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‡Department of Computer Science and EngineeringThe University of Texas at Arlington, Box 19015, Arlington TX 76019, USA.AbstractSensing context plays an important role in many pervasive and mobile computing applications. Continuing fromprevious work [33], we present an unsupervised framework for extracting user context in indoor environments withexisting wireless infrastructures. Our novel approach casts context detection into an incremental, unsupervised clus-tering setting. Using WiFi observations consisting of access point identi�cation and signal strengths freely availablein o�ce or public spaces, we adapt a density-based clustering technique to recover basic forms of user contexts thatinclude user motion state and signi�cant places the user visits from time to time. High-level user context, termedrhythms, comprising sequences of signi�cant places are derived from the above low-level context by employing prob-abilistic clustering techniques, latent Dirichlet allocation and its n-gram temporal extension. These user contextscan enable a wide range of context-ware application services. Experimental results with real data in comparisonwith existing methods are presented to validate the proposed approach. Our motion classi�cation algorithm operatesin real-time, and achieves 10% improvement over an existing method; signi�cant locations are detected with over
90% accuracy and near perfect cluster purity. Richer indoor context and meaningful rhythms, such as typical dailyroutines or meeting patterns, are also inferred automatically from collected raw WiFi signals.Key words: context modeling, spatio-temporal rhythm extraction, probabilistic topic models, hidden Markov models,unsupervised learning, wireless signals1. IntroductionThe proliferation of small computing mobile devices, such as smartphones, iPods, eEPCs, ultraportablecomputers has brought new opportunities and challenges for ubiquitous computing [41]. On one hand, a moreprevalent trend is that these devices are rapidly equipped with sensing capabilities: GPS receivers, WiFi,Bluetooth transceivers, and many more. On the other hand, mobile computing has increasingly broadenedcomputing perspective in everyday user's context, being, at least, either situational or interactional. Threeuseful contexts are motion state, location and movement patterns over time time and space. Location oftencorrelates with certain activities or roles [30], and aspects of the user's physical states, such as motion,are also indicative of activity and the user's a�ordances (e.g. interruptibility). This information can driveapplications at many levels, from automated battery management to assistive systems (e.g., for the visuallyEmail addresses: d.phung,b.adams,s.venkatesh@curtin.edu.au, mkumar@uta.edu (Dinh Phung†, Brett Adams†, SvethaVenkatesh† and Mohan Kumar‡).Preprint submitted to Elsevier July 10, 2009



impaired). Device convergence has made available a number of sensing and communication technologies,including Bluetooth, WiFi and GPS, for extracting these elements of context. Our early work has consideredthe problem of context extraction in an outdoor setting using GPS [34,2]. In this paper, we design, developand evaluate novel, high accuracy mechanisms for extracting user context in indoor environments. Usermotion level and signi�cant locations, de�ned as places where a user spends time, are extracted from rawWiFi signals in a timely, unsupervised, and accurate manner, in existing wireless network infrastructures.We further provide methods on how this fundamental information can be used to discover such higher-levelcontexts as the user's daily routines or rhythms in an unsupervised setting.Much work has been done in the use of GPS to derive representations of signi�cant locations in outdoorsituations. There has also been signi�cant activity in localization from signatures that penetrate or originateindoors, such as WiFi, GSM, and Bluetooth. Work aimed at characterizing the physical state of a userhas tended to make use of sensors that aren't as readily available as ambient radio signatures, such asthermometers, galvanic sensors and accelerometers. A brief review of relevant work is provided in Section2. In [38] location and orientation estimations based on Bayesian �ltering of received signal strength (RSS)justi�es the use of WiFi signals for extracting location context. The Locadio positioning system of [23] usesWiFi signals to infer whether or not a user is moving based on the variance of signal of the strongest WiFiaccess point (WAP) within a short window, achieving an accuracy of 87% after a post-processing step witha 2-stage hidden Markov model (HMM). Often, the noisy, sparse nature of WiFi signatures renders modelsbased on simple Gaussian assumption become problematic in this case. Additional shortcoming of Locadiois the requirement for training. Moreover, in the original setting of Locadio [23], prediction is made witha latency of 20 seconds, which disquali�es the approach from real-time applications, such as navigationassistance for the visually impaired.Build upon our preliminary work in [33], instead of viewing motion state detection as a supervised classi�-cation problem, we cast it as an unsupervised and incremental clustering problem. A window of consecutiveWiFi signatures observed from the same location, when the user is still, are likely to be similar, and thus ismore likely to form a dense cluster as opposed to those when the user is moving. Similarly, if WiFi signalsobserved during a user's daily life are collated, locations where the user spends time repeatedly, for exampleat their desk at work, will also emerge from a clustering process. We de�ne a measure of distance betweentwo WiFi observations appropriate to their characteristics, notably allowing for missing data from the vec-tors of WAP signal strength. We use a density-based technique, DBSCAN [13] and its incremental version[12], to recover user motion level and signi�cant locations. Use of incremental DBSCAN allows for motionlevel classi�cation with latency under 2s, which can potentially be suitable for many real-time applications.We conduct comprehensive experiments to compare Locadio method with our density-based approach fordetecting user state. We achieve up to 95% accuracy, an improvement of 10% over Locadio's approach in[23], suggesting that our method is more robust despite noisy and incomplete WiFi data. We experimentwith detection of signi�cant location, using pre-�ltering to remove observations when the user is moving,resulting in an accuracy of above 91% with almost perfect clustering purity (98%).To further motivate the extraction of motion state and signi�cant locations, we also present a techniquefor discovering user indoor movement behaviors over time, termed rhythms. It has been shown that travelepisodes often correspond to hidden agendas or `social projects' [8], and we posit that a similar situationoccurs at �ner resolutions, say, within the o�ce. Discovery of these rhythms o�ers potentially rich informa-tion about user intent and activity. We adapt a probabilistic graphical model, Latent Dirichlet Allocation(LDA)[5], for this task. LDA is an unsupervised probabilistic clustering technique used to discover latenttopics from bags of words in text by �nding co-occurrences of words in documents. Here, signi�cant locationsand their observed times are extracted and are mapped to words. These are then collated over a day andbecome analogous to a document. The latent topics discovered by LDA in this way are interpreted as userrhythms. We experiment with the discovery of rhythms for a user over the course of a one month period. 1While interpretable and meaningful o�ce patterns can be clustered, LDA does not truly model the temporal
1 It is worth noting from the perspective of assistive systems that the incidence of strict routines is even higher among thevisually impaired, presumably due in part to the desire to decrease the number of variables that might induce danger orinconvenience for themselves or others, making rhythms more compelling in this application domain.2



