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Abstract—We consider futuristic, intelligent reflecting surfaces
(IRS)-aided communication between a base station (BS) and a
user equipment (UE) for two distinct scenarios: a single-input,
single-output (SISO) system whereby the BS has a single antenna,
and a multi-input, single-output (MISO) system whereby the BS
has multiple antennas. For the considered IRS-assisted downlink,
we compute the effective capacity (EC), which is a quantitative
measure of the statistical quality-of-service (QoS) offered by a
communication system experiencing random fading. For our
analysis, we consider the two widely-known assumptions on
channel state information (CSI)—i.e., perfect CSI and no CSI,
at the BS. Thereafter, we first derive the distribution of the
signal-to-noise ratio (SNR) for both SISO and MISO scenarios,
and subsequently derive closed-form expressions for the EC
under perfect CSI and no CSI cases, for both SISO and MISO
scenarios. Furthermore, for the SISO and MISO systems with
no CSI, it turns out that the EC could be maximized further by
searching for an optimal transmission rate r∗, which is computed
by exploiting the iterative gradient-descent method. We provide
extensive simulation results which investigate the impact of the
various system parameters, e.g., QoS exponent, power budget,
number of transmit antennas at the BS, number of reflective
elements at the IRS etc., on the EC of the system.

Index Terms—Effective capacity, statistical QoS, intelligent
reflecting surfaces, beyond 5G, SISO, MISO.

I. INTRODUCTION

An intelligent reflecting surface (IRS) (also known as re-
configurable intelligent surface or smart radio-environment)
consists of a group of passive, re-configurable meta-surface
elements. Guided by a controller, the IRS elements together
could steer the incident radio frequency waves in any arbitrary
direction by changing their individual reflective angles [1].
Due to the easy reconfiguration for transmit beamforming,
ease of deployment, low hardware complexity and low power
consumption, IRS is anticipated to be one of the core com-
ponents of the beyond 5G/6G cellular networks [2], [3],
[4]. Moreover, IRS is foreseen to enable a number of novel
application scenarios, e.g., high-fidelity communication at the
cell-edge and in an area which has become a dead zone due
to blockage, massive device-to-device communication, design

of novel schemes for physical layer security, wireless power
transfer etc. [4], [5].

IRS-assisted communication networks have attracted lot of
attention during the last few years; and thus, an exhaustive
discussion of all the prior work on IRS-assisted systems is
beyond the scope of this work (to this end, the interested
reader is referred to the survey article [2], and the refer-
ences therein). Therefore, only selected relevant works are
summarized here. [6] proposes IRS-assisted communication
to achieve higher energy efficiency, while [7] exploits the
architecture of the considered IRS-assisted system to design
novel schemes for physical layer security. [8] solves the
problem of joint active beamforming (by the transmitter)
and passive beamforming (by the IRS) for maximization of
the receiver power at the receiver. [9] studies a realistic
scenario whereby the transmitter has the perfect knowledge
of the channel and does active beamforming, while the IRS
utilizes the statistical knowledge of the channel (e.g., pathloss
information) to do passive beamforming. [10] considers an
IRS-aided multi-user system and studies the design of robust
reflection beamforming in the face of imperfect knowledge
of all the cascaded channels under consideration, for two
different models of the channel estimation error. Note that
a cascade channel represents the cumulative impact of the
environment as the signal traverses from the transmitter to
an IRS element, and then from that IRS element to the user.
In [11], authors consider an IRS-aided multi-user system and
study the impact of the imperfect channel knowledge on the
joint design of the transmit beamforming at the transmitter
and the reflection coefficients (with both phase control and
amplitude control) at the IRS in order to maximize the
weighted sum rate of the system. Last but not the least, [12]
considers a multi-user system and exploits deep reinforcement
learning to jointly design the beamforming matrix at the
transmitter and the phase shift matrix at the IRS.

Effective capacity (EC), on the other hand, is the maximum-
sustainable constant arrival rate at a transmitter’s queue in the
face of randomly time-varying service process [13]. In other



words, the EC is a quantitative measure of the throughput of
a wireless fading channel under statistical quality-of-service
(QoS) constraints. So far, the researchers have computed
the EC for a wide variety of communication systems under
different assumptions and various channel conditions, e.g.,
cognitive radio channels [14], [15], systems with various
degrees of channel state information (CSI) at the transmitter
[16], two-hop systems [17], [18], correlated fading channels
[19], device-to-device communication [20], and underwater
acoustic communication [21].

