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Abstract

Motivated by a growing need for intelligent housing to accommodate aging popu-
lations, we propose a novel application of intertransaction association rule (IAR)
mining to detect anomalous behaviour in smart home occupants. An efficient mining
algorithm that avoids the candidate generation bottleneck limiting the application
of current TAR mining algorithms on smart home data sets is detailed. An original
visual interface for the exploration of new and changing behaviours distilled from
discovered patterns using a new process for finding emergent rules is presented. Fi-
nally, we discuss our observations on the emergent behaviours detected in the homes
of two real world subjects.
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1 Introduction

Current trends suggest that the global population will consist predominately
of older people, those aged sixty and over, in as little as fifty years [1]. This de-
mographic shift is expected to lead to an increase in the need for smart homes;
intelligent environments that are able to assist their occupants in maintain-
ing independent lifestyles for as long as possible [2]. In our work, we seek to
facilitate the creation of homes that are able to detect the presence of new,
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possibly abnormal, behaviour in their occupants and to take action accord-
ingly. Appropriate action may be to query the occupant on the new behaviour,
to jog their memory on a task that they were carrying out or even to alert an
occupant’s relative that their assistance is required. Detecting such deviations
from normal behaviour requires models of a person’s expected behaviour to
compare with incoming data.

One of the more popular approaches favoured by researchers for modelling
human behaviours has been the application of graphical models. Training and
inferencing using these models is, however, computationally expensive and
generally limited to applications in which it is reasonable to assume that hu-
man activity can be represented as sequences of asynchronous activities or
events. The task of modelling human behaviour as precise sequences of events
is made difficult, however, by our tendency to interleave our activities and to
adjust our behaviour when we are interrupted. We propose a novel application
of Intertransaction Association Rule (IAR) mining [3] as a means of tackling
this issue. IARs are implication rules that allow us to capture the associative,
non-sequential, relationship of events observed within a home while retaining
some of the higher level temporal context in which these events occur.

The research contributions of this work are threefold. The first addresses the
issue of mining the IARs present in the sensor event logs from a home. Such
environments generate data sets that contain frequent occurrences of a large
number of events over relatively short periods. This poses a problem for the
current EH-Apriori [3] and FITT [4] algorithms for IAR mining as they rely
on a computationally costly candidate-generation-then-test approach for rule
discovery. This technique requires that k passes over a database are made
to retrieve the set of frequent rules up to length k. Each pass over the data
requires the generation of candidates — the set of all possibly frequent associa-
tions given those found in a previous pass. The scalability of such algorithms is
hence limited due to the computational complexity of generating and testing
the frequency of a combinatorial number of candidates. The number of candi-
dates generated at each pass k of a worst case scenario given n database items
and an intertransaction window of length w is 3527 KZ) (”;”)] . We propose the
application of our Extended Frequent Pattern Tree (EFP-Tree) [5] as a means
of tackling this issue. The EFP-Tree is an extension of the Frequent Pattern
Tree (FP-Tree) [6] for TAR mining. It uses a divide and conquer approach to
avoid candidate generation and requires only three passes over a database.

The second issue we face is how to gain insight into a person’s behaviour
so as to detect abnormality from an overwhelming number of rules that the
mining process is likely to uncover. We introduce the use of emergent IARs
as a novel means of finding patterns of behaviour that are of interest to us.
Emergent IARs are those rules that display significant growth from one data
set to another. Their presence may indicate abnormality evident as either



a previously unseen pattern of events or unusually frequent occurrences of
behaviour that would otherwise be considered normal. Emergent IARs offer a
convenient means of identifying changes that would otherwise be difficult to
discern through manual inspection of the rule sets. For example, the real world
event logs from a single week of data can produce around 7,200 patterns which
can be distilled down to approximately 150 emergent rules that are likely to
be of interest to us. The same data set mined with a slightly higher support
threshold will retrieve 46 emergent rules from circa 2,700 discovered patterns.

We further build on this with the introduction of a novel graphical interface
that maps the emergent rules back onto the original data. Visualisation on the
original data space is important in our application as it enables users to see
implications of patterns that are not immediately apparent from uncovered
rules. We have used our system for the discovery and analysis of emergent
[ARs to investigate the emergent human behaviour from a real world smart
home data set. Experimental results show that we are able to detect emergent
IARs that indicate both previously unseen behaviours and sensor aberrations.

2 Related Work

Several dedicated smart home projects are currently underway elsewhere. The
MavHome [7] project and the Adaptive House [8] both seek to develop home
automation that does not require users to manually program the components
in their homes. Researchers at the Aware Home [9] are exploring issues such as
context aware computing, human-computer-interaction, and occupant track-
ing and identification with an application to caring for the elderly. A recently
opened project is the PlaceLab [10], a live in laboratory facility for multidisci-
plinary research into areas such as human behaviour, and the use of technology
to simplify home control and promote healthy living. Our work is similarly mo-
tivated in that we seek to enable the detection of new and changing behaviours
in a smart home’s occupant. IAR mining allows us to do this by finding the
significant state-change sensor event associations and their temporal relation-
ships from large amounts of data generated in a home.

Intertransaction association rule (IAR) mining is an extension of association
rule mining, or “market basket” analysis, first introduced in [11]. Association
mining is concerned with the discovery of sets of items that frequently occur
together within the records of a transactional database. Association mining
is, essentially, a counting exercise; the problem being tackled is how to effi-
ciently find, possibly large, subsets of frequently occurring associations within
a combinatorial search space.

