

It is expected that mobile traffic volume will continue to increase as more and more devices will be connected to

wireless networks. The current allocation of spectrum to wireless services is inadequate to support the growth in

traffic volume. A solution to this spectrum congestion problem was presented in a report by President’s Council of

Advisers on Science and Technology (PCAST), which advocated to share1000 MHz of government-held spectrum

[9]. As a result, in the United States (U.S.), regulatory efforts are underway, by the Federal Communications

Commission (FCC) along with the National Telecommunications and Information Administration (NTIA), to share

government-held spectrum with commercial entities in the frequency band 3550-3650 MHz [10]. In the U.S., this

frequency band is currently occupied by various services including radio navigation services by radars. The future of

spectrum sharing in this band depends on novel interferencemitigation methods to protect radars and commercial

cellular systems from each others’ interference [11]–[13]. Radar waveform design with interference mitigation

properties is one way to address this problem, and this is thesubject of this paper.

A. Related Work

Transmit beampattern design problem, to realize a given covariance matrix subject to various constraints, for

MIMO radars is an active area of research; many researchers have proposed algorithms to solve this beampattern

matching problem. Fuhrmann et al. proposed waveforms with arbitrary cross-correlation matrix by solving beam-

pattern optimization problem, under the constant-modulusconstraint, using various approaches [14]. Aittomaki

et al. proposed to solve beampattern optimization problem under the total power constraint as a least squares

problem [15]. Gong et al. proposed an optimal algorithm for omnidirectional beampattern design problem with the

constraint to have sidelobes smaller than some predetermined threshold values [16]. Hua et al. proposed transmit

beampatterns with constraints on ripples, within the energy focusing section, and the transition bandwidth [17].



3

However, many of the above approaches don’t consider designing waveforms with finite alphabet and constant-

envelope property, which is very desirable from an implementation perspective. Ahmed et al. proposed a method to

synthesize covariance matrix of BPSK waveforms with finite alphabet and constant-envelope property [7]. They also

proposed a similar solution for QPSK waveforms but it didn’tsatisfy the constant-envelope property. A method to

synthesize covariance matrix of QPSK waveforms with finite alphabet and constant-envelope property was proposed

by Sodagari et al. [8]. However, they did not prove that such amethod is possible. We prove the result in this

paper and show that it is possible to synthesize covariance matrix of QPSK waveforms with finite alphabet and

constant-envelope property.

As introduced earlier due to the congestion of frequency bands future communication systems will be deployed in

radar bands. Thus, radars and communication systems are expected to share spectrum without causing interference

to each other. For this purpose, radar waveforms should be designed in such a way that they not only mitigate

interference to them but also mitigate interference by themto other systems [18], [19]. Transmit beampattern design

by considering the spectrum sharing constraints is a fairlynew problem. Sodagari et al. have proposed BPSK and

QPSK transmit beampatterns by considering the constraint that the designed waveforms do not cause interference

to a single communication system [8]. This approach was extended to multiple communication systems, cellular

system with multiple base stations, by Khawar et al. for BPSKtransmit beampatterns [20], [21]. We extend this

approach and consider optimizing QPSK transmit beampatterns for a cellular system with multiple base stations.

B. Our Contributions

In this paper, we make contributions in the areas of:

• Finite alphabet constant-envelope QPSK waveform:In this area of MIMO radar waveform design, we make

the following contribution: we prove that covariance matrix of finite alphabet constant-envelope QPSK wave-

form is positive semi-definite and the problem of designing waveform via solving a constrained optimization

problem can be transformed into an un-constrained optimization problem.

• MIMO radar waveform with spectrum sharing constraints: We design MIMO radar waveform for spectrum

sharing with cellular systems. We modify the newly designedQPSK radar waveform in a way that it doesn’t

cause interference to communication system. We design QPSKwaveform by considering the spectrum sharing

constraints, i.e., the radar waveform should be designed insuch a way that a cellular system experiences zero

interference. We consider two cases: first, stationary maritime MIMO radar is considered which experiences

a stationary or slowly moving interference channel. For this type of radar, waveform is designed by including

the constraints in the unconstrained nonlinear optimization problem, due to the tractability of the constraints.

Second, we consider a moving maritime MIMO radar which experiences interference channels that are fast

enough not to be included in the optimization problem due to their intractability. For this type of radar,

FACE QPSK waveform is designed which is then projected onto the null space of interference channel before

transmission.



4

TABLE I

TABLE OF NOTATIONS

Notation Description

x̃(n) Transmitted QPSK radar waveform

a(θk) Steering vector to steer signal to target angleθk

r̃k(n) Received radar waveform from target atθk

R̃ Correlation matrix of QPSK waveforms

sj(n) Signal transmitted by thej th UE in the ith cell

Li Total number of user equipments (UEs) in theith cell

K Total number of BSs

M Radar transmit/receive antennas

NBS BS transmit/receive antennas

NUE UE transmit/receive antennas

Hi ith interference channel

Hn Hermite Polynomial

yi(n) Received signal at theith BS

Pi Projection matrix for theith channel

C. Organization

This paper is organized as follows. System model, which includes radar, communication system, interference

channel, and cooperative RF environment model is discussedin Section II. Section III introduces finite alphabet

constant-envelope beampattern matching design problem. Section IV introduces QPSK radar waveforms and Section

V provides a proof of FACE QPSK waveform. Section VI discusses spectrum sharing architecture along with BS

selection and projection algorithm. Section VII designs QPSK waveforms with spectrum sharing constraints for

stationary and moving radar platforms. Section VIII discusses simulation setup and results. Section IX concludes

the paper.

D. Notations

Bold upper case letters,A, denote matrices while bold lower case letters,a, denote vectors. Themth column of

matrix is denoted byam. For a matrixA, the conjugate and conjugate transposition are respectively denoted byA⋆

andAH . Themth row andnth column element is denoted byA(m,n). Real and complex, vectors and matrices are

denoted by operatorsℜ(·) andℑ(·), respectively. A summary of notations is provided in Table I.
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II. SYSTEM MODEL

In this section, we introduce our system models for MIMO radar and cellular system. In addition, we introduce

the cooperative RF sharing environment between radar and cellular system along with the definition of interference

channel.

A. Radar Model

We consider waveform design for a colocated MIMO radar mounted on a ship. The radar hasM colocated

transmit and receive antennas. The inter-element spacing between antenna elements is on the order of half the

wavelength. The radars with colocated elements give betterspatial resolution and target parameter estimation as

compared to radars with widely spaced antenna elements [2],[3].

