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Abstract

Inferring plausible node mobility based only on information from wireless contact
traces is a difficult problem. Working with mobility information allows richer
protocol simulations, particularly in dense networks, but requires complex set-ups
to measure. On the other hand, contact information is easier to measure but
only allows for simplistic simulation models. In a contact trace a lot of node
movement information is irretrievably lost so the original positions and velocities
are in general out of reach. In this paper, we propose a fast heuristic algorithm,
inspired by dynamic force-based graph drawing, capable of inferring a plausible
movement from any contact trace, and evaluate it on both synthetic and real-life
contact traces. Our results reveal that (i) the quality of the inferred mobility is
directly linked to the precision of the measured contact trace, and (ii) the simple
addition of appropriate anticipation forces between nodes leads to an accurate
inferred mobility.
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1. Introduction

In the disruption-tolerant network (DTN) paradigm, mobile communication
devices undergo a sequence of connections and disconnections from other devices
forming contact opportunities [2]. Despite the growing interest in exploiting these
contact opportunities for disseminating information under conditions when more
traditional approaches are either impractical or unfeasible, there have been few
real-life DTN deployments [3, 4]. Instead, most evaluations of new protocols and
designs have been done through simulations based on either synthetic mobility
models or real-life contact traces.

On the one hand, synthetic mobility models give full knowledge of the
mobility and therefore allow for simulation of the specific features of radio
channels (e.g., interferences and hidden stations) but do not accurately represent
real-life mobility. On the other hand, contact traces are assumed to accurately
represent real-life mobility but all geographical information is lost and simulators
must make very simplistic assumptions on the communication channel (e.g., a
node may only communicate with one of its current “contacts” at any given
time [5]). A way out of this alternative could be the use of GPS measurements
of human mobility [6, 7]. Unfortunately, on top of not working indoors, these
traces are typically so sparse that they fail to capture the contact opportunities
between people. This may be due to a very small number of GPS devices [6] or, a
lack of contemporaneous paths, as in the Nokia Sports Tracker traces [8]. Even if
large scale GPS measurements, such as Google Latitude [9], were able to achieve
sufficient density, accurate propagation models and other technology-related
characteristics would be required to identify the contact opportunities. Ideally,
experiments should measure both contacts and positions, but this can be costly
and sometimes unfeasible.

When only measuring the contact opportunities from an experiment with mo-
bile devices, a lot of information is irretrievably lost. Consider a simple example
with two nodes. When in contact, we can roughly locate them relatively to one
another. However, when the time elapsed since the latest contact (inter-contact
time) increases, the information regarding their relative distance decreases. After
a while, it becomes difficult to say if they are still somewhat close or if they
have gone in completely opposite directions. In a dense network, the higher the
contact intensity, the more constrained our problem is. Although it is difficult
to infer a mobility that is strongly correlated with the original mobility, we show
in this paper that it is possible to propose a plausible mobility, i.e., one that
would have generated the same contact trace. This is examined in more detail in
Section 3. Whether the ultimate goal is to visualize, modify the original contact
trace, or improve simulations, inferring the exact mobility is not required. All
that is needed is a plausible inferred mobility that leads to realistic modifications
or better predictions.

What if the information from the contact traces were sufficient to infer
plausible node mobility? If this were possible, there would be several immediate
benefits. Firstly, being able to visualize node movement is in itself valuable, as
it confers an intuitive understanding of the trace dynamics that can get lost
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in statistics. Secondly, using the inferred movement instead of simply contacts
history allows for realistic transformations of the contact trace, such as adding
nodes, modifying the node density, or increasing communication range. Finally,
this would allow for a much finer simulation of the radio channel, particularly
for dense contact traces [10], while retaining the realism captured by the contact
traces. This paper makes the following contributions:

• We define and discuss the problem of inferring plausible node mobility
from only their contact information. To the best of our knowledge, this is
the first time such a problem is addressed.

• We propose a formal definition of the problem as a system of non-linear
inequalities.

• We describe and evaluate, both on synthetic and real-life contact traces, a
heuristic but practical and effective method of inferring the movement of
the nodes. This method works offline and assumes full knowledge of past
and future contacts.

