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Abstract—Massive MIMO is considered to be one of the key tech-
nologies in the emerging 5G systems, but also a concept applicable to
other wireless systems. Exploiting the large number of degrees of freedom
(DoFs) of massive MIMO essential for achieving high spectral efficiency,
high data rates and extreme spatial multiplexing of densely distributed
users. On the one hand, the benefits of applying massive MIMO for
broadband communication are well known and there has been a large
body of research on designing communication schemes to support high
rates. On the other hand, using massive MIMO for Internet-of-Things
(IoT) is still a developing topic, as IoT connectivity has requirements
and constraints that are significantly different from the broadband
connections. In this paper we investigate the applicability of massive
MIMO to IoT connectivity. Specifically, we treat the two generic types of
IoT connections envisioned in 5G: massive machine-type communication
(mMTC) and ultra-reliable low-latency communication (URLLC). This
paper fills this important gap by identifying the opportunities and
challenges in exploiting massive MIMO for IoT connectivity. We provide
insights into the trade-offs that emerge when massive MIMO is applied
to mMTC or URLLC and present a number of suitable communication
schemes. The discussion continues to the questions of network slicing of
the wireless resources and the use of massive MIMO to simultaneously
support IoT connections with very heterogeneous requirements. The main
conclusion is that massive MIMO can bring benefits to the scenarios with
IoT connectivity, but it requires tight integration of the physical-layer
techniques with the protocol design.

Index Terms—mMTC; URLLC; Massive MIMO; 5G; Activity de-
tection; Collision resolution; Extended coverage; short packets; NR;
Random Access (RA); Grant-based RA; Grant-free RA; Unsourced
RA; Network Slicing; compressing sensing; sparsification; covariance
methods; Cross-layer optimization design

I. INTRODUCTION

A. The Heterogeneous 5G services

Future 5G New Radio (NR) networks will support a variety of con-
nections with heterogeneous requirements, built upon three generic
types of connectivity illustrated on Figure 1: extended mobile broad-
band (eMBB), ultra-reliable low-latency communication (URLLC)
and massive machine-type communication (mMTC). eMBB is a
natural unfolding of LTE, where the primary goal is to increase the
user data rates and network spectral efficiency. The enhancements
provided by eMBB target mainly human-type traffic, such as high-
speed wireless broadband access, ultrahigh-quality video streaming,
Virtual Reality and Augmented Reality.
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Figure 1. Massive MIMO and the 5G services.

The other two services, URLLC and mMTC, are the cornerstones
of machine-type traffic and thus enablers of various types of Internet
of Things (IoT) connectivity. URLLC, also known as mission-critical
IoT, envisions transmission of moderately small data packets (in
the order of tens of bytes) with extremely high-reliability, ranging
between 99.999% and 99.9999999%, i.e. down to 10−9 packet
error probability [1]. The user plane latency requirement is most
commonly defined to be 1 ms, including uplink (UL) and downlink
(DL) roundtrip transmission [2]. In URLLC the device activity pattern
is often not deterministic, but rather intermittent. However, it is
generally assumed that it is likely that only a few URLLC devices
that are active simultaneously. URLLC is seen as an enabler of
safety systems, wireless industrial robots, autonomous vehicles (cars,
trucks, drones), immersive virtual reality with haptic feedback, tactile
Internet, and many others which may not even be foreseen at this
point.

mMTC aims to provide service to a vast number of devices,
out of which only a certain fraction are active at a given time.
The packet lengths in mMTC are comparable to URLLC, being
assumed to be rather short, in the range of tens of bytes. The
main challenge of mMTC is to enable access for sporadically active
devices, such that at any given instant an unknown subset out of
the massive set of devices wishes to send messages. Most mMTC
applications do not have strict delay requirements. The performance
is assessed in terms of how many devices can be served within a
certain time-frequency resource grid, assuming a certain predefined
level of reliability that is much lower compared to URLLC. Spectral
efficiency (SE) becomes critical, as the overhead of transmitting very
small, sporadic payloads from a large set of devices in a typical LTE-
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type network becomes considerable [3]. Energy efficiency is critical
at the device side, as a large proportion of the mMTC devices are
expected to be low-power sensors that are battery-driven. Therefore,
even if access latency is not critical, collisions occurring in the access
will affect the energy consumption of the devices. Furthermore, the
deployment of some of these sensors can be in very remote or in
low-coverage areas, which brings up the need of having extended
coverage capabilities. Any massive deployment of connected devices
falls into the category of mMTC, where devices are mainly sensors
used to gather measurements from various environments, such as
weather, industry, energy, agriculture, transport, etc. Note that the
term IoT may be encountered as an umbrella term for mMTC, but
we emphasize that in the context of 5G, IoT is also extended to cover
mission-critical IoT, associated with URLLC.

B. The Three Services in the Context of Massive MIMO

A massive antenna array is seen as a distinctive technology in the
context of the next-generation wireless systems [4], [5]. The large
number of spatial degrees of freedom (DoFs) created by the massive
arrays contribute to achieving two important features: channel hard-
ening and favorable propagation [6], [7]. The occurrence of channel
hardening essentially means that the massive multi-antenna pre-
or post-processing transforms the channel into almost deterministic
quantities, making the links quasi-immune to small-scale variations of
the instantaneous channel. The occurrence of favorable propagation
means that as the size of the antenna array grows, the propagation
channels to different users become more separable. Therefore, the
many-antenna BS becomes more efficient in mitigating inter-user
interference through the use of spatial multiplexing techniques.

The large array gain, coupled with these two features ensure that
massive MIMO is the main enabler of high user throughput and high
spectral efficiency for eMBB [8], [9]. In fact, the majority of works
have optimized the use of massive MIMO in the context of the high-
rate eMBB service. The use of massive MIMO for IoT connectivity
has received significantly less attention in the research literature.
Massive MIMO holds a potential to support transmission techniques
that are suitable for both URLLC and mMTC. However, the massive
MIMO techniques used for eMBB are not directly transferable to
URLLC and mMTC due to vastly different requirements of these IoT-
related services. This paper fills this important gap by identifying the
opportunities, challenges and tradeoffs of exploiting massive MIMO
for URLLC and mMTC.

In URLLC, the spatial DoFs are essential in attaining the high reli-
ability requirements, as the low-latency requirement severely reduces
the time diversity. The large number of spatial DoFs contribute to the
channel hardening, reducing the odds of having a low energy channel
realization that might result in an outage event. Furthermore, the
large number of spatial DoFs combined with favorable propagation,
enable good spatial separation of devices and thereby efficient spatial
multiplexing. However, the efficient use of the large number of
spatial DoFs is critically dependent on the channel estimation process,
which in massive MIMO can be time-consuming and therefore not
directly suited for low latency services. Thus, in supporting URLLC,
massive MIMO operation should depart from its eMBB-optimized
operation, in which the objective is to estimate the channel as fully
as possible and then load the spatially multiplexed channels with
highest possible rate. In URLLC, low latency dictates a shorter
estimation period, which means that massive MIMO should either
operate in a non-coherent mode or shorten the estimation process
by relying on a structure present in the channel. Such structure can
be manifested through, fro example, the second-order statistics. Fur-
thermore, imperfect channel estimation affects inter-user interference,

such that sometimes Time-Division Mutliple Access (TDMA) may
be preferable to imperfect spatial multiplexing of users. Channel
estimation complexity in the case of massive MIMO has lead also
to a preference towards time-division duplexing (TDD), since in this
case one can rely on the channel reciprocity between UL and DL
channels. This is in contrast to frequency-division duplexing (FDD),
where the task of estimating the DL channel becomes tedious.