Contributions. This work investigates the statistical QoS
offered by an IRS-aided communication between a base
station (BS) and a user equipment (UE) for two distinct sce-
narios: a single-input, single-output (SISO) system whereby
the BS has a single antenna, and a multi-input, single-output
(MISO) system whereby the BS has multiple antennas. The
contribution of this work is two-fold:

● EC analysis of the IRS-assisted SISO system: We begin
with exploiting the central-limit theorem to derive the
distribution of the signal-to-noise ratio (SNR) at the UE.
Then, for the case of perfectly-known CSI at the BS, we
derive the EC by computing the log moment generating
function (LMGF) of the service process via integration-
by-parts. For the case of no CSI at the BS, we model
the underlying dynamical system as Markov chain with
state-transition probability matrix P, and derive the EC
by computing the spectral radius of a special block-
companion matrix PΘ where Θ is a diagonal reward
matrix. Additionally, for the no CSI case, the EC is fur-
ther maximized by computing the optimal transmission
rate via iterative gradient-descent method.

● EC analysis of the IRS-assisted MISO system: We
first derive the SNR distribution. Then, for the case of
perfectly-known CSI at the BS, we compute the EC by
computing the first-order and the second-order moments
of the service process at hand. For the case of no CSI
at the BS, we again do Markov chain based analysis
to compute the EC as the spectral radius of a special
block-companion matrix PΘ. Again, for the no CSI
case, we provide a closed-form expression which is an
approximation of the optimal transmission rate.

Outline: The rest of this paper is organized as follows.
Section-II presents the system model, and introduces the
notion of of the EC. Section-III computes the EC for the SISO
scenario under the assumptions of perfect CSI and no CSI at
the BS. Section-IV computes the EC for the MISO scenario,
again under the assumptions of perfect CSI and no CSI at the
BS. Section-V presents extensive simulation results. Section-
VI concludes the paper.

Notations: Bold-face small letters (e.g., a) represent vec-
tors, while bold-face capital letters (e.g., A) represent matri-
ces. ∣∣a∣∣ represents the 2-norm of vector a, (a)H represents
the hermitian of vector a. A ∼ CN(0,1) implies that A is
a random variable with complex normal distribution. E(.)
represents the statistical expectation operator.

II. SYSTEM MODEL & BACKGROUND

A. System Model

This work considers a two-hop downlink whereby a BS
communicates with a UE through a panel of N passive,
reflective IRS elements (see Fig. 1).

We make the following assumptions. A1) The direct path
between the BS and the UE doesn’t exist due to blockage;
and hence, there are two hops (from the BS to the IRS, and
from the IRS to the UE). A2) The channel fading/service
process elements across the slots on both hops are block fad-
ing channels, and are independent and identically distributed
(i.i.d.). A3) Perfect CSI is always available for both hops at
the IRS controller. A4) The system under consideration is a
time-slotted system with T seconds long time-slots.

Having said that, we first consider the SISO scenario
(whereby the BS has a single antenna), followed by the MISO
scenario (whereby the BS has Nt antennas).

Fig. 1. The system model: we examine the QoS performance of a downlink
channel whereby a panel of N passive, reflective IRS elements assists the
communication between the BS and the UE. A(t), S(t) represent the arrival
process and the service process at the BS queue, respectively.

SISO scenario: Let pt be the total transmit power budget
of the BS. Let x be the symbol that is transmitted by the BS,
then the received signal y at the UE is given as:

y =
√

pt.
√

ζ
N

∑

i=1
higie

jφix +w (1)

where hi ∼ CN(0,1) represents the channel gain from the
BS to the i-th element of the IRS, and gi ∼ CN(0,1)
represents the channel gain from the i-th element of the IRS
to the UE (see Fig. 1). Moreover, φi ∈ [0,2π) is the phase
control employed by the controller of the IRS. Furthermore,
ζ =

GtGr
(4π)2 (

xIRSyIRS
d1d2

)
2 cos2

(ϕ) is the pathloss between the
BS and the UE through the IRS [1]. In the preceding pathloss
expression, d1 represents the distance between the BS and
the IRS; d2 represents the distance between the IRS and the
UE; ϕ ∈ [0, π/2] represents the angle of incidence at the
IRS; xIRS ,yIRS represent the length and the width of the
IRS respectively; Gt, Gr represent the antenna gain at the BS
and at the UE, respectively. Finally, w ∼ CN(0, σ2

) is the



zero-mean, additive white Gaussian noise (AWGN) at the UE
with variance σ2.