information between landmarks due to its strict `bag-of-word' assumption. To this end, we extend our pre-vious work using LDA in [33] to employ an n-gram extension of LDA known as n-gram topic model (NLDA)[40] and show that richer trajectory patterns can be automatically discovered such as typical daily routinesor research meeting patterns. In all cases, the results from the hidden Markov model are also presented asa baseline performance for comparison.First novel contributions in this paper, which were earlier developed in [33] are two-fold: the development ofunsupervised and incremental algorithms for high accuracy motion; and the real-time detection of signi�cantplaces visited using WiFi signals. In addition to [33], a signi�cant novel contribution unique to this paperis the extraction of rhythms using rich Bayesian probabilistic models that explicitly capture temporal andspatial information in a sensor agnostic manner in an indoor setting. The ability to infer a mobile user'scontext is a vital and foundational component for a broad array of pervasive computing applications. Ourinvestigations enable both richer representation and more accurate extractions of di�erent aspects of context,and hence the outcomes of the research work presented in this paper can potentially be valuable to variousapplications. The two-fold contributions can serve as a basis for both annotation and prediction at a numberof levels of the services stack. Importantly, the absence of a requirement for calibration and use of existinginfrastructure make for a low barrier to deployment. The applications include, context-sensitive deviceresource and interface management, semi-automatic calendaring, personal life logs and collaboration tools,personalized push-information such as advertising, and navigation assistance for the visually impaired. In ashared context, this information can aid market research, surveillance and urban planning.The remainder of the paper is structured as follows. Section 2 discusses related work in context extraction,with a particular emphasis on indoor localization from WiFi signatures. Section 3 discusses the envisagedoperational setting of our algorithms for motion state classi�cation, signi�cant location extraction andrhythm discovery. Section 4 begins with a description of our experiment setup, and presents the results foreach of the clustering tasks. We conclude with summary remarks in Section 5. Finally, the Appendix Acontain further supplementary results for the experiments reported.2. Related WorkThanks to the development of GPS, several methods for detecting location-based activities and signi�cantplaces visited have been developed in outdoor environments [10,45,1,25]. The work of [10] infers high-levelhuman behaviors from low-level GPS traces using a variant of the Abstract Hidden Markov Model in [7]with an extension to handle continuous observation. [25] proposes a form of hierarchical conditional random�eld, incorporating domain knowledge of hierarchical spatial proximity structure, to learn daily activities andsigni�cant place from GPS data. Dynamic probabilistic models, being either generative [10] or discriminative[25], have been employed in these works to handle uncertainties in low-level signals and activity structures,where raw GPS readings are often mapped as observation at the bottom level of the model and high-level activities are modeled at higher levels. These approaches are, however, supervised and thus requirean expensive parameter estimation phase and often do not support inference for growing data sets. Usingnon-probabilistic approaches, [45] and [1] employ density-based clustering to extract signi�cant places fromGPS. Table 1 provides a brief breakdown of related work by signal type, method, context discovered, andpotential cost involved.We focus primarily on work that recovers context with an indoor component in terms of location, proximityof others, and/or some de�nition of activity via a range of sensors with low-cost. The work of [9] developsa wearable system including potentially expensive video and audio sensors for extracting the events andscenes. HMMs are used to infer the events, however recent recognition techniques in video and audio arestill unreliable, in addition to the computational burden in the training HMM models. Similar systemsare also developed in [6] using mainly audio, accelerometers and WiFi in a supervised framework to infercontext such as posture, location and activities. The main drawback with these systems is again the overloadin computational power to process videos and audios, and thus, not suitable for real-time demands whenoperating on mobile devices with limited computing resources. Additionally, they require collecting trainingdata to for training classi�ers and thus are di�erent from ours where no training data is required. [11] uses3



Signal Context Work Method CostIndoor WiFi proximity, neighborhood [26] physical proximity model lowWiFi location [4] k-nearest neighbors lowWiFi location [24,36,44,42] naive Bayes model lowWiFi user motion state [23] variance statistics on RSS andHMM lowRFID activity modeling [32] dynamic Bayesian network low/mediumaudio,accelerometer,WiFi, videos posture, loation, speech,activities [6] decision tree, Bayesianclassi�ers medium/highPowerline location [31] naive Bayes model low/mediumOutdoor GPS activity modeling [10] dynamic Bayesian network low/mediumGPS signi�cant places [3] clustering with heuristicsthresholds low/mediumGPS signi�cant places [45] density-based clustering withtime low/mediumGPS signi�cant places [1,2] density-based clustering low/mediumGPS activity modeling andrecognition [25] hierarchical conditionalrandom �elds low/mediumGPS signi�cant places, movementpatterns [19] hidden Markov models low/mediumGPS signi�cant places, socialrhythms [2] density-based clustering low/mediumHybrid visual, aural events, scenes [9] short/long time-scale HMM highGSM, celltower ids eigenbehaviours (zero-orderpatterns) [11] singular value decomposition(SVD) lowGMS,bluetooth routine discovery [14] probabilistic latent semanticanalysis (PLSA) low/mediumaccelerometer activity recognition [21] naive Bayes model mediumTable 1A brief survey on context extraction literature and methods used. Note that none of these approaches address the incrementaland real-time detection of context, except [2].GSM positioning and Bluetooth proximity to extract the repeated activities of individuals and communitypatterns by extracting the principal eigen-behaviors from the eigenvalues of the day (row) vs time (column)matrix, in which an entry indicates if the user was at that spatial temporal location. However, GSM is toocoarse for use in indoor activities. Further they do not extract rhythms. By integrating the RFID tag foreach equipment with meaningful description [32], the context is extracted directly from the description andthen higher-order activities are inferred using the same model in [10].In [37], a Nash H-learning mechanism is used to predict user mobilities for e�cient resource management.To complement location-based activity recognition, [21] propose a new approach to extract activity patternsusing accelerometers. Applying the original LDA model with variational inference [5], [21] constructs adictionary of word and a corpus of documents in which each word is an activity and a document consists ofall words during particular day and leverage the daily patterns from normal activities collected over 16-dayperiod using accelerometer. Naive Bayes classi�er is further used for recognizing the normal activities suchas sitting, walking, driving etc. The work of [34] proposes a novel model LSDA, an extended version ofn-gram model [40], to extract the socially hidden rhythms of a user using GPS traces. The corpus of words4



and documents is generated from GPS data [1] in which word is mapped to <time,signi�cant place> anda document consists of all words in each day. The advantage of LSDA is its ability to map consecutivelocations as a n-gram of words and thus in its ability to extract meaningful social rhythms.Regarding the task of high-order social movement pattern discovery, little work has been found, mainlyin an outdoor setting [19,2,11]. These works are often limited to `zero-order' patterns, i.e., inferred rhythmicrepetitions from a �xed location rather than between locations. For example, the extraction of rare, frequent,timed or optional rhythms in [2] is limited to being at a particular latitude-longitude landmark. [19] exper-iments with �rst-order patterns using the HMM but concluded that it is too strict. [43] employed two-leveldynamic Bayesian networks to infer users's activities from WiFi signals similar to the way our early work[28] used the hierarchical hidden Markov models for activity recognition with visual sensors. However, theseapproaches are supervised and particularly computational expensive, render them unsuitable for mobileplatforms. The work of [11] applied singular valued decomposition (SVD) on the term-by-document matrixto extract principal eigenvectors interpreted as eigenbehaviors, analogous to rare and frequent rhythms ex-tracted in [2]. In addition, this approach is not scalable since SVD computation is O (

