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Abstract

We consider a cognitive radio network in a multi-channettised environment.
Secondary user transmits in a channel if the channel is deod#e vacant. This
results in a tradeoff between sensing time and transmisisien When secondary
users are energy constrained, energy available for trassoniis less if more en-
ergy is used in sensing. This gives rise to an energy tradieoffmultiple primary

channels, secondary users must decide appropriate sams@@nd transmis-
sion power in each channel to maximize average aggregttierbughput in each
frame duration while ensuring quality-of-service of pripaisers. Considering
time and energy as limited resources, we formulate thislpnolas a resource
allocation problem. Initially a single secondary user scenis considered and
solution is obtained using decomposition and alternatptgrazation techniques.
Later we extend the analysis for the case of multiple seagnaisers. Simula-
tion results are presented to study effect of channel ocaypdading and energy
availability on performance of proposed method.

Keywords. Cognitive radio, energy constrained networks, resoulogation,
sensing-throughput tradeoff

1. Introduction

Cognitive radio (CR) facilitates efficient spectrum usewfent licensed spec-
trum that is highly underutilized and is considered as arm@ksolution to the
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problem of spectrum scarcity [1, 2]. In CR networks, secoyndaers (SU) oppor-
tunistically access spectrum allocated to licensed or gmynusers (PU) in such
a way that quality of service (QoS) requirements of PUs atisfead. For this
purpose, SUs periodically sense the spectrum for presdreeds While many
spectrum sensing techniques exist, energy detection mhésheidely used due
to its low complexity and easy implementation[3-5] and isiropl when form
of signal to be detected is unknown [6]. SU transmits in a aeaonly if the
channel is sensed to be vacant. This method of spectrumsascegdely known
as interweave-mode![7]. Due to channel fading and noisetspa sensing may
result in missed detection or false alarm. Longer sensimpge® lead to better
sensing performance, but at the cost of reduced transmisie as a node cannot
transmit and sense simultaneously. This sensing-thraudhgdeoff necessitates
selection of optimal sensing time to maximize SU throughphile sufficiently
protecting PU([8].

Sensing throughput tradeoff where SU determines optimadisg time has
been studied under various PU QoS constraints such as figed thetection prob-
ability [8, 9], collision probability constraint [10] andUWPoutage constraint [11].
Kaushik et al. [[12] studied effect of estimation time on thedeoff considering
PU signal of unknown power. When multiple SUs are preserttebsensing
performance can be achieved in less time using cooperaiargy. Ini[9] and
[11], authors optimized sensing time in cooperative senfiamework assum-
ing availability of a single PU band. Pei et al. [13] cons&temultiple PUs
multiplexed using orthogonal frequency division multiplecess (OFDMA) and a
SU equipped with wideband antenna, which enabled simwiansensing of all
PU channels. The authors determined optimal sensing tiraehi@ve given tar-
get detection probability and proposed power allocatiothokto maximize SU
throughput. Using the same model, Sharkasi et al. [14] stugensing through-
put tradeoff under PU outage constraint. In practice, marnbandwidth that
can be scanned by SU is limited by its radio-frequency (RéN)tEnd and analog-
to-digital converter (ADC) sampling unit. For a SU deviceving narrowband
antenna or low sampling rate, simultaneous sensing of alli$én a wideband
spectrum is not possible, prompting SU to optimally seleasng and transmis-
sion time in each PU band. In this work, we aim to address thiki+ochannel
sensing-throughput tradeoff.

