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Abstract

In this paper, localization using narrowband communication signals are considered in the presence of
fading channels with time of arrival measurements. When narrowband signals are used for localization,
due to existing hardware constraints, fading channels play a crucial role in localization accuracy. In
a location estimation formulation, the Cramer-Rao lower bound for localization error is derived under
different assumptions on fading coefficients. For the same level of localization accuracy, the loss in
performance due to Rayleigh fading with known phase is shown to be about 5dB compared to the case
with no fading. Unknown phase causes an additional 1dB loss. The maximum likelihood estimators
are also derived.

In an alternative distributed detection formulation, each anchor receives a noisy signal from a node
with known location if the node is active. Each anchor makes a decision as to whether the node is active
or not and transmits a bit to a fusion center once a decision is made. The fusion center combines all
the decisions and uses a design parameter to make the final decision. We derive optimal thresholds and
calculate the probabilities of false alarm and detection under different assumptions on the knowledge
of channel information. Simulations corroborate our analytical results.

Keywords: Location estimation, distributed detection, narrowband signals, fading channels, wireless
sensor networks, performance bounds

1. Introduction

In many applications of wireless sensor net-
works (WSNs), the measured data are meaningful
only when the location of the data is accurately
known. The global positioning system (GPS) is
widely used for outdoor localization applications
[1–4]. However, for indoor applications [5] and in
non-LOS environments, GPS is not accurate. In
such scenarios, wireless sensor networks (WSNs)
[6, 7], which consist of low energy sensors, can
be used for localization [8, 9]. Ultra wide band
(UWB) signals are often used for localization due
to several advantages [10]. In some applications,
however, narrowband signals that are used for
transmitting data have to be used for localization,
as well. Therefore, localization using narrowband

communication signals which are susceptible to
fading needs to be studied.

Localization in WSNs can be formulated as lo-
cation estimation and location detection problems
[1, 11–16]. In the estimation formulation, the lo-
cation of a node at an unknown location (target
node) needs to be determined, with the help of
nodes at known locations (anchors). Using noisy
distance estimates obtained though transmissions
between the anchors and the target node, the lo-
cation of the target node is to be estimated. In
contrast, in the detection formulation, the target
node is in an known area; however, its exact posi-
tion is unknown. The target node is not active all
the time. When inactive, there is no transmission,
and each anchor only receives noise. When the
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Figure 1: A wireless sensor network with M = 3 anchors
and 1 node. The variable τ̂1 is the time of arrival mea-
surement between the node located at z = (x, y) and the
anchor located at p1 = (x1, y1).

target node is active, each anchor receives signal
(subject to fading) plus noise. In this case, a de-
tection framework is needed to determine whether
the target node is active or not.

Localization can be performed using range-
based, direction-based, or hybrid methods [17–
19]. Typical range-based methods include received
signal strength (RSS), time of arrival (TOA), and
time delay of arrival (TDOA); the direction-based
techniques include direction of arrival (DOA) [20];
and hybrid methods [21, 22]. In this paper, we
select time of arrival (TOA) for both location es-
timation and detection problems, but the method-
ology can be applied to other measurement modal-
ities as well. The accuracy of TOA measurements
is highly dependent on signal bandwidth. When
the bandwidth is limited, the performance is af-
fected by multipath fading and noise. Therefore,
localization in the presence of fading needs to be
studied.

In location estimation problems, the Cramer-
Rao lower bound (CRLB) of the localization accu-
racy for TOA based and received signal strength
(RSS) based approaches [17, 23] have been studied
in [12] in the absence of fading. Although some
work has considered fading environments for TOA
measurements [24, 25], derived the CRLB under
the assumption that fading coefficients are deter-
ministic unknown parameters [26], and considered
a joint tracking and estimation framework [27],
the CRLB of location estimation by considering

fading coefficients as random unknown parame-
ters has not been derived.

In this paper, for the location estimation prob-
lems, the CRLB (Cramer-Rao lower bound) for lo-
calization error is derived under different assump-
tions on fading coefficients. These include cases
where the fading coefficients are known at each
anchor; unknown fading amplitude and phase with
known distribution; and no CSI is available at
any anchor. We show analytically that the loss in
performance due to Rayleigh fading with known
phase is about 5dB compared to the case with no
fading. Unknown phase causes an additional 1dB
loss.

In [12, 28], the maximum likelihood location
estimator in the absence of fading has been de-
rived. In our work, the maximum likelihood es-
timators under different fading scenarios are de-
rived. These are compared with the estimator
derived under the assumption of no fading, but
deployed in a fading environment.

Location detection in WSNs has been studied
in [29], which discretized the problem to obtain an
N -ary hypothesis testing problem. In [30], a cen-
tralized sensor network with unknown fading co-
efficients has been considered. Although central-
ized methods may give a better performance, it
is expensive in large WSNs. In [31], a distributed
location detection method in the absence of fad-
ing has been considered. None of these works
have studied localization under fading environ-
ments with explicit incorporation of the fading
distribution. In [32], a location verification sys-
tem which uses RSS measurements for detection
under log normal shadowing is studied. It uses
a centralized estimation and detection approach,
whereas in this paper, each anchor makes its own
decision on whether or not it detects an active
node.

In this paper, a distributed location detection
scheme is considered, where each anchor can make
its own decision. Similar to the location estima-
tion problem, different fading scenarios are con-
sidered. The probabilities of false alarm and de-
tection are derived under different scenarios.

The detection formulation is different from the
estimation formulation in the following aspects.
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First of all, in detection problems, the goal is to
detect the activity or silence of a node or multiple
nodes at known locations; however, in estimation
problems, the goal is to estimate the location of
a node or multiple nodes, which are at unknown
locations. Secondly, to estimate the location of
a node, multiple anchors are needed in order to
avoid ambiguity. For example, when using range-
based methods, a minimum of two anchors are
needed for one dimension (1-D), and three an-
chors are needed for two dimensions (2-D). On
the other hand, to detect a node, each anchor
can make a local decision on whether the node
is active or not by correlating the received sig-
nal with the transmitted signal and then compar-
ing with a threshold. The final decision can be
made by exchanging this data with other anchors
and a fusion center (FC). Therefore, the detection
problem can be solved by using a distributed im-
plementation based on exchange of bits between
the anchors and a FC. Thirdly, the performance
analysis is different for these two formulations. In
the estimation formulation, the variance of the lo-
cation estimation error is used as a performance
metric, whereas for detection, metrics such as the
probability of false alarm and the probability of
detection are used [33] [34].

The rest of paper is organized as follows. In
Section 2, location estimation in the presence of
fading is considered. The system model is pro-
posed and three fading scenarios are considered.
In Section 3, location detection in the presence
of fading is studied. The probability of detection
and probability of false alarm are derived under
different fading scenarios. In Section 4, the sim-
ulation results for both location estimation and
detection are provided. Finally, in Section 5, con-
cluding remarks are presented.

