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Models, Statistics, and Rates of
Binary Correlated Sources

Marco Martalò and Riccardo Raheli

Abstract— This paper discusses and analyzes various models of
binary correlated sources, which may be relevant in several dis-
tributed communication scenarios. These models are statistically
characterized in terms of joint Probability Mass Function (PMF)
and covariance. Closed-form expressions for the joint entropy
of the sources are also presented. The asymptotic entropy rate
for very large number of sources is shown to converge to a
common limit for all the considered models. This fact generalizes
recent results on the information-theoretic performance limit
of communication schemes which exploit the correlation among
sources at the receiver.

Index Terms— Correlated sources, binary sources, statistical
characterization, entropy rate, achievable region.

I. INTRODUCTION

The efficient transmission of correlated signals, observed at
various nodes, to one or more collectors is of wide interest
in various scenarios, such as sensor networks [1], and has
been the subject of recent research attention. For instance, [2]
discusses the spatial dependence between data according to
the distribution of the nodes in the monitored area through
empirical measurements. The design of efficient transmission
schemes for correlated sources through orthogonal additive
white Gaussian noise (AWGN) channels is discussed in [3]. In
this case, the separation between source and channel coding is
optimal and ultimate performance can be achieved by means
of distributed source coding (DSC) followed by independent
capacity-achieving channel coding [3], [4]. An alternative
solution is based on the use of joint source channel coding
(JSCC) schemes, where proper codes are used to encode the
correlated sources. In both cases, knowledge of the statistical
source correlation is exploited at the joint decoder, whereas
source encoding is performed separately [5].

The design of universal codes for transmission of correlated
sources, i.e., capacity-achieving codes for all possible channel
parameters, is a current topic. Universal codes based on spatial
coupling have been recently proposed [6]. Orthogonal multiple
access schemes with an arbitrary number of correlated sources
have been recently addressed in [7], where the asymptotic
achievable region for increasing number of sources has been
characterized in terms of individual channel capacities, for a
specific correlation model, and pragmatic joint source-channel
coded schemes have been proposed.

In this paper, we discuss various correlation models for an
arbitrary number of binary sources, which may be of interest in
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several realistic communication scenarios. With the exception
of [7], there are not many papers in the literature discussing
correlation models for a possibly large numbers of sources.
In [8], the authors proposed a correlation model based on
a set of linear equations in the binary field. This model is
shown to be related, under special conditions, to one of the
binary symmetric channels (BSC)-based models discussed in
this paper. Main contributions of this paper are the statistical
characterization of such models in terms of joint probability
mass function (PMF), covariance, and joint entropy of the
sources. Moreover, considering the information sequence as
a stochastic process in the spatial domain, we derive the
asymptotic entropy rate for large number of sources and show
it coincides for all the considered models. Therefore, the
asymptotic achievable region discussed in [7], characterized
in terms of the source entropy rate, can be inferred to be
independent of the specific correlation model and pragmatic
joint source-channel coded schemes may be expected to have
similar asymptotic behavior regardless of the model.

This paper is structured as follows. In Section II, we present
various binary source correlation models. In Section III, we
statistically characterize these models, by deriving the joint
PMF of their output sequences and the corresponding co-
variance matrices. In Section IV, we statistically characterize
these schemes in terms of their joint entropy. In Section V,
we use the joint entropy rate of these models to characterize
the performance limit of orthogonal multiple access schemes
transmitting correlated symbols. Finally, concluding remarks
are given in Section VI.

II. SOURCE CORRELATION MODELS

Consider N source nodes, possibly spatially distributed,
which output (emit) binary information sequences XXX =
(X1, X2, . . . , XN )T , where (·)T is the transpose operation.
The binary information symbols are assumed to be marginally
equiprobable, but correlated with each other according to a
given PMF PXXX(xxx), in which the N -element vector xxx describes
a possible realization of XXX . This scenario may be represen-
tative of a sensor network in which the sensors observe N
correlated physical quantities of interest. In Fig. 1, possible
correlation models are shown: (a) parallel, (b) serial, and (c)
mixed. In the parallel model (a), the source symbols are the
output of a set of parallel BSCs, with cross-over probability
1−ρ`, for ` = 1, 2, . . . , N , denoted as BSC(ρ`), whose input
is a hidden common information bit B. The `-th source symbol
is given by