[AR mining extends the discovery of association rules to include relationships



that span transactions in one or more domain specific dimensions. IAR mining
is different to frequent episode and sequential pattern mining. Episode mining
[12] seeks to find frequent partial ordering of items within a sliding window
but does not consider the time interval relationships among those items. Se-
quential patterns [13] are concerned with finding frequent sequences where the
ordering of items or events is important yet the temporal relationships are not
considered. These two areas contrast to IAR mining where, assuming that the
intertransaction dimensional attribute is temporal, the associative relationship
among items is considered between time intervals but the ordering of items
within the intervals is unimportant. IAR mining was selected for this work due
to the interleaved nature of human behaviour as it allows us to capture the
non-sequential relationships between observed activities while retaining some
of the temporal aspect of such relationships. Opportunity exists for sequential
pattern mining to be applied when the precise ordering of activities is desired.

IAR mining was first proposed in [14] with the Apriori [15] inspired EH-
Apriori algorithm. EH-Apriori is a stepwise algorithm that makes numerous
passes over a data set to test, in each pass, the frequency of the k-length
candidate itemsets generated from frequent (k — 1)-length associations dis-
covered in the previous pass. Candidate generation may, however, result in a
prohibitively large number of candidate itemsets being produced. This limits
the scalability of such algorithms. The First Intra Then Inter (FITI) algorithm
[4] is an improved candidate generation algorithm that first finds the complete
set of intratransaction associations and transforms the data set into lookup
structures that aid the subsequent mining of intertransaction itemsets. The
advantage of FITT lies in its ability to discard unnecessary data early on in the
mining process and to use the discovered intratransactions to more efficiently
guide the generation of intertransaction candidates.

Our emergent behaviours work is similar to Emerging Patterns (EPs) [17]
and Jumping Emerging Patterns [16] which seek to find sets of items that
show significant growth from one data set to another. EPs are used in trend
detection and have application to classification problems due to their ability
to identify the discriminative features among classes of data. EPs differ from
[ARs in that they do not consider the associative relationship among items.

Visual data mining tools for association rule exploration aim to provide users
with a convenient way by which to navigate through large sets of discovered
associations and the relationships they entail. We limit our focus on previous
work in visual data mining to the problem of understanding association rules;
interested readers may wish to refer to [18] for a wider survey of research into
the area of visual data mining.

Two dimensional matrices showing the one-to-one relationship of rules was
one of the first techniques used to visualise associations. The antecedent and



consequent of the rules were used to label the rows and the columns of the
matrix while the support and confidence of the rules were visually represented
through icons on the grid. Commercial tools such as MineSet [19] and Quest
[20] were the first to make use of this method.

A more versatile matrix representation that shows the relationships between
items and itemsets was introduced in [21]. The matrix columns were used to
represent associations and rows the individual items. Item membership in the
rules was depicted by binary coloured bricks placed onto the grid, the brick
colour distinguishing between the rules antecedent and consequent items. The
grid was displayed in three dimensions with the support and confidence of the
associations charted alongside the x-axis. The two dimensional matrix theme
was again used in [22]. Here, associations of the same items were grouped
into cells and placed onto the grid in descending support and descending
confidence order. Interesting changes in the rules were marked on the grid and
on an accompanying hierarchical view of the associations.

None of these methods map discovered rules back onto the original data space.

3 Intertransaction Association Rules

Consider the set of all items I:{alaQ...ai...aM} occurring in a

database DB = (T'T,...Tx) of transactions T; (1 <i< N) such that
T; (z) € I V items z in T;. For any transaction T; the items are said to form
the set Sy, = {a"Ti . .a%}. For the case of a single intertransaction dimension
attribute, an intertransaction sliding window of size w transactions is passed
over the transactions in DB to extract the extended transaction items such
that the extended transaction at T; is Ez, = {St,, S1,41- .- S1y40 } and the set
of all possible extended transaction items is F = {aéag coodl.aM } The min-
ing problem reduces to the traditional intratransaction case when w = 0, that
is, when only intratransaction items are included in an extended transaction
itemset. In this work the extended transaction items {aé coad! } are referred

to as intraitems and the extended transaction items {a} caM } are referred

to as interitems. The superscript notation is dropped when the value of an
item is known.

Intertransaction association rules are implication rules such that X = Y with
the properties X C E,Y C F, Ja}, € X, da’, € Y whered > 0and X NY =0

[4]. The support and confidence measures of an itemset are calculated as ‘T—]f;"
and ||7£f7’|| respectively where |7}, is the number of extended transactions con-

taining all items in X UY', |T,| is the number of extended transactions con-
taining all items in X and N is the number of extended transactions. The



support of a rule is a simple measure of the rule frequency; the most frequent
rules being likely to reflect common knowledge about a domain while rules
with lower support may highlight insights that are little known and may even
be unexpected. The confidence measure, in contrast, is a statistical measure
of the accuracy of a rule’s implication. That is, how confident the implication
that a transaction containing the items in X will also contain the items in Y.

As an example, the rule Ay, By, C1, D3 = E3 implies that if we encounter A
and B in the current transaction interval, C in the next and D three transac-
tions from now then E will also occur three transactions from now. If A, B, C,
D and E map to the event descriptors “kitchen sink cold water on”, “kitchen
sink cold water off”, “dishwasher open”, “dishwasher closed” and “dishwasher
on” respectively then one possible interpretation of the rule may be that it is
normal to open the dishwasher, close it again and then turn the machine on
shortly after having used the cold water faucet in the kitchen sink, presumably
to rinse the dishes.