2. Location Estimation in the presence of

fading

We assume a non-cooperative WSN, in which
nodes do not communicate with each other. Fur-
ther, we assume there are M anchors and 1 node
in R

n, where n = 1, 2. In 1-D, the location of
the ith anchor, pi = xi, and the node, z = x are

Figure 2: Coherent TOA estimation scheme.

scalars. In 2-D, pi = [xi, yi]
T and z = [x, y]T are

vectors. Figure 1 shows a sensor network with
M = 3 anchors and 1 node. We assume the node
communicates with all anchors. The measured
TOA between the node and the anchor located at
pi, is defined as τ̂i. In location estimation, each
anchor transmits a carrier modulated signal to a
node, and the node transmits back immediately
after it receives the signal. The two way trans-
mission time is measured by each anchor, which
can be halved to estimate the transmission time
and distance. Define di = ||pi − z||2 as the true
distance between the node located at z and the
anchor located at pi. In the absence of fading, τ̂i
is Gaussian [35],

τ̂i ∼ N
(

di
c
, σ2

)

, (1)

where c is the speed of propagation of signals in
the free space, and σ2 is the variance of the TOA
measurements [12]. We will assume throughout
that {τ̂i}Mi=1 are independent.

2.1. System Model

Define hi = |hi|ejθi as the fading coefficient
for the channel between the node and the ith an-
chor, where |hi| and θi are the amplitude and
phase of the fading coefficient respectively, and
i ∈ {1, 2, . . . ,M}. In the presence of fading, the
statistics of τ̂i is a function of hi. In this paper, we
consider the following scenarios: (a) hi is assumed
to be known at each anchor; (b) θi is assumed to
be known at each anchor, but |hi| is an unknown
random variable with a known prior distribution;
(c) No CSI (amplitude or phase) is available at
any anchor. Although only 1-D and 2-D cases are
considered, the results can be generalized to three
dimension (3-D).
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(a) Non-coherent TOA estimation scheme. (b) Alternate non-coherent TOA estimation
scheme.

Figure 3: Non-coherent TOA estimation schemes.

Consider a carrier modulated signal with car-
rier frequency fc transmitted on a fading channel
for TOA estimation. When the received phase
is known at each anchor, a coherent estimation
strategy, as shown in Figure 2 is applied to esti-
mate the TOA. The received signal is given by

ri(t) = |hi|
∑

n

s[n]g(t− nT − τi) cos(2πfct + θi),

(2)
is multiplied by cos(2πfct+ θi) and then low pass
filtered. The output of the low pass filter

vi(t) =
|hi|
2

∑

n

s[n]g(t− nT − τi) (3)

is correlated with a regenerated template signal

si(t) =
∑

n

s[n]g(t− nT − τ ∗) (4)

with delay τ ∗. The TOA is estimated by finding
the maximum value of the output of the correla-
tor.

When the phases are unknown, a non-coherent
estimation strategy is needed. We will consider
non-coherent architectures that correlate with a
base-band signal. Figure 3 shows two such non-
coherent estimation schemes. Figure 3(a) corre-
lates the received signal with a regenerated mod-
ulated signal and its 90 degree shifted regenerated
signal. In this scheme, the input of the correlator
is the sum of the output of two low pass filters,

which is

vi(t) =
1

2
(|hi| cos(θi)−|hi| sin(θi))

∑

n

s[n]g(t− nT − τi).

(5)

Similar to the coherent estimation scheme, vi(t)
in (5) is correlated with the signal given in (4)
to estimate TOA. An alternate non-coherent es-
timation scheme is shown in Figure 3(b). In this
scheme, in-phase and quadrature components es-
timate the TOA independently. First, the re-
ceived signal xi(t) in (2) is multiplied separately
by cos (2πfct) and sin (2πfct), and then passed to
two low pass filters. The output of the two low
pass filters are given by

vi1(t) =
|hi|
2

cos(θi)
∑

n

s[n]g(t− nT − τi), (6)

and

vi2(t) =
|hi|
2

sin(θi)
∑

n

s[n]g(t− nT − τi). (7)

Then vi1(t), which contains the in-phase compo-
nent, and vi2(t), which contains the quadrature
component, estimate TOA separately by corre-
lating the signal with the regenerated signal that
is given in (4), and two TOA estimates on each
branch are given as τ̂i1 and τ̂i2 respectively. The fi-
nal TOA estimate τ̂i can be computed by combing
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τ̂i1 and τ̂i2 using different combing methods. The
CRLB comparisons between these non-coherent
estimation schemes will be provided in Section
2.5.

To summarize our notation, we denote τ̂i as
the estimated time delay between a node and the
ith anchor, di is the true distance between the
node and the ith anchor, and σ2 is the variance
of TOA measurements in the absence of fading.
In addition, hi is the fading coefficient at the ith

channel, and |hi| is the magnitude of hi. Mean-
while, z is the node location, and zi is the ith

anchor location. In general, a bold letter, for ex-
ample x, stands for a vector or matrix, and ||x||2
denotes the Euclidean norm of a vector x. Also,
Q(·) is the error function.

2.2. Fading coefficients are known at each anchor

Assume hi is known at each anchor. Since
both amplitude and phase are known, a coherent
estimation strategy is used for location estimation
as in Figure 2. Conditioned on the fading coeffi-
cients, the TOA measurement τ̂i in (1) is Gaussian
distributed, and is given by

τ̂i ∼ N
(

di
c
,
σ2

|hi|2
)

, (8)

where E [|hi|2] = 1. In this case, the CRLB can be
expressed as a function of the fading coefficients,
with analysis very similar to the case with only
additive white Gaussian noise (AWGN)[1]:

CRLB1-D =
c2σ2

∑M

i=1 |hi|2
. (9)

Recall that the CRLB in 1-D in the absence of
fading [12] is a special case of (9) with |hi| = 1,
and is given as

CRLBAWGN
1-D =

c2σ2

M
. (10)

Similarly, we can also calculate the CRLB where
the fading coefficients are known at each anchor
in 2-D. Note that in 2-D, the CRLB depends on
the geometry of the network, and it is more com-
plicated than the 1-D case. However, a similar
conclusion as the 1-D case that when |hi| = 1,
CRLB2-D = CRLBAWGN

2-D , can be reached when
compared with the AWGN case in [12].

2.3. Effect of unknown fading amplitude

When the amplitude of fading coefficients is
unknown at any anchor, we will show that the
presence of fading always degrades the CRLB. To
show this, we use the modified CRLB (MCRLB)
[36], which is defined as

MCRLB = tr
(

(

−ET,h

[

∇2
z
lnf(T|h, z)

])−1
)

,

(11)
where ∇2

z
is the Hessian operator, tr (A) is the

trace of the matrix A, h = [|h1|, |h2|, . . . , |hM |]
contains the amplitude of the fading coefficients,
T = [τ̂1, τ̂2, . . . , τ̂M ] contains all TOA measure-
ments, and z is the location of the node. In one
dimension, using (8), (11) can be calculated as

MCRLB1-D =
c2σ2

∑M

i=1 E [|hi|2]
. (12)

Since E [|hi|2] = 1, the MCRLB in (12) can be ex-
pressed as MCRLB1-D = c2σ2/M = CRLBAWGN

1-D ,
and the MCRLB for the localization error equals
to the AWGN case in (10), which is also seen in (9)
with |hi| = 1. Since the MCRLB is known to be a
lower bound on the CRLB in the presence of fad-
ing [36], we can conclude that the presence of fad-
ing will always degrade the performance for any

fading amplitude distribution. For the MCRLB
in 2-D, the derivation is very similar as 1-D, and
it turns out the MCRLB in 2-D is the same as
the CRLB of the 2-D AWGN case as well. The
details are omitted for brevity.