Proposition 2.1: The SNR at the UE (during slot n) is:
γ(n) = βχ2

1(λ), where χ2
1(λ) is a non-central chi-square ran-

dom variable with one degree-of-freedom and non-centrality
parameter λ = Nπ2

(16−π2) > 0. Moreover, β = N ptζ(16−π2)
4σ2 .

Proof: Given in Appendix A.
Next, with the SNR γ(n) in hand, one can compute

the Shannon capacity of the SISO downlink channel under
consideration (during slot n) as follows:

c(n) = B log2(1 + γ(n)), (2)

where B is the bandwidth of the system.
MISO scenario: The BS transmits the same symbol x

from all the Nt transmit antennas (in order to achieve antenna
diversity). Then, the received signal y at the UE is given as:

y =
√

pt
√

ζgHΠHfx +w, (3)

where gH = [g1 . . gN ] , Π = diag[ejφ1 . . ejφN ] is the
so-called reflection coefficients matrix of dimension N ×N ,
H is the N ×Nt channel matrix between the BS and the IRS,
and f = [f1 . . fNt]

T is the transmit precoding vector at the
BS.

Proposition 2.2: The SNR at the UE (during slot n) is:
γ(n) = ptζ

∣gHΠHf ∣2
σ2 . Specifically, γ(n) is an exponential

random variable with parameter κ.
Proof: Given in Appendix B.
Next, with the SNR γ(n) in hand, one can compute

the Shannon capacity of the MISO downlink channel under
consideration (during slot n) as: c(n) = B log2(1 + γ(n)).

B. Background: Effective Capacity

For a stationary and ergodic channel (service process),
the effective capacity (EC) provides the maximum-sustainable
constant source rate at the queue of a transmitter, and is given
as the limit [13]:

EC(α) = − lim
t→∞

1

αt
ln(E(e−αS(t))) = −

Λ(−α)

α
(4)

where Λ(α) = limt→∞
1
t

ln(E(eαS(t))) is the Gartner-Ellis
limit on the service process given as the LMGF of the
cumulative service process S(t) = ∑tn=1 s(n) where s(n) is
the service process (number of bits successfully served) during
time-slot n. Moreover, α > 0 is the so-called QoS exponent.
Specifically, when α tends to zero, it implies delay-tolerant
communication. On the other hand, when α tends to infinity,
it implies delay-limited communication. Note that the EC in
Eq. 4 has the units of bits/block.

In short, the notion of the EC allows us to determine
the maximum fixed source rate under a statistical QoS
constraint—P (D > Dm) ≤ ε, where D is the steady-state
delay experienced by the packets at the queue of the BS, Dm

is the delay target, and ε is the delay-violation probability.

III. EC ANALYSIS FOR IRS-ASSISTED SISO DOWNLINK

We first compute the EC of an IRS-assisted SISO downlink
for the case when the BS has perfect knowledge of the CSI,
followed by the case when the BS has no knowledge of the
CSI.

A. Perfect CSI at the BS

When the BS has perfect CSI available, it transmits at the
Shannon rate c(n) during slot n, which implies that s(n) =
c(n). Moreover, due to the assumption A2 which states that
the block fading is i.i.d. on both hops (and thus, the service
process elements s(n) are i.i.d.), Eq. 4 could be simplified as
follows1 [22]:

EC = −

1

α
ln(E(e−αs(1))) (5)

where s(1) = c(1). Next, we compute the moment generating
function (MGF) of the service process s(1) during slot 1 as
follows:

E(e−αs(1)) = ∫
∞

0
e−αB log2(1+βx)fX(x)dx (6)

where fX(x) is the probability density function (pdf) of X ∼

χ2
1(λ). Next, we do the following relaxation: (1+βx) ≈ (βx).

After some simplification, and utilizing a result (Theorem
3.4.1) from [23], above equation could be re-written as
follows:

E(e−αs(1)) =
e
−λ
2

2
1
2 Γ(

1
2
)β

αB
ln(2)
∫

∞

0
0F1(;

1

2
;
λx

4
)

e−
x
2

(x)
αB

ln(2)
+ 1

2

dx

(7)

where Γ(.) is the gamma function and xFx(., ., .) is the
generalized hypergeometric function. Next, using the fact that
∫

∞
0 xa−1e−bx 0F1(; , c, x)dx = b

−aΓ(a) 1F1(a, c,
1
b
), and after

some simplifications, Eq. 7 can be written as:

E(e−αs(1)) =
e
−λ
2

2
1
2 Γ(

1
2
)β

αB
ln(2) (

λ
4
)

αB
ln(2)

+ 1
2

×

[(

2λ

4
)

αB
ln(2)

+ 3
2 Γ(

αB

ln(2)
+

3

2
) 1F1(

αB

ln(2)
+

3

2
,
1

2
,
2λ

4
)] (8)

Finally, putting Eq. 8 into Eq. 5 leads us to the final expression
of the EC.