In energy harvesting (EH) wireless networks, users arencdtgergy con-
strained [15, 16]. In this case, in addition to tradeoff iagsfrom sensing and
transmission time, tradeoff in energy becomes critical. eihergy constrained
CR networks, as sensing time increases, more energy is nsgehsing, leav-
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ing less energy available for transmission. Considering@Mnetwork, Park et
al. |17] determined optimal sensing threshold for SU undergy causality and
collision probability constraints. In [18], authors foungdtimal sensing time to
minimize average energy cost under constraints on SU tiasgm rate. Yin et
al. [19] divided SU frame duration in three parts for— hatireg sensing and
transmission— and proposed optimal time division to mazersU throughput
under a fixed target detection probability. A fractionalgnamming framework
was proposed in [20] to find optimal sensing time and powercalion to max-
imize energy efficiency of SU. In [21-23], authors proposeergy efficient dy-
namic control policies using Markov decision process (MBpproach where SU
can choose to stay silent, carry out sensing or transmithasés belief about PU
occupancy. MDP based techniques have high computationgbleaity and re-
quire knowledge of transition probabilities between dif& PU occupancy states.
In practice, information of state transition probabibktie not readily available due
to sparse spectrum activity over long term. Existing spastavailability studies
only document duty cycle of a channel which is the probabdita channel be-
ing occupied by a PU [24-27]. Also, the works mentioned almmresidered CR
systems with a single PU channel with fixed target detectrobagility as PU’s
QoS criteria. Availability of multiple PU channels poseshaltenge as SU has to
allocate available time and energy appropriately in s@naid transmission tasks
in each channel.

In multi-channel environment, if channel conditions arelsthat the channel
does not yield good throughput, SUs should not transmit éncteannel. Hence
SUs should not be required to sense it. Further, choice afraa for sensing
and transmission can be made based on occupancy probabilitg channel. To
maximize average SU throughput, SU must appropriatelycat®olimited time
and energy for tasks of sensing and transmission in eachnehaim this paper,
we address the problem of finding optimal sensing time andep@location in
a multi-channel PU environment where channels have to beegesequentially
such that expected bit-throughput of SU is maximized in @mgiduration. We
consider two main constraints— average rate constraintyabRnaintain QoS of
PU and total energy constraint that results from limitedrgpavailability. Our
contribution in this work is as follows.

e We first consider a single SU case and formulate the jointisgnsne-
energy-throughput tradeoff problem to maximize aggregageage bit-throughput
of SU. The optimization problem is a non-convex one. We dquusa the
problem in subproblems with separable objectives. We megensing and
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Figure 1: Frame structure for multi-channel sensing anstrassion

resource allocation (SRA) method which iteratively soltressubproblems
and finds optimal sensing time, transmission time and tréssom energy
for each channel.

e We then extend SRA method for multiple SU scenario to maxensizm-
throughput of SU network.

e We present numerical results to study performance of pexgpapproach
under various channel and energy availability conditidie.also compare
SRA with heuristics based best channel selection (BCS) amloptional
energy-time allocation (PETA) methods.

Rest of the paper is organized as follows. In Sedtion 2, systedel is presented
and optimization problem is formulated. In Sectidn 3, wepmse SRA and find
solution to the optimization problem. In Sectidn 4, we prap&RA for the mul-

tiple SU case. Simulation results are presented in SeCtiokV conclude in

Sectior 6.

2. System model and problem formulation

Initially we consider a cognitive radio system with one Sldtthpportunisti-
cally accesses PU spectrum/af non-overlapping narrowband channels of equal
bandwidth. The model for multiple SU scenario is explaireter in Sectioml4.
PU and SU follow time slotted synchronous communicatiorhviitame dura-
tion 7' [28]. PU is active inith channel with occupancy probability ;, i =
1, 2,..., M. Thus, probability ofth channel being vacantig, = 1 — m; ;. SU
has a-priori knowledge of channel occupancy probabilitieeh can be obtained
by observing the spectrum for long duration or from existspgctrum database
[24,127,29]. All channels between different source-dediom pairs are indepen-
dent Rayleigh block fading, that is, channel gains remamstant in one frame
and vary independently from frame to frame. Instantanebasiel gain of SU
source to SU destination link oith channel is denoted as, i = 1, 2,..., M.
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7o, | Probability ofith PU channel being vacant

g; | Channel power gain of SU-SU link ath channel
o3 | AWGN noise power

Ts; | Sensing time allocated tth channel

7:; | Transmission time allocated ith channel

pei | SU transmit power irith channel

ps | Sensing power

fs | Sampling frequency

T | Frame time

Table 1: Key notation used in this paper

Noise at SU receiver is additive white Gaussian (AWGN) wighiances3,. PU
transmit power in each channelpg;. In Table[l, we list key notation used in
this paper.

