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Abstract

We consider a cognitive radio network in a multi-channel licensed environment.
Secondary user transmits in a channel if the channel is sensed to be vacant. This
results in a tradeoff between sensing time and transmissiontime. When secondary
users are energy constrained, energy available for transmission is less if more en-
ergy is used in sensing. This gives rise to an energy tradeoff. For multiple primary
channels, secondary users must decide appropriate sensingtime and transmis-
sion power in each channel to maximize average aggregate-bit throughput in each
frame duration while ensuring quality-of-service of primary users. Considering
time and energy as limited resources, we formulate this problem as a resource
allocation problem. Initially a single secondary user scenario is considered and
solution is obtained using decomposition and alternating optimization techniques.
Later we extend the analysis for the case of multiple secondary users. Simula-
tion results are presented to study effect of channel occupancy, fading and energy
availability on performance of proposed method.

Keywords: Cognitive radio, energy constrained networks, resource allocation,
sensing-throughput tradeoff

1. Introduction

Cognitive radio (CR) facilitates efficient spectrum use of current licensed spec-
trum that is highly underutilized and is considered as a potential solution to the
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problem of spectrum scarcity [1, 2]. In CR networks, secondary users (SU) oppor-
tunistically access spectrum allocated to licensed or primary users (PU) in such
a way that quality of service (QoS) requirements of PUs are satisfied. For this
purpose, SUs periodically sense the spectrum for presence of PUs. While many
spectrum sensing techniques exist, energy detection method is widely used due
to its low complexity and easy implementation [3–5] and is optimal when form
of signal to be detected is unknown [6]. SU transmits in a channel only if the
channel is sensed to be vacant. This method of spectrum access is widely known
as interweave-mode [7]. Due to channel fading and noise, spectrum sensing may
result in missed detection or false alarm. Longer sensing periods lead to better
sensing performance, but at the cost of reduced transmission time as a node cannot
transmit and sense simultaneously. This sensing-throughput tradeoff necessitates
selection of optimal sensing time to maximize SU throughputwhile sufficiently
protecting PU [8].

Sensing throughput tradeoff where SU determines optimal sensing time has
been studied under various PU QoS constraints such as fixed target detection prob-
ability [8, 9], collision probability constraint [10] and PU outage constraint [11].
Kaushik et al. [12] studied effect of estimation time on the tradeoff considering
PU signal of unknown power. When multiple SUs are present, better sensing
performance can be achieved in less time using cooperative sensing. In [9] and
[11], authors optimized sensing time in cooperative sensing framework assum-
ing availability of a single PU band. Pei et al. [13] considered multiple PUs
multiplexed using orthogonal frequency division multipleaccess (OFDMA) and a
SU equipped with wideband antenna, which enabled simultaneous sensing of all
PU channels. The authors determined optimal sensing time toachieve given tar-
get detection probability and proposed power allocation method to maximize SU
throughput. Using the same model, Sharkasi et al. [14] studied sensing through-
put tradeoff under PU outage constraint. In practice, maximum bandwidth that
can be scanned by SU is limited by its radio-frequency (RF) frontend and analog-
to-digital converter (ADC) sampling unit. For a SU device having narrowband
antenna or low sampling rate, simultaneous sensing of all bands in a wideband
spectrum is not possible, prompting SU to optimally select sensing and transmis-
sion time in each PU band. In this work, we aim to address this multi-channel
sensing-throughput tradeoff.

In energy harvesting (EH) wireless networks, users are often energy con-
strained [15, 16]. In this case, in addition to tradeoff arising from sensing and
transmission time, tradeoff in energy becomes critical. Inenergy constrained
CR networks, as sensing time increases, more energy is used in sensing, leav-
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ing less energy available for transmission. Considering EH-CR network, Park et
al. [17] determined optimal sensing threshold for SU under energy causality and
collision probability constraints. In [18], authors foundoptimal sensing time to
minimize average energy cost under constraints on SU transmission rate. Yin et
al. [19] divided SU frame duration in three parts for— harvesting, sensing and
transmission— and proposed optimal time division to maximize SU throughput
under a fixed target detection probability. A fractional programming framework
was proposed in [20] to find optimal sensing time and power allocation to max-
imize energy efficiency of SU. In [21–23], authors proposed energy efficient dy-
namic control policies using Markov decision process (MDP)approach where SU
can choose to stay silent, carry out sensing or transmit based on its belief about PU
occupancy. MDP based techniques have high computational complexity and re-
quire knowledge of transition probabilities between different PU occupancy states.
In practice, information of state transition probabilities is not readily available due
to sparse spectrum activity over long term. Existing spectrum availability studies
only document duty cycle of a channel which is the probability of a channel be-
ing occupied by a PU [24–27]. Also, the works mentioned aboveconsidered CR
systems with a single PU channel with fixed target detection probability as PU’s
QoS criteria. Availability of multiple PU channels poses a challenge as SU has to
allocate available time and energy appropriately in sensing and transmission tasks
in each channel.