The requirements of mMTC pose an entirely different set of
problems, such as activity detection [10], [11], [12], [13], collision
resolution [14], [15], [16], [17] and wide-area low-rate coverage.
Massive MIMO can be used to efficiently support mMTC due to
the following two features: (i) the favorable propagation property
enables multi-user detection (MUD) for a large number of devices;
(ii) the array gain can boost the signal-to-noise ratio (SNR) for
extended coverage requirements. Considering the fact that the central
problem in mMTC is the detection of the activity and decoding
of the data for an unknown subset of sporadically active devices,
the primary benefit from massive MIMO for mMTC is likely to
be in the large spatial multiplexing capability. The large number of
antennas are instrumental in utilizing the sparsity in activity detection.
Furthermore, in the event of sudden, large number of correlated
arrivals, the large array is capable to absorb and resolve a large
number of devices as well as decode the associated data packets.

This paper addresses the means through which massive MIMO
enables URLLC and mMTC. Besides the support of the individ-
ual services, we also discuss the suitability of massive MIMO to
support a mix of different services through slicing of the wireless
resources [18]. This will reveal interesting tradeoffs that arise due
to interaction among the services while trying to exploit the massive
number of antennas. As this paper shows, massive MIMO can be
a powerful instrument in the quest of fulfilling the requirements of
IoT connectivity. However, in order to fully reap its benefits, physical
layer signal processing techniques need to be integrated with protocol
design, with techniques such as channel estimation, retransmission,
random access, scheduling, etc.

The paper is organized as follows. The next section discusses the
related work. Section II-B discusses 5G standardization aspects and
the 3GPP approach to MTC and mMIMO. Sections III and IV discuss
specific aspects of employing mMIMO to achieve URLLC and
mMTC, respectively. Section V provides considerations on network
slicing in a mMIMO network, and Section VI provides conclusions
and offers further research directions.

II. RELATED WORKS

A. Research Literature

1) Massive MIMO for eMBB: The quest for maximizing SE in
eMBB is considered to be the main motivation of using massive
MIMO [5], [8]. In order to achieve high SE, careful optimization of
the number of spatially multiplexed users, as well as channel training
overhead needs to be considered. As the number of antennas increase,
channel hardening becomes more effective [19]. On the other hand, as
the channel exhibits more spatially correlated scattering, the channel
hardening effect occurs to a smaller extent [6], [19]. Therefore, the
trade-off between array size and the number of DoFs per user has
been investigated [9] from the perspective of the achievable rate.

Pilot contamination in a multi-cell massive MIMO system is
largely considered as the most severe limiting factor in achieving high
SE [20], [21], [22]. However, recent developments [23] show that
even in the presence of pilot contamination, the capacity of massive
MIMO systems is unbounded as the number of antennas grow, for
the case of spatially correlated channels.
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2) URLLC and massive MIMO: The general principles of achiev-
ing URLLC have been discussed in [24], where the importance of
optimizing the reliability of the signaling information is highlighted,
as well as efficient utilization of the diversity sources. URLLC
is treated from a massive MIMO perspective in [25], where the
authors emphasize the requirements of tactile Internet and how many
antennas are needed to meet the requirements for a given number
of simultaneous users, using maximum-ratio transmission (MRT)
and zero-forcing (ZF) beamforming, and assuming ideal channel
estimation. However, in practice, channel estimation is rarely ideal,
being affected by imperfections or pilot interference between users.
In this sense, [26] proposes exploiting the forward error correction
(FEC) code diversity in order to assign unique user signatures, which
allow separating the pilot-interfering users.

Coherent and non-coherent UL transmissions are compared in
[27] for the case of multi-antenna base-station (BS) and single- or
two antennas at the transmitting device. The authors conclude that
non-coherent transmission requires higher SNR to achieve the target
reliability, and that the single-antenna at the transmitter is not a
limiting factor in achieving high reliability.

A stochastic network calculus approach is adopted in [28], where
the authors evaluate the latency-reliability trade-off using the delay
violation probability. It is shown that increasing number of antennas
(however, only up to M = 10) considerably reduces the delay viola-
tion probability. A similar approach is taken in [29] with respect to
the evaluated metric, where the authors model the latency-reliability
trade-off by imposing a probabilistic constraint on the length of the
queue at the BS. The end-to-end delay, comprising queueing delay,
frame transmission and backhaul latency has been considered in [30],
where the authors consider the joint optimization of transmit power,
bandwidth and number of active antennas for a given number of active
users in order to maximize the energy efficiency under Quality-of-
Service (QoS) constraints of a massive MIMO network.

3) mMTC: In [31], authors focus on the massive mMTC service
within a multi-service air interface. Authors discuss in a broad sense
the different physical and medium access techniques to tackle the
problem of a massive number of access attempts in mMTC. The
main conclusion is that, in order for mMTC to take place, there is a
need for efficient access protocols capable of withstanding a massive
number of devices that contend for network access. Physical layer
techniques include a) multi-user detection using compressive sensing
(CS) techniques, b) collision resolution and harnessing of interference
using physical layer network coding, and c) non-orthogonal access
with relaxed time-alignment. In terms of medium access layer, tech-
niques include a) coded random access and signature based access,
b) one/two-stage random access and fast uplink access protocols with
a focus on latency reduction.

Grant-free mMTC activity and data detection is tackled in [32],
where the authors consider a massive MIMO scenario and employ
compressed sensing to retrieve the device activity and the short
messages. Another approach of solving the activity detection and
collision resolution is the grant-based strongest-user collision res-
olution (SUCR) protocol described in [14]. The reason for using
such an approach is to be able to solve the collisions prior to the
channel training phase and data transmission, with a limited number
of orthogonal pilot sequences which is much lower than the total
number of devices. In an mMTC scenario, the number of devices can
easily exceed the number of orthogonal pilots; therefore, collision
resolution methods have been proposed in the literature, and are
summarized in [33].

Throughout the paper we will use boldface small (x) and boldface
capital letters (X) to denote vectors and matrices, respectively. The
superscripts (·)∗, (·)T and (·)H denote the conjugate, transpose and

the conjugate transpose operations, respectively, and|·| and ‖·‖ denote
the absolute value and the `2 vector norm. The notations Pr[·],E[·]
and RSD[·] denote the probability of an event, the expectation and
the relative standard deviation of a random variable, respectively.

B. 3GPP standardization

5G NR will include the key aspects of massive MIMO, namely
advanced antennas with complex digital beamforming, or hybrid
analog/digital beamforming, and large antenna arrays. In 2018, 3GPP
froze the first 5G NR specification, Release 15 [34], focusing on early
commercial deployments and a subset of the 5G requirements, mainly
related to eMBB. 5G NR R15 supports a maximum of 256 antenna
elements, compared to the 64 elements in Release 13. With massive
MIMO, beamforming is exploited by combining multiple antenna
elements to focus the power in a specific direction. 5G NR specifies
new initial access techniques for beamforming that will utilize beams
sweeping so that the BS can identify the strongest beam and establish
a connection. The MIMO implementations in NR support frequencies
below and above 6 GHz, and FDD and TDD.