4 An Extended Frequent Pattern Tree for IAR Mining

The proposed Extended Frequent Pattern Tree (EFP-Tree) is a tree structure
of descending frequency ordered intraitem nodes with zero or one interitem
Frequent Pattern Tree (FP-Tree) subtrees where the frequency ordering of the
interitems is conditioned on the intratransaction item parent [5]. Each node
contains an item ID mapping to a codebook of item descriptors, a frequency
counter, a link to its parent node, links to zero or more children and a link to
the next node in the tree of the same item ID. Interitem nodes also carry the
dimensional offset of the item in relation to its intratransaction parent.

Nodes are placed into the tree such that the entire set of frequent items for an
arbitrary intertransaction can be restored by traversing the tree. The ordering
of nodes into descending frequency increases the likelihood of items placed
into the tree sharing common nodes, creating a compact representation of
the database transactions that captures the associative relationship of the
transaction items.

4.1  EFP-Tree Construction

Three passes over a database are required to build the tree structure. As
in the FP-Tree, the frequency of single items is gathered in an initial pass
over the database to build the set of frequent single intraitems and the set of
frequent interitems given a minimum support threshold «. The intraitems are



Table 1
Extended transactions retrieved from a database using a window of size w = 5.

Time Extended transaction items
1 Bo Co Ag B1 B2 Cy Ay C4 E4 Bs E5
2 Bo B1 C; A; C3 Es By E4 By As
3 By Cop Ag C2 E2 B3 Es By Ay
5 Co Eg B1 E1 By Ay Cy4 Bs C5 Dy
6 Bog Eg B1 Ay C3 B4 C4 Dy By Cs As
7 Bg Ag Co B3 C3 D3 By C4 Ay
9 Co B; C1 D1 By Cy Ay
10 Bg Cop Dg B1 Cy Ay
11 Bo Co Ag

ordered by descending frequency to become the item lookup header table for
the intraitem tree. The frequent intraitems from Table 1 are By:7, Cy:6 and
Ag:4 with frequency counts of 7, 6 and 4 respectively. The frequent interitems
are Aq:3, Ay:3, B1:6, Bo:3, By:4, B5:4, Cq:3, Co:4, C3:3 and Cy:4.

The intraitem FP-Tree is built and the conditional frequencies of the interitems
are found in the second pass. The intraitems for each transaction 7; are first
filtered to remove items not present in the known frequent intraitem and in-
teritem sets from the first pass and are sorted in order of descending frequency.
The ordered item list is recursively inserted into the tree such that at each
level [ in the tree the child node with the ID of the I*! item in the ordered
array is traversed and its frequency count is incremented. Children nodes that
do not exist will be created prior to traversal and kept in codebook ID order
so that binary search can be used when traversing the tree. The linked list
of nodes of same item ID that originates from the root node header table is
updated whenever a new node is created. The frequency of the interitems rel-
ative to T; are incremented in the final intraitem node that is traversed. The
ordered lists of frequent intraitems are stored for use in the third pass. The
root node is said to be at level [ = 0.

The third and final pass over the database builds the interitem sub-trees in the
EFP-Tree structure. At each transaction 7T; the cached ordered list of frequent
intraitems are used to traverse the intraitem tree and locate the intraitem
node that will become the root node of the interitem subtree. The extended
items within the intertransaction sliding window at T; are filtered to remove
known globally infrequent interitems and the remaining items are sorted in
order of local descending frequency given the intraitem parent. The ordered
interitems are then recursively inserted into the interitem subtree as before.



Given a minimum support threshold of @ = 3 and the example intertransac-
tions in Table 1, the example tree in Figure 1 is built as follows. First, the
intraitems By, Cy and Ag are added to the root node of an empty tree such
that all nodes are recursively created. The frequency of item By is incremented
by the next transaction. The items By, Cy and A, are added again, the existing
nodes are traversed and their frequency counts are each incremented. The next
two transactions see the node Cj created as the second child of the root node
and an increment to the count of By. By and Ay are then added such that Ag
becomes the second child of By and the count of By is incremented once more.
The count of the nodes representing the intratransaction associations Cy and
By, Cy are incremented by the next two transactions. Finally, the counts of
the items in the path Bg, Cy, Ay are once again incremented.

In our example the known frequent items found in the first pass of some
database allow us to reduce the extended transaction items from Table 1 at
time 1 to Bo, C(), Ao, Bl, AQ, BQ, CQ and C4 and at time 3 to Bo, C(), Ao, C2 and
B,4. The interitems for both extended transactions will be inserted at the node
identified by following the path Bg, Cy, Ay through the tree in Figure 1. The
insertion of the ordered list of interitems from the first extended transaction
will create the children interitem nodes Cs, By, As, By, C4 and Bs. The child
node C, will be incremented and a new node for item B, inserted as a child
of C; when the extended transaction at time 3 is ordered and added. This
process is repeated for the interitems in the remaining extended transactions.

The complete EFP-Tree of the example database is shown in Figure 1.

4.2  EFP-Tree Mining

As in the FP-Tree, retrieval of association rules from the EFP-Tree is made
possible by the pattern growth property [6]. Pattern growth uses a divide and
conquer approach that recursively builds the entire set of frequent associations
by constructing trees conditioned on known frequent base rules and taking the
dot product of the frequent items in the conditional tree and the conditional
base itemset to produce new rules. These new rules then become the condi-
tional base for the next set of conditional trees to be mined. The Frequent
Pattern Growth (FP-Growth) algorithm from the FP-Tree differs to our Ex-
tended FP-Growth (EFP-Growth) algorithm in that the latter must consider
intertransaction relationship inheritance along the intraitem nodes.