B. Communication System

We consider a MIMO cellular system, withK base stations, each equipped withNBS transmit and receive

antennas, with theith BS supportingLi user equipments (UEs). Moreover, the UEs are also multi-antenna systems

with NUE transmit and receive antennas. Ifsj(n) is the signals transmitted by thej th UE in the ith cell, then the

received signal at theith BS receiver can be written as

yi(n) =
∑

j

Hi,j sj(n) +w(n), for 1 ≤ i ≤ K and1 ≤ j ≤ Li

whereHi,j is the channel matrix between theith BS and thej th user andw(n) is the additive white Gaussian

noise.

C. Interference Channel

In our spectrum sharing model, radar sharesK interference channels with cellular system. Let’s define the ith

interference channel as

Hi ,




h
(1,1)
i · · · h

(1,M)
i

...
. . .

...

h
(NBS,1)
i · · · h

(NBS,M)
i




(NBS ×M) (1)

wherei = 1, 2, . . . ,K, andh(l,k)i denotes the channel coefficient from thekth antenna element at the MIMO radar

to the lth antenna element at theith BS. We assume that elements ofHi are independent, identically distributed

(i.i.d.) and circularly symmetric complex Gaussian randomvariables with zero-mean and unit-variance, thus, having

a i.i.d. Rayleigh distribution.
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D. Cooperative RF Environment

Spectrum sharing between radars and communication systemscan be envisioned in two types of RF environments,

i.e., military radars sharing spectrum with military communication systems, we characterize it asMil2Mil sharing

and military radars sharing spectrum with commercial communication systems, we characterize it asMil2Com

sharing. InMil2Mil or Mil2Com sharing, interference-channel state information (ICSI) can be provided to radars

via feedback by military/commercial communication systems, if both systems are in a frequency division duplex

(FDD) configuration [22]. If both systems are in a time division duplex configuration, ICSI can be obtained via

exploiting channel reciprocity [22]. Regardless of the configuration of radars and communication systems, there is

the incentive of zero interference, from radars, for communication systems if they collaborate in providing ICSI.

Thus, we can safely assume the availability of ICSI for the sake of mitigating radar interference at communication

systems.

III. F INITE ALPHABET CONSTANT-ENVELOPE BEAMPATTERN DESIGN

In this paper, we design QPSK waveforms having finite alphabets and constant-envelope property. We consider

a uniform linear array (ULA) ofM transmit antennas with inter-element spacing of half-wavelength. Then, the

transmitted QPSK signal is given as

x̃(n) =

[

x̃1(n) x̃2(n) · · · x̃M (n)

]T
(2)

wherex̃m(n) is the QPSK signal from themth transmit element at time indexn. Then, the received signal from a

target at locationθk is given as

r̃k(n) =
M∑

m=1

e−j(m−1)π sin θk x̃m(n), k = 1, 2, ...,K, (3)

whereK is the total number of targets. We can write the received signal compactly as

r̃k(n) = aH(θk)x̃(n) (4)

wherea(θk) is the steering vector defined as

a(θk) =

[

1 e−jπ sin θk · · · e−j(M−1)π sin θk

]T
. (5)

We can write the power received at the target located atθk as

P (θk) = E{aH(θk) x̃(n) x̃
H(n)a(θk)}

= aH(θk) R̃ a(θk)
(6)

whereR̃ is correlation matrix of the transmitted QPSK waveform. Thedesired QPSK beampatternφ(θk) is formed

by minimizing the square of the error betweenP (θk) andφ(θk) through a cost function defined as

J(R̃) =
1

K

K∑

k=1

(
aH(θk) R̃ a(θk)− φ(θk)

)2
. (7)
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Since,R̃ is covariance matrix of the transmitted signal it must be positive semi-definite. Moreover, due to the interest

in constant-envelope property of waveforms, all antennas must transmit at the same power level. The optimization

problem in equation (7) has some constraints and, thus, can’t be chosen freely. In order to design finite alphabet

constant-envelope waveforms, we must satisfy the following constraints:

C1 :vHR̃v ≥ 0, ∀ v,

C2 : R̃(m,m) = c, m = 1, 2, . . . ,M,

whereC1 satisfies the ‘positive semi-definite’ constraint andC2 satisfies the ‘constant-envelope’ constraint. Thus,

we have a constrained nonlinear optimization problem givenas

min
R̃

1

K

K∑

k=1

(
aH(θk) R̃ a(θk)− φ(θk)

)2

subject to vHR̃v ≥ 0, ∀ v,

R̃(m,m) = c, m = 1, 2, ...,M.

(8)

Ahmed et al. showed that, by using multi-dimensional spherical coordinates, this constrained nonlinear optimization

can be transformed into an unconstrained nonlinear optimization [23]. OnceR̃ is synthesized, the waveform matrix

X̃ with N samples is given as

X̃ =

[

x̃(1) x̃(2) · · · x̃(N)

]T
. (9)

This can be realized from

X̃ = XΛ1/2WH (10)

whereX ∈ CN×M is a matrix of zero mean and unit variance Gaussian random variables,Λ ∈ RM×M is the

diagonal matrix of eigenvalues, andW ∈ CM×M is the matrix of eigenvectors of̃R [24]. Note thatX̃ has Gaussian

distribution due toX but the waveform produced is not guaranteed to have the CE property.

IV. F INITE ALPHABET CONSTANT-ENVELOPE QPSK WAVEFORMS

In [8], an algorithm to synthesize FACE QPSK waveforms to realize a given covariance matrix,̃R, with complex

entries was presented. However, it was not proved that such acovariance matrix is positive semi-definite and

the constrained nonlinear optimization problem can be transformed into an un-constrained nonlinear optimization

problem, we prove the claim in this paper.

Consider zero mean and unit variance Gaussian random variables (RVs)x̃m and ỹm that can be mapped onto a

QPSK RV z̃m through, as in [8],

z̃m =
1√
2

[
sign(x̃m) +  sign(ỹm)

]
. (11)

Then, it is straight forward to write the(p, q)th element of the complex covariance matrix as

E{z̃pz̃q} = γpq = γℜpq
+  γℑpq

(12)
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whereγℜpq
andγℑpq

are the real and imaginary parts ofγpq, respectively. If, Gaussian RVs̃xp, x̃q, ỹp, and ỹq are

chosen such that

E{x̃px̃q} = E{ỹpỹq}

E{x̃pỹq} = −E{ỹpx̃q} (13)

then we can write the real and imaginary parts ofγpq as

γℜpq
= E

{
sign(x̃p)sign(x̃q)

}

γℑpq
= E

{
sign(ỹp)sign(x̃q)

}
· (14)

Then, from equation (77) Appendix B, we have

E{z̃pz̃q} =
2

π

[
sin−1

(
E{x̃px̃q}

)
+  sin−1

(
E{ỹpx̃q}

)]
. (15)