In multi-channel environment, if channel conditions are such that the channel
does not yield good throughput, SUs should not transmit in the channel. Hence
SUs should not be required to sense it. Further, choice of channels for sensing
and transmission can be made based on occupancy probabilityof the channel. To
maximize average SU throughput, SU must appropriately allocate limited time
and energy for tasks of sensing and transmission in each channel. In this paper,
we address the problem of finding optimal sensing time and power allocation in
a multi-channel PU environment where channels have to be sensed sequentially
such that expected bit-throughput of SU is maximized in a given duration. We
consider two main constraints— average rate constraint of PU to maintain QoS of
PU and total energy constraint that results from limited energy availability. Our
contribution in this work is as follows.

• We first consider a single SU case and formulate the joint sensing time-
energy-throughput tradeoff problem to maximize aggregateaverage bit-throughput
of SU. The optimization problem is a non-convex one. We decompose the
problem in subproblems with separable objectives. We propose sensing and
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Sensing Transmission

Figure 1: Frame structure for multi-channel sensing and transmission

resource allocation (SRA) method which iteratively solvesthe subproblems
and finds optimal sensing time, transmission time and transmission energy
for each channel.

• We then extend SRA method for multiple SU scenario to maximize sum-
throughput of SU network.

• We present numerical results to study performance of proposed approach
under various channel and energy availability conditions.We also compare
SRA with heuristics based best channel selection (BCS) and proportional
energy-time allocation (PETA) methods.

Rest of the paper is organized as follows. In Section 2, system model is presented
and optimization problem is formulated. In Section 3, we propose SRA and find
solution to the optimization problem. In Section 4, we propose SRA for the mul-
tiple SU case. Simulation results are presented in Section 5. We conclude in
Section 6.

2. System model and problem formulation

Initially we consider a cognitive radio system with one SU that opportunisti-
cally accesses PU spectrum ofM non-overlapping narrowband channels of equal
bandwidth. The model for multiple SU scenario is explained later in Section 4.
PU and SU follow time slotted synchronous communication with frame dura-
tion T [28]. PU is active inith channel with occupancy probabilityπ1,i, i =
1, 2, . . . , M . Thus, probability ofith channel being vacant isπ0,i = 1− π1,i. SU
has a-priori knowledge of channel occupancy probabilitieswhich can be obtained
by observing the spectrum for long duration or from existingspectrum database
[24, 27, 29]. All channels between different source-destination pairs are indepen-
dent Rayleigh block fading, that is, channel gains remain constant in one frame
and vary independently from frame to frame. Instantaneous channel gain of SU
source to SU destination link onith channel is denoted asgi, i = 1, 2, . . . , M .
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π0,i Probability ofith PU channel being vacant
gi Channel power gain of SU-SU link onith channel
σ2
N AWGN noise power

τs,i Sensing time allocated toith channel
τt,i Transmission time allocated toith channel
pt,i SU transmit power inith channel
ps Sensing power
fs Sampling frequency
T Frame time

Table 1: Key notation used in this paper

Noise at SU receiver is additive white Gaussian (AWGN) with varianceσ2
N . PU

transmit power in each channel ispPU . In Table 1, we list key notation used in
this paper.