n3
) complexity where

n is the number of data points. [14] also look to characterize routines present in the Reality Mining dataset.In contrast to [11], they frame the problem in a probabilistic setting, and discover routines at the levelof a day in both location and proximity using Probabilistic Latent Semantic Analysis (PLSA). Four codesare used to map cell tower IDs to locations, Home, Work, Other and No Signal, in a 30 minute period. Asequence of 3 locations are then added to a coarse time of day zone (e.g., 7�9AM) to yield a `word' in aday's `document.' Similarly, proximity is encoded using two device IDs and a coarse timeslot. The topicsdiscovered by PLSA are ranked, and manual observation yields behaviours such as �going to work early�or �meeting for lunch.� Our work di�ers in a number of signi�cant ways: location vocabulary distinguishesbetween each and every signi�cant place a user visits, allowing for discovery of speci�c sequences; and then-gram topic model explicitly models sequence information, and is thus data driven.Understanding context and providing context-aware application services are critical to dynamic pervasiveenvironments. Context continues to be a topic of research focus as context data and their associated sourcesexhibit dynamism. Henrickson and Induslka [20] discuss shortfalls of context modeling and reasoning withontologies for understanding context. Nicklas et al. [29] investigate the use of hybrid reasoning to augment theNEXUS framework. Existing work has considered dynamic models applied on either WiFi or accelerometerdata to derive context in indoor environments. These models are, however, often strictly supervised, andlimited e�orts has been made to extract context with topic models on accelerometer and GPS data, butnone of these have been applied to WiFi data. Thus there is a requirement to produce techniques that workin an unsupervised manner on noisy WiFi data to extract context.3. A System for Context DetectionThis section begins with an overview of the system, together with examples of its envisaged setting anduses by way of motivation. Separate sections are then devoted to motion classi�cation, signi�cant locationextraction, and rhythm detection, respectively.3.1. System OverviewThe envisaged setting for the algorithms detailed below considers any mobile device equipped with a WiFireceiver. The system would typically run as a background process, making context information available asit is extracted. The input to the system consists of time-stamped vectors of received signal strength, eachidenti�ed by the broadcasting WAP: {time, WAP id, RSS}. This is depicted on the left of Figure 1. Motionclassi�cation is performed with the arrival of each new WiFi sample (after an initial, small start-up latencyperiod) and is made available immediately; for example, in indoor navigating, points at which the userbecomes stationary are candidates for making reliable location prediction or issuing new information.Referring to Figure 1, motion classi�cation is an output of the Context Detection box. If the device alsohas the ability to store a historical record of WiFi samples, signi�cant location discovery can also begin5



Figure 1. System overview: unsupervised context detection from raw WiFi signals.immediately, resulting in a growing representation of where the user is spending time. E.g., in the course ofa normal work day, a handful of locations might be discovered corresponding to the o�ce, cafe, library anda colleague's room. Signi�cant locations are also depicted as outputs of context detection in Figure 1. Theselocations can be used as annotations to associate activities or media items (e.g., this is the set of applicationsyou run at this location; you took these photos in the same place). If appropriate, labeling these locationsmeaningfully would be performed as a secondary activity, e.g. via active learning prompts, user-derivedsources such as a calendar, or centrally-sourced such as beacon databases or pre-calibrated maps [2]. Finally,at the coarser resolution of days and weeks, rhythm detection becomes appropriate. As depicted on theright side of Figure 1, the rhythm detector accepts the user's history of time-stamped landmarks and yieldspatterns of behavior in the user's whereabouts. E.g., discovered rhythms might correspond to: an averagework day, involving the o�ce and home; a work day that includes collaboration or shopping; and weekendroutines that have little overlap. Rhythms, in addition to constituting a higher-order object for annotation(e.g., these photos were taken at work, but not an average work day), provide the basis for prediction. E.g.,the user typically doesn't appear at these locations over the weekend.3.2. WiFi observation distanceAs we desire to cluster WiFi observations, we require a measure of distance between two such observations.In theory, the relationship between RSS and distance for a given WAP is inverse squared, and at �rst glance,modeling these points according to a Gaussian distribution and then performing hypothesis testing on theconcentration of these points may o�er a straight solution. However, there are a number of factors thatcomplicate this model in practice: RSS is attenuated by physical structures and other environmental factors,which result in relatively high signal variability. Moreover, measuring the distance of a pair of sets of WAPs iscomplicated by missing values from one observation to the next. This also renders clustering algorithms thatutilize Gaussian properties (e.g., GMM) unsuitable. One advantage of density-based clustering approachesis a degree of freedom in the formulation of a suitable function of distance between two observations.Let X = {x1, x2, . . . , xN} be the set of all WAPs available. For a WiFi observation p, let P be a subset of
{1, 2, . . . , N} denoting the set of WAP indices observed and XP be the actual set of WAPs. E.g., if P = {2, 5}then XP = {x2, x5}. Furthermore, we denote by y(p)

i the corresponding RSS reading in observation p fromthe source xi. Given two WiFi observations p and q, denoting the common WAPs set by C = P ∩ Q, thedistance between them is de�ned as:dist (p, q) =
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]2 (1)where |C|denotes the cardinality of set C. By this distance measure, only shared signal strength from commonWAPs between two observations is taken into account, any missing ones do not a�ect the distance.In practice, the spatial proximity of two WiFi observations a�ects the di�erence between Xp and Xq . Let
η = |C| /max (|P | , |Q|) and using a threshold η0 ∈ [0, 1], the distance between p and q is adjusted to:6
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+∞ otherwise (2)Intuitively, the introduction of η0 is to account for the case when the di�erence of observed WAPs in twoobservations is too large. For example, with η0 = 0.5, any pair of observations that share less than half theirWAPs in common will be set to be totally di�erent (+∞).3.3. Motion classi�cationAs mentioned earlier, the key observation used to infer about a user's motion state is the level of `denseness'or `connectedness' of WiFi observations accumulated within a short time interval acquired incrementally inreal-time. A good �t for this task is DBSCAN [13], a density-based clustering algorithm, with the additionaladvantage of being non-parametric in number of clusters.
(a) p and q directlyreachable. (b) p density reachable from q (c) p and q are density connected.Figure 2. Illustration of three key concepts in density-based clustering: (a) directly density reachable, (b) density reachable,and (c) density connected [13].DBSCAN develops three concepts that are naturally relevant to our problem: directly density reachable,density reachable and density-connected. It requires a pair of parameters (ε,D) (which may be inferredautomatically from the data) where ε is a radius around point p to form its neighboring set N(p|ε) and Dserves as a threshold to test if two points p and q are directly density reachable. A point q is then calleddensity reachable from p if there is a sequence of points {p1, . . . , pl} that connects them, i.e., p = p1 →