The second phase of the standardization, to be finalized at the end
of 2019, targets fulfillment of the full set of 5G requirements. Par-
ticularly, there is a work item dedicated to the MIMO improvements
that includes, among others, enhancements to the multi-beam and
multi-transmission point operation and to the multi-user MIMO (MU-
MIMO). Physical layer enhancements for URLLC and the industrial
IoT are also part of the on-going work.

One remarkable feature for the support of massive MIMO was
the introduction, already in LTE-A, of Full-Dimension MIMO (FD-
MIMO). FD-MIMO utilizes an active antenna system (AAS) with
a 2D plannar array structure, which allows for a large number
of antenna elements to be packed. Even more important is the
possibility of adaptive electronic beamforming, to form a beam in
both horizontal and vertical direction and cover any point in the 3D
space.

The 5G NR frame [35] has been designed with the premise of
providing the necessary flexibility to support a heterogeneity of
5G services and requirements. Figure 2 illustrates some possible
configurations. The general design principle is that static and/or
strict timing relations are avoided. For example, asynchronous hybrid
automatic repeat request (HARQ) is used instead of predefined
retransmission time. A slot is defined as 7 or 14 orthogonal frequency-
division multiplexing (OFDM) symbols for subcarriers up to 60 kHz,
and 14 OFDM symbols for subcarrier spacing higher than 60 kHz.
Data transmission can span multiple slots, to increase the coverage
or reduce the overhead due to switching and control information.
The TDD DL/UL scheme is much more flexible than in LTE: a
slot can contain all DL, all UL, or almost any other DL/UL ratio,
and the pattern can be changed in each slot or subframe. A faster
TDD switching allows for a more flexible capacity allocation. The
possibility of having sounding reference symbols (SRS) in every slot
allows a more optimized TDD channel reciprocity and therefore more
efficient massive MIMO. Low-latency for URLLC cases is possible
thanks to faster TDD turn-around and the self-contained concept,
such that data and ACK can be scheduled in the same slot. For low
latency transmissions, a mini-slot has a flexible start position (it can
start at any time) and a duration shorter than a regular slot duration.
The mini-slot can be as short as one OFDM symbol and it constitutes
the smallest scheduling unit.

For the Channel State Information (CSI), 5G NR introduces Type I
and Type II CSI [35]. The former is the normal codebook-based CSI
feedback where the device sends back a precoder matrix indicator
(PMI) to the gNB, and it supports multi-panel scenarios by having
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Figure 2. Examples of 5G TDD frames.

a co-phasing factor across antenna panels. The Type II is an en-
hanced scheme that enables explicit feedback and/or codebook-based
feedback with higher spatial resolution. It can report the wideband
and sub-band amplitude information of the selected beams, such that
better precoded MIMO transmission can be employed by the network.

Release 15 has prioritized eMBB services, while the full support
for URLLC and mMTC services is expected to be completed in
Release 16 and beyond. Specifically, there are on-going activities
in the form of work and study items on physical layer enhancements
for NR URLLC, channel modelling for indoor industrial scenarios,
and NR Industrial Internet of Things (IoT).

Another important feature in NR is the efficient support of a mix
of services. Network slicing is the virtualized technology framework
that will accommodate the high requirements heterogeneity of 5G
MTC networks [18]. Significant progress has been done in 3GPP with
regard to the core network and the functional aspects with, e.g., the
definition of the network slice identifiers, and procedures and func-
tions for slice selection. However, the exploitation of network slicing
in the Radio Access Network (RAN) is not mature in the specification
yet. In the research domain, the authors in [36] propose a functional
framework for the realization of network slicing management in the
RAN, whereas [18] discusses the communication-theoretic limits. As
it will be discussed in Section V, the implementation of network
slicing in a massive MIMO deployment presents additional challenges
and opportunities.

III. MASSIVE MIMO SOLUTIONS FOR URLLC

This section presents an overview of the latency and reliability met-
rics of URLLC, and discusses how the properties of massive MIMO
can enable achieving these strict constraints. Downlink transmission
is considered for the most part, as the acquisition of the CSI is more
critical at the massive antenna transmitter, especially under a strict
latency constraint. Beamforming methods with imperfect CSI are
studied in a single-user TDD system, then extended to the two-user
multiplexing case with a varying constraint on the latency. Feasibility
of low-latency FDD operation is also discussed in the DL scenario
of URLLC, as well as a few methods for UL transmissions with
deteriorated CSI.

A. URLLC Metrics: Physical Layer Reliability and Latency

In URLLC, the most important metrics are latency and reliability.
Several types of latency are encountered in the context of URLLC.
The most common is the user-plane radio latency, defined in [37],
[38] as the time duration between a packet arriving at the transmitting
layer-2 radio protocol and its delivery at the receiving layer-3
protocol. The reliability is defined by 3GPP as the probability of
successfully transmitting a number of bytes within a certain user-
plane delay. More specifically, a general requirement for URLLC is
a reliability of 1− 10−5 for transmitting a 32-byte packet within

1 ms user-plane latency. Within the user-plane delay, the user-plane
reliability can be increased if retransmissions are performed. In this
case, the physical layer latency must be smaller than the user-plane
latency, whereas the physical layer reliability may be lower than
the target user-plane reliability, which would be compensated by
retransmissions.

For the remainder of this section, we will only focus on the
physical layer latency, which we will simply refer to as latency. In a
communication theoretic sense, the physical layer latency of a packet
is commonly expressed in terms of the number of symbols (or channel
uses) it takes to transmit it. For a fixed data size, the more symbols
available, the lower the rate and the higher the reliability becomes.
Therefore, in a scenario where we have a certain number of bits to
transmit, we can aim for a target reliability under varying latency, or
for a target latency with unconstrained reliability. Let us consider the
latter option for now, such that b bits need to be transmitted within a
certain latency of N symbols. Note that the conversion of the latency
into actual time requires specification of the bandwidth user in the
system [38]. Unless explicitly stated otherwise, here we assume a
normalized bandwidth and focus on the rate in terms of bits per
channel use. This imposes a transmit rate R = b/2N for a complex
channel, where one symbol can be regarded as two channel uses in
a real channel. The physical layer reliability can be expressed as
the complementary event to achieving an outage in the transmission,
that is 1− Poutage. Considering the fact that the impact of quasi-static
fading dominates the effect of the finite blocklength [3], the outage
probability is defined as follows:

Poutage = Pr
[
R > log2(1 + γ)

]
. (1)

Provided that the rate is fixed, as well as that transmissions are
scheduled and are thereby free of interference, from (1) it follows
that there exists a threshold SNR γth = 2R − 1 such that a packet
encoded with rate R can be reliably decoded. Therefore, the outage
probability can be expressed as:

Poutage = Pr [γ < γth] . (2)

B. Favorable Massive MIMO Properties and CSI Acquisition

Due to the low-latency constraint, it is very challenging to use time
diversity in order to support URLLC. At the physical layer URLLC
can benefit from frequency diversity provided by the wideband
OFDMA, as well as from space diversity offered by the massive
antenna arrays. Space diversity manifests through the two phenomena
mentioned previously: channel hardening and favorable propagation
[6], [19]. Channel hardening is particularly important for URLLC, as
it diminishes the impact of small-scale fading in a similar fashion as
time diversity would do over multiple coherence intervals. Favorable
propagation is important when performing spatial multiplexing of
several URLLC devices, as it ensures that the streams to the devices
can be well separated at the massive array BS, provided that the BS
has obtained CSI from the devices.