X` = B ⊕ Z` (1)
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Fig. 1. Considered correlation models: (a) parallel, (b) serial, and (c) mixed.

where B is an independent equiprobable binary random vari-
able, {Z`} are independent binary random variables with
P (Z` = 0) = ρ`, 1/2 ≤ ρ` ≤ 1 for ` = 1, 2, . . . , N , and
⊕ denotes a modulo-2 sum. Obviously, if ρ` = 0.5 there is no
correlation among the binary information symbols {X`}N`=1,
whereas if ρ` = 1 they are identical with probability 1.

In Fig. 1 (b), a possible serial correlation model is shown,
in which the source symbols are correlated by a cascade of
BSCs1 with cross-over probability 1 − ρ`. Again the output
symbols are uncorrelated for ρ` = 0.5, whereas they are equal
with probability 1 for ρ` = 1.

A more general “mixed” case with a number m of serial
chains is shown in Fig. 1 (c), in which 1 − ρij denotes the
cross-over probability of the i-th BSC on the j-th chain. In this
case, the correlated data at the `-th, ` = 1, 2, . . . , N , source
on the j-th branch, j = 1, 2, . . . ,M , can be expressed as

X`j = B ⊕
∑̀
i=1

⊕ Zij︸ ︷︷ ︸
,Z′

`j

= B ⊕ Z ′`j

where the symbol
∑
⊕ denotes modulo-2 sums. The random

1The first BSC does not play any role in the serial model and could be
omitted—it is kept for notational consistency with the other models.

variable Z ′`j can be easily characterized by its distribution [9,
Lemma 4.1]

p`j , P (Z ′`j = 0) =
1

2

1 + `∏
i=1

(2ρij − 1)

 . (2)

Note that for M = 1, this mixed model reduces to the serial
one of Fig. 1 (b) and the index j in (2) can be dropped.

A model based on a set of binary linear equations was
considered in [8]:

AAAXXX = ZZZ (3)

where AAA is a binary matrix (whose entries are equal to either 0
or 1) defining the set of equations andZZZ = (Z1, Z2, . . . , ZN )T

is a vector of independent Bernoulli binary random variables
with parameter ρ` = P (Z` = 0). Note that matrix operations
are performed in the binary field. As a special case, (3) may
encompass a set of recursive equations of the form

min{D,`−1}∑
i=0

⊕ A`,`−iX`−i = Z` (4)

in which D is the recursion depth, A`` = 1, A`k = 0 or 1 for
k = ` − min{D, ` − 1}, . . . , ` − 1, and A`k = 0 for k > `.
Since we are considering binary random variables, (4) can be
also rewritten as

X` =


Z` ` = 1

Z` ⊕
min{D,`−1}∑

i=1

⊕ A`,`−iX`−i ` = 2, 3, . . . , N.
(5)

The model in (5) describes a recursive binary filter with input
Z` and output X`. In the special case of D = 1, A`,`−1 = 1,
and ρ1 = 1/2, the model in (5) is equivalent to the serial one
in Fig. 1 (b).

If the matrix AAA is invertible in the binary field, then

XXX = AAA−1ZZZ (6)

and, therefore, there exists a one-to-one correspondence be-
tween XXX and ZZZ. A case where the inverse exists is the
recursive model in (4), as it is shown in Appendix I, where a
few cases of interest are also analyzed. For simplicity, in the
rest of the paper we will assume that the matrixAAA is invertible.
Note that, invertibility may lead to uncorrelated binary sources
in the special case of matrices with constant row weight equal
to dc, as shown in [10].