p2 . . .→ pl = q, where pi is directly density reachable to pi+1; and �nally p is called density connected to qif there exists a point v that is density reachable from both p and q. These concepts are depicted in Figure2. DBSCAN then seeks to form clusters that are maximal in density-connectedness. Incremental DBSCAN[12] also uses the above fundamental density concepts but operates in an online manner. Assuming that allpoints prior to the arrival of a new point have been clustered, the essential step is the INSERT operator,which updates the points e�ected by the newly arrived point. A DELETE operation can also be similarlyperformed to remove stale points.To determine whether the user is static or moving, we examine the similarity of WiFi observations withina window. If the user is static, a regular `cluster' will be returned, and if the user is moving, no clustershould be formed because of the variability in WiFi signal strength or visible access points.The batch or o�-line approach is restricted by window size (Alg. 1). E.g., if the window size is 20 seconds,a result can be obtained only after each 20 second window is processed, leading to clear real time limitations.This can be overcome by an overlapping window approach that employs Incremental DBSCAN. As each newoverlapping window is introduced, new WiFi observations are added, and outdated WiFi observations areremoved. As each WiFi observation p is introduced, there are three possibilities: (1) Noise: p is considerednoise, (2) Creation: p and some previous noise points form a new cluster, or (3) Absorption: p is absorbedinto the existing cluster (Alg. 2). There are two cases when a point p is to be removed: (1) Removal: p'sneighbors are decreased and the existing cluster may disappear, or (2) Reduction: p's neighbors are decreasedbut cluster status is unchanged (see Alg. 2). To take advantage of the existence of at most one cluster, thealgorithm terminates as soon as a cluster is found. 7



Algorithm 1 Motion state detection.Input: current window of WiFi observations1: mark all points inside the window as unclassi�ed.2: for each observation p in current window do3: if no cluster found and p is unclassi�ed then4: if number of neighbors |N(p|ε)| ≥ D then5: p and its neighboring points form a cluster.6: else7: p is noise point8: end if9: end if10: end forOutput: motion state: `moving' if no cluster found or cluster size is smaller a threshold δ (discussed morein the texts); or `static' otherwise.Recall that DBSCAN requires two parameters: the neighborhood radius ε and number of neighbors D.Ester et. al. [13] propose a simple but e�cient heuristic to determine ε and D in terms of the �thinnest�cluster in the database. Let k -dist be the distance from each point p to k-th nearest neighbor q of p. Asorted k-distance graph is produced by sorting all the points in descending value of k-dist. A good thresholdis suggested to be empirically chosen as the point where there is a rapid change in the sorted k-distancegraph. In Figure 6a we empirically show a threshold that intuitively gives a good balance on this criteria. Ifthe number of observations assigned to a particular cluster within a window is greater than a threshold δ,the state is deemed to be static. For a window with N observations, D is calculated as D ≈ δ ×N .3.4. Signi�cant location discoveryThe notion of signi�cant or meaningful locations has been discussed in the literature from a range ofperspectives. For our purposes it is su�cient to de�ne a signi�cant location as a place where a user spendstime. This in turn requires that the user be repeatedly stationary at a location.Hence, in our setting, this involves a two step process. Firstly, the user's motion level is classi�ed over awindow of time, and a cluster is formed if they are inferred to be still. If so, the observations that belongto the static cluster are extracted. For each WAP id in these observations, the average signal strength iscomputed. This is termed the �average observation� for the given window. In the second step, we use theoriginal version of Incremental DBSCAN presented in [12] to cluster this new average observation. As eachWiFi observation p is introduced, there are four possibilities: (1) Noise: p is a noise point, (2) Creation: pand some previous noise points form a new cluster, (3) Absorption: p is absorbed in the existing cluster,or (4) Merge: several clusters and noise neighbors are merged to form a cluster. Parameters are determinedusing the k-distance criteria referred to above, barring the parameter D, which is directly input from thesystem.3.5. User rhythm detectionWhile the notion of signi�cant locations is useful for many applications, location alone is an insu�cientindex for others. Often, diverse activities may be folded into the same location, and are only di�erentiablewhen the context of behavior over time is considered. In a study of human mobility, [16] have demonstrated,at a coarse scale using logs from 100 thousand mobile phone users over a six-month period, that human tra-jectories show �a high degree of temporal and spatial regularity.� [22] note that, in addition to location, othersocial facets including routine are equally important. Below we detail an approach to detecting periodicityin time and location that arise from daily routines, termed rhythms.Generative process for rhythm extraction . Assume a device has been logging WiFi signals and clus-tering these signals into signi�cant locations at the same time. Thus, unfolding in time and space we acquire8



Algorithm 2 Incremental INSERT and DELETE operations.Input: new point p (to INSERT) and existing data points1: if number of neighbors |N(p|ε)| ≥ D then2: p belongs to the existing cluster or form a new one.3: end if4: for each neighboring point q of p do5: update neighboring set of q by adding p6: if |N(q|ε)| ≥ D then7: q belongs to the existing cluster or form a new one.8: end if9: end forOutput: updated clustering result and motion state.Input: existing point p (to DELETE) and other data points1: for each neighbor point q of p do2: update neighboring set of q by subtracting p3: if |N(q|ε)| < D then4: update cluster status5: end if6: end forOutput: updated clustering result and motion state.a trajectory of movements w = {w1, w2 . . . , wN} where each wi is called a spatio-temporal word consistingof a pair <time, location> that the user has visited over time. For example, in Figure 10, `1730student' is aspatio-temporal word indicating that the user (the student) was at his desk at 17:30; likewise `1030advisorY'means he was in advisor Y's o�ce at 10:30am. By collecting WiFi data on a day-by-day basis over D daysa corpus {

w
1, . . . ,wD

} of trajectories is acquired.Motivated by the results of [16] and [22], we treat a rhythm as a `hidden' agenda or timetable thatgeneratively gives rise to repetitive co-occurrences of visitations of signi�cant locations observed over time(cf. Figure 3 and 4). This can be translated into the co-occurrence of words under the spatio-temporal wordrepresentation of WiFi trajectories presented earlier. For example, a rhythm of `meet with advisor at 11:00am,lunch at noon, then attend seminar at 1:00pm' will assign high probability to the words `1100advisor',`1200lunch' and `1300seminar'. A helpful comparison is the task of topic modelling for natural language:terms such as `washington', `speech' and `budget' are analogous to our derived spatiotemoral words, and theobtained topic, in this case `politics,' is analogous to a rhythm. The generative process of rhythms will nowbe examined in detail.Rhythm detection as a statistical inference problem . In our previous work [33] we applied aBayesian topic model, known as latent Dirichlet allocation (LDA) [5], for rhythm detection, viewing thistask as an inference problem over the hidden topic variables. LDA is an e�cient method for documentmodeling, treating each document as a mixture of topics where each topic has a precise de�nition as aprobability distribution over all words. Analogously, a user's daily routines can be thought of as mixtures ofdi�erent plans, agendas, or rhythms. To illustrate this process, an example is provided in Figure 3(a) and aformal probabilistic graphical model representation for LDA is shown in Figure 3, where WiFi observationsare clustered and mapped to the spatio-temporal words mentioned earlier. These observations are collatedeach day to form a document, all days form a corpus, and the latent topics discovered from this corpus are thesought-after rhythms. The generative process is as follows. For each document d, a mixing topic proportion
θd ∼ Dir (α) is sampled from a Dirichlet distribution parameterised by the hyperparameter α. Each word
w in a document is generated by �rst sampling a topic z from a multinomial distribution z ∼ Mult(θ), andthen sampling w ∼ Mult (φz) also from a multinomial distribution. Given the topic z, each φz ∼ Dir (β)is sampled from a Dirichlet distribution parameterised by β. Thus, in LDA each document is a mixture oftopics represented by θd and each topic is a distribution over all words represented by φz,w = Pr (w | z).9