The complex Gaussian covariance matrixR̃g is defined as

R̃g , ℜ(Rg) + ℑ(Rg) (16)

whereℜ(Rg) andℑ(Rg) both have real entries, sinceRg is a real Gaussian covariance matrix. Then, equation

(15) can be written as

R̃ =
2

π

[
sin−1

(
ℜ(Rg)

)
+  sin−1

(
ℑ(Rg)

)]
. (17)

In [8], it is proposed to construct complex Gaussian covariance matrix via transform̃Rg = ŨHŨ, whereŨ is

given by equation (20). Then,̃U can be written as

Ũ = ℜ(Ũ) + ℑ(Ũ) (18)

whereℜ(Ũ) andℑ(Ũ) are given by equations (21) and (22), respectively. Alternately, R̃g can also be expressed

as

R̃g =

[
ℜ(Ũ)Hℜ(Ũ) + ℑ(Ũ)Hℑ(Ũ)

]
+ 

[
ℜ(Ũ)Hℑ(Ũ)−ℑ(Ũ)Hℜ(Ũ)

]
. (19)

Ũ =




ejψ1 ejψ2 sin(ψ21) ejψ3 sin(ψ31) sin(ψ32) · · · ejψM
∏M−1
m=1 sin(ψMm)

0 ejψ2 cos(ψ21) ejψ3 sin(ψ31) cos(ψ32) · · · ejψM
∏M−2
m=1 sin(ψMm) cos(ψM,M−1)

0 0 ejψ3 cos(ψ31)
. . .

...

...
...

. . . · · · ejψM sin(ψM1) cos(ψM2)

0 0 · · · · · · ejψM cos(ψM1)




(20)
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ℜ
(
Ũ
)
=




cos(ψ1) cos(ψ2) sin(ψ21) cos(ψ3) sin(ψ31) sin(ψ32) · · · cos(ψM )
∏M−1
m=1 sin(ψMm)

0 cos(ψ2) cos(ψ21) cos(ψ3) sin(ψ31) cos(ψ32) · · · cos(ψM )
∏M−2
m=1 sin(ψMm) cos(ψM,M−1)

0 0 cos(ψ3) cos(ψ31)
. . .

...

...
...

. .. · · · cos(ψM ) sin(ψM1) cos(ψM2)

0 0 · · · · · · cos(ψM ) cos(ψM1)




(21)

ℑ
(
Ũ
)
=




sin(ψ1) sin(ψ2) sin(ψ21) sin(ψ3) sin(ψ31) sin(ψ32) · · · sin(ψM )
∏M−1
m=1 sin(ψMm)

0 sin(ψ2) cos(ψ21) sin(ψ3) sin(ψ31) cos(ψ32) · · · sin(ψM )
∏M−2
m=1 sin(ψMm) cos(ψM,M−1)

0 0 sin(ψ3) cos(ψ31)
. . .

...

...
...

. . . · · · sin(ψM ) sin(ψM1) cos(ψM2)

0 0 · · · · · · sin(ψM ) cos(ψM1)




(22)

Lemma 1. If Rg is a covariance matrix and

R̃g = ℜ(Rg) + ℑ(Rg) (23)

then the complex covariance matrix̃Rg will always be positive semi-definite.

Proof: Please see Appendix C.

Lemma 1 satisfies constraintC1 andR̃g also satisfies constraintC2 for c = 1. This helps to transform constrained

nonlinear optimization into unconstrained nonlinear optimization in the following section.

In order to generate QPSK waveforms we defineN × 2M matrix S̃, of Gaussian RVs, as

S̃ ,

[

X̃ Ỹ

]
(24)

whereX̃ andỸ are of each sizeN ×M , representing real and imaginary parts of QPSK waveform matrix, which

is given as

Z̃ =
1√
2

[
sign(X̃) +  sign(Ỹ)

]
. (25)
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The covariance matrix of̃S is given as

R̃
S̃
= E{S̃H S̃} =




ℜ(Rg) ℑ(Rg)

−ℑ(Rg) ℜ(Rg)


 · (26)

QPSK waveform matrix̃Z can be realized by the matrix̃S of Gaussian RVs which can be generated using equation

(10) by utilizing R̃
S̃
.

V. GAUSSIAN COVARIANCE MATRIX SYNTHESIS FORDESIREDQPSK BEAMPATTERN

In this section, we prove that the desired QPSK beampattern can be directly synthesized by using the complex

covariance matrix,̃Rg, for complex Gaussian RVs. This generatesM QPSK waveforms for the desired beampattern

which satisfy the property of finite alphabet and constant-envelope. By exploiting the relationship between the

complex Gaussian RVs and QPSK RVs we have

R̃ =
2

π

[
sin−1

(
ℜ(Rg)

)
+  sin−1

(
ℑ(Rg)

)]
. (27)

Lemma 2. If R̃g is a complex covariance matrix and

R̃ =
2

π

[
sin−1

(
ℜ(Rg)

)
+  sin−1

(
ℑ(Rg)

)]

thenR̃ will always be positive semi-definite.

Proof: Please see Appendix C.

Using equation (27) we can rewrite the optimization problemin equation (8) as

min
R̃

1

K

K∑

k=1

[
2

π
aH(θk)

{
sin−1

(
ℜ(Rg)

)
+  sin−1

(
ℑ(Rg)

)}
a(θk)− φ(θk)

]2

subject to vHR̃v ≥ 0, ∀ v,

R̃(m,m) = c, m = 1, 2, ...,M.

(28)

J(Θ) =
1

K

K∑

k=1

[
2

π
aH(θk)

{
sin−1

(
ℜ(Ũ)Hℜ(Ũ) + ℑ(Ũ)Hℑ(Ũ)

)

+  sin−1

(
ℜ(Ũ)Hℑ(Ũ)−ℑ(Ũ)Hℜ(Ũ)

)}
aH(θk)− αφ(θk)

]2
(29)

Since, the matrixŨ is already known, we can formulatẽRg via equation (19). We can also write the(p, q)th

element of the upper triangular matrix̃Rg by first writing the (p, q)th element of the upper triangular matrix

ℜ
(
Rg(p, q)

)
as

ℜ
(
Rg(p, q)

)
=





∏q−1
l=1 sin(Ψql)

∏p
s=1

∏q
u=1 f(s, u), p > q

1, p = q

(30)
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where f(s, u) = cos(Ψs) cos(Ψu) + sin(Ψs) sin(Ψu); and the(p, q)th element of the upper triangular matrix

ℑ
(
Rg(p, q)

)
as

ℑ
(
Rg(p, q)

)
=





g(p, q)
∏q−1
l=1 sin(Ψql), p > q

0, p = q

(31)

whereg(p, q) = cos(Ψp) sin(Ψq)+sin(Ψp) cos(Ψq). Thus, we can write the(p, q)th element of the upper triangular

matrix R̃g as

R̃g(p, q) =





ℜ
(
Rg(p, q)

)
+ ℑ

(
Rg(p, q)

)
, p > q

1, p = q.