III. STATISTICAL CHARACTERIZATION

According to the parallel correlation model (1) in Fig. 1 (a),
the joint PMF of the information symbols at the output of the
N nodes can be computed. By straightforward manipulations,
one can show that

PXXX(xxx) =
∑
b=0,1

PXXX(xxx|B = b)PB(b)

=
1

2

[∏
`∈S0

ρ`
∏
k∈S1

(1− ρk) +
∏
`∈S0

(1− ρ`)
∏
k∈S1

ρk

]
(7)
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where S0 and S1 is a partition of the set {1, 2, . . . , N}
specifying the positions of zeros and ones in xxx, respectively.
In the special case of ρ` = ρ, ` = 1, 2, . . . , N , one obtains

PXXX(xxx) =
1

2

[
ρnz(1− ρ)N−nz + (1− ρ)nzρN−nz

]
(8)

where nz is the number of zeros in xxx.
In the serial case of Fig. 1 (b), using the chain rule, one has

PXXX(xxx) =
∑
b=0,1

PXXX(xxx|B = b)PB(b)

=
∑
b=0,1

PB(b)PX1
(x1|B = b)

N∏
`=2

PX`
(x`|X`−1 = x`−1)(9)

where we have used the fact that, given X`−1, X` is con-
ditionally independent from the previous source symbols
X`−2, . . . , X1 and B. After further simple manipulations, one
can write

PXXX(xxx) =
1

2

∏
`∈L0

ρ`
∏
k∈L1

(1− ρk)

where L0 and L1 is a partition of the set {2, 3, . . . , N}
specifying the positions where x` = x`−1 and x` 6= x`−1,
respectively. In the special case of ρ` = ρ, ` = 2, 3, . . . , N ,
denoting as n′z the cardinality of the set L0, one obtains

PXXX(xxx) =
1

2
ρn

′
z(1− ρ)N−n′

z−1.

In the general mixed case of Fig. 1 (c), let us denote as

XN
1j , (X1j , . . . , XNj) j = 1, 2, . . . ,M

the set of the N source symbols on the j-th branch. One can
generalize the result of the serial case by writing:

PXXX(xxx) =
∑
b=0,1

PXXX(xxx|B = b)PB(b)

=
∑
b=0,1

M∏
j=1

PXN
1j
(xN1j |B = b)PB(b)

=
∑
b=0,1

M∏
j=1

PB(b)PX1j
(x1j |B = b)

·
N∏
`=2

PX`j
(x`j |X`−1,j = x`−1,j)

where, in the first line, we have used the fact that, conditionally
on B, the branches are independent, and the second line is
equivalent to (9) applied to each branch.

Finally, the PMF for correlated sources following the model
in [8] can be characterized, by resorting to (3), as

PXXX(xxx) = PZZZ(AAAxxx). (10)

Using simple manipulations, we have

PXXX(xxx) =
∏
`∈S′

0

ρ`
∏
k∈S′

1

(1− ρk)

where S ′0 and S ′1 is a partition of the set {1, 2, . . . , N}
specifying the positions of zeros and ones in AAAxxx, respectively.

The covariance matrix for the considered correlation models
is defined as

CCCX = RRRX −µµµXµµµ
T
X .

For the parallel and serial models, the elements of the corre-
lation matrix RRRX and the mean vector µµµX are, respectively,

Rik = E[XiXk]
µi = E[Xi]

i, k = 1, 2, . . . , N.

Note that Rik = E[XiXk] = P (Xi = Xk = 1), since the data
are binary. The elements of the vector µµµX can be obtained as

µi =
1

2
.

RRRX depends on the considered correlation model, but in all
cases

Rii = E
[
X2

i

]
= 1 · P (Xi = 1) =

1

2

since, for all considered models, P (Xi = 1) = 0.5.
In the parallel case of Fig. 1 (a), for i, k = 1, 2, . . . , N

(i 6= k) one obtains

E[XiXk] =
1

2

∑
b=0,1

P (Xi = Xk = 1|B = b)

=
1

2
[ρiρk + (1− ρi)(1− ρk)]

=
1

2
[1− (ρi + ρk) + 2ρiρk] (11)

which reduces, for ρ` = ρ, ` = 1, 2, . . . , N , to

E[XiXk] =
1

2

[
1− 2ρ+ 2ρ2

]
.

As expected, the correlation is independent of the indices of
the considered sources. Note that if ρ = 1/2, Cik = 1/4 for
i = k and zero otherwise, i.e., data are uncorrelated.