2.1. Sensing and spectrum access

SU is equipped with a single narrowband antenna that limits the sensing ca-
pability to one channel at a time. At the beginning of each frame, SU performs
spectrum sensing using energy detection with sampling frequencyfs. Sensing
takes place at a constant powerps [18]. SU sensesith PU channel for timeτs,i.
Assuming PU signal to be complex valued phase-shift keying (PSK) signal, we
write detection probabilityPd,i and false alarm probabilityPf,i as [8]

Pd,i = Q

(

(

ǫi
σ2
N

− γi − 1

)

√

fsτs,i
2γi + 1

)

, (1)

Pf,i = Q

((

ǫi
σ2
N

− 1

)

√

fsτs,i

)

, (2)

whereǫi is the detection threshold andγi is the average PU signal-to-noise ratio
(SNR) received at SU source overith channel. For a target detection probability
Pd,i, we can write false alarm probability as [8]

Pf,i = Q
(

√

2γi + 1Q−1 (Pd,i) + γi
√

fsτs,i

)

. (3)

Note that depending on channel occupancy probabilities, channel conditions and
available energy, SU may not sense a PU channel, which results in τs,i = 0.
After the sensing phase is over, for the remaining frame duration, SU transmits
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in vacant PU channels (interweave mode) with appropriate power so as maximize
bit-throughput. Forith channel, time spent in transmission and transmit power are
denoted asτt,i andpt,i respectively. The frame structure of SU is shown in Fig. 1.

2.2. System constraints

2.2.1. Primary rate constraint
Quality of service (QoS) criterion ofith PU demands that the PU should be

able to transmit̄Bp,i bits on average in each frame duration. If SU correctly senses
a channel as active, there is no interference with the PU transmission. In this case,
average number of bits transmitted byith PU is given byTE [Rp,i] whereE [Rp,i]
is the average transmission rate that depends on PU source-PU destination link.
In case of missed detection, SU transmits and interferes with ith PU for timeτt,i.
There is no interference to the PU transmission for time(T − τt,i). We consider a
strong interference channel between SU and PU. Thus, transmission rate achieved
under interference is negligible. Then average number of bits transmitted in a
frame byith PU is

Bp,i
∼= Pd,iTE [Rp,i] + (1− Pd,i) (T − τt,i)E [Rp,i] . (4)

Let τp,i = B̄p,i/E [Rp,i] whereτp,i ∈ [0, T ]. Higher value ofτp,i indicates that
required average bit-throughputB̄p,i is higher. Then the QoS constraintBp,i ≥ B̄p,i

can be written as

Pd,i ≥ P̄d,i = max

[

0, 1−
T − τp,i

τt,i

]

. (5)

Thus, to transmit inith channel, detection probability should be greater than de-
tection probability threshold̄Pd,i which depends on transmission timeτt,i. As
τt,i increases, required detection probability increases. To achieve increasingPd,i,
sensing timeτs,i increases, leaving less time available for transmission. This re-
sults in the sensing-throughput tradeoff. Optimal sensingtime is such that con-
straint in (5) is satisfied with equality [8].

2.2.2. Energy constraint
SU is energy constrained i.e. in each frame, SU has limited energy to spend

in sensing and transmission. This may happen when SU is not powered by con-
ventional sources and harvests energy from surroundings. SU employs a greedy
policy where it uses all the available energy in one frame forsensing and trans-
mission subject to maximum power constraint. Suppose energy etot is available
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at SU in each frame. Then total energy spent in sensing and transmission cannot
exceedetot, that is,

M
∑

i=1

psτs,i +
M
∑

i=1

pt,iτt,i ≤ etot. (6)

2.2.3. Peak transmit power constraint
As response of power amplifier is non-linear at high values oftransmit power,

there a limitpmax on allowed maximum transmit power. Thus, we have

pt,i ≤ pmax, i = 1, 2, . . . , M. (7)

2.2.4. Total time constraint
In a frame, total time spent in sensing and transmission cannot exceed frame

duration. Thus, we have
M
∑

i=1

τs,i +
M
∑

i=1

τt,i ≤ T. (8)

2.3. Problem formulation
If ith channel is vacant, instantaneous rate achieved by SU on the channel is

log2

(

1 +
gipt,i

σ2

N

)

bits/s assuming normalized bandwidth. In case of missed detec-

tion, PU interferes with SU transmission. Our interest is inmaximizing through-
put achieved in transmission over a vacant band. Thus, we consider transmission
rate achieved under interference as negligible. This is especially true when inter-
ference channel between PU and SU is strong. Then average bit-throughput of SU
over ith channel, which is defined as average number of bits transmitted overith
channel in a frame by SU, is written as