2.1. Sensing and spectrum access

SU is equipped with a single narrowband antenna that ligssensing ca-
pability to one channel at a time. At the beginning of eacimgaSU performs
spectrum sensing using energy detection with samplinguéeay f,. Sensing
takes place at a constant power[1€]. SU sensesth PU channel for timey ;.
Assuming PU signal to be complex valued phase-shift keyi#$8K() signal, we
write detection probability®; ; and false alarm probabiliti;; as [8]

€; fsTsi
Pi: — 2_1 ’ y 1
* Q((sz\/ ! ) 2%+1> 1)

Pf,i =Q ((;; - 1) vV fsTs,z') ) (2)

N
wheree; is the detection threshold and is the average PU signal-to-noise ratio
(SNR) received at SU source ovigh channel. For a target detection probability
P, ;, we can write false alarm probability as [8]

P =Q (\/ 27 + 197" (Pui) +viv/ fsTs,z') - (3)

Note that depending on channel occupancy probabilitiesnmmdl conditions and
available energy, SU may not sense a PU channel, which seisutt, ; = 0.
After the sensing phase is over, for the remaining frametturaSU transmits
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in vacant PU channels (interweave mode) with approprialeepso as maximize
bit-throughput. Foith channel, time spent in transmission and transmit poveer ar
denoted as; ; andp, ; respectively. The frame structure of SU is shown in Elg. 1.

2.2. System constraints

2.2.1. Primary rate constraint

Quality of service (QoS) criterion ath PU demands that the PU should be
able to transmif3,, ; bits on average in each frame duration. If SU correctly sense
a channel as active, there is no interference with the Pldnéssion. In this case,
average number of bits transmitteddly PU is given byT'E [R,, ;| whereE [R,, ;]
is the average transmission rate that depends on PU soUrce$lination link.
In case of missed detection, SU transmits and interferds:itPU for timer; ;.
There is no interference to the PU transmission for tiffie- 7, ;). We consider a
strong interference channel between SU and PU. Thus, tiasiemrate achieved
under interference is negligible. Then average number tsftbansmitted in a
frame byith PU is

Bpﬂ' = Pd’iTE [Rpﬂ'] + (1 — Pd,i) (T — Tt,i) E [Rpﬂ'] . (4)

Let7,; = B,:/E[R,;] wherer,; € [0, T]. Higher value ofr,; indicates that
required average bit-throughpBif ; is higher. Then the QoS constraisyt; > B, ;
can be written as

Pdﬂ' Z Pdﬂ' = Inmax |i0, 1— y] . (5)
t,i

Thus, to transmit inith channel, detection probability should be greater than de
tection probability threshold®;; which depends on transmission timg. As
7;; iIncreases, required detection probability increases clicese increasing’; ;,
sensing timer, ; increases, leaving less time available for transmissidns fie-
sults in the sensing-throughput tradeoff. Optimal sensimg is such that con-
straint in [%) is satisfied with equality/[8].

2.2.2. Energy constraint

SU is energy constrained i.e. in each frame, SU has limitedggnto spend
in sensing and transmission. This may happen when SU is negned by con-
ventional sources and harvests energy from surroundingsn$loys a greedy
policy where it uses all the available energy in one framestsing and trans-
mission subject to maximum power constraint. Suppose gngggis available
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at SU in each frame. Then total energy spent in sensing angiigsion cannot
exceecds,,,, thatis,

M M
ZpsTs,i + Zpt,ﬂ't,i < €tot- (6)
i—1 =1

2.2.3. Peak transmit power constraint
As response of power amplifier is non-linear at high valuasasfsmit power,
there a limitp,,,., on allowed maximum transmit power. Thus, we have

pt,igpmaxv Zzlv 27"'7M' (7)