For the serial correlation model in Fig. 1 (b) and i 6= k, one
can write

P (Xi = Xk = 1) = P (Xk = 1|Xi = 1)P (Xi = 1)

=
1

2
P (Xk = 1|Xi = 1)

where the conditional probability P (Xk = 1|Xi = 1) can be
computed noting that Xi = Xk = 1 if the BSCs of indices
i+1, i+2, . . . , k flip an even number of times. Therefore, by
arguments similar to those in [9, Lemma 4.1] we obtain

P (Xk = 1|Xi = 1) =
1

2

1 + k∏
`=i+1

(2ρ` − 1)


and, therefore,

E[XiXk] =
1

4

1 + k∏
`=i+1

(2ρ` − 1)

 . (12)

For the special case of ρ` = ρ, ` = 2, 3, . . . , N , denoting the
number of hops in the chain of BSCs as L = |i − k|, (12)
reduces to

E[XiXk] =
1

4

[
1 + (2ρ− 1)L

]
.
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Fig. 2. Coefficients of the first row of the covariance matrix CCCX for N = 5 sources and three models: (a) parallel, (b) serial, and (c) mixed with M = 2.
Two values of ρ are considered: 0.7 (left bars in each figure) and 0.95 (right bars in each figure).

Note that if ρ = 1/2, Cik = 1/4 for i = k and zero otherwise,
i.e., data are uncorrelated.

In the mixed scenario of Fig. 1 (c), the covariance matrix has
size NM ×NM . The element Cik, for i, k = 1, 2, . . . , NM ,
can be defined as the covariance between the source symbols
X`1m1 and X`2m2 , where

i = (m1 − 1)N + `1 k = (m2 − 1)N + `2.

In particular, the following two cases may occur:

• if m1 = m2, i.e., X`1m1 and X`2m1 belong to the same
branch, the result in (12) can be applied;

• if m1 6= m2, i.e., X`1m1
and X`2m2

belong to different
branches, the results for two sources in a parallel scheme
can be applied replacing ρi and ρk in (11) with p`1m1

and p`2m2 , respectively, as defined in (2).

Obviously, it is still verified that, if ρik = ρ = 1/2, Cik = 1/4
for i = k and zero otherwise, i.e., data are uncorrelated.

Finally, the covariance matrix can be also considered for the
correlation model (3) based on a set of binary linear equations.
Using (6), one can write

CCCX = RRRX −µµµXµµµ
T
X

= E
[
AAA−1ZZZZZZT (AAA−1)T

]
− E

[
AAA−1ZZZ

]
E
[
ZZZT (AAA−1)T

]
= P

(
AAA−1ZZZZZZT (AAA−1)T = JJJN

)
−P

(
AAA−1ZZZ = 111N

)
P
(
ZZZT (AAA−1)T = 111N

)
where we have used the fact that the mean value of a binary
random variable is equal to the probability that the variable is
equal to 1, JJJN is the all-one matrix of size N ×N , and 111N
is the all-one column vector of length N . Note that a closed-
form solution for CCCX is not readily available as it depends on
the particular structure of AAA.

Fig. 2 shows the coefficients of the first row of the co-
variance matrix CCCX for N = 5 sources, ρ` = ρik = ρ, and
the three models: (a) parallel, (b) serial, and (c) mixed with
M = 2. Two values of ρ are considered: 0.7 (left bars in
each figure) and 0.95 (right bars in each figure). Only the first
row is considered, since for parallel and serial models with
constant ρ the covariance matrix is symmetric and Toeplitz. In
the mixed case, instead, for constant ρ, CCCX has the following

block structure

CCCX =


CCC1 CCC2 · · · CCCM

CCCT
2 CCC1 · · · CCCM−1
...

...
...