Bs,i = π0,i

(

1− Pf,i

(

P̄d,i, τs,i
))

τt,i log2

(

1 +
gipt,i
σ2
N

)

. (9)

In this paper, our objective is to maximize average aggregate bit-throughput
of SU in a frame duration, given byBs =

∑M

i=1 Bs,i under aforementioned con-
straints in Section 2.2. Thus, we can write the maximizationproblem as

max
τ s,τ t,pt

M
∑

i=1

π0,i (1− Pf,i (τt,i, τs,i)) τt,i log2

(

1 +
gipt,i
σ2
N

)

(10)

s. t. (5), (6), (7), (8),

τs,i, τt,i, pt,i ≥ 0, i = 1, 2, . . . , M,
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whereτ s = [τs,1, . . . , τs,M ]T , τ t = [τt,1, . . . , τt,M ]T andpt = [pt,1, pt,2, . . . , pt,M ]T .
The optimization problem in (10) is non-convex due to non-convex nature of
Pf,i (τt,i, τs,i). Also, the energy constraint given by (6) is non-convex due to prod-
uct terms of optimization variablespt,i andτt,i. In following section, we refor-
mulate the problem so that all constraints are affine and the objective function is
separable.

3. Sensing and resource allocation (SRA): Single user scenario

To make constraint (6) affine, we reconstitute problem (10) as energy and time
allocation problem. Suppose SU uses energyet,i to transmit inith channel. Then
energy constraint in (6) can be written as

M
∑

i=1

et,i + ps

M
∑

i=1

τs,i ≤ etot. (11)

Transmit power inith channel ispt,i = et,i/τt,i. Thus, we write peak power
constraint in (7) as

et,i ≤ pmaxτt,i, i = 1, 2, . . . , M. (12)

Suppose SU allocates timets = αT, α ∈ [0, 1] for sensing and timett =
(1− α)T for transmission. Then we can write time constraint (8) as two separate
constraints given by

M
∑

i=1

τs,i ≤ αT, (13)

M
∑

i=1

τt,i ≤ (1− α)T. (14)

Let Bs,i = f1,i (τt,i, τs,i) · f2,i (τt,i, et,i) where

f1,i (τt,i, τs,i) = 1− Pf,i (τt,i, τs,i) , (15)

f2,i (τt,i, et,i) = π0,iτt,i log2

(

1 +
gi
σ2
N

et,i
τt,i

)

. (16)
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Now we can reformulate optimization problem in (10) as follows:

max
α, {τ s, τ t,et}

M
∑

i=1

f1,i (τt,i, τs,i) f2,i (τt,i, et,i) (17a)

s. t.
M
∑

i=1

et,i + ps

M
∑

i=1

τs,i ≤ etot, (17b)

et,i ≤ pmaxτt,i, i = 1, 2, . . . , M, (17c)
M
∑

i=1

τs,i ≤ αT, (17d)

M
∑

i=1

τt,i ≤ (1− α)T, (17e)

et,i, τs,i, τt,i ≥ 0, i = 1, 2, . . . , M, (17f)

α ∈ [0, 1] , (17g)

whereτ s = [τs,1, . . . , τs,M ]T , τ t = [τt,1, . . . , τt,M ]T andet = [et,1, . . . , et,M ]T .
In the problem above, all constraints are affine. Objective in (17a) is concave in
optimization variableet,i. But the problem is still non-convex inτs,i andτt,i.

To solve (17a), we first fixα and decompose the problem into three subprob-
lems as follows.

Subproblem P1

We first fix (τ t, et) and find optimal sensing timeτ s subject to constraints
(11), (17d) and (27f). Objective in (17a) is monotonically increasing withτs,i, i =
1, 2, . . . , M . For fixed(τ t, et), we can write problem of finding optimalτ s as

max
M
∑

i=1

Bs,i (τs,i) (18)

s. t.
M
∑

i=1

τs,i ≤ min

[

αT,
etot −

∑M

i=1 et,i
ps

]