B. No CSI at the BS

We now compute the EC of the IRS-aided SISO downlink
when there is no CSI knowledge available at the BS. In
this case, rate adaptation by the BS is not possible; thus, it
transmits at a constant rate of r bits/sec during every slot.
Then, due to Shannon’s channel capacity limit c(n) (see

1The EC is defined as: EC = limt→∞ − 1
αt

ln(E(e−α∑tn=1 s(n))). This
expression could be re-written as: EC = limt→∞ − 1

αt
ln(ΠnE(e−αs(n))).

Using the identity ln(a.b) = ln(a)+ ln(b), we could re-write EC as follows:
EC = limt→∞ − 1

αt ∑n ln(E(e−αs(n))). Finally, due to the fact that the
service process elements s(n) are i.i.d., EC is further simplified as follows:
EC = − 1

α
ln(E(e−αs(1))), where s(1) = c(1).



Eq. 2), the SISO downlink under consideration becomes an
ON-OFF channel. Thus, it could be modelled as a Markov
chain with two states, namely S0 (ON state) and S1 (OFF
state). That is, when r ≤ c(n), then the channel is ON (rT
bits are received by the UE), and is in state S0. Here, T
represents the duration of a time-slot. On the other hand,
when r > c(n), then the channel is OFF (zero bits are
received by the UE), and is in state S1. The motivation behind
Markov chain modelling of the SISO downlink comes due to
a well-reputed result [24] which states that one viable way
to compute the EC is by computing the spectral radius of
a special block-companion matrix PΘ where P is the so-
called state-transition probability matrix and Θ is a diagonal
reward matrix. The Markov chain representation of the IRS-
aided SISO downlink (for the scenario of no CSI at the BS) is
shown in Fig. 2. The entries of the matrix P for the two-state
Markov chain at hand are also labelled in Fig. 2.

ON OFF

Fig. 2. Markov chain representation of the IRS-aided SISO downlink for
the case of no CSI at the BS.

The state-transition probability matrix P of the Markov
chain under consideration is formally defined as:

P = [
p00 p01

p10 p11
] (9)

where pxy is the state-transition probability from the state Sx
during slot n − 1 to the state Sy during slot n.

Let’s compute all the four entries of P one by one. To this
end, the probability p00 is defined as:

p00 = P (r < c(n) ∣ r < c(n − 1)) (10)

Next, recall the assumption A2 which states that block fading
channels are i.i.d. across the slots; thus, the event r < c(n−1)
is statistically independent from the event r < c(n). In
other words, the stochastic process {c(n)} (or, equivalently,
the stochastic process {γ(n)}) is a memoryless process.
Therefore, if the SISO downlink at hand has evolved to, say,
the state S0 during slot n, then the system is completely
oblivious/indifferent of the state (S0 or S1) it was into during
the previous slot n−1. This allows us to lead to the conclusion
that the elements of the first column of P are identical:
p00 = p10 = p0. Similarly, the elements of the second column
of P are identical: p01 = p11 = p1. Thus, the matrix P becomes

a unit-rank matrix:

P = [
p0 p1

p0 p1
] (11)

Next, we compute p0 as follows:

p0 = P (r < c(n)) = P (γ(n) >
2
r
B − 1

β
) = Q 1

2
(

√

λ,Ξ) (12)

where Qx(., .) is the Marcum Q-function of order x, and Ξ =
√

2
r
B −1
β

. Similarly,

p1 = 1 −Q 1
2
(

√

λ,Ξ) (13)

Next, we utilize the findings of [24] to compute the EC as
follows:

EC = −

1

α
ln(sp(PΘ(−α))) (14)

where sp(A) computes the spectral radius of the matrix A,
and Θ is a diagonal matrix which contains the MGFs of the
service processes for the two states (S0 and S1) on its main
diagonal. In state S0, rT bits are received at the UE during a
given time-slot; therefore, the MGF of the service process is:
eαrT . On the other hand, when the system is in state S1, zero
bits are received at the UE; therefore, the MGF of the service
process is: e0

= 1. Thus, the final expression of the EC is as
follows:

EC = −

1

α
ln(p0e

−αrT
+ p1) (15)