(32)

By utilizing the information ofŨ, the constrained optimization problem in equation (28) canbe transformed into

an unconstrained optimization problem that can be written as equation (29), where

Θ =

[

ΨT Ψ̃
T

α

]T
, (33)

and

ΨT =

[

Ψ21 Ψ21 · · · Ψ21

]T
,

Ψ̃
T
=

[

Ψ1 Ψ2 · · · ΨM

]T
.

The optimization is overM(M − 1)/2 +M elementsΨmn andΨl. The advantage of this approach lies in the

free selection of elements ofΘ without effecting the positive semi-definite property and diagonal elements of̃Rg.

Noting thatŨ andR̃g are functions ofΘ, we can alternately write the cost-function, in equation (29), as

J(Θ) =
1

K

K∑

k=1

[
2

π
aH(θk) sin

−1
(
ℜ(Rg)

)
a(θk) +

2

π
aH(θk) sin

−1
(
ℑ(Rg)

)
a(θk)− αφ(θk)

]2
· (34)

First, the partial differentiation ofJ(Θ) with respect to any element ofΨ, sayΨmn, can be found as

∂J(Θ)

∂Ψmn
=

[
2

K

K∑

k=1

{
2

π
aH(θk) sin

−1
(
ℜ(Rg)

)
a(θk) +

2

π
aH(θk) sin

−1
(
ℑ(Rg)

)
a(θk)− αφ(θk)

}]

×
[

∂

∂Ψmn

{
2

π
aH(θk) sin

−1
(
ℜ(Rg)

)
a(θk) +

2

π
aH(θk) sin

−1
(
ℑ(Rg)

)
a(θk)

}]
· (35)

The matrixℜ(Rg) is real and symmetric, i.e.,ℜ
(
Rg(p, q)

)
= ℜ

(
Rg(q, p)

)
, at the same time,ℑ(Rg) has real

entries but is skew-symmetric, i.e.,ℑ
(
Rg(p, q)

)
= −ℑ

(
Rg(q, p)

)
. These observations enables us to write equation

(35) in a simpler form

∂J(Θ)

∂Ψmn
=

[
4

K

K∑

k=1

{
2

π
aH(θk) sin

−1
(
ℜ(Rg)

)
a(θk) +

2

π
aH(θk) sin

−1
(
ℑ(Rg)

)
a(θk)− αφ(θk)

}]

×
[
2

π

M−1∑

p=1

M∑

q=p+1

cos
(
π|p− q| sin(θk)

)
√
1−ℜ

(
R2
g(p, q)

)
∂ℜ
(
Rg(p, q)

)

∂Ψmn

]
· (36)
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Fig. 1. Spectrum Sharing Scenario: Seaborne MIMO radar sharing spectrum with a cellular system.

Moreover,ℜ(Rg) contains only(M − 1) terms which depend onΨmn, thus, equation (36) further simplifies as

∂J(Θ)

∂Ψmn
=

8

πK

[
K∑

k=1

{
2

π
aH(θk) sin

−1
(
ℜ(Rg)

)
a(θk) +

2

π
aH(θk) sin

−1
(
ℑ(Rg)

)
a(θk)− αφ(θk)

}]

×
[{m−1∑

p=1

cos
(
π|p−m| sin(θk)

)
√
1−ℜ

(
R2
g(p,m)

)
∂ℜ
(
Rg(p,m)

)

∂Ψmn
+

M∑

q=m+1

cos
(
π|m− q| sin(θk)

)
√
1−ℜ

(
R2
g(m, q)

)
∂ℜ
(
Rg(m, q)

)

∂Ψmn

}]
.

(37)

Second, the partial differentiation ofJ(Θ) with respect to any element of̃Ψ, sayΨl, can be found in the same

manner as was found forΨmn, i.e.,

∂J(Θ)

∂Ψl
=

8

πK

[
K∑

k=1

{
2

π
aH(θk) sin

−1
(
ℜ(Rg)

)
a(θk) +

2

π
aH(θk) sin

−1
(
ℑ(Rg)

)
a(θk)− αφ(θk)

}]

×
[
M−1∑

p=1

M∑

q=p+1

cos
(
π|p− q| sin(θk)

)
√
1−ℜ

(
R2
g(p, q)

)
∂ℜ
(
Rg(p, q)

)

∂Ψl

]
· (38)

Finally, the partial differentiation ofJ(Θ) with respect toα is

∂J(Θ)

∂α
=

−2φ(θk)

K

[
K∑

k=1

{
2

π
aH(θk) sin

−1
(
ℜ(Rg)

)
a(θk) +

2

π
aH(θk) sin

−1
(
ℑ(Rg)

)
a(θk)− αφ(θk)

}]
. (39)

VI. RADAR-CELLULAR SYSTEM SPECTRUM SHARING

In the following sections, we will discuss our spectrum sharing architecture and spectrum sharing algorithms for

the 3550-3650 MHz band under consideration, which is co-shared by MIMO radar and cellular systems. .
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A. Architecture

Considering the coexistence scenario in Fig. 1, where the radar is sharingK interference channels with the

cellular system, the received signal at theith BS can be written as

yi(n) = Hix̃(n) +
∑

j

Hi,j sj(n) +w(n) (40)

In order to avoid interference to theith BS, the radar shapes its waveform̃x(n) such that it is in the null-space of

Hi, i.e. Hix̃(n) = 0.

B. Projection Matrix

In this section, we formulate a projection algorithm to project the radar signal onto the null space of interference

channelHi. Assuming, the MIMO radar has ICSI for allHi interference channels, either through feedback or

channel reciprocity, we can perform a singular value decomposition (SVD) to find the null space ofHi and use it

to construct a projector matrix. First, we find SVD ofHi, i.e.,

Hi = UiΣiV
H
i . (41)

Now, let us define

Σ̃i , diag(σ̃i,1, σ̃i,2, . . . , σ̃i,p) (42)

wherep , min(NBS,M) and σ̃i,1 > σ̃i,2 > · · · > σ̃i,q > σ̃i,q+1 = σ̃i,q+2 = · · · σ̃i,p = 0. Next, we define

Σ̃
′
i , diag(σ̃′

i,1, σ̃
′
i,2, . . . , σ̃

′
i,M ) (43)

where

σ̃′
i,u ,





0, for u ≤ q,

1, for u > q.

(44)

Using above definitions we can now define our projection matrix, i.e.,

Pi , ViΣ̃
′
iV

H
i . (45)

Below, we show two properties of projection matrices showing thatPi is a valid projection matrix.