,

Problem in (18) can be modelled as a general non-linear knapsack problem (NKP).
We use greedy algorithm [30, 31] to solve it with complexityO (M log (fsT )).
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We defineus = 1/fs as the smallest time unit that can be allocated to the sensing
time of a channel. Incidentallyus is also the time between successive samples. We
initialize sensing time asτs,i = 0, i = 1, 2, . . . , M . Increase in bit-throughput
due to addition of one sensing time unit can be viewed as reward of the action.
Thus, reward of adding a unit toith channel inkth iteration is given by

r
(k)
s,i = Bs,i

(

τ
(k)
s,i + us

)

− Bs,i

(

τ
(k)
s,i

)

. (19)

In each iteration, one time unit is added to the channelî whereî is the channel
that gives maximum reward, i.e.̂i = arg maxi

{

r
(k)
s,i

}

. Thus, in each iteration,

sensing time is updated as

τ
(k+1)
s,i =

{

τ
(k)
s,i + us for i = î(k)

τ
(k)
s,i for i 6= î(k)

. (20)

The process continues until
∑M

i=1 τ
(k)
s,i ≤ min

[

αT,
etot−

∑M
i=1

et,i
ps

]

.

Subproblem P2

Keeping optimal(τ s, et) in P1 fixed, we now optimizeτ t subject to con-
straints (17e) and (17f). The problem of optimizingτt,i is

max
M
∑

i=1

Bs,i (τt,i) (21)

s. t.
M
∑

i=1

τt,i ≤ (1− α)T.

On similar lines of subproblemP1, we can find optimalτt,i by greedy method for
NKP usingut = 1/fs as the smallest time unit. From (15) and (16), we see that
f1,i is a monotonically decreasing function ofτt,i while f2,i is a monotonically
increasing function ofτt,i. Thus, in a region whereBs,i (τt,i) is monotonically de-
creasing withτt,i, addition of a unitut to transmission time ofith channel results in
negative reward value. When reward values for all channel are negative, any fur-
ther increase in transmission timeτt,i results in decreasing bit-throughput. Thus,
the greedy algorithm stops when all rewards become negativeor when constraint

(17e) is violated. Using rewardr(k)t,i = Bs,i

(

τ
(k)
t,i + ut

)

−Bs,i

(

τ
(k)
t,i

)

, transmission
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time is updated in each iteration as

τ
(k+1)
t,i =

{

τ
(k)
t,i + ut for i = î(k)

τ
(k)
t,i for i 6= î(k)

,

wherêi(k) = arg maxi

{

r
(k)
t,i

}

. The process continues until
∑M

i=1 τ
(k)
t,i ≤ (1− α)T

andmax
{

r
(k)
t,i

}

≥ 0.

Subproblem P3

Keeping optimal(τ s, τ t) in P1 andP2 fixed, we now optimize overet sub-
ject to constraints (17b), (17c) and (17f). Leteth = etot − ps

∑M

i=1 (ti − τt,i).
Since the problem (17a) is convex inet,i, we solve it using Lagrangian method.
The Lagrangian forP3 is

L (et, λ, µ) =
M
∑

i=1

f1,i · f2,i (et,i)− λ

(

M
∑

i=1

et,i − eth

)

−

M
∑

i=1

µi (et,i − pmaxτt,i) , (22)

whereλ andµ = [µ1, . . . , µM ]T denote the dual variables associated with con-
straints (17b) and (17c). The dual problem ofP3 is given by

min
λ,µ

max
et

L.

For fixed(λ,µ), we find optimal primal variable by differentiatingL with respect
to et,i and equating it to zero as

et,i =

[

π0,iτt,if1,i
ln (2) (λ+ µi)

−
σ2
N τt,i
gi

]+

, (23)

where[·]+ = max [·, 0]. Since the dual function ofL has unique maximizers, we
use gradient descent method to find(λ, µ) as

λ(k+1) = λ(k) + ǫλ

(

M
∑

i=1

et,i − eth

)

, (24)
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µ
(k+1)
i = µ

(k)
i + ǫµ (et,i − pmax) , (25)

whereǫλ andǫµ are step sizes. Iteration index is denoted byk. The process of
calculatinget and updating(λ,µ) is repeated until convergence. In this way the
subproblemP3 is solved with complexityO (M2).