2.2.4. Total time constraint
In a frame, total time spent in sensing and transmissionateexteed frame

duration. Thus, we have
M M
ZTs,ri‘ZTm <T. (8)
=1 =1

2.3. Problem formulation
If ith channel is vacant, instantaneous rate achieved by SUeochtémnel is

log, <1 + % bits/s assuming normalized bandwidth. In case of misseztedet

tion, PU interferes with SU transmission. Our interest isi@ximizing through-
put achieved in transmission over a vacant band. Thus, wademntransmission
rate achieved under interference as negligible. This is@afly true when inter-
ference channel between PU and SU is strong. Then averatigdnitgghput of SU
overith channel, which is defined as average number of bits trateshrover:th
channel in a frame by SU, is written as

Bsﬂz = T, (1 — Pﬁi (pd,ia 7'571')) Tt log2 (1 + gi];t’i> . (9)
N
In this paper, our objective is to maximize average aggesgatthroughput
of SU in a frame duration, given bg, = Zf‘il B, ; under aforementioned con-
straints in Section 2/2. Thus, we can write the maximizapiablem as

Ts,Tt,Dt UN

s.t. [3),(6).7).[3),
Ts,ia Tt,iv pt,i > 07 1= ]-7 27 R M7

M
max Z 70 (1 — Pri (T, Tsi)) Tei 108y (1 + gd;t’l) (20)
i=1



wherer, = 751, ..., ’7‘87M]T, Te=[Tt1,- -, Tt7M]T andp, = [pi1, pra,-- -, ptvM]T
The optimization problem in_(10) is non-convex due to nonvex nature of
Py (14, 754). Also, the energy constraint given by (6) is non-convex aygrod-

uct terms of optimization variablgs ; andr; ;. In following section, we refor-
mulate the problem so that all constraints are affine and lbfective function is

separable.

3. Sensing and resource allocation (SRA): Single user scenario

To make constrainE{6) affine, we reconstitute problenm ($@reergy and time
allocation problem. Suppose SU uses eneggyto transmit inith channel. Then
energy constraint i {6) can be written as

M M

Z €t,i + Ds Z Tsi S €tot- (11)

i=1 i=1

Transmit power inith channel isp;; = e;;/7;. Thus, we write peak power
constraint in[(¥) as
6t7i S pmath,ia 7= 1, 2, ey M. (12)

Suppose SU allocates tinte = o7, o € [0, 1] for sensing and time, =
(1 — «) T for transmission. Then we can write time constrdint (8) asseparate
constraints given by

M
> 1 <al, (13)
=1

M

d ni<(1-a)T (14)
=1

Let By = fi.i (Tei, Tsi) - fo.i (704, ers) Where

fl,i (Ttm Ts,i) =1- Pf,i (Tt,ia Ts,i) ) (15)
i €t

Ja,i (T, €i) = o, 10gy (1 + _g2 L) . (16)
O Ttyi



Now we can reformulate optimization problem[in}10) as fako

M
{max ) Zfl,i (Tei, Toi) foi (Tei, €4) (17a)
o, {Ts,Tt, et P
M M
s. t. Z €t + Ps Z Ts,i S €tot (17b)
=1 =1
€t,i S PrmaxTt,i, = ]-7 27 R Mv (17C)
M
> ri<al, (17d)
=1
M
Y ni<(l-a)T, (17e)
=1
€tiy Tsiy Tt 2 07 1= 17 27 AR M7 (17f)
ac0,1], (179)
Where’TS = [7'371, cee TS’]\/[]T, T = [7'@1, e Tt7M]T andet = [6@1, e et,M]T.

In the problem above, all constraints are affine. Objectivgli/a) is concave in
optimization variable:, ;. But the problem is still non-convex in ; andr; ;.

To solve [17h), we first fixx and decompose the problem into three subprob-
lems as follows.

