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Abstract

In frequency division duplex (FDD) massive multiple-input multiple-output
(mMIMO) systems, the reciprocity mismatch caused by receiver distortion
seriously degrades the amplitude prediction performance of channel state
information (CSI). To tackle this issue, from the perspective of distortion
suppression and reciprocity calibration, a lightweight neural network-based
amplitude prediction method is proposed in this paper. Specifically, with the
receiver distortion at the base station (BS), conventional methods are em-
ployed to extract the amplitude feature of uplink CSI. Then, learning along
the direction of the uplink wireless propagation channel, a dedicated and
lightweight distortion-learning network (Dist-LeaNet) is designed to restrain
the receiver distortion and calibrate the amplitude reciprocity between the
uplink and downlink CSI. Subsequently, by cascading, a single hidden layer-
based amplitude-prediction network (Amp-PreNet) is developed to accom-
plish amplitude prediction of downlink CSI based on the strong amplitude
reciprocity. Simulation results show that, considering the receiver distortion
in FDD systems, the proposed scheme effectively improves the amplitude
prediction accuracy of downlink CSI while reducing the transmission and
processing delay.

Keywords: CSI feedback, massive MIMO, amplitude prediction, receiver
distortion, lightweight network

1. Introduction

As one of the key techniques in the fifth generation (5G) communica-
tions, the massive multiple-input multiple-output (mMIMO) has shown great
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prospects in providing high spectrum and energy efficiency [1–3]. In fre-
quency division duplex (FDD) systems, the downlink channel state informa-
tion (CSI) estimated by user equipment (UE) usually needs to be fed back to
the base station (BS) [4]. However, due to the large number of antennas, the
CSI feedback overhead in mMIMO systems increases sharply, which results
in large transmission and processing delay, energy consumption, and trans-
mission resource occupation, etc [5]. Especially, in high-speed scenarios, the
transmission and processing delay may cause the downlink CSI obtained at
the BS to be outdated [6]. Therefore, it is crucial to reduce the feedback
overhead and processing delay in FDD mMIMO systems.

Recently, some studies have shown that there is a strong amplitude cor-
relation (or reciprocity 1) between the uplink CSI and downlink CSI in FDD
systems [7, 8]. Hence, it becomes popular to use deep learning (DL) to di-
rectly predict the downlink CSI from the uplink CSI to reduce/eliminate the
feedback process [9–11]. In [9], considering the position-to-channel mapping
is bijective, a sparse complex-valued neural network (SCNet) is proposed to
approximate the uplink-to-downlink mapping function. In [10], according
to the spatial correlation in time-varying scenarios, a convolutional neural
network (CNN)-based downlink channel prediction method is investigated.
Under the premise of considering the channel time invariance, an attention-
based deep learning network is proposed in [11] to directly predict the down-
link CSI from the uplink CSI.

In [7–11], the feedback and prediction methods are mainly based on the
reciprocity between the uplink and downlink CSIs. However, this reciprocity
is vulnerable in practical systems. This is because the overall channel consists
of not only the wireless propagation channel, but also the radio frequency
(RF) front-end, e.g., analog-to-digital converters (ADCs), filters and low-
noise amplifiers (LNAs), etc [12, 13]. Although uplink and downlink wireless
propagation channels may be reciprocal, the hardware imperfection (HI) of
RF front-end inevitably introduces nonlinear distortion into the amplitude
and phase of the transmitted and received signals [14]. This nonlinear distor-
tion causes the amplitude mismatch and phase mismatch, thereby resulting
in the reciprocity mismatch between the uplink and downlink CSIs.

1Note that, due to the small enough difference in frequency-independent parameters
between the uplink CSI and downlink CSI in FDD systems, we assume the reciprocity in
this paper.
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Due to the significant impact of reciprocity mismatch on system per-
formance, reciprocity calibration is crucial for communication systems [12].
In both regular MIMO and mMIMO systems, the conventional reciprocity
calibration method is based on the dedicated hardware circuits [15], which
increases the energy consumption and hardware cost that comes from RF
chains required to support a number of antennas [16]. Besides, the existing
reciprocity calibration is usually investigated in time division duplex (TDD)
systems. In contrast, there is limited literature addressing the issue of reci-
procity calibration in FDD systems when utilizing the reciprocity. That
is, in practical FDD mMIMO systems, the reciprocity between uplink and
downlink channels is destroyed by the nonlinear distortion due to the differ-
ence between uplink and downlink hardware, making the reciprocity-based
prediction results inaccurate, and even resulting in the prediction process
impossible to achieve.