In order to make use of downlink precoding schemes, the massive
array transmitter must be aware of the CSI. The task of acquiring
DL CSI at the transmitter is challenging in FDD systems, since
the training length is dependent on the number of BS antennas. In
contrast, in TDD systems channel reciprocity is assumed between UL
and DL, and therefore, UL training can be utilized to estimate the
channel coefficients at all antennas simultaneously, i.e. the training
length is independent of the number of antennas. This mode of
operation alleviates the CSI acquisition procedure, such that massive
MIMO is commonly based on TDD operation.
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Figure 3. An URLLC frame containing UL training symbols, guard period
(GP) and DL data, with 60 kHz subcarrier.

C. Imperfect full CSI

Assuming the case of one single-antenna device, the BS can
estimate the channel coefficient for each antenna based on the UL
pilots sent by the device by using the least squares (LS) method. The
M × 1 vector estimate of the channel coefficients can be expressed
as

ĥ =
1

t
Ytp

H (3)

where t is the training length, p is the 1 × t pilot vector fulfilling
pHp = tI, and Yt is the M × t received training signal. The noisy
LS estimates for the channel coefficients at each BS antenna ĥ are
then used to perform DL MRT. The transmitter uses the precoding
filter wMRT = ĥH/‖ĥ‖, and the DL MRT SNR at the device is then:

γDL
MRT =

ρ

σ2
n

∣∣∣ĥHh
∣∣∣2∥∥ĥ∥∥2 , (4)

where ρ and σ2
n denote the transmit power and the noise variance,

their ratio being the pre-processing SNR.

D. Exploiting channel sparsity

In reality, fading channels are not seen as i.i.d. coefficients from
the massive array BS. Instead, the coefficients experience a cer-
tain correlation, based on the spatial structure of the propagation
environment. Let us consider the case of a cluster-based channel
model, in which each cluster is characterized by a set of propagation
paths based on their angle of departure (AoD) and their angle of
arrival (AoA) [6], [9]. In addition, each propagation path incurs
an attenuation given by an independent fading coefficient following
a zero-mean circularly symmetric complex Gaussian distribution,
with exponentially distributed power, decreasing with a power decay
factor, defining the maximum decrease between the strongest and
weakest path.

In a simplified form, for a single-antenna user, the channel can be
expressed as the following column vector

h =

NP∑
i=1

αisi. (5)

Here, NP is the total number of paths, αi is the fading coefficient
of path i, and si is the normalized steering vector for each path.

This spatial structure of the channel can be captured using sec-
ond order statistics, more specifically, by estimating the channel
correlation matrix of each device at the BS [6], which is defined
as R = E[hhH ], where the expectation is taken over the channel
realizations. In addition to the TDD channel reciprocity, let us assume
that the the correlation matrix of the device is perfectly known at
the BS. This sets the context to discuss how the precoding can be
enhanced using the second-order statistics of the channel.

The correlation matrix takes the following form when expressed
based on the singular value decomposition:

R = VΛVH . (6)

Here, V is an M ×Np matrix containing the singular vectors of the
channel and Λ is the diagonal matrix containing the NP eigenvalues
of the channel. Both the instantaneous estimated channel coefficients
ĥ and the channel second-order statistics in the form of the singular
vectors (SV) V can be utilized in forming the DL precoding vector
wSV.

The procedure [39] consists in projecting the instantaneous channel
estimate vector ĥ on the subspace spanned by the singular vectors
V. The result is ĥTV, which represents the instantaneous fading
coefficients for each singular vector, thereby being a refined instan-
taneous estimate, as the noise lying outside of the subspace of the
singular vectors is eliminated. This result is then used to form the
projected estimated channel ĥTVVH , its matched filter being the
beamforming vector

wSV =
VVH ĥ∗∥∥VVH ĥ∗

∥∥ . (7)

The DL SNR has then been showed [39] to be

γDL
SV =

ρ

σ2
n

∣∣∣hTVVH ĥ∗
∣∣∣2∥∥∥VVH ĥ∗
∥∥∥2 . (8)

Compressed sensing methods could potentially be employed as well,
however, at the expense of higher complexity and latency.

E. Impact of training duration

The training length is an important parameter, especially when
dealing with low-latency transmissions. Figure 4 shows the depen-
dence of the mean and relative standard deviation (RSD) of the DL
SNR γ on the training length, for the MRT scheme and for the
SV-based precoding. It can be seen that increasing the number of
training symbols for the SV-based scheme provides minimal increase
in average SNR and minimal decrease in RSD. However, it can
be noticed that MRT is more sensitive to the training length, such
that increasing the training length can be beneficial. Figure 5 shows
how the outage varies in a latency constrained scenario where the
total number of channel uses are limited, as the training symbols
are increased. It can be seen that for the case of 28 symbols (2
slots of 14 symbols with one subcarrier of 60 kHz, corresponding
to 0.5 ms duration), the optimal number of training symbols is
slightly different for the two schemes. Note that as more symbols
are used for training, fewer symbols remain for data, therefore, a
higher rate and SNR threshold being required to successfully decode
the packet. Furthermore, it can be seen that the scheme relying
on projecting the channel estimate on the singular vector subspace
achieves between 1 and 2 magnitudes lower outage probability. It is,
therefore, worthwhile to consider such a precoder which can exploit
the channel correlation in order to refine the instantaneous CSI.

F. Multi-user setting: SDM vs TDM

In a multi-user setting, another trade-off arises in terms of how
to allocate the DoFs between the multiplexed devices. If spatial
multiplexing, or space division multiplexing (SDM), is employed,
the spatial DoFs are shared, whereas if time division multiplexing
(TDM) is employed, the devices use the full spatial DoFs, but share
the time resources.

SDM can be particularly suitable when the devices share the same
latency requirements, as they can be served simultaneously with a
fixed physical layer latency. Therefore, in SDM, the average device
latency is equal to the system level latency. Here, by system level
latency we consider the total latency required to serve the devices.
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comprising 28 symbols in total, with a duration of 0.5 ms.

TDM, on the other hand, may be suitable when the latency
requirements may differ, or when traffic is prioritized. In TDM, the
devices experience different latency, depending on the transmission
priority. Therefore, the average device latency is smaller than the
system level latency.

The effects of the two multiplexing strategies can be observed in
Figure 6. TDM requires higher system latency to serve both devices
with the same reliability as SDM with ZF. This is due to the increased
data rate caused by the sharing of time resources, which, in turn,
causes the threshold SNR γth to soar. However, the first device
experiences lower latency and, for this reason, the average device
latency is similar for the two schemes, despite the overall system
latency being higher in the case of TDM than SDM. This further
states that SDM is more suitable when multiplexing devices with the
same latency requirement, and that TDM is suitable for multiplexing
devices with distinct latency characteristics.

The efficiency of spatially multiplexing the devices depends on
several factors, such as which multiplexing technique is used (here
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Figure 6. Comparison between latency-outage performance of TDM and
SDM for the DL transmission to two devices. TDM relies on using the refined
instantaneous estimate over the SVs of the channel covariance matrix, whereas
SDM relies on ZF based on instantaneous channel estimates. The dashed line
indicates the average latency-outage characteristic of the TDM scheme. The
channel is assumed to be sparse with NP = 10 paths, with 10 dB decay and
8 dB pre-processing SNR.