(a) example of rhythms generation with LDA. ���
���
���
���

���
���
���
���

β

θ

z

w
φ

T
Nd

D

α

(b) LDA [5].Figure 3. (a) A make-up example to illustrate generative process for rhythms when modelled as LDA which can be viewed asthe expanded graphical model in (b) for D = 2 documents. In this example there are two rhythms T = 2. Monday represents atypical day (rhythm 1) for a student coming to work, have lunch, then go home. Thus, all the rhythms variables z is assignedto 1. On Tuesday, however, his typical routine is mixed with going to the seminar and then meeting with the advisor in theafternoon (rhythms 2). (b) Formal graphical model representation of LDA in plate notation where T is the number of topicsor rhythms, D is the number of documents of days in the corpus, Nd is the number of words contained in document d, w is anobserved spatio-temporal word, z is the hidden topic or rhythm variable to be inferred (parameters θ, α and φ, β are discussedin the texts) .The latter represents the rhythms (i.e., the topics) that we are interested to infer (cf. Algorithm 3).Examining the graphical model of LDA in Figure 3 can easily reveal that each word wi is independent ofall other words given its immediate topic assignment zi, which is known as the `bag-of-words' assumptionin language modelling. In other words, if we arbitrarily shu�e the order of words in a document, the LDAremains the same, it still assigns consistent joint probability over all variables. However, the temporal andspatial order is an important feature in the domain of data dealt with in this work. For example, fromthe perspective of the assistive systems for the visually impaired, strict movement routines from one placeto another plays a crucial role in their daily routines due in part to the desire to decrease the chance ofinducing danger or inconveniencing themselves or others. While LDA can potentially cluster meaningfulrhythms, strict ordering of movements is lost.
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(b) NLDA [40].Figure 4. (a) A possible generative process for rhythms when modelled as NLDA with the same example shown in Figure 3.Again, it can be viewed as the expanded graphical model of the plate representation in (b). A (spatio-temporal) word wi isno longer independent of the immediate rhythm variable zi but depends on the Bernoulli variable ei to determine if it shouldconnect up with the previous wi−1 to form a sequence. Thus with NLDA, explicit movement patterns are modelled. (b) Formalgraphical model representation of NLDA in plate notation.Realizing the need for richer contexts, in this paper, we extend our previous work [33], appealing to a richerBayesian topic model known as n-gram topic model (NLDA) [40] for the task of rhythm extraction. Carrying10



on from the example presented in Figure 3, the generative process and graphical model representation forNLDA is illustrated in Figure 4. As can been seen, NLDA is now explicitly capturing the arrival order ofspatio-temporal words and is thus able to model temporal information.The generative process for a word is slightly modi�ed compared with that for LDA, described earlier.Each word wi+1 is now sampled conditionally on the previous word wi and the current topic z. This ismade explicit via a Bernoulli variable ei: if ei is true then wi+1 is sampled from a multinomial distributionMult (γz,wi
) parameterised by both the current topic z and the previous word wi ; otherwise wi+1 is sampledfrom another multinomial distribution Mult (φz) depending on the current topic z but independent of wi.Intuitively, NLDA treats the arriving order of words at time i as a stochastic process: if ei is true, twoconsecutive words wi and wi+1 connect up to continue forming a longer movement pattern, otherwise anew movement pattern begins. Both LDA and NLDA are fully hierarchical Bayesian models, thus theparameters are further treated as random variables distributed according to its corresponding conjugateprior distribution, in our case Dirichlet distribution 2 : ei ∼ Bernoulli (ε), ε ∼ Beta (λ), γzw ∼ Dir (η) and

φz ∼ Dir (β). In all cases, symmetric Dirichlet distribution is used, i.e., each distribution is parameterisedby a single parameter. 3 A topic or rhythm z in NLDA is now a distribution over n-grams parameterized
φz,w = Pr (w | z, e = 0) and γz,uv = Pr (wi = u | z, wi=1 = v, e = 1) which are subject to being inferred (cf.Algorithm 4).Approximate inference with Gibbs sampling for LDA and NLDA. Exact inference in LDA andNLDA is known to be intractable. Options include the variational approach [5], expectation propagation (EP)[27] or collapsed Gibbs sampling [17]. Despite being deterministic with an analytical bound, the variationalmethod is known to be biased and may wrongly estimate the parameter. EP requires memory storage in theorder of number of topics × total words in the corpus and quickly becomes infeasible with a large corpus.Besides, EP is known to have problems with sparse data. For LDA, we use collapsed Gibbs sampling,proposed in [17], which iteratively draws samples from the conditional distribution for each topic zi aftermarginalizing out the parameters 4 :

Pr
(

zd
i = z | z−i,w, α, β

)

∝
(

αz + nd,−i
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) βw + n−i
zw

∑

v

(

β + n−i
z,v

) (3)where z−i denotes the sequence of topic assignments excluding position i (in document d), w denotes theentire observed sequence of words, nd,−i
z denotes the number of topic z being assigned to document dexcluding position i, n−i

z,w denotes the number of the current word w = wd
i being assigned to topic z , and

n−i
z,v denotes the number of times a vocabulary word v being assigned to topic z, again excluding position i.The �rst term is proportional to the number of the current topic z within document d and the second termis proportional to the count of the current word w in document d to the topic z. Intuitively the e�ect ofco-occurrence is achieved by assigning higher probability to two words in the same document being assignedto the same topic. The pseudo-code for rhythms extraction with LDA is presented in Algorithm 3, where wenote that W is the size of vocabulary (i.e., the number of unique spatio-temporal words in the collection)and Equation (4) is the posterior estimate for φz,w conditional on the Gibbs topic assignment sample [17].For NLDA, collapsed Gibbs sampling [40] involves integrating out the set of parameter variables {θ, φ, γ, ε},iteratively sampling from the following conditional distribution:
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[ηc + pluc] (αk + qdk)
[

βv+nkv

β∗+nk∗

] if c = 0

[ηc + pluc] (αk + qdk)
[

λv+mkuv

λ∗+mku∗

] if c = 1
(5)