Starting with an EFP-Tree T" and an empty conditional base, or rule suffix,
EFP-Growth iterates over the set of intraitems I in 7" to build a conditional
tree T, conditioned on I for each frequent I. At each recursion, I is prepended
to the conditional base to generate, or grow, a new association rule and build



Header Table

SUOI}ORSURIJRIJUT

e
e @ 6 .’/'

e -
-

Key

$9013QNSs UOI}0RSURIFISIUL

--+ Node Link
Intra-tree link
--—Inter-tree link

Fig. 1. The Extended FP-Tree for the example database with w = 5 and a = 3.
Subscript numbers represent the dimensional offset, in this case the item time,
relative to the intratransaction items while colon delineated numbers depict the
node frequency. The header tables of the intertransaction item subtrees have been
omitted for clarity.

the conditional tree for the next recursive step. No candidate generation is
necessary as the frequency of the items is stored in the tree structure and all
generated rules are guaranteed to be frequent.

Two types of conditional trees are used in EFP-Growth; a conditional EFP-
Tree T, used for finding the related intraitems and interitems that can be used
to extend the present intraitem rule suffix and a FP-Tree T, of the interitems
inherited by the conditional base. This latter tree is used to find the interitem
associations for a given intraitem rule suffix and is required as not all interitems
inherited by the conditional base may be included in 7.

Given a tree T, the conditional tree T, conditioned on some [ is found by
collecting the set of extended transactions formed through the union of the
prefix path and the inherited interitems for each node in 7" whose item ID
is I and whose immediate parent is an intraitem node. The prefix path for
any given node is the set of its parent nodes and corresponding frequencies as
stored in the EFP-Tree. All nodes in T of item ID [ are found by following the
linked list of same item ID nodes, the head of which is stored in the intraitem
header table of T'. The extended transactions are then used to build T, as
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described in Section 4.1.

The conditional interitem tree T, for a given conditional base is found by
constructing an FP-Tree of the interitem transactions inherited by the condi-
tional base rule and using FP-Growth to mine the resulting tree. Taking the
dot product of the conditional base and the set of interitem associations re-
turned by FP-Growth produces the entire set of intertransaction associations
related to the conditional base. This process continues recursively until no
more conditional trees are built or until only a single intraitem path exists in
T.. If T, contains a single intraitem path we can avoid recursion and find the
complete set of rules given the conditional base by finding the dot product
of the intraitem combinations in 7T, and the interitem associations returned
when calling FP-Growth on the interitem subtree.

The example EFP-Tree T in Figure 1 was built with a minimum support
level of @ = 3. We will now set the support threshold to o = 2 in order to
demonstrate the mining process in finer detail than is possible at the original
support setting.

Conditioning T on Ay, we find the conditional prefix paths (By:1) and (Bg:3 Cy:3).
The interitems (Ca:1 Cs3:1 By:1 Cy:1) are related to (By:1) and the interitems
(Cy:1 B1:1 Ag:1 Ba:l Cy:1 Cs:1) and (Ca:1 By:1) are found for (Bg:3 Cq:3).
The conditional tree T.|Ay with o = 2 is shown as Figure 2(a) and the in-
teritem FP-Tree T,|Ay as Figure 2(b). The set of IARs associated with the
conditional base Ag is found by taking the dot product of Ay and the in-
teritem associations returned by FP-Growth from the tree in Figure 2(b). The
resulting rules are Ag = Cy:3, Ay = B4:2, Ay = C4:2, AjCy = B4:2 and
A()CQ = C4Z2.
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Recursing into the conditional tree in Figure 2(a), EFP-Growth grows the
conditional base by finding the least frequent intraitem whose support meets
the support threshold for mining. This item, Cy, is prepended to A, to create
the new conditional base CyAy and the intratransaction rule Cy = Ay:3. The
single interitem prefix path (By:4) and its inherited interitems (Cy:1 By:1) and
(Cy:1 Cy:1) form to create the single intraitem path conditional tree shown in
Figure 2(c). The inherited items of CyAy are used to build a single node FP-
Tree T, containing Cs:2 resulting in the generation of a single rule CoAy =
Cs:2 when the dot product of the interitem associations found in T.|CyAg
and the conditional base is found. Recursively mining the tree in Figure 2(c)
generates the rules BoCy = Ag:2 and BoCyAg = Cy:2.

The mining now returns to 7T.|Ay to create the next conditional base BgAg
and generate its respective rule By = Ag:4. No prefix path of BgA( exists in
Figure 2(a) so no conditional tree T,|ByAg needs to be built. The mining of the
interitem FP-Tree T,.|BoAy, the same as for T.|Ay in Figure 2(b), generates
the rules B()A() = C2:37 B()A() = B4I2, B()A() = C422, BOA()CQ = B4:2 and
B()A()CQ = C4:2.

Upon return from a recursive call EFP-Growth will update the immediate
parent of each node whose item ID is I such that the interitems are inherited
and ready for conditioning on the next frequent item. It is for this reason that
the mining algorithm grows rules by recursing into trees conditioned on the
least frequent intraitems first.

Returning to the original tree 7' in Figure 1 the recursive mining technique
will be applied in turn to the conditional bases Cy and By. The conditional
trees T.|Cy and T,|Cy are given in Figure 2(d) and Figure 2(e) respectively.

The EFP-Growth algorithm is detailed below.