Property 1. Pi ∈ C
M×M is a projection matrix if and only ifPi = PHi = P2

i .

Proof: Let’s start by showing the ‘only if’ part. First, we showPi = PHi . Taking Harmition of equation (45)

we have

PHi = (ViΣ̃
′
iV

H)H = Pi. (46)

Now, squaring equation (45) we have

P2
i = ViΣ̃iV

H ×ViΣ̃iV
H = Pi (47)
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where above equation follows fromVHVi = I (since they are orthonormal matrices) and(Σ̃
′
i)

2 = Σ̃
′
i (by

construction). From equations (46) and (47) it follows thatPi = PHI = P2
i . Next, we showPi is a projector by

showing that ifv ∈ range (Pi), thenPiv = v, i.e., for somew,v = Piw, then

Piv = Pi(Piw) = P2
iw = Piw = v. (48)

Moreover,Piv − v ∈ null(Pi), i.e.,

Pi(Piv − v) = P2
iv −Piv = Piv −Piv = 0. (49)

This concludes our proof.

Property 2. Pi ∈ CM×M is an orthogonal projection matrix onto the null space ofHi ∈ CN
BS×M

Proof: SincePi = PHi , we can write

HiP
H
i = UiΣ̃iV

H
i ×ViΣ̃

′
iV

H = 0. (50)

The above results follows from noting thatΣ̃iΣ̃
′
i = 0 by construction.

The formation of projection matrix in the waveform design process is presented in the form of Algorithm 1.

Algorithm 1 Projection Algorithm
if Hi received from waveform design algorithmthen

Perform SVD onHi (i.e. Hi = UiΣiV
H
i )

ConstructΣ̃i = diag(σ̃i,1, σ̃i,2, . . . , σ̃i,p)

ConstructΣ̃
′
i = diag(σ̃′

i,1, σ̃
′
i,2, . . . , σ̃

′
i,M )

Setup projection matrixPi = ViΣ̃
′
iV

H
i .

SendPi to waveform design algorithm.

end if

VII. WAVEFORM DESIGN FORSPECTRUM SHARING

In the previous section, we designed finite alphabet constant-envelope QPSK waveforms by solving a beampattern

matching optimization problem. In this section, we extend the beampattern matching optimization problem and

introduce new constraints in order to tailor waveforms thatdon’t cause interference to communication systems

when MIMO radar and communication systems are sharing spectrum. We design spectrum sharing waveforms for

two cases: the first case is for a stationary maritime MIMO radar and the second case is for moving maritime

MIMO radar. The waveform design in these contexts is and its performance is discussed in the next sections.
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A. Stationary maritime MIMO radar

Consider a naval ship docked at the harbor. The radar mountedon top of that ship is also stationary. The

interference channels are also stationary due to non-movement of ship and BSs. In such a scenario, the CSI has

little to no variations and thus it is feasible to include theconstraint of NSP, equation (52), into the optimization

problem. Thus, the new optimization problem is formulated as

min
ψij ,ψl

1

K

K∑

k=1

[
2

π
aH(θk)Pi

{
sin−1

(
ℜ(Ũ)Hℜ(Ũ) + ℑ(Ũ)Hℑ(Ũ)

)
+  sin−1

(
ℜ(Ũ)Hℑ(Ũ) −ℑ(Ũ)Hℜ(Ũ)

)}

×PHi aH(θk)− αφ(θk)

]2
· (51)

A drawback of this approach is that it does not guarantee to generate constant-envelope radar waveform. However, the

designed waveform is in the null space of the interference channel, thus, satisfying spectrum sharing constraints.

The waveform generation process is shown using the block diagram of Figure 2. Note that,K waveforms are

designed, as we haveK interference channels that are static. Using the projection matrix Pi, the NSP projected

waveform can be obtained as
˘̃
Z

opt

NSP = Z̃
opt
i PHi . (52)

The correlation matrix of the NSP waveform is given as

˘̃
Ri =

1

N

(
˘̃
Z

opt

NSP

)H
˘̃
Z

opt

NSP. (53)

We propose to select the transmitted waveform with covariance matrix ˘̃
Ri is as close as possible to the desired

covariance matrix, i.e.,

imin , argmin
1≤i≤K

[
1

K

K∑

k=1

(
aH(θk)

˘̃
Ri a(θk)− φ(θk)

)2
]

(54)

R̃
opt
NSP,

˘̃
Rimin . (55)

Equivalently, we selectPi which projects maximum power at target locations. Thus, forstationary MIMO radar

waveform with spectrum sharing constraints we propose Algorithm (2).

B. Moving maritime MIMO radar

Consider the case of a moving naval ship. The radar mounted ontop of the ship is also moving, thus, the

interference channels are varying due to the motion of ship.Due to time-varying ICSI, it is not feasible to include the

NSP in the optimization problem. For this case, we first design finite alphabet constant-envelope QPSK waveforms,

using the optimization problem in equation (29), and then use NSP to satisfy spectrum sharing constraints using

transform
˘̃
Zi = Z̃PHi . (56)

The waveform generation process is shown using the block diagram of Figure 3. Note that only one waveform is

designed using the optimization problem in equation (29) but K projection operations are performed via equation
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Fig. 2. Block diagram of waveform generation process for a stationary MIMO radar with spectrum sharing constraints.

Algorithm 2 Stationary MIMO Radar Waveform Design Algorithm with Spectrum Sharing Constraints
loop

for i = 1 : K do

Get CSI ofHi through feedback from theith BS.

SendHi to Algorithm (1) for the formation of projection matrixPi.

Receive theith projection matrixPi from Algorithm (1).

Design QPSK waveform̃Zopt
i using the optimization problem in equation (51).

Project the QPSK waveform onto the null space ofith interference channel using˘̃Z
opt

NSP = Z̃
opt
i PHi .

end for

Find imin = argmin
1≤i≤K

[
1

K

∑K
k=1

(
aH(θk)

˘̃
Ri a(θk)− φ(θk)

)2
]

.

SetR̃opt
NSP =

˘̃
Rimin as the covariance matrix of the desired NSP QPSK waveforms tobe transmitted.

end loop

(56). The transmitted waveform is selected on the basis of minimum Forbenius norm with respect to the designed

waveform using the optimization problem in equation (29), i.e.,

imin , argmin
1≤i≤K

||Z̃PHi − Z̃||F (57)

˘̃
ZNSP ,

˘̃
Zimin. (58)

The correlation matrix of this transmitted waveform is given as

R̃NSP=
1

N
˘̃
Z
H

NSP
˘̃
ZNSP. (59)

Thus, for moving MIMO radar waveform with spectrum sharing constraints we propose Algorithm (3).
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Fig. 3. Block diagram of waveform generation process for a moving MIMO radar with spectrum sharing constraints.