Computation of the optimal transmission rate. For the
scenario of no CSI at the BS, the EC could be maximized
further by searching for the optimal transmission rate r∗ at
the BS. This is because we note that Eq. 15 is a concave-
like function of r. Thus, one could further enhance the EC
in Eq. 15 by searching for an optimal transmission rate. This
is achieved by taking the derivative of Eq. 15 w.r.t. r and
equating it to zero. In other words, r∗ = arg maxrEC(r).
Moreover, Eq. 15 implies that the maximizing the EC is
equivalent to minimizing the argument of the ln(.) on its right-
hand side. Therefore,

r∗ = arg max
r
EC(r) = arg min

r
(p0e

−αrT
+ p1) (16)

Taking partial derivative of ρ(r) = (p0e
−αrT

+p1) w.r.t. r, we
get:

∂ρ

∂r
= Q†

1
2

(

√

λ,Ξ)

e−αrT ln(2)
B

2r/B

2
√

β(2
r
B − 1)

+e−αrT (−αT )Q 1
2
(

√

λ,Ξ)−

Q†
1
2

(

√

λ,Ξ)

ln(2)
B

2r/B

2
√

β(2
r
B − 1)

(17)

where Q†
1
2

(

√

λ,Ξ) =

∂Q 1
2
(
√
λ,Ξ)

∂Ξ
= −

Ξ
1
2

λ
−1
4
e−

(λ+Ξ2
)

2 I −1
2
(

√

λΞ)

[25], where Ix(.) is the modified Bessel function of order x.
Now, equating Eq. 17 to zero reveals that solving for r∗ is
quite involved due to the presence of infinite number of terms



in both the modified Bessel function as well as the Marcum Q-
function. Therefore, we propose an alternative approach where
we compute r∗ using an iterative, gradient-descent method.
Specifically, the gradient-descent method begins with an initial
guess r(0) of the transmission rate, and utilizes the following
control law to refine its guess of r during iteration m:

r(m) = r(m − 1) − δ
∂ρ

∂r

RRRRRRRRRRRr=r(m−1)

(18)

where δ is the step size (basically, an algorithm parameter),
and ∂ρ

∂r
is the gradient of the EC function (see Eq. 17) that

gets evaluated at r = r(m−1). The algorithm terminates when
the following condition is met: r(m) − r(m − 1) ≤ εc, where
εc is a small constant. If the algorithm terminates, say, during
iteration M, it outputs: r∗ = r(M).

IV. EC ANALYSIS FOR IRS-ASSISTED MISO DOWNLINK

We first compute the EC of an IRS-assisted MISO downlink
for the case when the BS has perfect knowledge of the CSI,
followed by the case when the BS has no knowledge of the
CSI.

A. Perfect CSI at the BS

Recall that we assume the channel fading/service process
elements across the slots on both hops to be i.i.d. Moreover,
we assume that the time-window t under consideration is
reasonably large so that one could invoke the Central limit
theorem to approximate the distribution of the cumulative
service process S(t) = ∑

t
n=1 s(n) as Gaussian [19]. Thus,

the EC expression in Eq. 4 becomes the LMGF of a Gaussian
random variable, and is given as:

EC = µs(1) −
α

2
σ2
s(1) (19)

where µs(1) is the mean of service process s(1), while σ2
s(1)

is the variance of the service process s(1). In other words, to
compute the EC, we need to find the first and second moments
of the service process. The first moment (mean) is given as:

µs(1) = B ∫
∞

0
log2(1 + x)fX(x)dx (20)

where fX(x) = κe−κx is the pdf of X ∼ exp(κ). Recall that
X is the SNR at the UE as defined in Proposition 2.2. In
terms of natural-log, the above equation could be expressed
as:

µs(1) =
Bκ

ln(2)
∫

∞

0
ln(1 + x)e−κxdx (21)

Applying integration-by-parts, we have:

µs(1) =
Bκ

ln(2)
[ln(1 + x)e−κx

−1

κ
+

1

κ
∫

e−κx

1 + x
dx]

∞

0

=

B

ln(2)
eκE1(κ) (22)

where E1(.) is the exponential integral function.

Next, the second moment ηs(1) of the service process s(1)
could be computed as follows:

ηs(1) =
B2κ

ln2
(2)
∫

∞

0
ln2

(1 + x)e−κxdx (23)

We follow the steps of [16] to compute the second moment
and the final result is given as:

ηs(1) =
B2eκ

ln2
(2)

[

π2

6
+C2

+ 2C ln(κ) + ln2
(κ)]−

2κB2eκ

ln2
(2)

3F3([1,1,1], [2,2,2],−κ) (24)

where C is the Euler constant.
Thus, σ2

s(1) could be computed as follows: σ2
s(1) = ηs(1) −

µ2
s(1) where ηs(1), µs(1) are given in Eqs. 24 and 22, respec-

tively. Finally, plugging the values of σ2
s(1) and µs(1) into Eq.