Therefore, it is vital to consider the nonlinear distortion before utilizing
reciprocity and the reciprocity calibration is also essential for the reciprocity-
based amplitude prediction in FDD systems. To suppress the impact of
distortion on reciprocity and calibrate the reciprocity, this paper proposes an
amplitude prediction scheme against receiver distortion. To the best of our
knowledge, the amplitude reciprocity-based CSI prediction by considering
distortion has not been investigated in FDD systems. The main contributions
of this paper are summarized as follows:

• We propose a more practical scenario which considers the distortion
before utilizing the reciprocity in FDD systems. Specifically, we take
the receiver distortion at BS as an example to illustrate that reciprocity
will be affected by distortion, which is a valuable reference for both UE
and BS.

• We design a network architecture cascading distortion learning and
amplitude prediction to improve the practicality and accuracy of am-
plitude prediction. Specifically, learning along the direction of the up-
link wireless propagation channel, a distortion-learning network (Dist-
LeaNet) is designed to restrain the receiver distortion and calibrate
the amplitude reciprocity between the uplink and downlink CSI. Sub-
sequently, based on the channel amplitude reciprocity, an amplitude-
prediction network (Amp-PreNet) is developed to predict the ampli-
tude of downlink CSI directly at the BS, thus avoiding the overhead
and transmission delay caused by feedback.
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Fig. 1. System model.

• We construct a lightweight learning and prediction network architecture
to reduce the processing delay and computational complexity for the BS
receiver. Due to that the nonlinear distortion varies slowly compared
with the wireless propagation channel, the features of distortion are
easy to capture. Hence, Dist-LeaNet is constructed with a lightweight
network architecture. With the assistance of Dist-LeaNet, Amp-PreNet
is also constructed with lightweight network architecture based on the
strong amplitude correlation.

The rest of this paper is organized as follows. In Section 2, we introduce
the system model. Then, the amplitude prediction scheme against receiver
distortion is presented in Section 3 and followed by numerical results in Sec-
tion 4. Finally, Section 5 concludes our work.

Notation: Boldface upper case and lower case letters denote matrix and
vector respectively. N (µ, σ2) stands for normal distribution with mean µ and
variance σ2; U (a, b) stands for uniform distribution on the interval (a, b); | · |
denotes the operation of taking the modulus of a complex value; (·)T denotes
transpose; E[·] represents the expectation operation; ∥·∥ is the Euclidean
norm.

2. System Model

The system model is given in Fig. 1, in which an FDD massive MIMO
system that consists of a BS with N antennas and U single-antenna users
in speed v is considered. At the BS, the received uplink signal from user-u,
denoted as Ỹu ∈ CN×N , is given by

Ỹu = guxu +Nu, (1)
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where gu ∈ CN×1 denotes the uplink channel (i.e., uplink CSI) from the
user-u to the BS in the angular domain, xu ∈ C1×N stands N -length up-
link pilot and data of user-u, and Nu ∈ CN×N is the circularly symmetric
complex Gaussian (CSCG) noise with zero-mean and variance σ2

u. With the
antenna diversity [17], the uplink pilot and data of each UE is received by N

BS antennas to form the N ×N complex signal Ỹu. From [18], there exists
a correlation between the uplink and downlink channels due to the shared
common physical paths and similar spatial propagation characteristics. For
example, the downlink CSI is constructed by utilizing frequency-independent
parameters between the uplink and downlink channels in the angular domain
[19]. Therefore, from [20, 21], the downlink CSI of user-u (i.e., hu ∈ CN×1)
can be recovered from the uplink CSI gu. However, the inevitable uplink
distortion (e.g., caused by imperfect hardware) makes this processing diffi-
cult. By denoting the mapping function of equivalent distortion at the BS
as fR-dis (·), the distorted signal of Ỹu, denoted by Yu ∈ CN×N , is expressed
as