...
CCCT

M CCCT
M−1 · · · CCC1


where CCCi is the covariance matrix, of size N × N , between
sources on chains with separation i − 1. In other words,
zero separation means that the sources are in the same chain,
separation 1 means that sources are on adjacent chains, and so
on. In this case as well, the first row is sufficient to characterize
the entire matrix. In the figure, one can observe that the first
coefficient is equal to the symbol variance (1/4) in all cases.
Moreover, in the parallel model (a), all coefficients C1k for
k from 2 to 5 are equal due to the fact that the pairwise
probabilities are identical, regardless of the source index. Note
also that the higher the value of ρ, the higher the covariance
elements, since data are more and more correlated. In the serial
model (b), the covariance decreases with k, since a larger
number of BSCs is present between the sources, which become
more and more uncorrelated. In the mixed model (c), recall
that indices from k = 1 to k = 5 correspond to the first chain
of BSCs, whereas indices from k = 6 to k = 10 correspond
to the second chain. As expected, symbols in the second chain
are less correlated with the first symbol X11, than those in the
first one.

An alternative way to view the covariance matrix is by the
histogram of its values shown in Fig. 3 for N = 5 sources
and two models: (a) parallel and (b) serial. Two values of
ρ` = ρ are considered: 0.7 and 0.95. One can observe that in
the parallel model, only two values of Cik are allowed, since
the pairwise probabilities are the same for any pair of sources.
Moreover, for high correlation (e.g., ρ = 0.95) larger values
than those for small correlation (e.g., ρ = 0.7) are obtained,
which is in agreement with the fact that Cik → 0 for i 6= k if
ρ→ 1/2.

IV. SOURCE ENTROPY RATE

To compute the joint entropy of the N sources for the
considered correlation models, we denote it as H(XN

1 ), where
the notation Xb

a indicates the sequence (Xa, Xa+1, . . . , Xb).
Let us consider the joint entropy of XN

1 and B:

H(B,XN
1 ) = H(B) +H(XN

1 |B). (13)
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Fig. 3. Histogram of the values of the matrix CCCX for N = 5 sources and
two models: (a) parallel and (b) serial. Two values of ρ are considered: 0.7
and 0.95.

For the parallel model (1) of Fig. 1 (a), one has

H(XN
1 |B) =

N∑
`=1

Hb(ρ`)

where Hb(ρ`) is the entropy of a binary random variable
with parameter ρ`. Since B is a uniformly distributed binary
random variable, H(B) = Hb(0.5) = 1. Therefore, one
obtains:

H(B,XN
1 ) = 1 +

N∑
`=1

Hb(ρ`).

As in (13), it is also possible to write

H(B,XN
1 ) = H(XN

1 ) +H(B|XN
1 ) = 1 +

N∑
`=1

Hb(ρ`)

and, therefore,

H(XN
1 ) = 1 +

N∑
`=1

Hb(ρ`)−H(B|XN
1 ). (14)

By definition of entropy, the last term is non negative and the
following upper bound (UB) is obtained

H(XN
1 ) ≤ 1 +

N∑
`=1

Hb(ρ`). (15)

Moreover, since conditioning reduces entropy [11], it also
follows that

H(B|XN
1 ) ≤ H(B|X1) = Hb(ρ1).

Using this in (14), one obtains the lower bound (LB):

H(XN
1 ) ≥ 1+

N∑
`=1

Hb(ρ`)−Hb(ρ1) = 1+

N∑
`=2

Hb(ρ`). (16)

Combining (15) and (16) and analyzing the limit for large
number of sources, one obtains

lim
N→+∞

H(XN
1 )

N
= Hb (17)

where

Hb , lim
N→+∞

1

N

N∑
`=1

Hb(ρ`)

in which the limit exists since 0 ≤ Hb(ρ`) ≤ 1. This quantity
can be interpreted as the limit average entropy of the cascade
of N BSCs and (17) can be interpreted as the asymptotic
entropy rate of the correlated sources, namely the limit average
source entropy. Equation (17) reduces, for the special case
ρ` = ρ, ` = 1, 2, . . . , N , to

Hb = lim
N→+∞

1

N

N∑
`=1

Hb(ρ) = Hb(ρ).

This result can be also obtained by observing that XN
1 is a

stationary binary random process, whose entropy rate is well-
known [11, Ch. 4]. This limit for the special case of constant
ρ has been also derived in [7].