19 lead us to final expression of the EC.

B. No CSI at the BS

We now compute the EC of the IRS-aided MISO system
when there is no CSI knowledge at the BS. As we will see,
the conceptual framework is the same as the IRS-aided SISO
system with no CSI at the BS. That is, the BS transmits at a
fixed rate r. Consequently, the MISO downlink channel under
consideration becomes an ON-OFF channel. In other words,
the system could be modelled as a Markov chain with two
states, whereby the state S0 represents the ON state, while
the state S1 represents the OFF state (see Fig. 2).

Having modelled the MISO downlink as a Markov chain,
we need to find the state transition probabilities as well as the
MGFs of service processes during the two states S0 and S1.
The matrix P turns out to be a rank-1 matrix again; and thus,
its two entries are given below:

p0 = e
κ(1−2

r
B ), p1 = 1 − eκ(1−2

r
B ).

The MGFs remain the same as before. Finally, the EC is given
as:

EC = −

1

α
ln(eκ(1−2

r
B )e−αrT + 1 − eκ(1−2

r
B )

) (25)

Computation of the optimal transmission rate. Once
again, for the scenario of no CSI at the BS, the EC of the IRS-
aided MISO system could be maximized further by searching
for the optimal rate r∗ at the BS. This is done by taking the
derivative of Eq. 25 w.r.t. r and equating it to zero. Doing so,
and after simplification we get the following transcendental
equation:

r

B
ln(2) + ln(eαrT − 1) =

BαT

κ ln(2)
. (26)

One potential way to solve above equation is to assume eαrT −
1 ≈ eαrT which in turn implies that eαrT >> 1. Under this
assumption, the optimal transmission rate is given as:

r∗ ≈
BαT

κ ln(2)( ln(2)
B
+ αT )

. (27)



V. SIMULATION RESULTS

Simulations were performed in Matlab. The values of some
of the most significant simulation parameters are provided in
Table I (unless otherwise noted).

Simulation Parameter Notation Value

Distance between the BS and the IRS d1 50 m
Distance between the IRS and the UE d2 50 m

Length of the IRS xIRS 1 m
Width of the IRS yIRS 1 m

Angle of incidence at the IRS ϕ 30○
Gain of the antenna at the BS Gt 10 dB
Gain of the antenna at the UE Gr 10 dB

Transmit power of the BS pt 1 mW
Noise power at the UE σ2 1 µW

Total number of Transmit antennas (MISO scenario) Nt 10

TABLE I
IMPORTANT SIMULATION PARAMETERS

A. SISO scenario

Fig. 3 plots the EC of the SISO downlink against the total
power budget pt of the BS when it has the perfect CSI at its
disposal. Fig. 3 reveals the following: i) there is a logarithmic
increase in the EC with the increase in pt (because ultimately,
the EC is a variant of the Shannon’s capacity, and is defined as
the log of the MGF of the service process); ii) there is also a
logarithmic increase in the EC with the increase in the number
of IRS elements N (but note that increasing N also increases
IRS hardware cost as well as the CSI acquisition overhead
at the BS and at the IRS); iii) the EC of the delay-tolerant
communication (figure on the left with α = 0.1) is significantly
(more than ten-fold) larger than the EC of the delay-limited
communication (figure on the right with α = 10).
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Fig. 3. The impact of the number of IRS elements (N ) on the EC of the SISO
downlink for the case of perfect CSI at the BS: delay-tolerant communication
regime (left), delay-limited communication regime (right).

Fig. 4 is the repeat of Fig. 3 for the case when the CSI is
not available at the BS. Not only that, the key points learned
from the Fig. 4 are also the same as the Fig. 3. Furthermore,

a quick comparison of the two figures (Fig. 3 and Fig. 4)
reveals that the presence of the CSI at the BS has a significant
positive impact on the EC (for both delay-tolerant and delay-
limited communication regimes). Specifically, the EC for the
case of perfectly-known CSI at the BS is at least five times
greater than the EC for the case of no CSI at the BS. Note that
the optimal transmission rate r∗ was computed and thereafter
utilized to compute the EC for Fig. 4.
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Fig. 4. The impact of the number of IRS elements (N ) on the EC of the SISO
downlink for the case of no CSI at the BS: delay-tolerant communication
regime (left), delay-limited communication regime (right).