MRT and ZF) and the channel estimation accuracy. The signal-to-
interference-and-noise ratio (SINR) when multiplexing two devices
can be expressed, regardless of the multiplexing technique, as:

γ1 =
|h1w1|2

σ2
n|h1w1|+

∣∣(h1w1)Hh1w2

∣∣2 (9)

where wi is the beamforming vector for each device, depending
on the beamforming method. If MRT is used, the numerator is
maximized, without taking into account the interference term in the
denominator. If ZF is used, the interference term in the denominator
is minimized. The extent to which this can be performed is dictated
by the accuracy of the channel estimate which is used in w2. For
low-SNR scenarios, several pilot symbols per device or estimation
refinement using second order statistics are beneficial in order to
improve the multiplexing efficiency.

G. Feasibility of FDD in URLLC

Legacy systems benefit from operating in FDD for two main
reasons: lower latency and no need for guard-time when switching
between UL and DL. However, due to the channel estimation pro-
cedures, massive MIMO is generally assumed to operate in TDD.
FDD operation is possible in massive MIMO only when the channel
is assumed to be sparse, such that the BS is able to estimate
the instantaneous coefficients of the dominant paths in the DL by
transmitting orthogonal pilots, and then receiving the coefficients
as a feedback from the device. This operation incurs considerable
overhead, which increases with the number of dominant propagation
paths, as the number of DL orthogonal pilots and the number of
symbols used for UL feedback scale with the number of dominant
paths.

Let us assume that the correlation matrix is known at the BS,
therefore the BS knows the dominant singular vectors and their
relative power, represented by the diagonal eigenvalue matrix. With
this knowledge, the BS constructs an orthogonal set of pilots equal to
the number of singular vectors to be estimated. Note that the number
of singular vectors to be estimated does not necessarily have to be
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the full size of the dominant eigenspace (Ns < NP ). The DL SNR
can be expressed similarly to (8) as:

γFDD =
ρ

σ2
n

∣∣∣hTVNs β̂
H
∣∣∣2∥∥∥VNs β̂

H

∥∥∥2 , (10)

where β̂ = ̂hT
DLVNs are the estimated coefficients for each singular

vector which are in the simplest case fed back in an analog manner
[40].

The trade-off between the outage probability and the number of
singular vectors to estimate is shown in Figure 7. It can be seen
that for NP = 4, all the singular vector instantaneous coefficients
should be estimated in order to minimize the outage. However, as
the channel diversity increases, the optimal Ns becomes as low as
6 for a channel with a total of NP = 16 paths. This is due to the
increasing overhead required to estimate additional SVs.

Figure 8 shows the latency-reliability trade-off for TDD and FDD.
It can be seen that in TDD, utilizing the SV-based scheme provides
considerable improvements over MRT. For both schemes, the number
of training symbols is optimized such that the reliability is maximized
for each latency. The training varies between 1-3 and 1-2 symbols for
TDD-MRT and TDD-SV, respectively, out of a total of between 20
and 40 channel uses defining the latency. For FDD, the performance is
degraded compared to TDD schemes, due to the increased overhead
required to estimate the SVs. The optimal number of DL training
symbols that maximizes the reliability for the same 20 to 40 channel
uses is varying between 3-9 symbols, being therefore up to 3 times
higher than in TDD. However, this is not to say FDD is infeasible,
but only to highlight that in a massive MIMO scenario it becomes
less efficient than TDD.

H. Non-coherent massive MIMO

For scenarios where the channel may vary rapidly throughout
a packet transmission due to high mobility, schemes that do not
rely on channel acquisition have been investigated from a reliability
perspective [41], [42], [43]. Non-coherent energy detection (ED) in
the UL at a large antenna array has been proposed [41], as it does not
rely on the instantaneous channel coefficients. The procedure exploits
the channel and noise hardening phenomena, which make the channel
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Figure 8. Latency-reliability dependence in the DL using different precoding
techniques. The pre-processing SNR is 9 dB and the SCS is assumed 60 kHz.
The traffic is assumed symmetric in UL and DL, and the channel is assumed
to consist of NP = 12 paths with up to 20 dB decay. The number of training
symbols is optimized for each latency in order to maximize the reliability.

more deterministic, such that the pulse amplitude modulated signals
can be decoded reliably based on the received energy, only with the
knowledge of long-term statistics of the channel. An extension of this
idea has been considered in [42], where a constellation allowing both
coherent and non-coherent reception of symbols has been proposed.
The reliability is shown to be increased for a 2 bit/symbol rate
compared to the case of QPSK, when channel estimation proves to
be inaccurate. Depending on whether training symbols have been
invested in obtaining an instantaneous channel estimate, one of these
schemes can be employed in the UL in order to increase reliability
in severe fading conditions when CSI is unavailable or degraded.

IV. MASSIVE MIMO FOR MMTC

The challenges brought by mMTC stem from the massive number
of deployed MTC devices. The MTC traffic is usually sporadic and
unpredictable, as the MTC devices transmit in an uncoordinated way
whenever they have data to transmit. The main question is how to
detect the activity and successfully decode the data from a maximal
number of transmitting mMTC devices in the uplink within a limited
bandwidth.

The general model used for random access in mMTC is that a
very large number of devices operate in an uncoordinated fashion.
At any time, only a small subset of the total are active, i.e., with some
payload to be sent. Massive MIMO plays an important role in mMTC
random access. The fundamental benefit offered by massive MIMO
is the large spatial multiplexing gain, allowing accommodation of a
large number of devices transmitting simultaneously, resolution of
collisions and efficient data decoding, such as compressed sensing.
Enhanced array gain and channel hardening are important features
as well. In particular, channel hardening enables a simple collision
resolution procedure in section IV-B and grant-free coded-random
access transmission in section IV-C.

A. Random Access Protocols with Massive MIMO

This section treats several random access protocols models for
massive MTC. The protocols differ according to the resource that
is randomly accessed, how training is performed, as well as how
data is transmitted and decoded.
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Pilot sequences Grant mode Device ID
SUCRe Orthogonal Grant-based yes
pilot RA Orthogonal Grant-free yes
coded RA Orthogonal Grant-free yes
CS-RA Pseudo-random Grant-free yes
Unsourced RA none Grant-free no

Table I
CLASSIFICATION OF RANDOM ACCESS PROTOCOLS ACCORDING TO THREE

FEATURES: TYPE OF PILOT SEQUENCE, GRANT MODE AND DEVICE
IDENTIFICATION.

In order to give an overview of the methods described in this sec-
tion, we have classified them according to three main characteristics
(see table I):

• Training: Most of the methods rely on training and coherent de-
tection. One assumption for the model is that the pilot sequences
are orthogonal, but the devices access the pilot sequences
randomly. As the number of orthogonal pilots is limited, there
are collisions, meaning that multiple devices may select the same
pilot sequence. An alternative solution for training is one based
on pseudo-random pilot sequences where a unique sequence
is allocated to each user at the expense of decreased channel
estimation quality. Finally, pilot-based estimation can be avoided
and the system can operate in a non-coherent manner.

• Grant mode: A commonly used mode is the grant-mode, present
e.g. in the legacy 4G systems. The collisions in the pilot domain
are first resolved so that each pilot sequence is allocated to a
single device and subsequent data transmission occurs collision-
free. The other schemes are grant-free and rely on mechanisms
for joint training and data transmission without resorting to a
preliminary collision resolution phase.

• Device identification: All the methods have a mechanism for
device identification at the exception of unsourced random ac-
cess [10], where the goal is to decode the transmitted messages,
without the possibility of identifying the transmitting devices.