Yu ≜ fR-dis

(
Ỹu

)
. (2)

Then, the uplink channel gu is estimated according to Yu and the uplink
pilot in xu. By denoting the estimated gu as g̃u (g̃u ∈ CN×1), our work
aims to utilize the strong amplitude correlation to predict the amplitude of
downlink CSI hu from g̃u [7, 8] in this paper. First, the amplitude feature
of g̃u is extracted. Subsequently, we build two dedicated networks, Dist-
LeaNet and Amp-PreNet, to restrain the distortion of receiver and enhance
the prediction accuracy of downlink CSI amplitude, respectively. The details
are described in Section 3. However, the phase information exhibits unique
importance due to its frequency-dependent nature, which is directly fed back
to the BS [8].

3. Amplitude Prediction Scheme against Receiver Distortion

To effectively utilize the reciprocity in practical scenarios, we present the
proposed amplitude prediction scheme against receiver distortion in this sec-
tion. In Section 3.1, the model of uplink receiver distortion is presented.
With the uplink receiver distortion at the BS, we develop Dist-LeaNet and
Amp-PreNet to restrain the distortion and predict the downlink CSI am-
plitude, respectively. Both Dist-LeaNet and Amp-PreNet are elaborated in
Section 3.2.
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3.1. Uplink Receiver Distortion

In the uplink communication, nonlinear distortion is inevitably encoun-
tered [22], e.g., the distortion of user’s power amplifiers (PAs), the distortion
of BS’s LNAs and ADCs, etc [23]. We mainly take the receiver distortion
of BS as an example to represent the uplink distortion, which has reference
value for both UE and BS.

Specifically, the nonlinear distortion varies slowly compared with the
wireless propagation channel [24]. Therefore, to further represent the dis-
tortion function fR-dis (·), the receiver distortion at the BS is denoted as
DR-BS ∈ CN×N , wherein its diagonal elements represent the amplitude and
phase distortion of each hardware at different antennas, and the off-diagonal
elements correspond to the crosstalk and mutual coupling effect between
different antennas [23]. The proper hardware circuit design can ensure the
nearly-zero crosstalk, and the antenna mutual coupling effect is often ignored
[25]. Therefore, the receiver distortion matrix can be regarded to be diagonal,
which is expressed as [26]

DR-BS = diag (r1,BS, · · · , rn,BS, · · · , rN ,BS) , (3)

where rn,BS = |rn,BS| ejϕ
r
n,BS (n = 1, 2, · · · , N). According to [26], the ampli-

tudes of the distortion obey log-normal distribution, and the phases of the
distortion obey uniform distribution, i.e.,

ln |rn,BS| ∼ N
(
0, δ2r,BS

)
, ϕr

n,BS ∼ U [−θr,BS, θr,BS] .

3.2. Dist-LeaNet and Amp-PreNet

In order to restrain the receiver distortion and obtain amplitude feature
of the uplink wireless propagation channel, we construct the lightweight and
effective Dist-LeaNet, which is supposed to be considered when channel reci-
procity is involved. Then, a recovered uplink CSI amplitude feature ĝu,amp,
is learned from Dist-LeaNet. Subsequently, to predict the downlink CSI am-
plitude feature, we design the lightweight Amp-PreNet, which utilizes the
amplitude correlation of CSI in the angular domain [8]. The corresponding
network design, training and deployment are as follows.

3.2.1. Network Design

According to [27], choosing the appropriate number of layers and hidden
neurons is still a challenge in the neural network (NN). That is, for a specific
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Table 1
Architecture of Dist-LeaNet and Amp-PreNet.

Layer
Input Hidden Output

Dist-LeaNet Amp-PreNet Dist-LeaNet Amp-PreNet Dist-LeaNet Amp-PreNet

Batch normalization
√

× × × × ×

Neuron number N N 2N 2N N N

Activation function None None Linear LReLU Linear Linear

network design, there is currently no established theoretical guidance on the
optimal number of layers or the number of neurons to be included at each
layer. Typically, complex hyper-parameter tuning is necessary. Based on
plenty of experimental results, we design the lightweight Dist-LeaNet and
Amp-PreNet, both of which are single hidden-layer NN. Specifically, consid-
ering the trade-off between performance and complexity, we train the network
with different number of layers and neurons. After verifying the performance
of the trained network, we select a suitable lightweight network architecture
to reduce the computational complexity while improve the prediction per-
formance compared with [7]. The network architectures of Dist-LeaNet and
Amp-PreNet are summarized in Table 1, and the detailed descriptions are
given as follows.