B. MISO scenario

Fig. 5 plots the EC of the MISO downlink against the total
power budget pt of the BS when it has the perfect CSI at its
disposal. Fig. 5 lets us infer similar trends as in Fig. 3. That
is, the EC increases logarithmically with the increase in pt
as well as with the increase in the number of IRS elements
N . Moreover, the EC of the delay-tolerant communication
(figure on the left with α = 0.1) is significantly (at least three
times) larger than the EC of the delay-limited communication
(figure on the right with α = 10). Last but not the least, a quick
comparison of Fig. 5 with Fig. 3 reveals a gain of at least 30
bits/slot in the EC due to the presence of multiple antennas
(Nt = 10, in this case) at the BS, for medium-to-high values
of pt.

Fig. 6 is again the repeat of Fig. 5 for the case when the CSI
is not available at the BS. Not only that, the key points learned
from the Fig. 6 are also the same as the Fig. 5. Furthermore,
a quick comparison of the two figures (Fig. 5 and Fig. 6)
reveals that the lack of the CSI at the BS has an adverse
effect on the EC (for both delay-tolerant and delay-limited
communication regimes). Specifically, the EC reported in Fig.
6 is at least five times lower than the EC reported in Fig.
5. Last but not the least, comparing Fig. 6 with Fig. 4, we
observe a gain of at least 5 bits/slot in the EC of the MISO
downlink compared to the EC of the SISO downlink (for the
delay-tolerant communication regime). On the other hand, for
the delay-limited communication regime, the gain in the EC
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Fig. 5. The impact of the number of IRS elements (N ) on the EC of
the MISO downlink for the case of perfect CSI at the BS: delay-tolerant
communication regime (left), delay-limited communication regime (right).

of the MISO downlink over the EC of the SISO downlink
is negligible, due to very strict QoS constraints. Note once
gain that the optimal transmission rate r∗ was computed and
thereafter utilized to compute the EC for Fig. 6.
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Fig. 6. The impact of the number of IRS elements (N ) on the EC
of the MISO downlink for the case of no CSI at the BS: delay-tolerant
communication regime (left), delay-limited communication regime (right).

Fig. 7 plots the EC against the number of transmit antennas
Nt at the BS, for the delay-tolerant communication regime
with α = 0.1 (sub-plot on the left) and the delay-limited
communication regime with α = 10 (sub-plot on the right).
Moreover, each of the two sub-plots considers the two extreme
cases of the availability of the CSI at the BS (i.e., perfect CSI
and no CSI) for various values of the number of IRS elements
N . We first discuss the delay-tolerant communication regime
(sub-plot on the left). Here, we observe that the EC for the
case of perfect CSI at the BS is at least 30 bits/slot more than
the EC for the case of no CSI at the BS, for a given N and
and for any value of Nt. Moreover, we observe a logarithmic
increase in the EC with the increase in an increase in either

Nt or N . Next, the delay-limited communication regime (sub-
plot on the right). Here, the most important finding is that we
don’t observe any gains in the EC with increase in Nt for
the pessimistic case of delay-limited communication with no
CSI, as expected. This is because the lack of CSI and very
strict QoS requirements (α = 10) together act like a dual-edge
sword which eventually diminish any potential gains in the
EC due to increase in either Nt or N .
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Fig. 7. The impact of the number of transmit antennas (Nt) at the BS on
the EC of the MISO downlink: delay-tolerant communication regime (left),
delay-limited communication regime (right).

C. Optimization of transmission rate when CSI is not avail-
able at the BS

Finally, Fig. 8 plots the EC against the transmission rate r
for the delay-tolerant communication regime with α = 0.1 (see
the sub-plot on the left) and the delay-limited communication
regime with α = 10 (see the sub-plot on the right), for the
case of no CSI at the BS. Moreover, each of the two sub-plots
considers both SISO and MISO scenarios. Fig. 8 corroborates
our conjecture that the EC is a concave-like function of r.
This revelation allows us to find the optimal transmission rate
r∗ to enhance the EC further for the case of no CSI at the
BS. Note that we kept pt = 1 mW, and Nt = 10 (for MISO
scenario) to generate Fig. 8.