SubproblemP1

We first fix (74, e;) and find optimal sensing time, subject to constraints
(11), (I7d) and(2Tf). Objective il (TI7a) is monotonicatigieasing withr, ;, i =

1,2,..., M. For fixed(7, e;), we can write problem of finding optimai, as

M

max ZBS,i (Ts.) (18)
=1
M M

S. L ZTSJ < min |aT, Crot Zi:l 6t1 ,
° Ds
=1

Problem in[(18) can be modelled as a general non-linear c&gsoblem (NKP).
We use greedy algorithm [30, 31] to solve it with complex@y( M log (f,T)).
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We defineus = 1/ f, as the smallest time unit that can be allocated to the sensing
time of a channel. Incidentally, is also the time between successive samples. We
initialize sensing time as,; = 0,7 = 1, 2,..., M. Increase in bit-throughput
due to addition of one sensing time unit can be viewed as kwhthe action.
Thus, reward of adding a unit tith channel inkth iteration is given by

r® =B, ( ( ®) 4y ) _B,, (rs(f?) . (19)

In each iteration, one time unit is added to the channehere: is the channel
that gives maximum reward, i.e. = arg max; {r(@}. Thus, in each iteration,
sensing time is updated as

(k+1) _ {T(k) +u, fori= :L(k)

Ts,i

(k) for i # (%) (20)

EX)

_SM .
The process continues unfil?, 7*) < min [ozT, E”Zpizlet]

=1 sz

Subproblem P2

Keeping optimal(~,, e;) in P1 fixed, we now optimizer, subject to con-
straints [(17e) and (1I7f). The problem of optimizing is

M
Z By (7e4) (21)

Zm_ 1—a)T.

On similar lines of subproble®1, we can find optimat; ; by greedy method for
NKP usingu; = 1/ f, as the smallest time unit. From_(15) ahd](16), we see that
f1.: is a monotonically decreasing function of; while f,; is a monotonically
increasing function of; ;. Thus, in a region wherB; ; (1, ;) is monotonically de-
creasing withr ;, addition of a unit:, to transmission time oth channel results in
negative reward value. When reward values for all chanmehagative, any fur-
ther increase in transmission timg results in decreasing bit-throughput. Thus,
the greedy algorithm stops when aII rewards become negatwden constraint

(I78) is violated. Using reward"’ = (Tt(lf) + ut> —B,, (Tf'f)), transmission

10



time is updated in each iteration as

(k+1) _ Tt(]:) + Uy for i = ’z(k)
Tt Tt(]:) for i # 1

wherei®) = arg max; {rt(z } The process continues unfil | rt('f) <(1-a)T

andmax {7}(@)} > 0.

SubproblemP3
Keeping optimalr,, ;) in P1 andP2 fixed, we now optimize oveg, sub-

ject to constraintsT(LTb)[(L7c) arld (L7f). L@t = e — ps oy (ti — T14)-
Since the probleni(17a) is convexdp;, we solve it using Lagrangian method.
The Lagrangian foP3 is

M
et,)\ H Zflz f2z etz - (Zet,i—eth>

1=1

- Z i (et,i - pmath,i) ) (22)
=1
whereX andu = [uq, . .. ,MM]T denote the dual variables associated with con-

straints[(17b) and (1¥c). The dual probleni®s is given by

min max L.
Al et

For fixed(\, u), we find optimal primal variable by differentiatingwith respect
to e;; and equating it to zero as

o — [ Wo,ﬂ't,ifl,i _ sz\/Tt,i]+ (23)
S I (2) (A + ) i ’

where[-]* = max[-, 0]. Since the dual function of has unique maximizers, we
use gradient descent method to find p) as

M
)\(k—i-l) — )\(k) + €y (Z €ti — eth) ) (24)

1=1
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N§k+1) = :“z(k) + € (et,i - pmax) ) (25)
wheree, ande, are step sizes. lIteration index is denotedkbyThe process of
calculatinge, and updating\, 1) is repeated until convergence. In this way the
subproblenP3 is solved with complexity) (M?).

All subproblems aim to maximize objective [n (17a). For fixedve repeat the
three step process of solviijl, P2 andP3. This process of findingr, 7, e;)
that maximize SU throughput is Block Coordinate MinimipatiBCM) method
which converges to stationary solution for non-convex fEwts as proven in [32].
Convergence is achieved as long as initializatiofmof e,) in subproblenP1 is
done to satisfy constraints (17d), (17€) an’, e;; < er — psaT. The BCM
method runs over all values of € [0, 1] and value ofx that corresponds to the
maximum SU bit-throughpus, is chosen.