In both Dist-LeaNet and Amp-PreNet, the neurons of the input layer,
hidden layer, and output layer are N , 2N , and N , respectively. In Dist-
LeaNet, a batch normalization (BN) is employed for the input layer, which
normalizes the network input as zero mean and unit variance. For the hidden
layer and output layer of Dist-LeaNet, the linear activation is employed.
Then, the Dist-LeaNet is followed by Amp-PreNet with the cascaded mode,
i.e., the output of Dist-LeaNet is the input of Amp-PreNet. Without BN,
the leaky rectified unit (LReLU) [28] and linear activation are adopted for
the hidden layer and output layer of Amp-PreNet, respectively.

With the estimated uplink CSI g̃u, we extract its amplitude feature (de-
noted as g̃u,amp) according to

g̃u,amp = [|g̃u,1| , |g̃u,2| , . . . , |g̃u,N |]T . (4)

Due to the BS’s nonlinear distortion (e.g., the LNA and ADC in BS hard-
ware), g̃u,amp cannot use to map the amplitude of downlink CSI of user-u
(i.e., the amplitude of hu). This results in that the methods of CSI predic-
tion and recovery in [7–11, 20], cannot be applied directly. Thus, we develop
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Dist-LeaNet to learn along the direction of the amplitude of gu and restrain
the nonlinear distortion at the BS, which is expressed as

ĝu,amp = fDist-Lea (g̃u,amp,ΘDist-Lea) , (5)

where fDist-Lea (·) and ΘDist-Lea denote the mapping function of distortion
suppression and the training parameters of Dist-LeaNet, respectively.

On the basis of the obtained ĝu,amp, the amplitude of downlink CSI of
user-u (i.e., the amplitude of hu) can be mapped. Thus, based on the strong
amplitude correlation, we construct Amp-PreNet to predict the amplitude
feature of downlink CSI ĥu,amp, which can be expressed as

ĥu,amp = fAmp-Pre (ĝu,amp,ΘAmp-Pre) , (6)

where fAmp-Pre (·) and ΘAmp-Pre denote the mapping function of amplitude
prediction and the training parameters of Amp-PreNet, respectively.

3.2.2. Training and Deployment

The training sets are acquired by simulation, and a significant amount of
data samples are collected to train Dist-LeaNet and Amp-PreNet. Specifi-
cally, these data samples are generated as follows.

Amplitude correlated channels are generated by MATLAB 5G Toolbox,
which is subject to specifications of the Clustered-Delay-Line (CDL) channel
model in 3GPP TR 38.901 [29]. Similar to the setting in [18], the frequency-
independent parameters (e.g., the angle of departure (AoD)) are fixed, while
varying the complex gain of each path between the uplink and downlink
channels. The AoD of downlink CSI is approximately the same as the an-
gle of arrival (AoA) of the uplink CSI in a short time slot [18], showing a
relatively strong amplitude correlation in the angle domain. The amplitude
attenuation of clusters also reflects the amplitude reciprocity [8], due to the
similar geographical environment in a short time slot. Thus, gu and hu are
obtained by transforming the generated uplink and downlink channels to the
angular domain, respectively [18].

To train Dist-LeaNet and Amp-PreNet, we use the amplitude of gu and
hu as network labels, respectively, with the joint training method. The opti-
mization goal of Dist-LeaNet is to minimize the mean squared error (MSE)
between ĝu,amp and gu,amp, which is derived as

min
ΘDist-Lea

E
[
∥fDist-Lea (g̃u,amp,ΘDist-Lea)− gu,amp∥2

]
. (7)
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Similarly, the Amp-PreNet minimizes the MSE of the downlink CSI ampli-

tude, i.e., E

[∥∥∥ĥu,amp − hu,amp

∥∥∥2
]
, which is further expressed by

min
ΘAmp-Pre

E
[
∥fAmp-Pre (ĝu,amp,ΘAmp-Pre)− hu,amp∥2

]
. (8)

We perform the joint training once for both Dist-LeaNet and Amp-PreNet,
and save the trained network parameters for testing.