2.4. Unknown fading amplitude: Nakagami fad-

ing

Having seen that fading degrades the perfor-
mance, we quantify this degradation in the Nak-
agami envelope case. We assume that fading does
not change during the TOA measurements, the
phases of the fading coefficients are known at each
anchor, and the amplitudes |hi| are Nakagami dis-
tributed, corresponding to a Gamma distributed
|hi|2. Since the phase is known, the coherent esti-
mation strategy which is used in Section 2.2 can
be applied. The TOA measurements τ̂i are as-
sumed to be i.i.d., and conditioned on the fading
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coefficients satisfy (8), where the fading power is
Gamma distributed and given by [37]:

f|hi|2(x) = mmxm−1Γ(m)−1exp(−mx), (13)

where 1
2
≤ m < ∞ is the Nakagami fading pa-

rameter, and as before, E [|hi|2] = 1. When m =
1
2
, the envelope |hi| is one-sided Gaussian dis-

tributed; when m = 1, |hi| follows the Rayleigh
distribution; and as m → ∞, the channel exhibits
no fading corresponding to an AWGN channel.

The unconditional distribution of τ̂i can be
calculated by using the total probability theorem:

fτ̂i(τ̂i|z) =
∫ ∞

0

f
(

τ̂i

∣

∣

∣
|hi|2, z

)

f|hi|2(x)dx. (14)

By substituting (8) and (13) into (14), and using
[38, p.310] we obtain

fτ̂i(τ̂i|z) =
mm(m− 1

2
)!

√
2πσ2Γ(m)

(

1
2σ2 (τ̂i − di

c
)2 +m

)(m+ 1

2
)
.

(15)
For convenience, let l(τ̂i|z) = lnfτ̂i(τ̂i|z) be the

log likelihood function of each TOA measurement.
Due to the independence of the TOA measure-
ments, we define l(T|z) =

∑M

i=1 lnfτ̂i(τ̂i|z). The
CRLB can be expressed as [33]

CRLB(z) = tr
(

F−1
z

)

, (16)

where Fz = −ET [∇2
z
l(T|z)] is the Fisher infor-

mation matrix (FIM). We can calculate the (j, k)
element of Fz, denoted by [Fz]jk

[Fz]jk =











∑M

i=1 Eτ̂i

[

(

∂l(τ̂i|z)
∂zj

)2
]

j = k

−Eτ̂i

[

∂2l(τ̂i|z)
∂zj∂zk

]

j 6= k
. (17)

In 1-D, using (17) and (15), Eτ̂i

[

(

∂l(τ̂i|z)
∂z

)2
]

can be calculated as

Eτ̂i

[

(

∂l(τ̂i|z)
∂z

)2
]

=
mm(m− 1

2
)!(m+ 1

2
)2

Γ(m)
√
2πc2σ5

X(di)

(18)

where

X(di) =

∫ ∞

0

(τ̂i − di
c
)2

(

1
2σ2 (τ̂i − di

c
)2 +m

)
5

2
+m

dτ̂i. (19)

Unlike the AWGN case, the Fisher information
depends on di through X(di) in (19). However,
using [38, p.292], it is possible to express it as

X(di) ≤
√
2σ3Γ(3

2
)Γ(m+ 1)

m1+mΓ(m+ 5
2
)

+

(

di
c

)2

(

1
2σ2 (

di
c
)2 +m

)
5

2
+m

. (20)

Since the second term in (20) is small, it is clear
that X(di) can be approximated by the first term,
and therefore approximately independent of di.
The exact CRLB in the presence of Nakagami fad-
ing in 1-D can be expressed as

CRLB1-D(z) =
Γ(m)

√
2πc2σ5

mm(m− 1
2
)!(m+ 1

2
)2
∑M

i=1X(di)
,

(21)
with an approximation as

CRLB1-D(z) ≈
2c2σ2Γ

(

m+ 5
2

)

(

m− 1
2

)

!
(

m+ 1
2

)2

1

M
. (22)

The approximation of the loss due to fading can
be expressed as

CRLB1-D(z)

CRLBAWGN
1-D

≈ k =

√
πΓ(m+ 5

2
)

Γ(3
2
)(m+ 1

2
)2
(

m− 1
2

)

!
,

(23)
where we recall from (10) that CRLBAWGN

1-D =
c2σ2/M . As m → ∞, the second term in (20)
goes to 0 and k in (23) goes to 1 so that the CRLB
in the presence of fading converges to the AWGN
case.

When m = 1, the fading follows the Rayleigh
distribution, and the exact CRLB in (21) is sim-
plified as

CRLB1-D(z) =
8
√
2c2σ5

9
∑M

i=1X(di)
. (24)

To simplify even further, we use the first term of
(20) because di

c
≈ 0 and set m = 1 to obtain

CRLB1-D =
σ2c2

M

10

3
. (25)
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This shows that the loss in SNR due to Rayleigh
fading is a factor of k = 10

3
which is about 5dB,

compared to the AWGN case.
In 2-D, the distance between the node and the

ith anchor is di =
√

(xi − x)2 + (yi − y)2. Letting

Y (m) = mm(m − 1
2
)!(m + 1

2
)2
[

Γ(m)
√
2πσ3

]−1
.

The FIM is

Fz =
Y (m)

c2σ2

M
∑

i=1

X(di)

[

(xi−x)2

d2i

(yi−y)(xi−x)

d2i
(yi−y)(xi−x)

d2i

(yi−y)2

d2i

]

.

(26)
The CRLB on the variance of the localization er-
ror in 2-D is

CRLB2-D(z) = tr
(

F−1
z

)

. (27)

The FIM in the absence of fading for the 2-D
case is given in [12], and can be written the same
as (26) except without the Y (m) andX(di) terms.
Comparing (27) with the CRLB in the absence of
fading in [12], both CRLBs in 2-D depend on the
true location of the node. When di

c
≈ 0, similar

to the 1-D case, X(di) in (20) can be simplified.
After simplifications and substituting into (27),
we see that the CRLB in the presence of fading
is also a factor of k higher than the AWGN coun-
terpart, i.e. when m = 1, k = 10

3
in both 1-D

and 2-D. Further, as m → ∞, the CRLB in 2-D
converges to the AWGN case.

Extension to multiple nodes case

When N nodes exist in a WSN, Fz becomes
a N × N matrix, and the diagonal elements in
(17) is summed from i = 1 to i = M + N − 1.
Using the approximation of X(di) in (20), after
simplifications, in 1-D, the CRLB for the ith node
is the (i, i) element of F−1

z
, which is given by

CRLB1-D(zi) ≈
2c2σ2Γ

(

m+ 5
2

)

(

m− 1
2

)

!
(

m+ 1
2

)2

M + 1

M (N +M)
.