Consider now the joint entropy of the serial correlated
source model in Fig. 1 (b). Using the chain rule for entropy,
one can easily compute the joint entropy as

H(XN
1 ) = H(X1) +

N∑
`=2

H(X`|X`−1
1 )

= H(X1) +

N∑
`=2

H(X`|X`−1)

= 1 +

N∑
`=2

Hb(ρ`). (18)

Analyzing the limit for large number of sources, one obtains

lim
N→+∞

H(XN
1 )

N
= Hb (19)

and in the special case of ρ` = ρ, ` = 2, 3, . . . , N :

Hb = lim
N→+∞

1

N

1 + N∑
`=2

Hb(ρ`)

 = Hb(ρ).

Note that the parallel and serial models have equal asymptotic
source entropy rate.

In the general mixed case of Fig. 1 (c), it can be shown
(see Appendix II for the proof) that

lim
N→+∞

H(XN
11, . . . , X

N
1M )

MN
= Hb (20)

where

Hb , lim
N→+∞

1

MN

M∑
j=1

N∑
`=1

Hb(ρ`j).

We remark that the limit exists since each term in the
summation is limited to the interval [0, 1]. Equation (20)
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reduces, for the special case of ρ`j = ρ, ` = 1, 2, . . . , N
and j = 1, 2, . . . ,M , to

Hb = lim
N→+∞

1

MN

M∑
j=1

N∑
`=1

Hb(ρ) = Hb(ρ).

Note that similar considerations can be also carried out if N
is kept fixed and M grows to infinity or if both N and M
become arbitrarily large.

We finally analyze the entropy rate of the source correlation
model given by a set of linear equations in (3). Using (10) and
the assumption of invertibility of AAA, it can be easily shown
that [11]

H(XN
1 ) = H(ZN

1 ) =

N∑
`=1

Hb(ρ`).

Therefore:

lim
N→+∞

H(XN
1 )

N
= Hb

which reduces, for the special case of ρ` = ρ, ` = 1, 2, . . . , N ,
to

Hb = lim
N→+∞

1

N

N∑
`=1

Hb(ρ) = Hb(ρ).

This shows that the source entropy rate is asymptotically the
same for the linear equation-based correlation model as well,
hence for all the considered correlation models.

The convergence of the entropy rates of the considered
models can be analyzed in terms of the difference between the
average source entropy for finite N and the asymptotic value.
In particular, in the parallel and serial models we define

ε ,
H(XN

1 )

N
−Hb.

In the mixed model, instead, this difference is also function
of M and can be defined as

ε ,
H(XN

11, . . . , X
N
1M )

MN
−Hb.

In Fig. 4, ε is shown, as a function of N , for parallel or serial
models and two values of ρ (assumed equal for all BSCs):
0.7 and 0.95. Note that lower and upper bounds on ε can
be obtained using the LB and UB on the joint entropy for
the parallel model, respectively. In particular the LB for the
parallel case and the exact value of ε for the serial model are
identical, due to the fact that the right-hand side of (16) and
(18) coincide for any N in the special case of constant ρ.
Moreover, the UB on ε for the parallel model is the same,
regardless of the value of ρ, and the curves overlap for both
values of ρ. In both cases, ε converges as 1/N and the same
convergence can be obtained for the model given by a set of
linear equations when AAA is such that this model is equivalent
to the serial one. Furthermore, the tightness of the bounds
increases with the number of correlated sources, since UB and
LB become closer to each other. However, the convergence of
the LB degrades with increasing values of ρ. Moreover, the
mixed model has the same trend for ε, since it decreases with
1/(MN) for any fixed value of M .

In Fig. 5, ε is shown, as a function of M , for the mixed
model, two values of ρ (namely, 0.7 and 0.95), and two values

0 10 20 30 40 50 60 70 80 90 100
N

10
-4

10
-3

10
-2

10
-1

10
0

ε

UB-par, ρ = 0.7, 0.95

LB-par or ser, ρ = 0.7

LB-par or ser, ρ = 0.95

UB-mix, M = 2, ρ = 0.7, 0.95

LB-mix, M = 2, ρ = 0.7

LB-mix, M = 2, ρ = 0.95

Fig. 4. ε, as a function of N , for parallel (par), serial (ser), and mixed (mix)
(M = 2) models and two values of ρ: 0.7 and 0.95.

of N (namely, 10 and 50). Note that similar considerations as
those relative to Fig. 4 hold in this case for fixed values of N
and letting M go to infinity.