By using the Dist-LeaNet, the high precision uplink CSI amplitude ĝu,amp

is obtained. Then, ĝu,amp is used to predict the downlink CSI amplitude

ĥu,amp in the Amp-PreNet. We consider the distortion before utilizing the
channel reciprocity to accomplish amplitude prediction of downlink CSI. The
proposed scheme demonstrates a better prediction accuracy and reduces the
impact of time delay effectively in a practical scenario.

4. Experiment results

In this section, we provide numerical results of the proposed scheme.
Definitions and basic parameters involved in simulation are first given in
Section 4.1. Subsequently, to verify the effectiveness of the proposed scheme,
the normalized mean squared error (NMSE) of the predicted downlink CSI
amplitude is given in Section 4.2. Finally, computational complexity and
online running time comparison analysis are shown in Section 4.3.

4.1. Parameters Setting

Definitions involved in simulations are given as follows. The equivalent
signal-to-noise ratio (SNR) and NMSE are defined as similar to [7]. During
the experiments, v = 300 km/h, δ2r,BS = 1, and θr,BS = π are considered,
respectively. The probability density functions (PDF) of the amplitude and
phase of receiver distortion are shown in Fig. 2. Following the setting in
[8], we set the uplink frequency to 5.1 GHz and the downlink frequency to
5.3 GHz. Thus, according to fm = vfc/c [17] with fm, fc, and c being
the maximum doppler shift, the carrier frequency, and the speed of light,
respectively, the maximum doppler shift for the uplink CSI and downlink
CSI are 1418 Hz and 1473 Hz, respectively. The complex-valued Zadoff-Chu
(ZC) sequence [30] is employed as the pilot for uplink channel estimation
with least squares (LS) criterion in the simulation. For Dist-LeaNet and
Amp-PreNet, their training and testing data-sets are generated according to

9
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Fig. 2. (a) The PDF of the amplitude distortion at the receiver, where δ2r,BS = 1.
(b) The PDF of the phase distortion at the receiver, where θr,BS = π.

(4). The sample numbers of training set, validation set, and testing set are
30,000, 5,000, and 15,000, respectively. In this paper, the NMSE performance
of the proposed scheme is compared with those of [7] and [8]. In addition, to
verify the effectiveness of Dist-LeaNet, the proposed scheme without Dist-
LeaNet, denoted as “Proposed (without Dist-LeaNet)”, is also simulated. It
is worth noting that inspired by signal detection [31, 32], the detection-based
amplitude prediction is an interesting topic. However, this is beyond the
scope of this paper and prompts us to conduct exploratory research in the
future.

4.2. NMSE Performance

To validate the effectiveness of amplitude prediction, NMSE curves of
the recovered downlink CSI amplitude are plotted in Fig. 3, where N = 128
is considered. From Fig. 3, it can be observed that the NMSE of “Pro-
posed” is smaller than those of “Ref [7]”, “Ref [8]”, and “Proposed (without
Dist-LeaNet)”, showing the effectiveness of the proposed scheme in recov-
ering the downlink CSI amplitude. Specifically, the NMSE of “Proposed”
is smaller than that of “Proposed (without Dist-LeaNet)”, which confirms
that Dist-LeaNet plays an essential role for the proposed scheme in distortion
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Fig. 3. NMSE of downlink CSI amplitude versus SNR, where N = 128.

suppression and reciprocity calibration. In addition, for each given SNR, the
NMSE of “Proposed (without Dist-LeaNet)” is lower than those of “Ref [7]”
and “Ref [8]”, which indicates the effectiveness of Amp-PreNet in CSI predic-
tion. Overall, the proposed scheme proves to be advantageous in improving
the NMSE performance in various SNR scenarios.