For each item a; in header table of N from least to most frequent such
that support(a;) > o do
Find the conditional prefix path and the extended items for a;, propagate
the interitems of each occurrence of a; to its parent and
build the conditional EFP-Tree T,

If T, contains a single intratransaction path P such that no non-leaf node
contains an intertransaction subtree then
T. <« T, with P removed
singlePathRules <+ all combinations of intratransaction nodes in P
single PathRules < singlePathRules x rules returned by call to
FP-Growth(leaf node of P, null) as in [6]
end
returnedRules «+ call EFP-Growth(T,, «, maxSpan)
Build the intertransaction item FP-Tree T, using the extended items from a;
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interRules < call FP-Growth(T,, null) as in [6]
ruleSet « returnedRules U interRules U singlePathRules
For each rule R in ruleSet do
add a; to R with support(R) = min(support(R), support(a;))
end
add a; to ruleSet with support = frequency of a; in N
minedRules «— minedRules U ruleSet
end
Return minedRules

4.8 Algorithm Performance

Experimentation on both synthetic and real world data has shown that the
EFP-Growth algorithm is computationally an order of magnitude more effi-
cient than the existing algorithms for TAR mining when dealing with dense
data sets such as those generated by a smart home environment.

Both synthetic data, employed to model the best and worst case scenarios
for association rule mining, and real world data sets, to indicate the practi-
cal application of the mining algorithms, were used to compare the computa-
tional performance and peak memory requirements of EFP-Growth with FITT.
These performance measures are important as they empirically demonstrate
the scalability of the algorithms on input data of varying characteristics. For
each data set the ability of the algorithms to scale with respect to the length
of the intertransaction window and a decreasing minimum support threshold
is observed. Tung et al. [4] have previously shown FITI to be computationally
more efficient than EH-Apriori and so the latter algorithm is not considered.

The real world data used [23] are event logs from an array of state-change
sensors installed in the homes of two subjects, a thirty year old working pro-
fessional and an eighty year old retiree, over a period of sixteen days. The
sensors, 77 in the first subject’s home and 84 in the second, were fitted to a
variety of appliances, containers and furniture to log the times of use. These
events were discretised for mining into transactions of five minute intervals to
produce 658 transactions for the first subject and 748 transactions for the sec-
ond. Unique sensor IDs were stripped from the event logs to reduce the sensor
information to only include the sensor state and its room and object context.
For example, multiple sensors installed on the doors of a cabinet are reduced
to Kitchen/Cabinet true and Kitchen/Cabinet false events. The event code-
books contained 76 and 80 entries for the first and second subjects respectively.

Two synthetic data sets representing sparse and dense data were generated
using the method described in [3,4], the same method used to compare the
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Table 2
Parameters used in the generation of the synthetic data sets.

Parameter Sparse | Dense
Number of intratransactions 500 200
Size of the intertransaction source pool 50 200
Average length of intratransactions 5t 25
Maximum length of intratransactions 10 50
Average length of intertransactions 5 8
Maximum length of intertransactions 10 20
Maximum number of unique items in the data | 500 100
Maximum interval span of intertransactions 4 6

EH-Apriori algorithm to FITI. Table 2 lists the parameters used to create the
data sets used in the experimentation.

[AR mining in FITI occurs only after the set of frequent intratransaction asso-
ciations have been found. Knowledge of these rules is then used to transform
the database into a lookup structure that aids intertransaction mining. For
this experiment, FITI was implemented using the FP-Tree and FP-Growth
algorithm for the initial mining phase. This was necessary in order for a fair
comparison of the algorithms to be made, it having previously been shown that
FP-Growth performs an order of magnitude faster than the Apriori algorithm
used in the original FITT implementation [24].

The algorithms were implemented in Ruby, an interpreted language, and
benchmarked on a 3.2GHz Pentium 4 running FreeBSD.

4.3.1 Limitations of the Benchmark Environment

Before discussing results, execution time irregularities should be noted in the
EFP-Growth curve in Figure 5(a) at w = 2 and at w = 7. Irregularities also
appear for FITI in Figure 4(a) at the 1.1% support threshold, in Figure 4(b)
at 1% support and in Figure 5(b) at w = 4. Profiling revealed that these
irregularities are caused by an erratic garbage collector in the Ruby interpreter.
When triggered, the garbage collector will spend a disproportionally long time
seeking memory to free. This behaviour was consistently reproduced on the
FreeBSD 5.3, Linux 2.6 and Windows XP platforms using the 1.6 and 1.8 Ruby
interpreter series. This behaviour is independent of the algorithm being run
and was found present in the implementations of the EH-Apriori, FITI, FP-
Growth and EFP-Growth algorithms. The garbage collector behaved normally
for all other points on the graphs and hence the irregularities found do not
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invalidate the results obtained.

4.8.2  Minimum Support Threshold

For the first set of results, the support threshold was gradually lowered from
1.6% to 0.6% with a fixed intertransaction window size of 4 and from 13% to
8% with a fixed window size of 6 for the synthetic sparse and synthetic dense
data sets respectively.

The plot in Figure 3(a) shows FITI outperforming EFP-Growth until the 1%
support threshold is reached. FITI has an advantage at the higher support
thresholds as it is able to remove unnecessary data prior to counting. This
benefit is reduced as the number of candidates generated by FITI increases
when the support threshold is lowered. EFP-Growth outperforms FITI at the
lower support thresholds and especially at the 0.6% level where an explosion
in the number of rules results in an exponential increase in the number of
candidate itemsets generated and counted by FITI. We begin to see an order
of magnitude difference in the algorithm execution times on the dense data
in Figure 3(b). Although FITI marginally outperforms EFP-Growth at the
12.5% and 13% support threshold, FITT is overwhelmed by the number of
candidate itemsets generated at the lower thresholds.