B. Grant-based random access protocols

1) SUCRe: The Strongest-User Collision Resolution (SU-
CRe) [14] protocol is a grant-based random access protocol, described
as follows:

• Phase 1. In SUCRe, the devices accessing the UL randomly
transmit a pilot sequence from an orthogonal set of Pp pilots.
Due to the large number of devices and the pilot scarcity, several
devices may choose the same pilot, resulting in a pilot collision.

• Phase 2. The BS performs channel estimation based on the
orthogonal pilots detected, thereby obtaining contaminated chan-
nel estimates for colliding users. Using these estimates, the BS
performs precoded transmission.

• Phase 3. The devices are able to reliably measure their received
signal array gain, owing to the channel hardening effect [19].
Thereby, if the array gain is equal to the number of antennas
M , there has been no collision in the pilot domain and the
device is granted access to the pilot sequence. If the individual
array gain at the device is a fraction of M , a number of devices
have collided in the pilot domain. The collision resolution is
performed using a distributed decision rule employed at the
devices, such that only the strongest user is granted access to
the pilot sequence.

• Phase 4. The devices that are granted access to a pilot sequence
retransmit the pilot sequence followed by data transmission.

A graphical representation of how SUCRe works is illustrated in
Figure 9. The SUCRe protocol is able to resolve around 90% of
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Figure 9. Graphical representation of SUCRe protocol. Simplified example
with 4 devices selecting a training sequence randomly from the set {Φ1,Φ2}.

collisions, and is highly scalable in terms of number devices in the
cell, since the collision resolution is decentralized.

2) SUCRe extensions: The first extensions of the protocol, namely
SUCR-IPA [15] and SUCR-GBPA [44], assign the pilots not used in
Phase 1 of SUCRe to the devices that lost the collision resolution
phase in Phase 3, at the cost of additional signaling. In the classical
SUCRe, the pilot collision is resolved with a hard decision for
retransmission. As the number of inactive devices K0 becomes large,
this hard decision is satisfied to a smaller extent as the number of
collisions with a higher number of contending devices increases. For
this reason, the application of a soft decision retransmission rule
by introducing the retransmission probability brings improvement
to the SUCRe in crowded scenarios [16]. Figure 10 depicts the
average number of access attempts and the probability of failed RA
attempts; an appreciable performance improvement can be obtained
deploying the soft decision rule under the very crowded scenario,
i.e., K0 > Pp/Pa , where Pa is the probability of activation.
Besides, the reduction in the average number of access attempts
of the soft-SUCRe of [16] in comparison with original SUCRe,
indicates that 2.34 less RA attempts are required on average for
K0 = Pp/Pa = 10000 devices. Besides, the probability of failed
access attempts in Figure 10.b can be reduced from 17.1% to 14.9%
for 16000 devices. Baseline in Figure 10 represents a conventional
RA protocol with pilot collisions handled by retransmission in later
blocks.
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The original SUCRe protocol favors the access to the pilot se-
quences to devices with the lowest path loss, i.e. the highest signal.
Therefore, collision resolution can be seen as unfair to the devices that
are located far from the BS. SUCRe is extended in [17] providing
an access class barring combined with a decentralized pilot power
allocation (ACBPC) protocol that ensures a uniform RA performance
for the devices within the cell, independently of their distances to the
BS. Figure 11.a depicts the probability of the SUCRe and ACBPC of
resolving pilot collisions as a function of the number of contending
devices. It can be observed that for lower number of contending users,
SUCRe is more effective, whereas if there is a higher number of
contending devices, ACBPC is more effective. Moreover, the fairness
of ACBPC is illustrated in Figure 11.b, where it can be noticed that
the probability of a device winning a collision is less dependent on
the proximity to the BS compared to SUCRe.
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Figure 11. Grant-based ACBPC protocol: a) Probability of resolving colli-
sions as a function of |St|; b) Probability of a device winning a pilot collision
as a function of its distances to the BS with K0 = 15000.

C. Grant-free random access protocols

Grant-free transmissions rely on transmitting both pilot sequences
and data as part of the initial access attempt. Grant-free protocols
bring different advantages according to the type of pilot sequences
considered, i.e. orthogonal and pseudo-orthogonal pilot sequences. In
principle, the protocol is simplified as it does not resort to a dedicated
collision resolution phase. However, in order to suitably decode
the data from all the transmitting devices, improved transmission
strategies or decoding strategies are needed.

Two protocols are described in this section. In both protocols, the
transmission of the devices accessing the network is organized in
multiple slots.

1) Pilot RA: In the first protocol [45], the codeword transmitted by
a given device is divided into multiple parts. The device selects a new
pilot sequence at random in each time slot followed by transmission
of part of its codeword. In each time slot, the device might be
involved in a pilot collision. The channel is assumed to be block
fading, i.e. it takes an independent value during each transmission
slot. It is estimated at each time slot and, due to pilot collision,
channel estimation gets contaminated. At reception, the BS employs
maximum ratio combining (MRC) based on the contaminated channel
estimate, creating interference in the data decoding phase. The main
rationale in this approach is as follows. The pilot assignment hopping
pattern creates an interference pattern in the data domain that changes
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Figure 12. Graphical representation of Pilot RA (1) and Coded RA (2).
Simplified example with 4 devices, randomly selecting from a set of 2 pilots
{Φ1,Φ2}. In (1) the codewords are divided into multiple parts, denoted
{CWDi

(1), . . . CWDi
(L)}, transmitted in multiple time slots. In each time

slot, a new pilot is chosen randomly. In (2), the devices transmit in each
slot with an activation probability, and choose the pilots based on a hopping
pattern. The data in each time slot is the same, as in coded random access,
such that SIC may be employed.

at every time slot. With coding spreading across a large number
of transmission time slots, the interference is averaged out. Hence,
from an information-theoretic point of view, it is possible to define a
reliable transmission rate. The approach is illustrated in Fig 121).
While the originally proposed protocol in [45] relies on a priori
(genie-aided) information on the user activity, it is possible to blindly
infer this information with high reliability using sparsity-based signal
processing techniques [46].

2) Coded RA: In the second protocol [47], the devices transmit
with a certain probability of activation, with pilot hopping across
time slots. The data is retransmitted in each time slot. This proto-
col is based on the principle of coded random access which can
be described as follows. By optimizing the activation probability,
conditions for collision-free transmissions are created. Suppose that
a collision free transmission happens at a given time slot, so that
the data of the corresponding device is correctly decoded. Successive
interference cancellation (SIC) is employed such that the contribution
of the decoded packet is subtracted in the previous time slots
thus possibly removing a transmission that was causing a collision.
Applying the principle of coded random access to a massive MIMO
system is not easy because it involves colliding transmissions in a
joint channel estimation and data decoding problem. At each time
slot, we estimate the channels using the pilot sequences that have
been selected. MRC is applied based on the channel estimates that
are possibly contaminated, thus producing interference in the data
domain. The channel hardening properties of massive MIMO enable
a formulation of a coded random access problem in the data domain
based on the energy of the different channel involved.