2 where simply speaking, Bernoulli distribution is viewed as as a special case of Multinomial and Beta as a special of Dirichlet.
3 Readers are recommended to consult [5,17,40] for further explanation on LDA and NLDA, including their approaches toderive Gibbs sampling. In this paper, we only focus on the semantic of these models and key inference results rather than beingmathematical rigor.
4 Please see [18] for full derivation. 11



Algorithm 3 Gibbs sampling for LDA.Input: WiFi corpus {

w
1, . . . ,wD

}, hyper-parameters α, β, number of Gibbs samples L.1: randomly initialize z
d for all d = 1, . . . , D.2: for s = 1 to L do3: for d = 1 to D do4: for i = 1 to Nd do5: sample zd

i according to Equation (3).6: end for7: end for8: store the s-th Gibbs sample.9: end forOutput: estimated rhythms based on the probability Pr (w | z) using the last Gibbs sample:
φ̂z,w =

nz,w + β
∑W

v=1 nz,v +Wβ
(4)where pluc is the count of observing the event {zi−1 = l,wi−1 = u,ei = c}, qdk is the count for topic k indocument d, nkv is the number of times the vocabulary word w is assigned to topic k, and mkuv is the countfor observing {zi−1 = k,wi−1 = u,wi = v,ei = 1}. The asterisk ∗ denotes the summing operation at thecorresponding index, e.g., nk∗ =

∑W

v=1 nnv. In all cases, the current sampling position is always excludedduring counting.In Equation (5), the joint statistical strength of pattern u → w given topic k is captured by the count
mkuv. Loosely speaking, if we continue to observe a movement pattern of a worker, for example, from hiso�ce to the co�ee machine and then to the meeting room every Tuesday, then the `count' of this eventincreases, giving it a higher probability in Equation (5), and thus it is more likely to be detected during theinference process. The pseudo-code for rhythm extraction with NLDA is shown in Algorithm 4, where theposterior estimates in Equation (6) and (7) are used to derive the rhythms [40].Algorithm 4 Gibbs sampling for NLDA.Input: WiFi corpus {

w
1, . . . ,wD

}, hyper-parameters α, β, η, λ, number of Gibbs samples
L.1: randomly initialize z

d, ed for all d = 1, . . . , D.2: for s = 1 to L do3: for d = 1 to D do4: for i = 1 to Nd do5: sample zd
i and ed

i according to Equation (5).6: end for7: end for8: store the s-th Gibbs sample.9: end forOutput: estimated rhythms based on the probability Pr (w | z):
φ̂z,w =

nz,w + β
∑W

v=1 nz,v +Wβ
(6)

γ̂z,uv =
mz,uv + η

∑W

v=1mz,uv +Wη
(7)Convergence and complexity . The collapsed Gibbs sampling presented for LDA and NLDA is a formof Markov Chain Monte Carlo method and is guaranteed to converge to the target distribution with su�cientnumber of iterations L [15]. These methods have been found to work very e�ciently in practice when applied12



to di�erent types of corpora [17,18,40]. In this work, we employ a version of symmetric Dirichlet for both
α and β which implies that the Dirichlet is controlled by only one parameter. As β gets smaller β → 0,the model favours more discriminative topics. I.e., the samples generated from the Dirichlet distributionare concentrated at the corners of the simplex. When β → 1 the Dirichlet behaves more like a uniformdistribution, and when β is large, its samples are concentrated in the center of the simplex, favoring topicswhich are more similar (by Kullback-Leibler divergence). The hyperparameter λ in NLDA (cf. Figure 4)controls the sparsity among the movement patterns. Again, we use a small initialization for λ as we wish tofavour longer movement patterns.The complexity of deriving a sample from Equation (3) and (5) is O(T ) and O(2T ) respectively, with Tbeing the number of topics in consideration. By inspection, the complexity of the Gibbs sampling routinein Algorithm (3) and (4) scales linearly with the number of words in the corpus N =

∑D

d=1Nd and linearlywith the number of Gibbs samples L, giving the overall complexity of O (TLN). In practice, T and L areoften �xed in advance and thus, in our case, the term that really matters is the total number of words inthe corpus N . In other words, our algorithms scale linearly with the number of WiFi observations acquiredover time.4. Experiments4.1. Data and groundtruthAll WiFi data was collected using a handheld HP iPAQ HW6569 and custom logger written with .NETCompact Framework 2.0 and the free OpenNetCF package 5 . For motion classi�cation task, groundtruth wasmanually marked down using a GUI interface (Fig. 5) as the user walked around the designated area. Datawas collected over a 60 minute period at a sampling rate of 0.5Hz for 5 days. Figure 6b shows an exampleuser trajectory, including static periods when the user was immobile at the same place for a few minutes.Data for the signi�cant locations experiment was drawn using the same apparatus, but over a 28 day periodof one user's normal daily routines, during the hours of 8:00AM to 17:30PM. Groundtruth was labelledfrom among 6 landmarks indicated by the user to be signi�cant, and, as with the motion groundtruth, wasindicated using the logging software. For the rhythm experiment, 28 days of data collected for the signi�cantlocations experiment was collated and used.

Figure 5. GUI for capturing WiFi signals.
5 www.opennetcf.com 13
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(a) The sorted k-distance graph , δ = 90%, window size = 20s. (b) An example of user WiFi traces for motion classi�cationtask (groundtruth is plotted underneath).Figure 6. k-sorted distance graph and example of WiFi trace.4.2. Motion classi�cation resultsA number of di�erent parametrizations were used to experiment on motion classi�cation, including bothoverlapping and non-overlapping windows, and window sizes ranging from 10 to 120 seconds. The clusterquality threshold parameter δ was tested with 85%, 90% and 95% with a threshold of η0 = 0.75 discussedin Eq.(2) . We also compared our method with the Locadio method presented in Krumm et al. [23], whichrequires supervised training data to learn the probabilities P (σ2 | still) and P (σ2 | moving). Fig. 6 furtherplots the k-sorted distance graph to choose the threshold parameter used in the density-based clusteringmentioned earlier and an example of WiFi trace collected over a day with marked position and its annotatedmotion state. To evaluate the algorithm, we compute the accuracy for each class de�ned as the ratio of thenumber of observations detected for that class to the total number of observations in testing.The accuracy of the Locadio of [23] and our density-based approaches are shown in Figures 7, experimentedwith and without overlapping window. It can be observed that the performance is poor for short windows(10s), probably due to the limited number of WiFi observations within the window. Accuracy graduallyimproves as the window is lengthened, leveling out subsequently. In general, the density-based approachshows superior performance compared to Locadio in all cases. Moreover, overlapping windows lead to moreconsistent performance. It is to be noted that while overlapping and non-overlapping windows yield more orless similar results, overlapping windows have shorter latency and thus can be used in real time.4.3. Signi�cant location extraction resultsWe �rst perform the motion classi�cation step at the quality threshold of δ = 90% to determine if themotion state within a non-overlap 60s-Window is static or not. Recall that a 60s-Window shows the bestperformance in non-overlap situation (Figure 7a). Two parameters in the batch algorithm are automaticallyderived, ε = 5dBm and D = 60s× 0.5Hz × 90% = 10. We call this the �average observation� for a minuteinterval.In the second step, we clusters this new average observation incrementally as described earlier. Whilethe neighbor distance remains at ε = 5dBm, the number of neighbors is con�gured to re�ect a minimumduration spent a landmark, appropriate to discovery of signi�cant locations. We empirically set D = 5. Notethat the meaning of D in each step should be distinguished because of the di�erent time intervals integratedin their observations.For performance evaluation, we use the cluster purity measured as the percentage of match between theextracted clusters {c1, ..., cL} and the groundtruth clusters {ψ1, ..., ψK}. The purity of cluster i is de�ned as14
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Den85(b) Result with non-overlapping window.Figure 7. Motion detection accuracy when the window size ranges from 10s to 120s in non-overlapping and overlapping cases.Legend consists of Locadio method in [23] (Locad) and our density-based approach with di�erent density threshold values.Landmark #Groundtruth #Clustered Purity (%)1 2574 2572 99.922 296 291 98.313 40 39 97.504 41 41 100.005 193 187 96.896 19 19 100.00(a) Performance of clustering signi�cant locations.