The execution times in Figure 4(a) for the first real world data set compares
the algorithms’ performance as the support threshold is lowered from 1.5% to
0.7%. An order of magnitude difference in the running times exists at the lower
support levels due to the large number of discovered rules and a high number
of FITI generated candidates. Figure 4(b) depicts the execution time of EFP-
Growth and FITT on the second real world data set over a support threshold
range of 0.4% to 1.3%. EFP-Growth is able to maintain its computational
advantage over FITT at all support levels.

4.83.3 Intertransaction Sliding Window Size

The intertransaction window size in Figure 5 is incremented from w = 0 to
w = 10 for the sparse data and w = 8 for the dense data with fixed minimum
support thresholds of 1% and 10% respectively. Figure 5(a) shows that EFP-
Growth has only a marginal computational advantage on the sparse data set,
the number of rules found and the number of candidates generated by FITI
remaining relatively low. FITT has similar execution times to EFP-Growth on
the dense data in Figure 5(b) until the intertransaction size w = 5. The curves
begin to diverge at this point, the FITI execution time eventually being an
order of magnitude greater than EFP-Growth at w = 8.

Performance on the real world data is compared by incrementing the sliding
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Fig. 3. The execution time (a) for the synthetic sparse data set with the intertrans-
action window size fixed at w = 4 and the execution time (b) for the synthetic dense
data set with w = 6 as the minimum support threshold is adjusted.
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Fig. 4. The execution time (a) for the working professional subject and the execution
time (b) for the retiree subject as the minimum support threshold is adjusted. The
intertransaction window size is fixed at w = 6 with an interval size of 300 seconds
for both data sets.

window size up to w = 12 to find associations spanning up to an hour. The
support thresholds are fixed at 1% and 0.4% for the first and second data sets.

EFP-Growth outpaced FITI computationally in both real world data sets in
Figure 6(a) and Figure 6(b). A sudden increase in the execution time of the
FITT algorithm is seen in Figure 6(b) when the sliding window size is increased
from w = 2 to w = 3. This increase is caused by a sudden large jump in the
number of rules being discovered.

4.8.4  Conclusion

It has been shown that EFP-Growth is a more scalable algorithm for TAR
mining than FITI. The candidate generation and testing approach of the latter
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Fig. 6. The execution time (a) for the working professional subject with a minimum
support threshold o« = 1% and the execution time (b) or the retiree subject with
a = 0.4% as the intertransaction window size is increased.

was found to limit its scalability when the number of discovered itemsets,
and hence the number of candidates being generated and counted, become
too large. In contrast, EFP-Growth was shown to be able to scale well in
such cases, especially when applied to the synthetic dense data and at the
lower support levels of the synthetic sparse data set. EFP-Growth was also
shown to outperform FITI on the real world data sets, making it a more
suitable algorithm for IAR mining on the sensor event logs from an intelligent
environment than the EH-Apriori and FITI algorithms.
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0, if sup (r|DBp) =0 and sup (r|DBy) =0

growth (r|DBy, DBy) = { o0, if sup (r|/DBg) = 0 and sup (r|/DBy) # 0
suprlDBN) — therwise
sup(riDBs)

(1)

5 Discovering Emergent Behaviour

The discovery of emergent intertransaction associations [25] seeks to find those
rules that display significant growth in a database of new observations DBy
over a historical data set DBy. We say that an association rule r is emergent
when its growth, the ratio of its support in DBy to its support in DBy, is
greater than or equal to some threshold 6 and a minimum support threshold
a on DBy has been met. We have adopted Equation 1 [16] as the growth
function for this work.

In our application, it is reasonable to expect that our historical data set will be
larger and contain a much greater number of associations than will be present
in the new data set. It is impractical, therefore, to find the complete set of
association rules for both DBy and DBy and then compare these sets to find
the emergent association rules when the rules in DBy are expected to be a
subset of those in D By. We instead employ the EFP-Tree as an intermediate
representation of both DBy and DBy. Item constraints [26] are applied to
the mining of DBy so that only a desired subset of rules are extracted. This
provides us with the ability to “query” DBy on the historical frequency of
only those associations found to be frequent in D By.

Only the set of minimal emergent rules are sought. This is to prevent the
discovery process from returning an overwhelming number of rules, the ma-
jority of which would be unlikely to offer any valuable information not already
present in the minimal set. Finding the set of minimal rules was achieved by
ordering the mined associations by ascending rule length and discarding those
rules known to contain emergent association subsets using previously detected
emergent rules. An emergent association ¢ is said to be non-minimal when
3{r,t} such that r (t) C ¢ (t = 0) wherer (t) = {Tfﬁ_t, pt it .rdZZ+t}
is a known emergent rule whose intertransaction offsets {dy,ds,...d;,...dz}
have been incremented t intervals. For example, if r is an emergent rule
Co,Dy = E5 and ¢ is the rule Ay, By, Ci, D3 = E3 then ¢ is also known to
be emergent because r (1) C ¢ holds true.

Although we applied filtering as a post process, the EFP-Tree offers an op-

portunity to move the filtering process into the tree mining algorithm so as to
guide the mining of both DBy and D By.
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Fig. 7. The visual interface highlighting the presence of selected rules (top) on the
event time line. The horizontal axis represents the date and time of the intervals
while the vertical axis represents the sensor events. The date and time and the name
of the sensor event that the mouse cursor is pointing at is being displayed.