Algorithm 3 Moving MIMO Radar Waveform Design Algorithm with Spectrum Sharing Constraints

Design FACE QPSK waveform̃Z using the optimization problem in equation (29).

loop

for i = 1 : K do

Get CSI ofHi through feedback from theith BS.

SendHi to Algorithm (1) for the formation of projection matrixPi.

Receive theith projection matrixPi from Algorithm (1).

Project the FACE QPSK waveform onto the null space ofith interference channel using˘̃Zi = Z̃PHi .

end for

Find imin = argmin
1≤i≤K

||Z̃PHi − Z̃||F .

SetR̃NSP as the covariance matrix of the desired NSP QPSK waveforms tobe transmitted.

end loop

VIII. S IMULATION

In order to design QPSK waveforms with spectrum sharing constraints, we use a uniform linear array (ULA) of

ten elements, i.e.,M = 10, with an inter-element spacing of half-wavelength. Each antenna transmits waveform

with unit power andN = 100 symbols. We average the resulting beampattern over 100 Monte-Carlo trials of QPSK

waveforms. At each run of Monte Carlo simulation we generatea Rayleigh interference channel with dimensions

NBS×M , calculate its null space, and solve the optimization problem for stationary and moving maritime MIMO

radar.
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Fig. 4. QPSK waveform for stationary MIMO radar, sharing RF environment with five BSs each equipped withthreeantennas.

A. Waveform for stationary radar

In this section, we design the transmit beampattern for a stationary MIMO radar. The desired beampattern has

two main lobes from−60◦ to −40◦ and from40◦ to 60◦. The QPSK transmit beampattern for stationary maritime

MIMO radar is obtained by solving the optimization problem in equation (51). We give different examples to cover

various scenarios involving different number of BSs and different configuration of MIMO antennas at the BSs. We

also give one example to demonstrate the efficacy of Algorithms (1) and (2) in BS selection and its impact on the

waveform design problem.

Example 1: Cellular System with five BSs and{3, 5, 7} MIMO antennas and stationary MIMO radar

In this example, we design waveform for a stationary MIMO radar in the presence of a cellular system with five

BSs. We look at three cases where we vary the number of BS antennas from{3, 5, 7}. In Figure 4, we show the

designed waveforms for all five BSs each equipped with 3 MIMO antennas. Note that, due to channel variations

there is a large variation in the amount of power projected onto target locations for different BSs. But for certain

BSs, the projected waveform is close to the desired waveform. In Figure 5, we show the designed waveforms for

all five BSs each equipped with 5 MIMO antennas. Similar to theprevious case, due to channel variations there

is a large variation in the amount of power projected onto target locations for different BSs. However, the power

projected onto the target is less when compared with the previous case. We increase the number of antennas to7

in Figure 6, and notice that the amount of power projected onto the targets is least as compared to previous two

cases. This is because whenNBS ≪ M we have a larger null space to project radar waveform and thisresults in

the projected waveform closer to the desired waveform. However, whenNBS < M , this is not the case.

Example 2: Performance of Algorithms (1) and (2) in BS selection for spectrum sharing with stationary

MIMO radar

In Examples 1, we designed waveforms for different number ofBSs with different antenna configurations. As

we showed, for some BSs the designed waveform was close to thedesired waveform but for other it wasn’t and the
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Fig. 5. QPSK waveform for stationary MIMO radar, sharing RF environment with five BSs each equipped withfive antennas.

−80 −60 −40 −20 0 20 40 60 80
0

5

10

15

20

25

30

35

θ (deg)

P
(θ

)

 

 

Desired Beampattern

QPSK Covariance Matrix R̃

QPSK R̃
opt
NSP for BS#1

QPSK R̃
opt
NSP for BS#2

QPSK R̃
opt
NSP for BS#3

QPSK R̃
opt
NSP for BS#4

QPSK R̃
opt
NSP for BS#5

Fig. 6. QPSK waveform for stationary MIMO radar, sharing RF environment with five BSs each equipped withsevenantennas.

projected waveform was closer to the desired waveform whenNBS ≪ M then whenNBS < M . In Figure 7, we

use Algorithms (1) and (2) to select the waveform which projects maximum power on the targets or equivalently

the projected waveform is closest to the desired waveform. We apply Algorithms (1) and (2) to the cases when

NBS = {3, 5, 7} and select the waveform which projects maximum power on the targets. It can be seen that

Algorithm (2) helps us to select waveform for stationary MIMO radar which results in best performance for radar

in terms of projected waveform as close as possible to the desired waveform in addition of meeting spectrum sharing

constraints.

B. Waveform for moving radar

In this section, we design transmit beampattern for a movingMIMO radar. The desired beampattern has two

main lobes from−60◦ to −40◦ and from40◦ to 60◦. The QPSK transmit beampattern for moving maritime MIMO
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Fig. 7. Algorithm (2) is used to select the waveform which projects maximum power on the targets whenNBS = {3, 5, 7} in the presence of

five BSs.

radar is obtained by solving the optimization problem in equation (34) and then projecting the resulting waveform

onto the null space ofHi using the projection matrix in equation (56). We give different examples to cover various

scenarios involving different number of BSs and different configuration of MIMO antennas at the BSs. We also give

one example to demonstrate the efficacy of Algorithms (1) and(3) in BS selection and its impact on the waveform

design problem.

Example 3: Cellular System with five BSs each with{3, 5, 7} MIMO antennas and moving MIMO radar

In this example, we design waveform for a moving MIMO radar inthe presence of a cellular system with five

BSs. We look at three cases where we vary the number of BS antennas from{3, 5, 7}. In Figure 8, we show the

designed waveforms for all five BSs each equipped with 3 MIMO antennas. Note that, due to channel variations

there is a large variation in the amount of power projected onto target locations for different BSs. When compared

with Figure 4, the power projected onto the target by NSP waveform is less due to the mobility of radar. In Figure

9, we show the designed waveforms for all five BSs each equipped with 5 MIMO antennas. Similar to the previous

case, due to channel variations there is a large variation inthe amount of power projected onto target locations

for different BSs. However, the power projected onto the target is less when compared with the previous case.

We increase the number of antennas to7 in Figure 10, and notice that the amount of power projected onto the

targets is least as compared to previous two cases. This is because whenNBS ≪M we have a larger null space to

project radar waveform and this results in the projected waveform closer to the desired waveform. However, when

NBS < M , this is not the case. Moreover, due to mobility of the radar,the amount of power projected for all three

cases considered in this example are less than the similar example considered for stationary radar.