All subproblems aim to maximize objective in (17a). For fixedα, we repeat the
three step process of solvingP1,P2 andP3. This process of finding(τ s, τ t, et)
that maximize SU throughput is Block Coordinate Minimization (BCM) method
which converges to stationary solution for non-convex problems as proven in [32].
Convergence is achieved as long as initialization of(τ t, et) in subproblemP1 is
done to satisfy constraints (17c), (17e) and

∑M

i=1 et,i ≤ etot − psαT . The BCM
method runs over all values ofα ∈ [0, 1] and value ofα that corresponds to the
maximum SU bit-throughputBs is chosen.

4. Sensing and resource allocation (SRA): Multi-user scenario

In this section, we propose sensing and resource allocationfor the case where
multiple SUs are present in the system. We consider a secondary network of
N SUs governed by a central base station (BS) employing cooperative sensing.
BS acts as the fusion centre for sensing data of individual SUs. Alternatively,
in absence of BS, one of the SUs can act as the controller. We assume that
SUs always have data to transmit and all SUs transmit to a common destina-
tion. To avoid inter-SU interference, BS employs time division multiple access
(TDMA). We assume that BS has knowledge of channels gains on all SU source
to SU destination links and PU source to SU source links, denoted asgij and
hij, i ∈ {1, . . . , M} , j ∈ {1, . . . , N} respectively. Assumption of perfect chan-
nel knowledge gives us the upper bound on throughput performance and serves
as a baseline for the case with imperfect or limited channel knowledge. Prior to
sensing and transmission, BS determines optimal sensing time, transmission time
allocation and transmission energy allocation for each channel and communicates
it to the SUs over a low bandwidth control channel as done in [33].

Time allocated for sensing and transmission inith PU channel isτs,i andτt,i
respectively. Sensing data is reported to BS over a low bandwidth control channel.
BS performs data fusion and takes a decision on presence of PUin a given band.
In this case, false-alarm probability in sensingith PU channel is written as [8]

P
′

f,i = Q
(

√

2γ̄i + 1Q−1
(

P̄d,i

)

+ γ̄i
√

fsτs,i

)

, (26)
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whereγ̄i = pPU

∑N

j=1 hij andP̄d,i is the target detection probability given in (5).
If ith PU is sensed to be absent, each SU transmits its own data to SU des-

tination. Due to TDMA, transmission time of each SU inith channel isτt,i/N .
Energy used byjth SU to transmit inith channel iset,ij . Energy available atjth
SU is denoted byej . A SU participates in the joint-sensing and transmission pro-
cess only if it has minimum required energy to sense a channelfor whole frame
duration, that isej ≥ psT, j = 1, . . . , N .

Our objective is to find optimal access time, transmission time and energy
allocation to maximize sum-throughput of SU system. Letf

′

1,i = 1 − P
′

f,i. Then
the optimization problem is

max
α, {τ s, τ t, et}

M
∑

i=1

f
′

1,i (τt,i, τs,i)π0,i

N
∑

j=1

τt,i
N

log2

(

1 +
gijN

σ2
N

et,ij
τt,i

)

(27a)

s. t.
M
∑

i=1

et,ij + ps

M
∑

i=1

τs,i ≤ ej, j = 1, 2, . . . , N, (27b)

et,ij ≤ pmax

τt,i
N

, j = 1, 2, . . . , N, (27c)

M
∑

i=1

τs,i ≤ αT, (27d)

M
∑

i=1

τt,i ≤ (1− α)T, (27e)

et,ij , ti, τt,i ≥ 0, i = 1, . . . , M, j = 1, . . . , N, (27f)

α ∈ [0, 1] , (27g)

whereτ s = [τs,1, . . . , τs,M ]T , τ t = [τt,1, . . . , τt,M ]T andet = [et,ij ]M×N
. Ob-

jective function (27a) is concave inet but non-convex inτ s andτ t. Total energy
used by a SU in sensing and transmission cannot exceed energyavailable at the
SU. This gives rise to a per-user energy constraint in (27b).Constraint in (27c) is
the peak power constraint for each user. Time constraints (27d) and (27e) remain
unchanged from single-user scenario. We see that all constraints are affine.

Along the lines of Section 3, we can decompose the optimization problem
in three subproblems for fixed value ofα. SubproblemP1 solves sensing time
allocation for fixed(τ t, et) using greedy algorithm for NKP under constraint

13



∑M

i=1 τs,i ≤ min [αT, τth,1, τth,2, . . . , τth,N ], whereτth,j is given by

τth,j =
ej −

∑M

i=1 et,ij
ps

, j = 1, 2, . . . , N.