6 Visual Analysis of Emergent Behaviour

Previous work [19-22] has attempted to tackle the issue of visual exploration
of complete sets of mined association rules. In contrast, the visualisation ap-
proach we propose seeks to limit users to consider only those IARs found to
be emergent. These rules are likely to be a minority of the rules discovered
and hence they will be difficult to discern or gain meaning from using any
form of visualisation that covers all rules. A way of visualising the effect of the
emergent rules in isolation and in the context of the original data is necessary.
This is done by mapping the emergent IARs back onto the original data in or-
der to establish the original context in which the rules occur. Doing so allows
users to see both the date and time that the emergent behaviour occurred
and which other sensors were triggered around this time. Although it was not
available for the data set used in the experimentation, a corresponding video
of each instance of the unusual behaviour could also be retrieved and shown
to the user.

A screen capture of the proposed interface with a sample data set loaded is
shown in Figure 7. The emergent rules are displayed in a table in the top
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portion of the screen. The rules are selectable and can be ordered by their
support, growth measures or by rule similarity. The main display element is a
grid that displays a compact view of the sensors triggered in each transaction
interval. The horizontal axis represent the date and time of the transaction
intervals while the vertical axis shows the sensor events grouped by their room
location. Triggered events are indicated with blue coloured cells while cells that
correspond to currently selected rules are highlighted in red.

Users are able to select whether they wish to view a compact representation of
the time line, where only intervals in which events were recorded are shown,
or the full grid. The thickness of the vertical lines between cells is used to
indicate jumps in time in the compact view, the cells of contiguous intervals
being delineated by hairlines while the cells of non-contiguous intervals are
separated by thick lines. All cells in the full time line view are contiguous and
hence are delineated using hairlines. Figure 8(a) presents a magnified view of
the grid in which the effect of the compact view is more visible. In contrast,
Figure 8(b) shows a magnified view of a small subset of the same time period
displayed using the expanded view. The start of a new day is indicated with
a gap in the time line in both the compact and full view modes. Users are
able to view the exact date and time of an interval by positioning the mouse
cursor over a cell, the time being indicated in a text box horizontally centered
underneath the grid. If the cell being pointed at represents a triggered sensor
event then the name of that event is also displayed in the text box. The screen
capture in Figure 7, for example, shows the descriptive name of the sensor
event, and the date and time of the interval in which it occurs, of the cell that
the mouse cursor is presently pointed at. In this example, the event represents
the switching off of the stereo in the retiree subject’s den.

Cells are similarly partitioned on the vertical axis by the sensor events that
they represent. Sensors are grouped by their location in the home with gaps on
the grid delineating rooms. Sensor events are further grouped by their textual
description such that all events related to one particular sensor, currently
limited to “on” and “off” events in our application, appear in contiguous cells
whose boundary is drawn using hairlines. Boundaries between the sensors in a
room are delineated using thick horizontal lines. Partitioning the sensor events
in this way provides users with a clear view of the time and location of events
being triggered and their relation to other sensors and rooms.

The lower portion of the interface shows meta information about the data be-
ing displayed. The minimum support and growth thresholds, the interval size
and the intertransaction window size used to mine the rules are shown here.
A text box horizontally centered underneath the cell grid displays information
about a cell whenever the user positions the mouse cursor over it. This area
also contains a slider that allows the magnification of the grid to be adjusted
and a check box with which to toggle the compact time line representation.
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Fig. 8. Magnified view of (a) the compact time line showing the sensor events within
a single room over a period of one day and (b) the expanded view showing approx-
imately three hours from the same room and period.

7 Experimentation and Results

We have applied our method of emergent IAR discovery on the real world
data described in Section 4.3. The event logs were mined and analysed with
transactions of one, two, three, four and five minute intervals

The sixteen days worth of event logs from each subject were divided into two
halves, each half containing eight days of events. Each half was in turn used as
the historical database DBy to find the emergent rules present in the other.
We found that our visual data mining tool helped us attain greater insight
into the emergent behaviours discovered and in a shorter period than we were
able to obtain through manual inspection of the rules and the log files.

Our examination of the data sets revealed several instances of unusual be-
haviour that we have interpreted to be caused by sensor malfunctions. These
conclusions are substantiated by Tapia et al. [23] who note that sensors were
observed to fail or were dislodged during the data gathering period. Such anal-
ysis is further reinforced through inspection of the sensor event logs which
revealed several instances of rapid and repetitive toggling of a sensor’s state.

Mining using the four and five minute intervals generally provided more stable,
noise free, results than the one, two and three minute intervals due to the
limited amount of training data available. The benefit of reduced noise was
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diminished somewhat with the increase in the granularity of the results. The
cause of the vast majority of emergent behaviours, whether valid or the result
of a lack of historical data, was apparent regardless of the interval size chosen.

7.1 Working Professional Data Set

[ARs from the first subject were mined using a raw minimum support thresh-
old of @ = 8 for both sets of data. This support level was chosen to balance
the quality and the quantity of the discovered associations, providing us with
an ample number of rules for analysis while remaining resistant to noise. Asso-
ciation rules discovered in D By were classified emergent if a minimum growth
of =5 was measured.

7.1.1 First Half

A large group of emergent IARs related to a flurry of activity in the subject’s
kitchen were discovered in the third day from the first half of the data. The
discovered rules describe the temporal relationships of the kitchen drawer,
cabinet and refrigerator spanning transaction intervals over a thirty minute
period. These patterns do not, however, appear to signify any anomalous be-
haviour given the overall context of kitchen related activity being carried out.