Example 4: Performance of Algorithms (1) and (3) in BS selection for spectrum sharing with moving

MIMO radar

In Examples 3, we designed waveforms for different number ofBSs with different antenna configurations. As we
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Fig. 8. QPSK waveform for moving MIMO radar, sharing RF environment with five BSs each equipped withthreeantennas.

−80 −60 −40 −20 0 20 40 60 80
0

5

10

15

20

25

30

35

θ (deg)

P
(θ

)

 

 

Desired Beampattern

QPSK Covariance Matrix R̃

QPSK R̃NSP for BS#1

QPSK R̃NSP for BS#2

QPSK R̃NSP for BS#3

QPSK R̃NSP for BS#4

QPSK R̃NSP for BS#5

Fig. 9. QPSK waveform for moving MIMO radar, sharing RF environment with five BSs each equipped withfive antennas.

showed, for some BSs the designed waveform was close to the desired waveform but for other it wasn’t and the

projected waveform was closer to the desired waveform whenNBS ≪ M then whenNBS < M . In Figure 11, we

use Algorithms (1) and (3) to select the waveform which has the least Forbenius norm with respect to the designed

waveform. We apply Algorithms (1) and (3) to the cases whenNBS = {3, 5, 7} and select the waveform which

has minimum Forbenius norm. It can be seen that Algorithm (3)helps us to select waveform for stationary MIMO

radar which results in best performance for radar in terms ofprojected waveform as close as possible to the desired

waveform in addition of meeting spectrum sharing constraints.

IX. CONCLUSION

Waveform design for MIMO radar is an active topic of researchin the signal processing community. This work

addressed the problem of designing MIMO radar waveforms with constant-envelope, which are very desirable from
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Fig. 10. QPSK waveform for moving MIMO radar, sharing RF environment with five BSs each equipped withsevenantennas.
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Fig. 11. Algorithm (3) is used to select the waveform which projects maximum power on the targets whenNBS = {3, 5, 7} in the presence
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practical perspectives, and waveforms which allow radars to share spectrum with communication systems without

causing interference, which are very desirable for spectrum congested RF environments.

In this paper, we first showed that it is possible to realize finite alphabet constant-envelope quadrature-pulse

shift keying (QPSK) MIMO radar waveforms. We proved that such the covariance matrix for QPSK waveforms is

positive semi-definite and the constrained nonlinear optimization problem can be transformed into an un-constrained

nonlinear optimization problem, to realize finite alphabetconstant-envelope QPSK waveforms. This result is of

importance for both communication and radar waveform designs where constant-envelope is highly desirable.

Second, we addressed the problem of radar waveform design for spectrally congested RF environments where

radar and communication systems are sharing the same frequency band. We designed QPSK waveforms with

spectrum sharing constraints. The QPSK waveform was shapedin a way that it is in the null space of communication

system to avoid interference to communication system. We considered a multi-BS MIMO cellular system and
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proposed algorithms for the formation of projection matrices and selection of interference channels. We designed

waveforms for stationary and moving MIMO radar systems. Forstationary MIMO radar we presented an algorithm

for waveform design by considering the spectrum sharing constraints. Our algorithm selected the waveform capable

to project maximum power at the targets. For moving MIMO radar we presented another algorithm for waveform

design by considering spectrum sharing constraints. Our algorithm selected the waveform with the minimum

Forbenius norm with respect to the designed waveform. This metric helped to select the projected waveform closest

to the designed waveform.

APPENDIX A

PRELIMINARIES

This section presents some preliminary results used in the proofs throughout the paper. For proofs of the following

theorems, please see the corresponding references.

Theorem 1. The matrixA ∈ Cn×n is positive semi-definite if and only ifℜ(A) is positive semi-definite [25].

Theorem 2. A necessary and sufficient condition forA ∈ C
n×n to be positive definite is that the Hermitian part

AH =
1

2

[
A+AH

]

be positive definite [25].

Theorem 3. If A ∈ Cn×n and B ∈ Cn×n are positive semi-definite matrices then the matrixC = A + B is

guaranteed to be positive semi-definite matrix [26].

Theorem 4. If the matrixA ∈ Cn×n is positive semi-definite then thep times Schur product ofA, denoted byAp
◦,

will also be positive semi-definite [26].

APPENDIX B

GENERATING CE QPSK RANDOM PROCESSESFROM GAUSSIAN RANDOM VARIABLES

Assuming identically distributed Gaussian RV’sx̃p, ỹp, x̃q and ỹq that are mapped onto QPSK RV’s̃zp and z̃q

using

z̃p =
1√
2

[
sign

(
x̃p√
2σ

)
+  sign

(
ỹp√
2σ

)]
(60)

z̃q =
1√
2

[
sign

(
x̃q√
2σ

)
+  sign

(
ỹq√
2σ

)]
(61)

whereσ2 is the variance of Gaussian RVs. The cross-correlation between QPSK and Gaussian RVs can be derived

as

E{z̃pz̃∗q} =
1

2
E

[{
sign

( x̃p√
2σ

)
+  sign

( ỹp√
2σ

)}{
sign

( x̃q√
2σ

)
+  sign

( ỹq√
2σ

)}]
· (62)
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Using equation (13) we can write the above equation as

E{z̃pz̃∗q} = E

{
sign

( x̃p√
2σ

)
sign

( x̃q√
2σ

)}
+ E

{
sign

( ỹp√
2σ

)
sign

( x̃q√
2σ

)}
· (63)

The cross-correlation relationship between Gaussian and QPSK RVs can be derived by first considering

E

{
sign

( x̃p√
2σ

)
sign

( x̃q√
2σ

)}
=

∞∫

−∞

∞∫

−∞

[
sign

( x̃p√
2σ

)
× sign

( x̃q√
2σ

)
p(x̃p, x̃q, ρx̃px̃q

)

]
dx̃p dx̃q (64)

wherep(x̃p, x̃q, ρx̃px̃q
) is the joint probability density function of̃xp and x̃q, andρx̃px̃q

=
E{x̃px̃

∗

q}
σ2 is the cross-

correlation coefficient of̃xp andx̃q . Using Hermite polynomials [27], the above double integralcan be transformed

as in [7]. Thus,

E

{
sign

( x̃p√
2σ

)
sign

( x̃q√
2σ

)}
=

∞∑

n=0

ρnx̃px̃q

2πσ22nn!
×

∞∫

−∞

sign
( x̃p√

2σ

)
ex̃

2

p/2σ
2

Hn

( x̃p√
2σ

)
dx̃p

×
∞∫

−∞

sign
( x̃q√

2σ

)
ex̃

2

q/2σ
2

Hn

( x̃q√
2σ

)
dx̃q (65)

where

Hn(x̃m) = (−1)ne
x̃2
m
2

dn

dx̃nm
e

−x̃2
m

2 (66)

is the Hermite polynomial. By substitutinĝxp =
x̃p√
2σ

and x̂q =
x̃q√
2σ

, and splitting the limits of integration into

two parts, equation (65) can be simplified as

E

{
sign(x̂p)sign(x̂q)

}
=

∞∑

n=0

ρnx̂px̂q

π2nn!