(28)
We can prove that in cooperative WSNs, the ratio
of location estimation in the presence of fading
and in the absence of fading keeps the same.

Effect of anchor location

When anchors are not equidistant from the
target node, TOA estimates may have different

variances. The CRLB in this case is

CRLB1-D(zi) =
M
∑

i=1

X(di)
Γ(m)

√
2πc2σ5

i

mm(m− 1
2
)!
(

m+ 1
2

)2 ,

(29)
where σi is the variance of the TOA measurement
between the ith anchor and the node. Using a sim-
ilar approach as the equal variance case, one can
prove that when the variance is different among
anchors, the ratio of the location estimation in the
presence of fading and in the absence of fading is
the same as our analysis before.

ML estimator in the presence of Nakagami fading

The ML estimator for location estimation in
the presence of fading is denoted as

ẑ = argmax
z

M
∏

i=1

fτ̂i(τ̂i|z). (30)

Substituting (15) into (30), we have

ẑ = argmin
z

M
∑

i=1

ln

(

1

2σ2m

(

τ̂i −
di
c

)2

+ 1

)

,

(31)
where di = ||pi − z||2.

In the absence of fading, the ML estimator
which is derived in [12] is

ẑ = argmin
z

M
∑

i=1

(

τ̂i −
di
c

)2

, (32)

which is different from (31). Since ln(1 + x) ≈ x
for small x, it is straightforward to see that if m is
large, (31) and (32) are approximately the same.

2.5. No CSI available at anchors

In the previous sections, we assumed that the
phases of the fading coefficients are known at each
anchor. When there is no CSI (phase or ampli-
tude) available at any anchor, a non-coherent esti-
mator is applied. Since the optimal non-coherent
estimator is hard to implement, one of the subop-
timal non-coherent estimators shown in Figure 3
can be applied. When the non-coherent estimator
in Figure 3(a) is applied, using (5) and [35, p.233],
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conditioned on amplitudes and phases of the fad-
ing coefficients, the pdf of the TOA measurements
is Gaussian with mean and variance given by

τ̂i ∼ N
(

di
c
,

σ2

|hi|2 (1− sin (2θi))

)

. (33)

As in Section 2.4, we assume that |hi|2 is Gamma
distributed. In addition, we assume θi is uni-
formly distributed over [0, 2π), and is indepen-
dent of |hi|2. We can calculate the unconditional
distribution of τ̂i by integrating the effect of |hi|2
and θi, which is given by

fτ̂i(τ̂i|z) =
∫ 2π

0

∫ ∞

0

f
(

τ̂i

∣

∣

∣

(

|hi|2, θi
)

, z
)

×

f|hi|2(x)f (θi) dxdθi,

(34)

where f (θi) = 1
2π
, θi ∈ [0, 2π), and f|hi|2(x) is

given in (13). After simplifications,

fτ̂i(τ̂i|z) =
2σmm

(

m− 1
2

)

!m
1

2
−m

Γ(m)π
3

2

(

(

τ̂i − di
c

)2
+mσ2

)

×2F1

(

1, 1−m,
3

2
;

(

τ̂i − di
c

)2

(

τ̂i − di
c

)2
+mσ2

)

,

(35)

where (a)n = a (a+ 1) . . . (a + n− 1) , n > 1 is
the Pochhammer symbol with (a)0 = 1, and we

use 2F1(a, b, c; z) =
∑∞

n=0
(a)n(b)n

(c)n

zn

n!
, the hyperge-

ometric function [38].
When the amplitude of the fading coefficients

is Rayleigh distributed, which means m = 1, (35)
can be simplified:

fτ̂i(τ̂i|z) =
σ

π
(

σ2 +
(

τ̂i − di
c

)2
) , (36)

which, interestingly, is the Cauchy distribution
with scale factor σ, and median di

c
.

Using (17), in 1-D, the Fisher information can
be expressed as

Fz =
4

c2σ5π

M
∑

i=1

Y (di) , (37)

where

Y (di)

=

∫ ∞

0

(

τ̂i −
di
c

)2
(

1 +

(

τ̂i − di
c

)2

σ2

)−3

dτ̂i.

(38)

Similar to X(di) in (19) and (20), it is possible to
express Y (di) as

Y (di) ≤
σ3π

16
+

(

di
c

)2
(

1 +

(

di
c

)2

σ2

)−3

. (39)

Since the second term in (39) is small, it is clear
that Y (di) can be approximated by using the first
term, which is independent of di. After simplifi-
cation, the CRLB in 1-D when no CSI is available
is

CRLB1-D
∼= 4c2σ2

M
. (40)

Recalling (25), we see that when no CSI is avail-
able at any anchor, the loss in SNR is a factor
of k = 4, which is about 6dB. To calculate the
CRLB in 2-D we can use (17) to calculate the el-
ements of the FIM. Similar to the 1-D case, the
loss in SNR compared to the AWGN case is also
6dB.

When the alternate non-coherent estimator in
Figure 3(b) is applied, conditioned on the am-
plitudes and phase of the fading coefficients, the
distribution of τ̂i1 and τ̂i2 can be obtained using
[35, p.233], (6) and (7) as

τ̂i1 ∼ N
(

di
c
,

σ2

|hi|2 cos2 (θi)

)

, (41)

and

τ̂i2 ∼ N
(

di
c
,

σ2

|hi|2 sin2 (θi)

)

. (42)

Since θi is uniformly distributed, both cos2(θi)
and sin2(θi) have the same distribution. Therefore
we will focus on τ̂i1. Using the formula cos2 θi =
1
2
(1− cos 2θi), and the fact that 1

2
(1− cos 2θi)

has the same distribution as 1
2
(1− sin 2θi) when

θi is uniformly distributed, comparing (41) with
(33) one can see that the variance of (41) is twice
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of (33). Therefore, the CRLB when the quadra-
ture component is extracted is 2 times higher than
the CRLB when the previous non-coherent esti-
mation scheme is applied. Also, since the uncon-
ditional distribution of τ̂i1 is the same as τ̂i2, the
CRLB when the in-phase component is extracted
is the same as the CRLB when the quadrature
component is extracted. If the average is taken
between τ̂i1 and τ̂i2, τ̂i =

τ̂i1+τ̂i2
2

the final CRLB is
the same as the previous non-coherent estimation
scheme, which is given in (40).

Even though the noncoherent architectures in
Figure 3(a) and Figure 3(b) have the same per-
formance, the two schemes have advantages and
disadvantages. On the one hand, when there is
some prior information on the TOA measurement,
the scheme shown in Figure 3(b) is more flexible
when combing the two estimates, and therefore
can give a better performance. For example, if
a range for the TOA measurement is known, be-
tween τ̂i1 and τ̂i2, the one within the range can
be chosen as the final τ̂i. On the other hand, the
scheme shown in Figure 3(a) is less complex than
the scheme shown in Figure 3(b), since the latter
scheme requires two correlators.