4. Sensing and resource allocation (SRA): Multi-user scenario

In this section, we propose sensing and resource allocttidhe case where
multiple SUs are present in the system. We consider a sepomaéavork of
N SUs governed by a central base station (BS) employing catipersensing.
BS acts as the fusion centre for sensing data of individua. SRlternatively,
in absence of BS, one of the SUs can act as the controller. Blees that
SUs always have data to transmit and all SUs transmit to a cnuhestina-
tion. To avoid inter-SU interference, BS employs time dasmultiple access
(TDMA). We assume that BS has knowledge of channels gaindl &@Uasource
to SU destination links and PU source to SU source links, wehasg;; and
hi, i€ {1,..., M}, je{l,..., N} respectively. Assumption of perfect chan-
nel knowledge gives us the upper bound on throughput pegica and serves
as a baseline for the case with imperfect or limited channeiedge. Prior to
sensing and transmission, BS determines optimal sensimgg ttansmission time
allocation and transmission energy allocation for eacimeaband communicates
it to the SUs over a low bandwidth control channel as donedh [3

Time allocated for sensing and transmissiortinPU channel is ; andr; ;
respectively. Sensing data is reported to BS over a low batidwontrol channel.
BS performs data fusion and takes a decision on presence of (diven band.
In this case, false-alarm probability in sensitiy PU channel is written as|[8]

Pr=Q (V2 +1Q7 (Pag) + 7/ FTes ) (26)
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wherey; = ppu Zj.vz | hij and Py, is the target detection probability given [d (5).

If ith PU is sensed to be absent, each SU transmits its own data teS
tination. Due to TDMA, transmission time of each SUith channel isr;;/N.
Energy used byith SU to transmit inth channel is:; ;;. Energy available afth
SU is denoted by;. A SU participates in the joint-sensing and transmissian pr
cess only if it has minimum required energy to sense a chdonelhole frame
duration, thatig; > p, T, j=1,..., N.

Our objective is to find optimal access time, transmissiaretand energy
allocation to maximize sum-throughput of SU system. f_l'gt: 1— Pfl Then
the optimization problem is

N
zN i
max Zflz Ttlv 7-82 T0,i Z ( 9]2 6t7j) (27a)

o, {Ts, Tt et} On Tt
M M
S. t. Zet,ij+psZTs7i§ej, j=12,...., N, (27b)
=1 =1
Tei .
€t k¥ < Pmax =+ N J = 1 2 N7 (27C)
Zm < aT, (27d)
Zm <(1-a)T, (27¢€)
€t7ij,ti,7't7i20,Zzl,...,M,jzl,...,N, (27f)
a € [0, 1], (279)
wheret, = [To1,..., Tom] s T = [Tty Toar]” ande; = [eqij]yy, - OD-

jective function[(27k) is concave & but non-convex inr, andr,. Total energy
used by a SU in sensing and transmission cannot exceed em@igble at the
SU. This gives rise to a per-user energy constraint inl(2Zbhstraint in[(Z7c) is
the peak power constraint for each user. Time constrai) @nd [27e) remain
unchanged from single-user scenario. We see that all contstiare affine.

Along the lines of Sectiof]3, we can decompose the optintmgbiroblem
in three subproblems for fixed value af SubproblemP1 solves sensing time
allocation for fixed(r;, e;) using greedy algorithm for NKP under constraint
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M . .
Yoicy Tsi < min [T, Typ1, Tin2, -- -, Twn,n|, Wherery, ; is given by

M

€ — D i Crij

J =1 “t,1j .

Tthd':—l ,]:1,2,...,N.
Ds

In subproblenP2, to find optimatr,, let f; ; = m,; Z;V:l T log, (1 + %ejﬁ—i) .

We see thafLZ- is monotonically decreasing function of; andf;,i is a monoton-
ically increasing function of; ;. Thus, for fixed value ofr;, e;), optimalT; can
be found by greedy algorithm with modified stopping critearsadone in subprob-
lemP2 in Sectior 3.