V. TRANSMISSION OF CORRELATED SYMBOLS IN
ORTHOGONAL MULTIPLE ACCESS SCHEMES

The computation of the source entropy rate discussed
in Section IV plays an important role in determining the
asymptotic achievable region of orthogonal multiple access
schemes with correlated sources. In such schemes, each node
independently encodes, by a joint source-channel code with
rate r, the source symbols and transmits them through an
orthogonal multiple access channel. At the receiver side,
data are decoded by properly taking into account the source
correlation to improve the overall system performance.

Recent work in [7] has proposed a characterization of the
achievable region of orthogonal multiple access schemes with
correlated sources, based on the computation of joint and
conditional entropies of the sources, for an arbitrary value
of N . According to [7], the achievable region, in the space
of individual channel capacity values {λ`}N`=1, is specified by
the intersection of the following inequalities:∑

`∈S

λ` ≥ r H(X(S)|X(Sc)) (21)

for all S ⊆ {1, 2, . . . , N}, in which X(S) = {Xi : i ∈
S} and Sc denotes the complementary set of S. Note that
H(X(S)|X(Sc)) is the conditional entropy of the sources
with index in S given the remaining ones. Two characteristic
operational points, denoted as “balanced” and “unbalanced,”
are of interest.

The balanced characteristic point refers to the case where
all source symbols are transmitted at a rate equal to the same
single-channel capacity, i.e., λbal = λ1 = λ2 = · · · = λN .
This common value, is equal to

λbal , r
H(XN

1 )

N
. (22)

The unbalanced case, instead, refers to the portion of the
achievable region characterized as follows: N−1 sources, e.g.,
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Fig. 5. ε, as a function of M , for the mixed model, two values of ρ (namely,
0.7 and 0.95), and two values of N (namely, 10 and 50).

sources from 1 to N −1, are associated with sufficiently large
values of λi, i = 1, 2, . . . , N − 1. In this case, λunb is the
smallest value of λN such that the operational point lies on
the border of the achievable region and it is equal to

λunb , rH(XN |XN−1
1 ). (23)

In [7], it is shown that for the parallel model in Fig. 1 (a)
and ρ` = ρ, ` = 1, 2, . . . , N , the following facts hold

λbal ≥ λunb ∀N
lim

N→+∞
λunb = lim

N→+∞
λbal , λlim = rHb(ρ). (24)

This characterization of the achievable multiple access region
is simple but effective. In particular, (24) tells us that, when
N increases, the achievable region tends to a hyperoctant and
the system operational points become equal. Therefore, one
can devise joint source-channel coded schemes for any one
of these operational points, since they guarantee the same
achievable rate of other operational points for a sufficiently
large number of sources. Hence, code design can be based
on the most convenient operational point, e.g., the one which
guarantees less complexity.

A natural question, not discussed in [7], is the following: are
these results dependent on the considered correlation model?
In general, the entropy of the binary sources may depend on
the model considered for correlation. However, we have shown
in Section IV that the asymptotic entropy rate is the same for
all the considered models. We can, therefore, conclude that
the achievable region of orthogonal multiple access schemes
is asymptotically invariant to the considered correlation model
as the number of sources increases. Moreover, from Figs. 4
and 5 it can be observed that the convergence trend is the
same for all considered models. Hence, it may be expected
that joint source-channel coded schemes devised for one of
these models (see, e.g., the turbo codes considered in [7] for
the parallel model) have similar asymptotic performance for
the other models as the number of sources increases.