Landmark #Prediction #Correct Accuracy(%)1 857 855 99.762 100 94 94.003 13 13 100.004 14 13 92.855 35 31 88.576 7 5 71.42(b) Prediction of signi�cant locations.Table 2Signi�cant detection results.
Pi =

maxj |cj ∩ ψi|

Ni

(8)where Ni is the number of points in the groundtruth of cluster i. The average purity across K clusters iscomputed as:
P̄ =

K
∑

i=1

NiPi

N
(9)where N is total number of points N =

∑K

i=1Ni.The clusters are compared with the groundtruth and the purity of the clusters are shown in Table 2a.We achieved an overall cluster purity is 98.77% indicating that it is fairly robust again the WiFi noise. It ispartially explained by the fact that the window size used for signi�cant location detection is 60s, and thus,the number of WiFi signals collected are stable enough to make an accurate prediction.To test the predictive ability of the signi�cant location detection framework, one third of the collecteddata not used for the above clustering is used for testing. Again, incremental DBSCAN (ε = 5dBm and
D = 5) is used to assign clusters, and thus signi�cant locations. Results are shown in Table 2b. We achievean average of more than 90% in accuracy, suggesting that it can also be used as a prediction model withreasonable performance. Further more, it appears from the results that when more data is available for(training) signi�cant locations (Landmarks 1�5), the accuracy could be very high, almost perfect in somecases. 15



4.4. Rhythm detection resultsSigni�cant locations are discovered using the previous technique, and are mapped to words by discretizingeach day into 30-minute intervals from 8am to 5:30pm to obtain a sequence of data consisting of pairs of<time, signi�cant_place_label> tuple. We run rhythm detection algorithms with LDA and NLDA describedin section 3.5. We also run the hidden Markov model (HMM) as the baseline performance for comparison. 6Brie�y a HMM is parameterised with {π,A,B} where πi is the initial probability of state i at the �rsttime slice, Aij is the transition probability from state i to j and Bv|i is the emission probability of symbol
v given the state i. To train the HMM we set the number of states equal to the number of topics used inLDA and NLDA. The observation set consists of all observed time-stamped location in the training dataset. We then run expectation maximization (EM) algorithm to estimate the HMM parameters with randominitialization, setting the number of iterations to 50 with a stopping threshold of 10−5 in the log-likelihooddi�erence between two consecutive EM iterations. 74.4.1. Results with LDAFor LDA, Gibbs sampling described in Section 3.5 and Algorithm 3 are used with the Dirichlet hyper-parameters are set to small values to favor discriminative topics and document sparsity: α = 0.01 and
β = 0.01. Number of iterations is set to L = 2000 with 200 burn-in samples (discarded during the initialperiod of the MCMC chain) and subsequent samples are collected after every 10 samples � a strategy usedin[17] which has shown good performance. Another input required for LDA is the number of topics � orequivalently, the number of distinct rhythms to be discovered. Again we use a strategy suggested in [17] forthis model selection task by evaluating the goodness of the model measured by its perplexity in the followingequation: Perp (w) = exp

{

−
log Pr (w)

N

} (10)where N is total number of words in the corpus and w is the entire dataset. However, computing Pr (w) isnon-trivial even with the Gibbs samples collected because the parameters θ and φ have been integrated. Weadapt an important sampling approach used in [39] to compute Pr (w) as follows. After each sampling step
s, let n(s)

d,k be the number of times that topic k appears in document d, n(s)
k,v be the number of times a word

v is assigned to topic k, parameters θ(s) and φ(s) for this sample are �rst estimated:
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(11)and then Pr (w) is given as: Pr(w) =
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(12)where S is the number of collected samples. The pseudo-code for this procedure is shown in Algorithm 5.Figure 8 shows the perplexity curve w.r.t the number of topics. The lower the perplexity, the better themodel �ts. In general, the model perplexity decreases as the number of topics increases. However, the greaterthe number of topics, the more likely the model over explains the data and the more sampling computationand storage required. The general rule of thumb is to choose a balance between simplicity of the model andthe degree of �tness. In our case (cf. Figure 8) we empirically choose the number of topics T = 5 where theperplexity seems to decrease rapidly and appear to settle down.
6 Basic familiarity with the HMM is assumed, e.g., see [35] .
7 Knowing that this EM procedure is sensitive to initialization, we have made several EM runs. The obtained results are,however, rather consistent in the estimated emission probability matrix and the Viterbi decoding results, and thus, we reportin this paper one of this results. 16