D. Grant-free access relying on compressed sensing

Due to the sporadic nature of the MTC traffic, the device transmis-
sion patterns have been observed to become sparse. Therefore, the
mMTC connectivity problem can be addressed from the perspective
of compressed sensing (CS). In this section, we consider a grant-free
access where the data is transmitted in a single initial access attempt.
An important characteristic of the schemes discussed here is that a
unique pilot sequence is assigned to each device, as illustrated in
Figure 13a). Those sequences are pseudo-orthogonal as the number
of orthogonal sequences is limited by the channel coherence time.
Therefore, obtaining the channel estimates by simply correlating the
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training received signal with each pilot is not an efficient approach,
due to the non-orthogonality as well as due to the very large number
of pilots. We first describe schemes where training is performed
jointly with data detection and then a scheme with non-coherent data
detection.

In the first type of access, compressed sensing techniques are
employed to facilitate reliable joint activity detection and accurate
channel estimation. This compressed sensing problem is solved via
approximate message passing (AMP), with the aid of a novel MMSE
denoiser function in [48] where a single antenna and a moderate num-
ber of antennas is considered at the BS. An extension where the BS
is equipped with a very large number of antennas is proposed in [11],
[49] based on AMP. The performance of the vector AMP algorithm
with MMSE denoiser based on statistical channel information in the
asymptotic massive MIMO regime is analyzed in [11]. It is shown
that it can achieve perfect device activity detection performance as
the number of BS antennas grows indefinitely, with both misdetection
and false alarm probability going to zero. However, in [49], it is
demonstrated that the overall achievable rate attained by this scheme
in such scenario is limited by the increased channel estimation errors,
which result from the deployment of non-orthogonal pilots in order
to accommodate a larger number of devices.

The massive MIMO grant-free access is further investigated in
[32]. The employed non-orthogonal pilot sequences are generated by
sampling an i.i.d. complex Bernoulli distribution. Using such pilots
and the AMP algorithm for device detection along with channel
estimation, authors show that using the acquired channel estimates
for coherent data transmission is suboptimal. A better approach is
to use the AMP algorithm only for device activity detection, and
then using conventional MMSE channel estimation for active devices.
Authors also demonstrate the suboptimality of employing identical
pilot transmission power for all devices, while simple power control
strategies, based on long-term fading coefficient inversion, allow
substantial performance improvements. Most important, they propose
a novel non-coherent data transmission technique, which encodes r
information bits to be transmitted onto 2r possible pilots per device.
A modified AMP algorithm is also proposed aiming at exploiting
the sparsity incurred by the non-coherent transmission scheme. Note
that the proposed scheme is said to be non-coherent because there
is no need to obtain explicit channel estimates. The entire process
consists of only detecting which pilots are active, while the ID of the
sender as well as the information bits are implicit on the index of the
pilot sent. Performance comparison revealed that the proposed non-
coherent transmission significantly outperforms coherent transmission
scheme, being thus a promising approach for future mMTC networks.

E. Unsourced Massive Random Access (UmRA)

In many mMTC applications targeting, for example, alarm and
large-scale sensor reporting, only the content of the message is
relevant, and not the identity of the sender. This is in stark contrast
to conventional way one thinks about wireless communications. The
rationale is that the actual data is important rather than who is
sending it. A novel information-theoretic treatment for this scenario
was provided by Y. Polyanskiy in [10]. In this model, a small number
of active devices transmit using the same codebook, which precludes
the identification of devices. Later on, the approach by Polyanskiy
has been termed unsourced random access [50].

The probability of misdetection and false alarm is also different
from the classical definition that declares error if any one of the
messages is decoded incorrectly. A per-device error probability is
defined as the average fraction of transmitted messages that is not
in the list of decoded messages at the receiver. Likewise, a per-user

Device 1 

Device 2 

Device 3 

Device 4 

� 

�!

�"

#$%&

#$%'

#$%(

#$%)

�*

Device 1 

Device 2 

Device 3 

Device 4 

�� !(1)

�� "(1)

�� #(1)

�� $(1)

(1) CS-RA

(2) Unsourced RA

�� !(2)

�� "(2)

�� #(2)

�� $(2)

⋯

⋯

⋯

⋯

�� !(&)

�� "(&)

�� #(&)

�� $(&)

inner encoded 

submessage outer encoder over the submessages

Figure 13. Graphical representation of CS-RA and unsourced RA access.
In (1) CS-RA, pseudo-random pilot sequences are transmitted followed by
data transmission. In (2) UmRA, there are no pilots. Encoding is done using
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outer encoder. Compressed sensing is employed on the inner low-dimensional
codebook for lower complexity, whereas the outer code is used to reconstruct
the overall message.

probability of false-alarm is defined as the average fraction in the list
of decoded messages that have not been transmitted.

In the context of mMTC the devices have small data payloads.
Even though the subset of devices that are active simultaneously can
be rather small, the large total number of devices results in finite
blocklength (FBL) effects. The unsourced, uncoordinated nature of
the problem and the FBL effects have implications on the design
of practical low-complexity coding schemes. In [10], Polianskiy
provided bounds on the performance of finite-length codes. In [51], a
practical low-complexity iterative LDPC scheme for a fading channel
is proposed.

A compressed sensing approach is proposed in [52] to identify
the transmitted messages. The received signal can be described as
a linear mixture of codewords from the same codebook. Sparsity
arises since the size of the codebook is very large (exponential
with the number of bits per submessage, allowing a one-to-one
correspondence between submessages and codewords) and the device
activity is sparse. Therefore, decoding of the linear mixture can
be performed using compressed sensing methods. Due of the large
size of the codebook, such methods appear infeasible. Instead, an
alternative solution leading to a lower complexity is proposed in [52]
based on a two-step encoding with an inner common encoder and
an outer common encoder. The transmission slot is partitioned into
subslots. In each subslot, a device transmits part of the codeword, a
submessage, that is encoded using an inner encoder, as illustrated
in Figure 13. The transmission of the whole message across the
subslots is ruled by an outer encoding. In each subslot, the inner
decoder identifies which submessages have been transmitted. Because
the device activity is sparse, the decoding corresponds to a sparse
problem that is solved based on a compressed sensing method with
a low complexity as the size of the codebook is reduced compared
to the encoding previously described. The outer decoder reconstructs
the list of transmitted messages based on the list of sub-messages

Unsourced Massive Random Access (UmRA) [13] is the extension
of the previous encoding scheme to massive MIMO. The increased
number of measurements provided by the large number of receive
antennas is exploited to improve the inner decoding at each subslot.
Unlike [52], the issue raised by channel estimation in massive MIMO
is explicitly considered by employing non-coherent activity detection
(sub-message detection). This approach is non-Bayesian and relies
on the covariance matrix of the vectorial received signal. It does
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Figure 14. Example of orthogonal network slicing of the wireless resources
in a time-space grid for supporting eMBB, URLLC and mMTC.

not assume a priori knowledge about large-scale pathloss coefficients
of the devices or about the activity patterns. This is an advantage
over Bayesian approaches [52] based on message passing where such
assumptions are made and can be seen as unrealistic.

V. MASSIVE MIMO AND NETWORK SLICING

As introduced in Section II-B, network slicing is a key feature
of 5G for the support of heterogeneous services. In the RAN,
the conventional approach to slice is to allocate orthogonal radio
resources to eMBB, with very long payloads; mMTC, characterized
by the large amount of devices and the need of a random access;
and URLLC, with small packets and low latency requirements [18].
The multiplexing in space of such services with very different
characteristics and requirements brings major challenges. Figure 14
shows an example of the slicing of the three services in the time-
spatial grid.