To verify the NMSE performance against the impact of N , NMSE curves
of “Ref [7]”, “Ref [8]”, “Proposed (without Dist-LeaNet)”, and “Proposed”
are plotted in Fig. 4, where N = 64, N = 128, and N = 256 are considered.
For each given N , the NMSE of downlink CSI amplitude of “Proposed” is
smaller than those of “Ref [7]”, “Ref [8]”, and “Proposed (without Dist-
LeaNet)”. As the increase of N (i.e., the number of antennas increases), the
NMSE increases due to the more nonlinear distortion introduced on antennas
at the same SNR. Thus, compared with “Ref [7]”, “Ref [8]”, and “Proposed
(without Dist-LeaNet)”, the proposed Dist-LeaNet restrains the distortion
and Amp-PreNet predicts the CSI amplitude effectively against varying N .

4.3. Computational Complexity and Online Running Time

In this subsection, the computational complexity and online running time
of “Ref [7]”, “Ref [8]”, and “Proposed” are presented and analyzed as follows.
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Fig. 4. NMSE of downlink CSI amplitude versus SNR under different N .

Table 2
Analysis of Computational Complexity.

Method Complexity Case1 (N = 64) Case2 (N = 128) Case3 (N = 256)

Ref [7] 20N2 − 6N 81,536 326,912 1,309,180

Ref [8] N2/2 + 26841N/8 216,776 437,648 891,680

Proposed 16N2 − 6N 65,152 261,376 1,047,040

4.3.1. Computational Complexity Analysis

The number of floating-point operations (FLOPs) is considered as the
metric of computational complexity, which can be used to describe the NN
complexity [18]. According to [18], the FLOPs of “Ref [7]”, “Ref [8]” and
“Proposed” are 20N2−6N , N2/2+26841N/8, and 16N2−6N , respectively.
The comparison and case details of computational complexity are given in
Table 2 and Fig. 5 (a). For N < 217, the proposed scheme demonstrates
the lowest computational complexity. When N ⩾ 217, the FLOPs number
of “Ref [8]” is lower than those of “Proposed” and “Ref [7]”. Nevertheless,
the proposed scheme improves the prediction performance of downlink CSI
amplitude greatly at the expense of a tolerable computational complexity.
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4.3.2. Online Running Time

The comparison of online running time is given in Fig. 5 (b), where
N = 64, N = 128, and N = 256 are considered. For a fair comparison,
105 experiments of online running are conducted for “Ref [7]”, “Ref [8]” and
“Proposed” on the same computer. From Fig. 5 (b), for each given N , the
online running time of “Proposed” is shorter than those of “Ref [7]” and
“Ref [8]”. This reflects that the proposed scheme reduces the transmission
and processing delay effectively, due to the application of prediction method
and lightweight network architecture. Additionally, to demonstrate that the
proposed scheme can prevent the downlink CSI outdated, the online run-
ning time is compared with the coherence time of downlink CSI. Considering
that the correlation coefficient of the channel at any two time points within
the coherent time is not less than 0.5 [33], the maximum Doppler frequency
shift fm is used to measure the coherence time of the channel. According
to M = 9/(16πfm) [17], the coherence time M of the downlink CSI is 0.122
ms. However, when N = 64, N = 128, and N = 256 are considered, the
online running times for each experiment of the proposed scheme are 0.0069
ms, 0.0099 ms, and 0.0196 ms, respectively, which are smaller than the co-
herence time of downlink CSI. This indicates that although there is a certain
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delay, the proposed scheme can effectively prevent the predicted downlink
CSI amplitude from becoming outdated.

5. Conclusion

This paper presents an amplitude prediction scheme from uplink to down-
link CSI against receiver distortion in FDD systems. By using a lightweight
and dedicated Dist-LeaNet, the amplitude feature of the uplink wireless prop-
agation channel is obtained after distortion suppression and reciprocity cali-
bration. Then, with the uplink CSI, the downlink CSI amplitude is predicted
by a lightweight Amp-PreNet. Experiments show that, compared with meth-
ods that don’t consider the distortion in communication systems, the pro-
posed scheme is more practical and achieves a better prediction accuracy on
NMSE performance of the downlink CSI amplitude. This idea of consider-
ing and handling distortion has reference significance for both UE and BS.
In our future work, we will conduct exploratory research on detection-based
amplitude prediction methods.
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