( ∞∫

0

ex̂
2

p

[
Hn(x̂p)−Hn(−x̂p)

]
dx̂p

)2

· (67)

UsingHn(−x̂p) = (−1)nHn(x̂p) [28], equation (67) can be written as

E

{
sign(x̂p)sign(x̂q)

}
=

∞∑

n=0

ρnx̂px̂q

π2nn!

( ∞∫

0

ex̂
2

pHn(x̂p)
(
1− (−1)n

)
dx̂p

)2

· (68)

The above equation is non-zero for oddn only, therefore, we can rewrite it as

E

{
sign(x̂p)sign(x̂q)

}
=

∞∑

n=0

ρ2n+1
x̂px̂q

π22n(2n+ 1)!

( ∞∫

0

ex̂
2

pH2n+1(x̂p) dx̂p

)2

· (69)

Then using
∞∫
0

ex̂
2

pH2n+1(x̂p) dx̂p = (−1)n (2n)!
n! from [28], we can write equation (69) as

E

{
sign

( x̃p√
2σ

)
sign

( x̃q√
2σ

)}
=
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n=0

ρ2n+1
x̃px̃q

π22n(2n+ 1)!

(
(−1)n

2n!

n!

)2

=
2

π

[
ρx̃px̃q

+
ρ3x̃px̃q

2 · 3 +
1 · 3ρ5x̃px̃q

2 · 4 · 5 +
1 · 3 · 5ρ7x̃px̃q

2 · 4 · 6 · 7 + · · ·
]

=
2

π
sin−1

(
E{x̃px̃q}

)
(70)
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In equation (64), we expanded the first part of equation (63).Now, similarly expanding the second part of equation

(63), i.e.,

E

{
sign

( ỹp√
2σ

)
sign

( x̃q√
2σ

)}
=

∞∫

−∞

∞∫

−∞

[
sign

( ỹp√
2σ

)
sign

( x̃q√
2σ

)
p(ỹp, x̃q, ρỹpx̃q

)

]
dỹp dx̃q (71)

wherep(ỹp, x̃q, ρỹpx̃q
) is the joint probability density function of̃yp and x̃q, andρỹpx̃q

=
E{ỹpx̃∗

q}
σ2 is the cross-

correlation coefficient of̃yp and x̃q . Using Hermite polynomials, equation (66), we can write equation (71) as

E

{
sign

( ỹp√
2σ

)
sign

( x̃q√
2σ

)}
=

∞∑

n=0

ρnỹpx̃q

2πσ22nn!
×
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−∞

sign
( ỹp√

2σ

)
× eỹ

2

p/2σ
2

Hn

( ỹp√
2σ

)
dỹp

×
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−∞

sign
( x̃q√

2σ

)
ex̃

2

q/2σ
2

Hn

( x̃q√
2σ

)
dx̃q. (72)

By substitutingŷp =
ỹp√
2σ

and x̂q =
x̃q√
2σ

, and splitting the limits of integration into two parts, equation (72) can

be simplified as

E

{
sign(ŷp)sign(x̂q)

}
=

∞∑

n=0

ρnŷpx̂q

π2nn!

( ∞∫

0

eŷ
2

p

[
Hn(ŷp)−Hn(−ŷp)

]
dŷp

)2

· (73)

UsingHn(−ŷp) = (−1)nHn(ŷp), above equation can be written as

E

{
sign(ŷp)sign(x̂q)

}
=

∞∑

n=0

ρnŷpx̂q

π2nn!

( ∞∫

0

eŷ
2

pHn(ŷp)
(
1− (−1)n

)
dŷp

)2

· (74)

The above equation is non-zero for oddn only, therefore, we can rewrite it as

E

{
sign(ŷp)sign(x̂q)

}
=

∞∑

n=0

ρ2n+1
ŷpx̂q

π22n(2n+ 1)!

( ∞∫

0

eŷ
2

pH2n+1(ŷp) dŷp

)2

· (75)

Then using
∞∫
0

eŷ
2

pH2n+1(ŷp) dŷp = (−1)n (2n)!
n! , we can write equation (75) as

E

{
sign

( ỹp√
2σ

)
sign

( x̃q√
2σ

)}
=
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n=0

ρ2n+1
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(−1)n
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=
2

π

[
ρỹpx̃q

+
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2 · 3 +
1 · 3ρ5ỹpx̃q

2 · 4 · 5 +
1 · 3 · 5ρ7ỹpx̃q

2 · 4 · 6 · 7 + · · ·
]

=
2

π
sin−1

(
E{ỹpx̃q}

)
· (76)

Combining equations (70) and (76), gives us the cross-correlation of equation (63) as

E{z̃pz̃q} =
2

π

[
sin−1

(
E{x̃px̃q}

)
+  sin−1

(
E{ỹpx̃q}

)]
· (77)
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APPENDIX C

PROOFS

Proof of Lemma 1:To prove Lemma 1, we note that the real part ofR̃g is Rg which is positive semi-definite

by definition, thus, by Theorem 1, the complex covariance matrix R̃g is also positive semi-definite.

Proof of Lemma 2:To prove Lemma 2, we can individually expand the sum,sin−1
(
ℜ(R̃g)

)
+ sin−1

(
ℑ(R̃g)

)
,

using Taylor series, i.e., first expandingsin−1
(
ℜ(R̃g)

)

sin−1 (ℜ(Rg)) = ℜ(Rg) +
1

2 · 3ℜ(Rg)
3
◦ +

1 · 3
2 · 4 · 5ℜ(Rg)

5
◦ +

1 · 3 · 5
2 · 4 · 6 · 7ℜ(Rg)

7
◦ + · · · (78)

Then using Theorem 3, each term or matrix, on the right hand side, is positive semi-definite, since,ℜ(Rg) is

positive semi-definite by definition. Moreover,sin−1 (ℜ(Rg)) is also positive semi-definite since its a sum of

positive semi-definite matrices, this follows from Theorem1.

Similarly, expanding sin−1 (ℑ(Rg)) as

 sin−1 (ℑ(Rg)) = [ℑ(Rg) +
1

2 · 3ℑ(Rg)
3
◦ +

1 · 3
2 · 4 · 5ℑ(Rg)

5
◦ +

1 · 3 · 5
2 · 4 · 6 · 7ℑ(Rg)

7
◦ + · · · ] (79)

Now, R̃ is positive semi-definite since real part of it is positive semidefinite, from equation (78) and Theorem 4.
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