ML estimator when no CSI is available at anchors

When no CSI is available at any anchor, as-
suming m = 1 and using (30) and (36), the ML
estimator for the location estimate is given by

ẑ = argmin
z

M
∑

i=1

ln

[

1

σ2

(

τ̂i −
di
c

)2

+ 1

]

. (43)

Consider a comparison of (43) with (31), which is
the ML estimator for the case with known phase
and Nakagami envelope. Setting m = 1 in (31)
we see that the only difference between these two
ML estimators is a factor of 2 multiplying σ2. If
we write (43) as a function of T = [τ̂1, τ̂2, . . . , τ̂M ]
and σ2 as ẑ = g (T, σ2), then ẑ in (31) can be
expressed as ẑ = g (T, 2σ2). This indicates that
the ML estimator with no CSI needs 3dB higher
SNR to use the exact same location estimator as
the ML estimator which knows the phases. Note
that this does not mean that the performance of
(31) and (43) are 3dB apart, since the distribution
of T in the two cases is different.

Interestingly, comparing the pdf of the TOA
measurements with phase information, given in
(15), with the pdf of TOA measurements with no
CSI information, given by (36), one can see that
setting m = 1

2
in (15) is identical to (36) when

m = 1. Recalling that m = 1
2
represents the

worst Nakagami fading scenario, we conclude that
with phase information, the coherent estimation
with m = 1

2
(worse fading) has identical pdf and

performance as the non-coherent estimation with
m = 1, i.e. under a better fading scenario.

2.6. Extension to cooperative location estimation

in the presence of fading

In the previous sections, we only considered a
sensor network with 1 node andM anchors. How-
ever, the results can be extended to a cooperative
location estimation problem. In this section, we
consider a sensor network with N nodes and M
anchors, and we assume all nodes communicate
with each other. When the fading coefficients are
random with Nakagami distributed amplitude, in

1-D, Eτ̂i

[

(

∂l(τ̂i|z)
∂zj

)2
]

is given in (18), however,

[Fz]jk is given as

[Fz]jk =











∑M+N−1
i=1 Eτ̂i

[

(

∂l(τ̂i|z)
∂zj

)2
]

j = k

−Eτ̂i

[

∂2l(τ̂i|z)
∂zj∂zk

]

j 6= k

(44)
Comparing (44) with (17), due to the cooperation
between nodes, when j = k, each node receives
information from other nodes as well. Therefore,
when j = k, (44) contains M + N − 1 terms.
Using the first term of X(di) in (20), and after
simplification, we have

Eτ̂i

[

(

∂l(τ̂i|z)
∂zj

)2
]

=
Γ
(

m+ 1
2

)

!
(

m+ 1
2

)2

2Γ
(

m+ 5
2

)

c2σ2
.

(45)
The CRLB for the ith node is the (i, i) element of
F−1

z
, which is given by

CRLB1-D(zi) =
2Γ
(

m+ 5
2

)

c2σ2

mΓ
(

m+ 1
2

) (

m+ 1
2

)2

× M + 1

M (N +M)
. (46)
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When m = 1, the ratio between cooperative loca-
tion estimation in (46) and non-cooperative loca-
tion estimation in (25) is R = (M +1)/(N +M).
Since N ≥ 1 in a cooperative network, (46) is al-
ways equal or smaller than (25), which proves that
cooperation between nodes gives a lower CRLB.
In 2-D, the similar conclusion can be reached.

When no CSI is available at each anchor, with
the assumption that the amplitude of fading co-
efficients is Rayleigh distributed, the pdf of the
TOA measurements is given in (36). Therefore in
1-D, the CRLB of the ith node in a cooperative
WSN with N nodes and M anchors is

CRLB1-D(zi) =
1

4c2σ2

M + 1

M(N +M)
, (47)

for which the ratio between the cooperative and
the non-cooperative is still r. Therefore, we can
conclude that cooperation between nodes results
in a lower CRLB.

3. Location Detection in the presence of

fading

In Section 2 we have considered the case that
the location of the node is unknown. However, in
some applications, the node location is known to
all anchors, but whether the node is active or not
is unknown. In many applications such as detect-
ing fire in buildings, each node is placed inside a
room, and the location is known to all anchors.
Anchors detect an event based on whether the
node is transmitting.

Similar to the estimation case, we consider a
sensor network with M anchors and one node. In
the absence of the node, each anchor receives only
noise. In the presence of the node, each anchor
receives faded signal with noise. If the phases
of the fading coefficients are known at each an-
chor, a coherent detection scheme, which needs
only one phase-synchronized matched filter, can
be applied. Similar to the estimation formula-
tion, we assume the TOA measurement is made
at each anchor. Since the arrival time can be es-
timated using both continuous time signal and
discrete time signal with high enough sampling
frequency [39], in this section, we assume discrete

time signals are extracted to detect the presence
or absence of transmission. In this case, vi(t) in
Figure 2 is sampled and a total number of N sam-
ples are extracted. Next, the N samples are cor-
related with the sampled transmitted signal and
compared with a threshold. If the phase is un-
known at any anchor, a non-coherent detection
scheme is applied. In this case, two demodula-
tors with 90 degree phase shift of each other are
needed, which is shown in Figure 3(a). Then vi(t)
in Figure 3(a) is sampled and N samples are ex-
tracted. By comparing the output of correlator
with a threshold, a final decision is made at each
anchor. If an anchor detects the node, it trans-
mits a bit “1” to the FC, otherwise it transmits a
bit “0”. The FC needs at least K anchors to de-
clare the node exists at the given location, where
K is a design parameter.

To detect the node, a binary hypothesis test-
ing problem at the ith anchor can be formulated
as

ri[n] =

{

ωi[n] underH0

hisi[n− ni] + ωi[n] underH1

. (48)

As before the fading coefficients, hi, are complex
Gaussian random variables. Both real and imag-
inary parts of hi have 0 mean and variance 1

2
, to

satisfy E [|hi|2] = 1; ωi[n] is additive Gaussian
noise with 0 mean and variance σ2; si[n] is the
modulated deterministic transmitted signal and
its total energy E =

∑N−1
n=0 s2i [n] is normalized; ni

is the true time delay between the node and the
ith anchor, where i = 1, 2, . . . ,M . The follow-
ing three cases are considered in this work. (a)
The fading coefficients are assumed to be known
at each anchor. In this case, conditioned on the
fading coefficients, ri[n] is Gaussian distributed
under both H0 and H1; (b) Amplitudes of the
fading coefficients are unknown at any anchor but
with a known prior distribution. In this case, the
Neyman-Pearson detector can be found by inte-
grating the fading effect [34]; (c) No CSI is avail-
able at any anchor. In this case, a non-coherent
detection scheme which extracts both in-phase
and quardrature components is used.
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3.1. Fading coefficients known at anchors

When the fading coefficients are known at each
anchor, the phases can be synchronized, and the
coherent detection scheme can be used. The hy-
pothesis testing problem at each anchor can be
formulated as

ri[n] =

{

ωi[n] underH0

|hi|si[n− ni] + ωi[n] underH1

. (49)