Algorithm 5 Selecting number of topics in LDA based on perplexity.1: for T = 1 to a �xed number of topics (e.g., 20) do2: run Gibbs sampling routine for LDA in Algoritm 3 with the number of topics set to T .3: collect S Gibbs samples from above procedure.4: for s = 1 to S do5: compute θ̂(s) and φ̂(s) from Equation (11).6: end for7: compute the perplexity wrt T from Equation (12).8: end for9: Output the optimal value of T according the perplexity computed in step 7.
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Figure 8. Choosing number of topics using perplexity.With the chosen T = 5, we interpret the results from LDA by examining the probability φ̂k,v of a word
w given a topic k. In other words, we look at those time-stamped locations that are assigned to a rhythm,interpreted as topic k, with high probability. Figure 9 shows �ve rhythms in which each row correspondsto a speci�c landmark and the height of each bar depicts the frequency of landmark accumulated over allcollected Gibbs samples. Figure 9b provides a di�erent perspective on the same detected rhythms wherethe top landmarks (with high probability) within each rhythms are plotted where the time informationis recovered for easy visual interpretation (e.g., if the word is `1200lunch' then we plot a label 'lunch' at12:00pm). Note that there is no sequential ordering information results from this LDA inference.A general observation is that the LDA has learned reasonably well the repetitive o�ce patterns of aresearch student. For example, the �rst rhythms corresponds to his typical daily routines of being in theo�ce and having lunch. This person participates in the institute's academic activities, such as academicmeeting (Rhythm 3) and attending seminars (Rhythm 5). In addition, his frequent visits to two advisor'srooms for discussions are also extracted well clustered (Rhythm 2 and Rhythm 4).For the HMM, the probability of a time-stamped landmark given a rhythm is extracted from the learnedobservation emission matrix Bv|k. In general, we do not observe good grouping across the HMM states.State 2 seems to correspond more to event of meeting with AdvisorY (this becomes more evident in theViterbi decoding results shown in Figure A.3 presented in the next section). State 3 tends to account for theafternoon student routines inside his o�ce (again, more evidently in Figure A.3). In contrast, LDA groupinggives better and more meaningful interpretation. 17
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(b) Projected view of detected rhythms as mixture of land-marks (sorted according to time).Figure 9. Rhythms detection results with LDA.
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Figure 10. Learned probability distributions over landmarks for each HMM state, plotted according to the emission probabilitymatrix Bv|i from the trained HMM.4.4.2. Results with NLDAWhile LDA has shown good rhythms detection, its shortcomings is the loss of temporal ordering betweenlandmarks since it treats them exchangeably within a day � a popular assumption known as bag-of-word. Itsn-gram extension NLDA presented in section 3.5 is to overcome this problem, allow us to extract rhythmswith real temporal patterns discovered automatically from data. Again, we run NLDA with the number of18



topics 8 set to 5, hyper-parameters 9 α = 0.1, β = 0.01, λ = 0.01 and η = 0.01. 10 We interpret the Gibbssamples to discover the n-gram by extracting and accumulating the temporal extent where ei is true and thetopic is unchanged. This basically forms a movement pattern detected that topic where, again, we interprettopics as rhythms. The frequency of how often a movement pattern detected for that topic, after normalizedbecomes its probability assigned to the topic.For the HMM, using the trained model, we run Viterbi decoding algorithm on the training dataset and thepatterns detected for each state is similar to the NLDA case, i.e., if we observe n-consecutive decoded statesto be the same, the corresponding segment of observations become a movement pattern for that states. Theresults for NLDA are shown in Figure 11 and HMM are shown in the appendix in Figure A.3.The results from NLDA are rather interesting. Four of �ve rhythms have strong interpretation as shownin Figure 11. We can see that the �rst rhythm detects a kind of typical daily patterns of the student workingby himself in the o�ce. The second rhythm tends to capture typical `meeting' patterns of the student wherehe goes from his o�ce to the lunch room, and then to various meeting places (AvisorX, meeting room,AdvisorY), and �nally return to his o�ce. Rhythm 3 is loosely attached with going to seminar. Finally,it is interesting to see that Rhythm 4 has captured various movement patterns between the student o�ceand the AdvisorY. This is perhaps because during the initial period of capturing, this student has met withAdvisorY intensively at di�erent time of the day (where in contrast to AdvisorX, he only meets at either1:00pm or 1:30pm). A full illustration of patterns within each rhythms is further provided in Figure A.1 andA.2 in the appendix.The results from HMM decodings shows that it tends to over-segment the data, resulting into much smallerand less useful patterns. It is also evident that the HMM has also learned certain meaningful rhythms butits results are much less interpretable. For example state 2 of the HMM in A.3 shows that it also capturesthe `meeting AdvisorY' routines, analogous to rhythm 4 of NLDA, but its discovered movement patternsare much less shorter. Likewise, state 1 captures a set of di�erent landmarks and has failed to capture thesequential information (e..g, where is the student before he come to meeting room).5. ConclusionMotivated by the need to build intelligent context-aware systems (e.g., assistive technology for the visuallyimpaired, push content information system) in indoor environments, we have presented novel, unsupervisedclustering method for the extraction of user context from ambient WiFi, continuing from our previous workin [33]. This includes state of motion, signi�cant locations, and rhythms. While most of existing work foundin the literature has used WiFi signals for the purpose of localization and often require heavy calibration andsupervised training, our work has departed from a di�erent angle, utilizing WiFi signals from a completelyunsupervised and incremental approach. In addition to the novel algorithms for high accuracy motion andsigni�cant places detection in real-time using WiFi signals presented in [33], we have also designed anddeveloped a new approach to extract high-order movement patterns termed as rhythms using Bayesianprobabilistic models in this paper. Experimental results, in comparison with existing methods, suggest thatour approaches are fast and robust against the sparsity nature of WiFi signals. Interesting, consistent andinterpretable rhythms are also automatically derived, suggesting richer contexts capturing spatio-temporalinformation can also be inferred directly from raw WiFi signals. The advantages of our approach lie inits use of existing wireless infrastructure, without requirements for calibration, and its ability to supportreal-time services. In addition, being able to infer the context of the mobile user is a vital, foundational
8 We would like to note that we can use the same perplexity-based model selection procedure for LDA here; however, we setthe number of topics to 5 for consistency across all models, including the HMM.
9 Note that these hyper-parameters can also be estimated by maximizing the type-II likelihood (marginal likelihood) usingMonte Carlo EM [15]; however it is beyond the scope of this paper.
10We experimented with two strategies suggested in [40] where we do and do not force zi+1 = zi when ei = 1. However,we found that the former gives much more meaningful patterns than the later. This is opposite with what [40] reported intheir work when they applied NLDA for text data with retrieval evaluation. This is an interesting observation in our view. Aprobable explanation is because the nature of data and tasks experimented in [40] ours are quite di�erent: one is to do with ahuge dataset of texts for retrieval task, ours deal with smaller non-linguistic data and for the purpose of pattern discovery.19



Figure 11. Top patterns within each rhythms detected with NLDA (comparison with HMM results are shown in Figure A.3).component in pervasive computing. We has presented methods in this regard which can serve as a basisfor both annotation and prediction at a number of levels of the services stack such as context-sensitivedevice resource and interface management, personalized push-information; and in a shared context, it canaid market research, surveillance and urban planning.AcknowledgmentWe would like to acknowledge the work of Kha Tran during the initial period of this work. His help withdata collection and some programming tasks are gratefully acknowledged. We also thank the anonymousreviewers for their constructive comments to improve the quality of the paper.Appendix A. All patterns discovered with NLDAFigure A.1 and A.2 further shows all movement patterns with rhythms detected by NLDA. The formershows the �rst two rhythms and the later shows the next three rhythms. Figure A.3 shows all movement20



Figure A.1. All movement patterns detected by NLDA for the �rst two rhythms (best viewed in color).

Figure A.2. All movement patterns detected by NLDA for the next three rhythms (best viewed in color).patterns detected by HMM using Viterbi decoding. It is visually clear that HMM returns many more shortand spurious movement patterns than NLDA, indicating poorer structures were extracted.21
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