In subproblenP 3, we keep optimalr,, ;) fixed and optimize oves, under
constraints[(27b)[(27c) and (27123 is a convex-programming problem that is
solved by Lagrangian method using steps similar to those us8ectiori B. We
omit the steps here for brevity and write closed form expoes®r e, ;; as

WO,iTt,ifi,i 0",2\/7}72- i

e = - , 28
5 W@ Oy i) N gV (28)

where \; and,; are Lagrange’s multipliers that are chosen to satisfy jger-u

energy constrainzf‘i L€tij < €5 —Ds Ef‘i | Ts,; and peak power constraiat;; <

Pmas3- rESpectively. Subproblenil, P2 andP3 are executed recursively until
all variables converge. The process of finding optirfwal, 7, e;) is repeated

over all values ofy € [0, 1] anda that maximizes SU bit-throughput is chosen.

5. Simulation results and discussion

In this section, we first study performance of proposed $grsnd Resource
Allocation (SRA) method under different channel condi@md energy availabil-
ity scenarios for single-SU case. We compare the performatitt Best Channel
Selection (BCS) and Proportional Energy and Time AllocgaiBETA) methods.
In BCS, SU chooses the best channel for sensing and transmisssed on a
heuristic that depends on channel gains, PU occupancy aSdccQustraint. The
heuristicH, for ith channel is defined as

_ T0,iYi

H, = . (29)

Tpi

Value of H, is high for a channel with low occupancy probability, lowwelof,
and good SU-SU channel. In each frame, SU chooses the bestaihdhat has
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and energy is divided between channels such that time amgyefoe each channel
is proportional to the channel heuristic. LEtande,,; be the time allocated to
ith channel. Then we havg = kH,T ande;,; = kH;e.: Where normalization
factork is calculated ag = 1/ 3", H,. For each channel, optimal sensing and
transmissiontime; ;, 7 ; < 7; as well as transmission energy < e ; is found
using SRA. We also compare the performance with single aflarsnsmission
scheme (SRA-SC). In SRA-SC, expected throughput is cakdiltor a single
channel at a time. Only the channel that gives maximum ergettroughput is
selected for transmission. Further, as a baseline for peeioce comparison, we
use optimal sensing under target detection probabflity= 0.95 proposed in/[8]
combined with best channel selection.

For simulation, we considet/ = 10. Values of frame time and sampling
frequency ard’ = 100 ms andf, = 1 MHz. As all channels are Rayleigh faded,
SU-SU channel gaing;, i = 1,..., M are exponentially distributed. We take
the average channel gaifj = —10dB unless mentioned otherwise. Channel oc-

cupancy probabilities are; = [0.7,0.7,0.7,0.7, 0.7,0.5,0.5,0.5,0.5,0.5]T. PU

QoS threshold for each PU channetjs = 0.9, ¢ = 1,..., M. Maximum power
threshold i9,,.. = 1 W and power required for sensingis= 0.1 W [17]. Noise
power isci, = 0.1W. Average received PU SNR i§ = v, = —10dB, i =

1,..., M, unless mentioned otherwise.

5.1. Effect of energy availability

Fig. [2 plots simulation and analytical results for bit-thghput achieved in
proposed SRA method against available energy for diffevahies of received
PU power. As available energy,; increases, more energy can be used in trans-
mission and average bit-throughpB} increases. At high value of,;, peak
power constraint in[(17c) becomes dominant and limits trassion energy in
each channel. Even though energy is available, more enamyyot be used in
transmitting. Thus3, becomes constant at high valuecgf.

When received PU power is high, sensing time required toeaehiarget de-
tection probability is low. Also, false alarm probability iow. This leaves more
time for transmission in a channel. Thus, throughput addds higher. If re-
ceived PU power is low, more sensing time is required to detd®lU correctly.
Thus, time available for transmission decreases, regutitess bit-throughput.