Since hi is a zero-mean complex Gaussian random
variable, |hi| is Rayleigh distributed. Conditioned
on |hi| and based on Neyman-Pearson theorem,
the ith anchor detects the node if the likelihood
ratio Li (r) satisfies

Li (r) =
f
(

r

∣

∣

∣
|hi|;H1

)

f (r;H0)
≶ γi, (50)

for some threshold γi, which balances the false
alarm and detection probabilities at each anchor.
Here, r = [ri[0], ri[1], . . . , ri[N − 1]]T , f (r;H0)
is the pdf of the received signal under H0, and

f
(

r

∣

∣

∣
|hi|;H1

)

is the pdf of the received signal con-

ditioned on |hi| underH1. Under bothH0 andH1,
r is Gaussian distributed, given by

f (r;H0) =
1

(2πσ2)
N
2

exp

(

− 1

2σ2

N−1
∑

n=0

r2i [n]

)

,

(51)
and

f
(

r

∣

∣

∣
|hi|;H1

)

=
1

(2πσ2)
N
2

× exp

(

− 1

2σ2

N−1
∑

n=0

(ri[n]− |hi|si [n− ni])
2

)

.

(52)

Taking the log of (50), and substituting (51)
and (52) into (50), and simplifying, we have

lnLi (r) =
N−1
∑

n=0

ri[n]si [n− ni] ≶
σ2 ln γi
|hi|

+
|hi|
2

.

(53)

Define Ti (r) = 1
σ
lnLi (r), so that (53) can be

expressed as

Ti (r) ≶ γ′
i (|hi|) , (54)

where

γ′
i (|hi|) =

√

σ2

|hi|2
ln γi +

1

2

√

|hi|2
σ2

(55)

is the threshold for the statistic Ti (r) and depends
on both γi and |hi|. Note that conditioned on |hi|,
Ti (r) is Gaussian:

Ti (r) ∼







N (0, 1) underH0

N
(

√

|hi|2
σ2 , 1

)

underH1

. (56)

The instantaneous probability of false alarm at
the ith anchor P i

FA is

P i
FA = Q (γ′

i (|hi|)) , (57)

and the probability of detection at the ith anchor
P i
D is

P i
D = Q

(

γ′
i (|hi|)−

√

|hi|2
σ2

)

, (58)

both of which are functions of |hi|. The average
false alarm probability P̄FA can be calculated by
averaging out the fading effect, which is given by

P̄FA = E
[

P i
FA

]

=

∫ ∞

0

Q (γ′
i (|hi|)) f|hi|2 (x) dx,

(59)
where the pdf of |hi|2 is given in (13).

Similarly, the averaged P̄D can be calculated
by

P̄D =

∫ ∞

0

Q

(

γ′
i (|hi|)−

√

|hi|2
σ2

)

f|hi|2 (x) dx.

(60)
After a decision is made at each anchor, it

transmits a “1” or “0” to a fusion center. The
fusion center needs to receive at least K “1”s to
decide the node is active, where K is a prede-
termined design parameter. Therefore, the total
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probability of false alarm and the total probabil-
ity of detection are given by

P̄T
FA =

M
∑

m=K

(

M

m

)

(

P̄FA

)m (

1− P̄FA

)M−m
, (61)

and

P̄T
D =

M
∑

m=K

(

M

m

)

(

P̄D

)m (

1− P̄D

)M−m
. (62)

Recall that the threshold γ′
i (|hi|) given in (54)

depends on the random channel amplitude |hi|.
The question arises as to whether this choice is op-
timal in the sense of maximizing P̄D when P̄FA ≤
α, where α is a constant. Now we want to prove
that the threshold γ′

i (|hi|) in (55) has the optimal
dependence on |hi|. We do this by casting the
threshold optimization problem as a variational
problem where the variable γ′

i (|hi|) is a function
of the channel:

Theorem 1. Consider the following optimization
problem

maximize

P̄D =
∫∞
0

Q

(

γ′
i (|hi|)−

√

|hi|2
σ2

)

f|hi|2 (x) dx

subject to
P̄FA =

∫∞
0

Q (γ′
i (|hi|)) f|hi|2 (x) dx ≤ α

,

where the variable function is γ′
i (|hi|). The opti-

mal threshold function is given in (55).

Proof: Please see the Appendix.

3.2. Fading coefficients with known phase but un-

known amplitude

Now assume that the amplitude of the fading
are unknown at every anchor with a known distri-
bution. In this case, |hi| in (49) is unknown but
with a known distribution. The Neyman-Pearson
detector at the ith anchor can be formulated as

Li (r) =
f(r;H1)

f(r;H0)

=

∫∞
0

f
(

r

∣

∣

∣
|hi|;H1

)

f|hi| (x) dx

f (r;H0)
≶ γi. (63)

Defining Ti (r) =
1
σ2

∑N−1
n=0 ri[n]si[n − ni] and as-

sume |hi| is Rayleigh distributed, we can express
(63) as

Li = Ti exp

(

T 2
i

2
(

1 + 1
σ2

)

)

×



1−Q





Ti
√

1 + 1
σ2







 ≶ γ′
i, (64)

where

γ′
i =

(

γi − 1

(1+ 1

σ2 )

)

(

1 + 1
σ2

)
3

2

√
2π

, (65)

and we drop the dependence of Li and Ti on x to
emphasize their functional relationship.

We found that for all SNR values, Li is a
monotonically increasing function of Ti. There-
fore, we can rewrite (64) as

Ti (r) =

N−1
∑

n=0

ri[n]si[n− ni] ≶ γ′′
i , (66)

here γ′′
i is a constant, which is not a function of

the measured data, and can be calculated numer-
ically as we now explain. Since the distribution
of Ti (r) ∼ N (0, 1), P̄FA can be calculated as

P̄FA = Q (γ′′
i ) , (67)

where γ′′
i can be found by taking the inverse of

(67).
Since under H1 shown in (56), conditioned on

|hi|, the distribution of Ti (r) ∼ N
(

√

|hi|2
σ2 , 1

)

,

the detection probability P i
D can be calculated as

P i
D = Q

(

Q−1
(

P̄FA

)

−
√

|hi|2
σ2

)

. (68)

The averaged P̄D can be calculated using

P̄D =

∫ ∞

0

Q

(

Q−1
(

P̄FA

)

−
√

|hi|
σ2

)

f|hi|2 (x) dx,

(69)
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which is different from (60), since γ′′
i does not de-

pend on |hi| anymore. Finally, the total probabil-
ity of false alarm and detection can be calculated
using (61).

Recalling that (53), is the detector for the case
when hi is known to anchors. Comparing it with
(66), which is the detector for the case when |hi|
is a random variable with Rayleigh distribution,
one can see that the detector for both cases rely
on the same statistic Ti (r). However, in (53) the
threshold is a function of the fading coefficients,
whereas in (66) the threshold is a constant that
only depends on the prescribed P̄FA. In Section 4
we will show (53) outperforms (66) as expected.
The closed form expression for P̄D in (69) is not
tractable. However, when no CSI is available at
each anchor, we will have a closed form expression
for P̄D as seen next.