In subproblemP2, to find optimalτ t, letf
′

2,i = π0,i

∑N

j=1
τt,i
N

log2

(

1 +
gijN

σ2

N

et,ij
τt,i

)

.

We see thatf
′

1,i is monotonically decreasing function ofτt,i andf
′

2,i is a monoton-
ically increasing function ofτt,i. Thus, for fixed value of(τ s, et), optimalτ t can
be found by greedy algorithm with modified stopping criteriaas done in subprob-
lemP2 in Section 3.

In subproblemP3, we keep optimal(τ s, τ t) fixed and optimize overet under
constraints (27b), (27c) and (27f).P3 is a convex-programming problem that is
solved by Lagrangian method using steps similar to those used in Section 3. We
omit the steps here for brevity and write closed form expression for et,ij as

et,ij =

[

π0,iτt,if
′

1,i

ln (2) (λj + µij)N
−

σ2
N τt,i
gijN

]+

, (28)

whereλj andµij are Lagrange’s multipliers that are chosen to satisfy per-user
energy constraint

∑M

i=1 et,ij ≤ ej − ps
∑M

i=1 τs,i and peak power constraintet,ij ≤
pmax

τt,i
N

respectively. SubproblemsP1, P2 andP3 are executed recursively until
all variables converge. The process of finding optimal(τ s, τ t, et) is repeated
over all values ofα ∈ [0, 1] andα that maximizes SU bit-throughput is chosen.

5. Simulation results and discussion

In this section, we first study performance of proposed Sensing and Resource
Allocation (SRA) method under different channel conditions and energy availabil-
ity scenarios for single-SU case. We compare the performance with Best Channel
Selection (BCS) and Proportional Energy and Time Allocation (PETA) methods.
In BCS, SU chooses the best channel for sensing and transmission, based on a
heuristic that depends on channel gains, PU occupancy and QoS constraint. The
heuristicHi for ith channel is defined as

Hi =
π0,igi
τp,i

. (29)

Value ofHi is high for a channel with low occupancy probability, low value ofτp
and good SU-SU channel. In each frame, SU chooses the best channel î that has
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highest value ofHi, i.e. î = arg maxi∈{1,...,M} Hi. In PETA, total available time
and energy is divided between channels such that time and energy for each channel
is proportional to the channel heuristic. LetTi andetot,i be the time allocated to
ith channel. Then we haveTi = kHiT andetot,i = kHietot where normalization
factork is calculated ask = 1/

∑M

i=1Hi. For each channel, optimal sensing and
transmission timeτs,i, τt,i ≤ Ti as well as transmission energyet,i ≤ etot,i is found
using SRA. We also compare the performance with single channel transmission
scheme (SRA-SC). In SRA-SC, expected throughput is calculated for a single
channel at a time. Only the channel that gives maximum expected throughput is
selected for transmission. Further, as a baseline for performance comparison, we
use optimal sensing under target detection probabilityPd = 0.95 proposed in [8]
combined with best channel selection.

For simulation, we considerM = 10. Values of frame time and sampling
frequency areT = 100ms andfs = 1MHz. As all channels are Rayleigh faded,
SU-SU channel gainsgi, i = 1, . . . , M are exponentially distributed. We take
the average channel gainσ2

g = −10 dB unless mentioned otherwise. Channel oc-

cupancy probabilities areπ1 = [0.7, 0.7, 0.7, 0.7, 0.7, 0.5, 0.5, 0.5, 0.5, 0.5]T . PU
QoS threshold for each PU channel isτp,i = 0.9, i = 1, . . . , M . Maximum power
threshold ispmax = 1W and power required for sensing isps = 0.1W [17]. Noise
power isσ2

N = 0.1W. Average received PU SNR isγi = γp = −10 dB, i =
1, . . . , M , unless mentioned otherwise.

5.1. Effect of energy availability

Fig. 2 plots simulation and analytical results for bit-throughput achieved in
proposed SRA method against available energy for differentvalues of received
PU power. As available energyetot increases, more energy can be used in trans-
mission and average bit-throughputBs increases. At high value ofetot, peak
power constraint in (17c) becomes dominant and limits transmission energy in
each channel. Even though energy is available, more energy cannot be used in
transmitting. Thus,Bs becomes constant at high value ofetot.