Fig. [3 shows that bit-throughput in SRA is better than BCSTAREnd SRA-
SC. In BCS, best channel chosen by SU may have desirablerpiespkke low
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Figure 2: Bit-throughpuBB; versus available energy,; for different values of average received
PU SNR~, for N = 1.
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Figure 4: Bit-throughpuB3; versus PU occupancy probability ; for different values of QoS
constraintr, ; for e;o; = 10mJ,M =4 andN = 1.

occupancy and loose QoS constraint but may also have lownehgain. By
choosing a single channel to transmit, diversity providgdrultiple channels
is sacrificed in BCS, hence resulting in less throughput. A2fdes maximum
energy and time allocated to a channel based on channektiesiand only op-
timizes over individual channels, which is suboptimal camngal to SRA. Fig[13
also plots throughput for optimal sensing lin [8] using béstrmel selection. We
see that SRA performs better than fixedbased method.

5.2. Effect of primary occupancy and QoS constraint

Fig. [4 plots bit-throughpuB, against occupancy probability; ; occupancy
probabilities of other channels unchanged. If channel géihe SU-SU link is
high, with increasing occupancy probability, more sensing time has to be al-
lotted to the channel before transmission. This resulteduced overall average
throughput. Similarly, as QoS constraifjt; becomes more stringent, target de-
tection probability increases, requiring more sensingetirfhis leaves less time
for transmission and results in reduced throughput. Thitk,imcreasing PU oc-
cupancy probability and tighter QoS constraint, bit-tlgloput of SU decreases.

PU occupancy and QoS constraints also affect probabilityldfaccessing a
channel as shown in Figl] 5. Channel access probability inelkfas probability
of SU transmitting in the channel. It is represented in [Eign §rayscale color
tone where darker shade indicates lower access probabAgyr, ; and,; in-
crease, SU does not transmit in the channel unless SU-Suhehgain is high.
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Figure 5: Channel access probability versus PU occuparatyapility 7 ; and QoS constraint
mp1 for T'=10ms, f; = 0.1 MHz, M = 4 and (Q)etor = 10743 (D) eror = 1072 J.

Thus, channel access probability decreases. When awagalgrgye,.; is high,
maximum power constraint limits the energy that can be tratted in a channel.
Thus, some energy is distributed in other channels evergththeir occupancy
probability may be higher and QoS constraints may be tigftkus, overall ac-
cess probability is higher than low energy availability&ea#\ccess probability
decreases sharply only at high valuesrof andr, ; as seen in Fig.15(b).

5.3. Sum-throughput in multi-user scenario

Heuristic based methods are suboptimal and SRA clearlyeoiatipms them as
seen in Fig.[B. Also, for multi-user scenario, allocatinga@rces for each SU-
PU channel pair based on heuristics is a separate optimizptoblem in itself.
Hence, we omit the comparison of SRA with heuristic basechou. In Fig[ B,
we plot sum-throughput of a SU network against number of &Usr different
energy availability scenarios. Energy available at eachiStdenoted bye,,;.
Initially, as number of SUs increase, cooperative sensim@ls required sensing
time to achieve target detection probability leaving mamngetfor transmission.
This results inincreasing sum-throughput. But increasungber of SUs decrease
transmission time allotted to each SU, given%/, i =1,..., M. Due to peak
power constraint, ;; < pmam%, transmission energy decreases with decreasing
value of . Thus, with increasingV, transmission time as well as transmission
energy of each SU decreases, resulting in decreasing tmpotig

6. Conclusion

We considered a CR system with multiple PU channels wheralsnmeous
sensing of all channels is not possible. Also, SU has lineteztgy for sensing and
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transmission. The problem of maximizing SU bit-throughphiile maintaining
QoS of PUs was formulated as a resource allocation probldmtime and en-
ergy as available resources. We proposed sensing and cesallacation (SRA)
method that solves the problem by decomposing it in noralikmapsack sub-
problem and convex optimization subproblem. We then exdrnlde framework
for multiple SU scenario where SUs can achieve benefits gh@@tive sensing.
Simulation results show that throughput increases as mmaegg is available. It
was observed that with more number of SUs, throughput pedoce benefits
from cooperative sensing. But as SUs further increaseugimout decreases as
less time is available for transmission of each SU.
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