3.3. No CSI is available at any anchor

When the knowledge of CSI is not available at
any anchor, a non-coherent detection scheme is
applied. The received bandpass signal is sampled
and both in-phase and quadrature components of
the signal are extracted [40]. The problem state-
ment can be formulated as

ri[n] =










ωi[n] underH0

hRis1i[n− ni]

+hIis2i[n− ni] + ωi[n] underH1

(70)

where s1i[n] and s2i[n] are the sampled signal si[n]
multiplied by cos(2πfcn) and sin(2πfcn) respec-
tively, fc is the carrier frequency, and ωi[n] can be
decomposed into in-phase and quadrature compo-
nents, ωRi[n] and ωIi[n] [34, §5.4]. Similarly, hRi

and hIi are the real and imaginary parts of the
fading coefficients respectively. We can rewrite
the hypothesis testing problem in vector format
as

ri =

{

ωi underH0

Sihi + ωi underH1

, (71)

where xi = [xi[0], xi[1], . . . , xi[N − 1]]T , and Si,
hi, and ωi are defined as

Si =











s1i[−ni] s2i[−ni]
s1i[1− ni] s2i[1− ni]

...
...

s1i[N − 1− ni] s2i[N − 1− ni]











, (72)

hi = [hRi hIi]
T (73)

and

ωi =











ωRi[0] + ωIi[0]
ωRi[1] + ωIi[1]

...
ωRi[N − 1] + ωIi[N − 1]











. (74)

The detector at the ith anchor can be com-
puted by calculating the log likelihood ratio which
is a quadratic function of ri

Li (r) = rTi SiS
T
i

(

SiS
T
i + σ2I

)−1
ri ≶ γi, (75)

After simplifications, Li (r) can be expressed as

Li (r) =
1

N
rTi SiS

T
i ri ≶ γi. (76)

The probability of false alarm and the proba-
bility of detection at the ith anchor can be calcu-
lated as [34, §5.4]

P̄FA = Pr{Li (r) > γi;H0}
= exp

(

− γi
12σ2

)

. (77)

In addition, the averaged probability of detection
P̄D can be expressed as a function of the P̄FA in
closed form:

P̄D = Pr{Li (r) > γi;H1}

=
(

P̄FA

)

1

1+ N

4σ2 . (78)

The overall P̄T
FA and P̄T

D can be calculated by sub-
stituting (77) and (78) into (61) and (62).

Comparing different cases, we can see that
when no CSI is available at any anchor, it is possi-
ble to express the detection probability as a func-
tion of the false alarm probability in closed-form
as shown in (78) at each anchor. In other sce-
narios, closed-form expressions are not tractable.
Therefore, P̄D is computed numerically. In all
cases, P̄T

FA and P̄T
D can be computed by substi-

tuting P̄FA and P̄D into (61) and (62).
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3.4. The choice of the design parameter K

As mentioned before, K is a predetermined
design parameter which is used to fuse the binary
decisions from each anchor in the following man-
ner. If K or more anchors detect a node, a final
detect decision is made. When K is large, which
means the fusion center requires most of the an-
chors to claim the node exists, both P̄T

FA and P̄T
D

decrease. On the other hand, When K is small,
both P̄T

FA and P̄T
D increase. However, for a given

total false alarm threshold P̄T
FA ≤ α, it appears

that there is an optimal value of K which maxi-
mizes P̄T

D . In Section 4 we will see the choice of
K under different values of P̄T

FA.

4. Simulation Results

4.1. Numerical Results for location estimation

We first consider a location estimation prob-
lem in 1-D. There are M = 4 anchors and 1
node. Figure 4 shows the CRLB comparison in
1-D between the AWGN case and the presence
of Rayleigh fading. In the high SNR regime, to
maintain the same variance of localization error,
CRLB in the presence of Rayleigh fading requires
about 5dB more power than the AWGN case.

Consider now a sensor network with M = 4
anchors at the corners of a 1m× 1m square, and
one node within the square, and Rayleigh fad-
ing. In Figure 5, we compare the CRLB for the
AWGN case in [12], the CRLB in (27), in which
the phase information is known at each anchor,
and the CRLB in Section 2.5 when no CSI is avail-
able. We observe that the CRLB for the AWGN
case is the lowest, followed by the CRLB when the
phase of the fading coefficients is known. When
there is no CSI available at any anchor, the CRLB
is the highest. In addition, one can see that ra-
tio between CRLB2-D (z) in (27) is about k = 10

3

higher than the CRLB in the absence of fading,
and the CRLB in the presence of fading without
knowing the phase at any anchor is a factor of
k = 4 higher than the CRLB in the absence of
fading, which corroborates (40).

In Figure 6 we plot the loss due to fading when
comparing with the AWGN case as a function of
the Nakagami m parameter in (23). As expected
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σ = 1
c .

from (25), when m = 1, which means the fad-
ing is Rayleigh distributed, the SNR loss is about
5dB. The loss decreases with increasing m and
converges to 1.

Finally, we compare estimators (31) and (32)
both in the presence of fading by plotting the nor-
malized SNR (with respect to c2) vs. the vari-
ance of localization error in Figure 7. We observe
that the fading ML estimator (31) performs better
than the AWGN ML estimator (32) in the pres-
ence of fading.

4.2. Numerical Results for location detection

In the location detection formulation, we con-
sider a 1m× 1m square, 4 anchors are at the cor-
ners, and 1 node is in the middle of the square.
The location of the node (when active) is known
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Figure 7: ML estimators comparison.

to all anchors. Figure 8 shows the comparison
between the AWGN case, fading coefficients are
known to the anchors, the amplitude of fading
coefficients are unknown but with a prior distri-
bution, and the no CSI case. Here we fix the de-
sign parameter K = 1 for all cases so that a single
anchor’s detection is sufficient for the FC to de-
tect the node. One can see from the figure that
the AWGN case outperforms all other cases as we
expected, followed by the fading coefficients are
known to anchors, the amplitude of fading coeffi-
cients are unknown but with a prior distribution,
and no CSI case gives the worst performance. In-
tuitively speaking, we expect higher probability
of detection when more information is available.

Figure 9 through Figure 11 show the ROC

curves for different cases as K changes. From the
figures one can see that for small P̄T

FA, K = 4
performs best, however as P̄T

FA increases, K = 4
is not a good choice. Therefore, none of the K
values outperform others for all P̄T

FA.
Figure 12 shows P̄T

D vs. SNR when P̄T
FA =

10−1 and K = 1, and the amplitude of fading is
Rayleigh distributed. From the figure one can see
that to maintain the same P̄T

D = 0.85, the no CSI
case needs 21.5dB SNR, followed by the case when
|hi| is unknown, which is about 19.6dB, and |hi|
is known needs the least amount of SNR, which
is about 18.5dB. Therefore, the SNR loss due to
Rayleigh fading is about 2dB, and unknown phase
causes an additional 1dB. However, one can also
see that as P̄T

D increases, the SNR losses decrease.
Figure 13 shows the ROC curve comparisons

between (66) and (53) at the first anchor. From
the figure we can see that by using the knowledge
of the magnitude of the fading coefficients to set
the threshold in (53), the performance is better
than the no CSI case (66).