An abnormality does appear during this kitchen activity, however, in the form
of a repeated opening and closing of the kitchen door. The regularity, frequency
and the length of time over which this occurs is unusual. The lack of activity
outside of the kitchen reinforces our suspicion that a glitch with the door
sensor has been discovered here. The phenomenon is repeated again over a
shorter period early the next day. A magnified view of the interface showing
this behaviour using an interval length of two minutes is shown in Figure 9(a).

7.1.2  Second Half

A significant portion of the emergent rules found in the second half again
relate to activity in the kitchen. Unlike the kitchen related rules from the first
half, these rules describe emergent relationships that are new combinations of
kitchen sensors whose temporal relationship span only a few intervals. This
suggests that the kitchen activities in this half are more involved and that not
enough historical data is available to account for these patterns.

A lack of historical data also explains the emergent IARs describing the open-
ing and closing of the bathroom sink faucets one to two intervals after their
previous use. This behaviour is rarely seen in the first half where we expect
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(a) (b)

Fig. 9. Visualisation of (a) the abnormal kitchen door activity using a two minute
transaction interval on the third day of the first half of the working professional data
and (b) the abnormal bathroom activity using a two minute transaction interval on
the first day of the first half of the retiree data. Triggered events are coloured in
blue while events matching the emergent IARs are coloured in red

these events to occur within single transaction intervals and without being
repeated for some time.

A mundane change in the subject’s behaviour is apparent, however, with the
use of the bathroom door being significantly more frequent in this half; the
bathroom door is rarely used in the other half.

7.2  Retiree Data Set

The minimum support threshold for mining the first half of the data was

reduced to o = 6 in order to provide us with a sufficient number of rules for

analysis not otherwise available at higher support levels. The support level for

the second half was again set to & = 8. A minimum growth measurement of
= 5 was again required for both.

7.2.1 First Half

A noticeable change in the retiree subject’s use of the bathroom is evident on
the first morning in the first half. Here we see a forty-five minute period in
which the bathroom door is repeatedly being opened and closed. The television
in the living room is operated and the microwave and the refrigerator in the
kitchen are also accessed during this time. In this context, the emergent IARs
suggest that the subject is making frequent short visits to the bathroom, a
behaviour that we believe is unusual and would warrant further investigation.
This emergent behaviour is visible in the event grid in Figure 9(b).
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Emergent rules were discovered that describe the kitchen door being repeat-
edly opened and closed throughout a twenty minute period on the second day.
The behaviour we expect to see is this door being left in one state for longer
periods of time or to see it being both opened and closed within a single time
interval. This behaviour appears to be innocuous given the activity seen in
the rest of the home.

The subject appears to be carrying out more kitchen related activity in this
half than in the next. This explains the discovery of a host of emergent IARs
involving kitchen sensor events. These patterns do not indicate any unusual
behaviour, however. Rather, they reinforce the notion that we do not possess
enough historical data to account for the wide variety of patterns present in
normal kitchen behaviour.

A behaviour that is unusual, however, is the frequent use of the television
throughout this half. This behaviour is unusual given that the subject rarely
turns on the television in the historical data set.

7.2.2  Second Half

A prominent example of abnormality is apparent on the first day in the second
half of the data. Here, emergent IARs highlight a malfunction in the hot and
cold shower faucet sensors as evident through the regular and repeated trig-
gering of faucet events over a forty-five minute interval. The theory that this
behaviour is due to a hardware glitch is further reinforced by the conspicuous
absence of any further shower faucet events for the remainder of the week.

On the seventh day the subject seems to repeatedly enter and leave the butler’s
pantry over a forty minute period. The light in the pantry is switched on for
a period of up to two minutes before being switched off again, a pattern that
is repeated every one or two intervals. The use of the pantry in this way is
unusual; normal behaviour for this person is to have the pantry light on for
a few minutes at a time and then to not return again for several hours. This
new behaviour may not be abnormal.

The last emergent behaviour worth noting is an increased use of the drawer in
the subject’s home office. The drawer is used several times in short succession
on days one and three of this half yet it is only used once in the previous half.
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8 Conclusion

This paper has introduced a novel data mining approach for the detection of
new and changing behaviour in people living in a smart home. We presented
the EFP-Tree, an extension of the FP-Tree for intertransaction mining, and
the corresponding EFP-Growth algorithm for the efficient retrieval of frequent
[AR patterns from the tree structure. The EFP-Tree was shown to be an
order of magnitude computationally more efficient at mining IARs from both
synthetic data and from event data collected in a smart home environment
than the existing EH-Apriori [3] and FITI [4] algorithms.

A method for finding IAR patterns exhibiting significant growth from one data
set to another was also introduced. These emergent IARs allow us to detect
the presence of new, possibly anomalous, behaviour and unusually frequent
occurrences of behaviour that would otherwise be considered normal from
amongst the mined rules. Emergent IARs are important in our work as they
provide a means of distilling many discovered rules down to those most likely
to be of interest to us. A novel visual data mining tool that maps the discovered
emergent IARs back onto the original data space was discussed. We found that
the use of this interface allowed us to obtain clearer insight into the emergent
rules than through manual inspection of the event logs.

Observations made on the emergent IARs discovered in the sensor event logs
from the homes of a working professional and an elderly retiree volunteer were
discussed. We demonstrated that emergent behaviours due to both sensor
aberrations and real changes in behaviour could be detected. At least one
behaviour, documented in Section 7.2.1, warranting concern for the well-being
of the elderly subject was discovered.
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