When received PU power is high, sensing time required to achieve target de-
tection probability is low. Also, false alarm probability is low. This leaves more
time for transmission in a channel. Thus, throughput achieved is higher. If re-
ceived PU power is low, more sensing time is required to detect a PU correctly.
Thus, time available for transmission decreases, resulting in less bit-throughput.

Fig. 3 shows that bit-throughput in SRA is better than BCS, PETA and SRA-
SC. In BCS, best channel chosen by SU may have desirable properties like low
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Figure 2: Bit-throughputBs versus available energyetot for different values of average received
PU SNRγp for N = 1.
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occupancy and loose QoS constraint but may also have low channel gain. By
choosing a single channel to transmit, diversity provided by multiple channels
is sacrificed in BCS, hence resulting in less throughput. PETA fixes maximum
energy and time allocated to a channel based on channel heuristics and only op-
timizes over individual channels, which is suboptimal compared to SRA. Fig. 3
also plots throughput for optimal sensing in [8] using best channel selection. We
see that SRA performs better than fixedPd based method.

5.2. Effect of primary occupancy and QoS constraint
Fig. 4 plots bit-throughputBs against occupancy probabilityπ1,1 occupancy

probabilities of other channels unchanged. If channel gainof the SU-SU link is
high, with increasing occupancy probabilityπ1,i more sensing time has to be al-
lotted to the channel before transmission. This results in reduced overall average
throughput. Similarly, as QoS constraintτp,1 becomes more stringent, target de-
tection probability increases, requiring more sensing time. This leaves less time
for transmission and results in reduced throughput. Thus, with increasing PU oc-
cupancy probability and tighter QoS constraint, bit-throughput of SU decreases.

PU occupancy and QoS constraints also affect probability ofSU accessing a
channel as shown in Fig. 5. Channel access probability is defined as probability
of SU transmitting in the channel. It is represented in Fig. 5in grayscale color
tone where darker shade indicates lower access probability. As π1,1 andτp,1 in-
crease, SU does not transmit in the channel unless SU-SU channel gain is high.
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Thus, channel access probability decreases. When available energyetot is high,
maximum power constraint limits the energy that can be transmitted in a channel.
Thus, some energy is distributed in other channels even though their occupancy
probability may be higher and QoS constraints may be tighter. Thus, overall ac-
cess probability is higher than low energy availability case. Access probability
decreases sharply only at high values ofπ1,i andτp,i as seen in Fig. 5(b).

5.3. Sum-throughput in multi-user scenario
Heuristic based methods are suboptimal and SRA clearly outperforms them as

seen in Fig. 3. Also, for multi-user scenario, allocating resources for each SU-
PU channel pair based on heuristics is a separate optimization problem in itself.
Hence, we omit the comparison of SRA with heuristic based methods. In Fig. 6,
we plot sum-throughput of a SU network against number of SUsN for different
energy availability scenarios. Energy available at each SUis denoted byetot.
Initially, as number of SUs increase, cooperative sensing lowers required sensing
time to achieve target detection probability leaving more time for transmission.
This results in increasing sum-throughput. But increasingnumber of SUs decrease
transmission time allotted to each SU, given byτt,i

N
, i = 1, . . . , M . Due to peak

power constraintet,ij ≤ pmax
τt,i
N

, transmission energy decreases with decreasing
value of τt,i

N
. Thus, with increasingN , transmission time as well as transmission

energy of each SU decreases, resulting in decreasing throughput.

6. Conclusion

We considered a CR system with multiple PU channels where simultaneous
sensing of all channels is not possible. Also, SU has limitedenergy for sensing and
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transmission. The problem of maximizing SU bit-throughputwhile maintaining
QoS of PUs was formulated as a resource allocation problem with time and en-
ergy as available resources. We proposed sensing and resource allocation (SRA)
method that solves the problem by decomposing it in non-linear knapsack sub-
problem and convex optimization subproblem. We then extended the framework
for multiple SU scenario where SUs can achieve benefits of cooperative sensing.
Simulation results show that throughput increases as more energy is available. It
was observed that with more number of SUs, throughput performance benefits
from cooperative sensing. But as SUs further increase, throughput decreases as
less time is available for transmission of each SU.
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