Figure 14 shows the comparison between the
centralized detection scheme and the distributed
detection scheme when the fading coefficients are
known at each anchor case. We set the design
parameter to be K = 4. For the centralized de-
tection scheme, each anchor transmits the mea-
surements to a fusion center, the fusion center
combines all the measurements and use the de-
sign parameter K to make a final decision. From
the figure, the penalty for using a distributed ap-
proach can be seen. The penalty for using a dis-
tributed approach as compared with the central-
ized case is more pronounced at low P̄FA values.
This can be seen more clearly in Figure 15.

5. Conclusions

In this paper, we considered both location es-
timation and location detection in wireless sensor
networks (WSNs). To evaluate the performance
of location estimation, the CRLB (Cramer-Rao
lower bound) and the modified CRLB (MCRLB)
are derived under different assumptions of chan-
nel knowledge. The results show that in both 1-D
and 2-D WSNs, there is an SNR loss of about
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Figure 8: ROC curves for different scenarios.
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Figure 9: ROC curves when the fading coefficients are
known to all anchors when SNR = 15dB.

5dB compared to the AWGN case at high SNR.
Under each assumption of channel knowledge for
which the CRLB and MCRLB were derived, the
ML estimator was derived. Results show that the
ML estimator in the presence of fading has bet-
ter performance than the ML estimator derived
under the assumption of no fading, but used in a
fading environment.

In the detection formulation of the localiza-
tion problem, each anchor makes its own deci-
sion on the presence of a signal from the target
node, and transmits the decision to a fusion cen-
ter. The fusion center needs at least K anchors
to agree that the node exists to detect the pres-
ence of the node, where K is a design parameter.
Three scenarios are considered: the fading coef-
ficients are known at anchors; the phases of the
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Figure 10: ROC curves when the amplitude of the fading
coefficients are unknown to the anchors but with a prior
distribution when SNR = 15dB.
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Figure 11: ROC curves when no CSI is available at any
anchor when SNR = 15dB.

fading coefficients are known but the amplitudes
are unknown; and no CSI is available at any an-
chor. The ROC curves are plotted under different
channel assumptions. From the plots we can see
that the optimal K depends on the requirements
of P̄T

FA and P̄T
D , and no particular K value out-

performs others for all P̄T
FA. Finally, the simula-

tion results show that using the knowledge of the
fading coefficients to choose the threshold gives
better performance.
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A. Spanias, Maximum likelihood localization
in the presence of channel uncertainties, ISBN:
9781598297010, Predisclosure AzTE, 2013.

[24] P. Bergamo, G. Mazzini, Localization in sensor net-
works with fading and mobility, in: IEEE Interna-
tional Symposium on Personal, Indoor and Mobile
Radio Communications, 2002.

[25] S. Sattarzadeh, B. Abolhassani, TOA extraction in
multipath fading channels for location estimation, in:
IEEE International Symposium on Personal, Indoor,
and Mobile Radio Communications Conference, 2006.

[26] N. Vankayalapati, S. Kay, D. Quan, TDOA based
direct positioning maximum likelihood estimator
and the cramer-rao bound, IEEE Transactions on
Aerospace and Electronic Systems 50 (3) (2014)
1616–1635.

[27] B. Zhou, Q. Chen, P. Xiao, The error prop-
agation analysis of the received signal strength-
based simultaneous localization and tracking in
wireless sensor networks, IEEE Transactions on
Information Theory 63 (6) (2017) 3983–4007.
doi:10.1109/TIT.2017.2693180.

[28] I. Bergel, Y. Noam, Lower bound on the localization
error in infinite networks with random sensor loca-
tions, IEEE Transactions on Signal Processing 66 (5)
(2018) 1228–1241.

[29] S. Ray, W. Lai, I. Paschalidis, Statistical location de-
tection with sensor networks, IEEE Transactions on
Information Theory 52 (6) (2006) 2670–2683.

[30] N. Vankayalapati, S. Kay, Asymptotically optimal de-
tection of low probability of intercept signals using
distributed sensors, IEEE Transactions on Aerospace
and Electronic Systems 48 (1) (2012) 737–748.

[31] X. Zhang, C. Tepedelenlioglu, M. Banavar,
A. Spanias, Distributed location detection in
wireless sensor networks, in: Asilomar Conference on
Signals, Systems and Computers, 2013, pp. 428–432.

[32] S. Yan, R. Malaney, I. Nevat, G. Peters, Signal
strength based location verification under spatially
correlated shadowing, in: IEEE International Con-
ference on Communications, 2014, pp. 2617–2623.

[33] H. Van Trees, Detection, Estimation and Modulation
Theory, John Wiley and Sons, Inc., 1968.

[34] S. Kay, Fundamentals of Statistical Signal Processing
- Volume II Detection Theory, Printice Hall, 1998.

[35] C. Helstrom, Elements of Signal Detection and Esti-
mation, Prentice Hall, 1994.

[36] A. Andrea, U. Mengali, R. Reggiannini, The modi-
fied cramer-rao bound and its application to synchro-
nization problems, IEEE Transactions on Communi-
cations 42 (234) (1994) 1391–1399.

[37] A. Goldsmith, Wireless Communications, Combridge
University Press, 2005.

[38] I. Gradshteyn, I. Ryzhik, Tables of Integrals, Series,

18

http://dx.doi.org/10.1109/JPROC.2018.2828858
http://dx.doi.org/10.1109/TSP.2016.2539139
http://dx.doi.org/10.1109/TSP.2012.2210886
http://dx.doi.org/10.1109/LWC.2016.2567394
http://dx.doi.org/10.1109/TIT.2017.2693180


and Products, Elsevier Inc., 2007.
[39] R. Zekavat, M. Buehrer, Handbook of Position Lo-

cation: Theory, Practice and Advances, Wiley-IEEE
Press, 2011.

[40] A. Ong, Bandpass analog-to-digital conversion for
wireless applications, Tech. rep., Stanford University
(1998).

Appendix A. Proof of Theorem I

To prove the Theorem, we express the La-
grangian as

∫ ∞

0

Q

(

γ′
i (|hi|)−

√

|hi|2
σ2

)

f|hi|2 (x) dx+

λ

(
∫ ∞

0

Q (γ′
i (|hi|)) f|hi|2 (x) dx− α

)

.

(A.1)

Taking the derivative of (A.1) with respect to γ′
i,

we have

∫ ∞

0

∂Q

(

γ′
i (|hi|)−

√

|hi|2
σ2

)

∂γ′
i (|hi|)

f|hi|2 (x) dx+

λ

∫ ∞

0

∂Q (γ′
i (|hi|))

∂γ′
i (|hi|)

f|hi|2 (x) dx.

(A.2)

Setting (A.2) to 0, applying the formula dQ(x)
dx

=

− 1√
2π

exp
(

−x2

2

)

, and solving for γ′
i, we have

γ′
i (|hi|) = lnλ

√

σ2

|hi|2
+

1

2

√

|hi|2
σ2

. (A.3)

Setting λ = γ, (A.3) is equivalent to (55), which
proves Theorem I.
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