A. Training

While massive MIMO is conventionally used to separate intra-
service data traffic, it can also be an efficient tool for network
slicing and isolate the services based on multi-antenna processing.
Nevertheless, separating the services with multiple antennas relies on
a prior training phase where the CSI is acquired, which significantly
complicates the design and the co-existence of services. In the
following, we discuss the case of TDD, being much more mature
than massive MIMO FDD solutions.

In TDD, the CSI is usually estimated using uplink training with
orthogonal pilot sequences. eMBB devices share a pool of orthogonal
pilot sequences, PB . A different pool of orthogonal pilot sequences
is required for URLLC, PU . Since the URLLC packet has to be
sent as early as possible, so does the URLLC training which will
not be synchronized with eMBB in general as there is no time to
wait until the next eMBB training slot. Therefore, there is no need to
impose mutual orthogonality between PB and PU . However, URLLC
training should be performed such as to minimize the interference
from other services.

For mMTC, we can have the case of orthogonal pilot sequences and
the case of pseudo-random pilot sequences. With grant-free access,
training and data are sent together in the single access attempt. For the
BS, this means doing a joint training and collision resolution, which
requires another pool of pilot sequences. Those sequences could be
orthogonal, but, on some implementations, the orthogonality of the

set can be compromised by the large amount of devices. A solution is
to rely on pseudo-random sequences: one unique sequence is assigned
per user and serve to identify each user. The disadvantage of pseudo-
random sequences is that it creates interference in the training phase.
For the orthogonal pilot sequence, a grant-based access can be used
(see section IV-B) , where the training can be performed once the
device gets the right to use a pilot sequence. We refer to the pool of
mMTC sequences as PM , either orthogonal or pseudo-orthogonal.
If PB and PM are mutually orthogonal, then the training can be
aligned. determines the alignment of the training; otherwise, they
will be separated in time.

B. Training alignment

When considering the three services simultaneously, the channel
acquisition is seriously affected by the inter-service interference. The
training can be broadly organized to be aligned or not aligned among
services, being Figure 14 an example of the latter.

For multiplexing mMTC and eMBB, [53] compares the option
of having not aligned, aligned or time-multiplexed training phases.
The latter means that mMTC are not allowed to transmit during the
training period of eMBB, which reduces the eMBB pilot length. After
the training of eMBB, mMTC transmit their pilot sequences followed
by data transmission, which is proven to give performance gains.

Furthermore, the latency requirements of URLLC puts strict con-
straints to the training. Things get more challenging depending on
the transmission direction, particularly when the URLLC request is
in the downlink whereas the training has to be done in the uplink. If
full training is required, one solution is to perform periodic training,
such that the system is always ready when the data arrives.

C. Data phase

In the data phase, the key challenge is in the coexistence of
services, particularly when they have opposite directions. A relevant
case is a long eMBB transmission going on e.g., in the DL. If the
URLLC request is also in the DL, puncturing-like solutions like
the ones under consideration in 5G can be adopted [18]. The key
assumption is that the reliability of URLLC is two or more orders
of magnitude higher than eMBB, such that eMBB requirements
can be fulfilled even with the loss due to the puncturings. If the
URLLC request is instead in the UL, the eMBB transmission shall
be preempted to allocate the URLLC device.

D. FDD Massive MIMO with heterogeneous services

Most of the massive MIMO research has focused on TDD and
channel-reciprocity. For FDD bands, massive MIMO can be exploited
by means of a predetermined grid of beams with devices reporting
their preferred beams. It has been analytically shown that with
isotropic scattering (independent Rayleigh fading) pilots-based TDD
outperforms the FDD option [54]. However, the industry keeps a
high interest in massive MIMO solutions for FDD, motivated by
spectrum regulations. Certainly, using FDD bands would simplify
the network slicing operation, eliminating the challenges associated
to the opposite transmission directions.

VI. CONCLUSIONS AND DIRECTIONS

Since its inception about a decade ago, Massive MIMO has
evolved from a “wild academic idea” into commercial reality and
a key technology component for sub-6 GHz wireless access in
5G. What will come next? In all likelihood, refinement of the
basic Massive MIMO will continue, for example by learning and
exploiting statistical information about the propagation environment,
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and spatial correlation in particular, and by learning and exploiting
user behaviors and traffic patterns. This pertains especially to random-
access protocols, where huge improvements can be achieved by
exploiting this type of side information. Also, incorporating context
awareness into the protocols, for example in terms of specific packet
deadlines that are dependent on the eventual use case, is bound to
provide significant boosts. Ultimately, the freshness of information
may be quantified through the information-theoretic concept “age of
information” [55].

More importantly, however, the next major leap in wireless access
technology is likely to involve so-called cell-free Massive MIMO
technology [56], [57]. The cell-free architecture fundamentally de-
parts from the cellular (Massive MIMO) paradigm, as follows. A
number of access points are spread out geographically and are not
generally equipped with large antenna arrays; they may (preferably)
have a single or possibly a small number of antennas. Theoretically,
all access points may participate in the service of every terminal
through phase-coherent beamforming, though in practice only the
closest access points will effectively contribute. There is no concept
of cells; all resources, including pilots, are reused universally. Access
points are connected via backhaul to central processing units. The
distinction between cell-free architectures and the (already commer-
cialized) concept of “small cells” [58] is important: Small cells
do not cooperate coherently, whereas the access points in a cell-
free architecture do. Random access in cell-free Massive MIMO
will be a challenge. In particular, while this paper has discussed a
large array of different techniques that have shown to be greatly
promising in cellular Massive MIMO, it is not clear how or to what
extent they generalize to cell-free Massive MIMO. Conceptually,
one can think of cellular Massive MIMO as a special case of cell-
free Massive MIMO where the path loss from a given terminal
to every base station antenna is the same - whereas in contrast,
in cell-free Massive MIMO it is different (and differs by many
orders of magnitude). Channel hardening, for example, a fundamental
phenomenon in cellular Massive MIMO upon which some algorithms
discussed here rely to some extent, does not hold to an equal degree in
cell-free Massive MIMO. The development of grant-free and efficient
random access procedures in cell-free Massive MIMO remains a
grand challenge that will be utterly important for beyond-5G systems.

New visions about wireless access have recently emerged. Those
visions bank on promising technological progress that will enable an
easy deployment of thin electromagnetic panels of very large physical
dimensions. Those panels would be active, i.e they can transmit
and receive electromagnetic signals. Such visions have appeared in
recent years under different names such as extremely large aperture
massive MIMO [59], extra-large scale massive MIMO [60] or large
intelligent surfaces [61]. Those panels can be an integral part of new
large infrastructures such as a stadium or inside an airport. They are
envisioned as thin, flexible stripes [62] or surfaces that can be fixed
on walls and easily powered up.

Because of its physical size and proximity to the wireless devices,
it is well understood that such electromagnetic panels can bring a
significant performance boost in the area they cover, but they also
have the potential to play a prominent role in achieving low latency
and reliable communications. Let us take the example a large factory
where it is essential to communicate at very low error probability.
Imagine covering the walls, ceilings or floors with electromagnetic
panels. This type of deployment is quite different from conventional
massive MIMO that usually cover wider areas and do not enclose
the communicating devices in such a way. Those electromagnetic
panels offer the unique capability to capture a complete 3D ultra-
high resolution snapshot of the environment. The purpose can be to
communicate with the aid of side information brought by tracking

the structure of the channel or detect sudden anomalies calling for
changing in communication patterns.
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