VI. CONCLUSION

This work studied the QoS performance of an IRS-assisted
SISO/MISO downlink in terms of a quantitative measure—
the so-called effective capacity. Closed-form expressions for
the EC (for both SISO/MISO downlink) were obtained under
two extreme assumptions regarding the availability of the
CSI, i.e., perfect CSI at the BS, and no CSI at the BS.
Extensive simulations were done, which revealed a number of
key points. That is, the EC increases logarithmically with the
increase in either of the number of IRS elements, or number
of transmit antennas at the BS, or the transmit power budget
of the BS. This implies that N , Nt, pt help improve the
EC to a certain extent, beyond which the EC could only be
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Fig. 8. The EC turns out to be a concave-like function of the transmission rate
r. (The sub-plot on the left depicts the delay-tolerant communication regime,
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increased by increasing, say, the bandwidth of the system.
Some other alternate potential mechanisms to boost the QoS
performance of the system are the following: incorporation
of a re-transmission protocol, e.g., automatic repeat request
(ARQ) protocol, transmit diversity schemes, relaying-based
schemes. Simulation results further revealed that the lack of
CSI at the BS and very strict QoS requirements together prove
to be a destructive combination which makes any potential
gains in the EC due to an increase in either Nt or N void.

This work opens up many exciting opportunities for the fu-
ture work, some of which are as follows. One could study the
EC-based QoS performance of an IRS-assisted SISO/MISO
downlink: i) to quantify the increase in the EC of the system
when the BS and the UE implement ARQ protocol (and its
variants); ii) to reassess the EC of the system for the more
realistic scenario of discrete phase shifts by the individual IRS
elements; iii) when only imperfect CSI is available at the BS
and at the IRS.
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APPENDIX A
PROOF OF PROPOSITION 2.1

Let hi = aiejθi , gi = biejψi be the polar form representation
of hi and gi, respectively. Note that ai and bi are i.i.d.
Rayleigh random variables with scale parameter ν = 1. Thus,

one could rewrite Eq. 1 as follows:

y =
√

ptζ
N

∑

i=1
aibie

j(φi+θi+ψi)x +w (28)

Recall from assumption A3 that the IRS controller has perfect
CSI of both hops at its disposal, it employs transmit beam-
forming mechanism which leads to zero phase error at the
UE. In other words, the IRS controller sets the phase of its
i-th element as follows: φi = −θi − ψi. Thus, the SNR at the
UE becomes:

γ =
ptζ ∣∑

N
i=1 aibi∣

2

σ2
= (

√

ptζ∑
N
i=1(aibi)

σ
)

2

(29)

Let Ai =
√
ptζ

σ
aibi, then E(Ai) =

√
ptζπ

2σ
and V (Ai) =

ptζ(16−π2)
4σ2 . For N reasonablly large, one could invoke the

Central Limit Theorem to get the following result: ∑Ni=1Ai ∼
N(N(

√
ptζπ

2σ
),N(

ptζ(16−π2)
4σ2 )). Finally,

γ = N
ptζ(16 − π2

)

4σ2
χ2

1(λ). (30)

APPENDIX B
PROOF OF PROPOSITION 2.2

To derive the distribution of the SNR for the IRS-assisted
MISO downlink, we begin by assuming N = 2 and Nt = 2.
This allows us to write the following equation:

gHΠHf = π1g1(f1h11 + f2h12) + π2g2(f1h21 + f2h22)

(31)

where πi = ejφi . We design the reflection coefficients matrix
Π at the IRS as follows: Π = diag[ g

∣∣g∣∣2 ]. Thus, gHΠ =

[1, 1]. In plain words, we have designed Π such that the
IRS does transmit beamforming on the second hop (which
effectively cancels out the effects of the channels on the
second hop). Therefore, we could re-write Eq. 31 as follows:

gHΠHf = (f1h11 + f2h12) + (f1h21 + f2h22) (32)

Let A = (f1h11 + f2h12), and B = (f1h21 + f2h22). Then,
one could verify that A ∼ CN(0, ∣f1∣

2
+ ∣f2∣

2
), and that B ∼

CN(0, ∣f1∣
2
+ ∣f2∣

2
). Thus, gHΠHf is the sum of two i.i.d.

complex Gaussian random variables (for N = Nt = 2). In
general:

gHΠHf =
N

∑

i=1
Zi, (33)

where Zi ∼ CN(0,∑
Nt
j=1 ∣fj ∣

2
). Thus, gHΠHf is the sum-

mation of N i.i.d. random variables. For N reasonably large,
one could invoke Central Limit theorem to get the following
approximation: gHΠHf ∼ CN(0,N ∑

Nt
j=1 ∣fj ∣

2
). This implies

that: ∣gHΠHf ∣ ∼ Rayleigh(N ∑Ntj=1 ∣fj ∣
2
), and ptζ∣gHΠHf ∣2

σ2 ∼

exp(κ), where κ = σ4

2N2(ptζ∑Ntj=1 ∣fj ∣2)2
.
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