VI. CONCLUSIONS

In this paper, we have discussed and analyzed a few binary
source correlation models. In particular, we have statistically
characterized these models, in terms of joint PMF, covariance,
and joint entropy of the source correlated sequence. Moreover,
we have computed the asymptotic entropy rate for large
number of sources, showing that a common value is obtained
for all considered models. This result generalizes [7], because
the asymptotic achievable region of orthogonal multiple access
schemes for large numbers of sources is shown to be invariant
to the considered correlation model. Therefore, one can con-
jecture that joint source-channel coded schemes, which exploit
the correlation at the receiver, may be expected to have similar
asymptotic behavior regardless of the model.

APPENDIX I
EXISTENCE OF THE INVERSE MATRIX IN THE LINEAR

CORRELATION MODEL (3)
We now present a few special cases of matrixAAA in (3) where

the inverse matrix exists. In particular, we consider two main
classes: (i) matrices associated with the recursive model in (4)
and (ii) circulant matrices. To show the invertibility of these
matrices, we can prove that their determinants are non-zero in
the binary field.

The coefficients of AAA for the recursive model in (4) are the
following:

A`k =


1 for k = `

0 or 1 for k = `−min{D, `− 1}, . . . , `− 1

0 otherwise

for `, k = 1, 2, . . . , N . Therefore, the recursive model is
characterized by a Toeplitz matrix AAA. It is known that, out
of all the size-N Toeplitz matrices over a finite field of q
elements, a fraction 1 − 1/q (i.e., 1/2 in our binary case) is
non-singular [12]. The considered matrix associated with the
recursive model (4) is also lower triangular with equal element
on the main diagonal, since A`k = 0 for ` < k. Therefore, the
determinant can be written as [13]:

detAAA =

N∏
`=1

A`` = 1.

This proves that the inverse matrix exists for this case.
Consider now circulant matrices and restrict to those matri-

ces with coefficients, for ` = 1, 2, . . . , N , of the form:

A`k =

{
1 for k = `, `+ 1, . . . , `+ d− 1 mod N

0 otherwise

where d is such that d consecutive matrix coefficients are
equal to 1 and the remaining are equal to zero. The mod N
operation is needed to perform the circular shift of the rows.
The determinant is known if d is a prime [13]:

detAAA =

{
0 if d | N
d mod 2 otherwise

where the notation d | N means that d divides N . Therefore,
circulant matrices admit an inverse if d is an odd prime (i.e.,
d 6= 2) and does not divide N .
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APPENDIX II
ASYMPTOTIC ENTROPY RATE OF THE MIXED

CORRELATION MODEL

Let us consider the joint entropy of XN
1j and B:

H(B,XN
11, . . . , X

N
1M ) = H(B) +H(XN

11, . . . , X
N
1M |B).

(25)
Given B, the set XN

1j is independent of XN
1k for j 6= k and,

therefore,

H(XN
11, . . . , X

N
1M |B) =

M∑
j=1

H(XN
1j |B) =

M∑
j=1

N∑
`=1

Hb(ρ`j).

Noting again that B is a uniformly distributed binary random
variable with H(B) = Hb(0.5) = 1, one obtains:

H(B,XN
11, . . . , X

N
1M ) = 1 +

M∑
j=1

N∑
`=1

Hb(ρ`j).

As in (25), it is also possible to write

1 +

M∑
j=1

N∑
`=1

Hb(ρ`j) = H(B,XN
11, . . . , X

N
1M )

= H(XN
11, . . . , X

N
1M ) +H(B|XN

11, . . . , X
N
1M )

and, therefore,

H(XN
11, . . . , X

N
1M ) = 1 +

M∑
j=1

N∑
`=1

Hb(ρ`j)

−H(B|XN
11, . . . , X

N
1M ). (26)

Since by definition of entropy the last term is non negative,
the following UB results

H(XN
11, . . . , X

N
1M ) ≤ 1 +

M∑
j=1

N∑
`=1

Hb(ρ`j) (27)

Moreover, since conditioning reduces entropy [11], it also
follows that

H(B|XN
11, . . . , X

N
1M ) ≤ H(B|X11) = Hb(ρ11).

Using this in (26), one obtains the LB:

H(XN
11, . . . , X

N
1M ) ≥ 1 +

M∑
j=1

N∑
`=1

Hb(ρ`j)−Hb(ρ11). (28)

Combining (27) and (28), one obtains the limit in (20).
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