In the next section, we position our paper in comparison with prior work.
In Sections 3 and 4, we formally define the problem of inferring mobility from
contact traces and discuss its challenges. In Section 5 we propose a heuristic
approach to efficiently solve our problem, which we then evaluate using both
synthetic (Section 6) and real-life contact traces (Section 7). Finally we conclude
our work and discuss the path ahead in Section 8.

2. Related Work

Delay/disruption-tolerant networks (DTN) [2] arise when lack of end-to-end
connectivity, rapidly changing topology, and/or potentially long communication
delays render traditional mobile ad-hoc networks (MANET) approaches unfeasi-
ble [11]. Such networks encompass a vast spectrum of situations ranging from
inter-planetary communications [12] to hop-by-hop data forwarding between
portable devices to supplement an infrastructure for content dissemination [13].
In DTNs, node mobility can be exploited to increase the network capacity while
compromising on delays by using a message store-and-forward paradigm instead
of the usual packet switching [14].

Opportunistic mobile networks are a class of DTNs in which no knowledge
of the future mobility of nodes is assumed. For example, this is the case of a
network formed by the direct contact opportunities of hand-held devices, such
as smartphones. Contact opportunities between mobile devices could be used
either to replace or assist a wireless infrastructure for the dissemination of a
given content. For example, Ioannidis et al. studied how to combine content
pushing from a source in the infrastructure with opportunistic forwarding among
subscribers in a way that ensures perceived content freshness from the subscribers
while keeping the load on the infrastructure as small as possible [13].
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Table 1: Some wireless contact traces.
Duration Devices Sampling
(days) (#) (seconds)

MIT [15] 365 100 600
Infocom [16] 3 41 120
Rollernet [10] 0.125 62 15
PMTR∗ [17] 15 44 1

∗not publicly available.

A lot of effort has therefore gone into measuring human mobility, or at least
the contact opportunities generated by human mobility. Direct measurements of
human GPS coordinates have, to the best of our knowledge, only been performed
by Rhee et al. in their work on human mobility models [6], and by commercial
applications such as the Nokia Sports Tracker. Vehicular GPS measurements,
from taxis [15] or buses [16] are more common. These GPS measurements give
accurate and fine-grained (10 and 1 second periods, respectively) information
but unfortunately only work when outdoors, and, more importantly, the traces
are too sparse to create any contact opportunities.

To counter this problem, several strategies have been used. Piorkowski et al.
suppose that the movement of each node is stationary and ergodic, and that they
collectively constitute a representative subset of the larger population [7, 15]. In
order to obtain a reasonable density, they shift the starting times of the measured
mobility of various participants in order to make them all contemporaneous [7].
Alternatively, they densify the trace by adding many new nodes with mobility
patterns that are statistically similar to measured ones [15]. Furthermore, given
a certain radio range, one could scale down a GPS trace in order to achieve a
target node density.

Direct measurements of human contact opportunities overcome these limita-
tions but forgo location information. In the Reality Mining experiment conducted
at MIT, each participant had a special application running on her/his mobile
phone that captured proximity information from 100 subjects over an academic
year [17]. The Haggle project used Intel iMotes to capture the contacts between
participants of the Infocom 2005 conference [18]. Both of these experiments
relied on periodic Bluetooth scans.

While Bluetooth has the advantage of being widely available, its scanning
mechanism is too slow to effectively detect all contact opportunities. Indeed,
the longer the sampling period (respectively 600 and 120 seconds for the MIT
and Infocom traces), the more likely temporary link failures or short contacts
are missed. The Rollernet experiment, which also uses iMotes to capture the
contacts in a rollerblading tour, was able to bring the sampling period down to
15 seconds [10]. For finer measurements, a different beaconing method must be
used. For example, Gaito et al. designed a specific device, a Pocket Mobility
Trace Recorder (PMTR), and were able to measure contact opportunities every
second [19], but the traces are not yet publicly available. Table 1 compares these
different traces. As we will see in Section 5, shorter sampling periods translate
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into more constraints on our mobility inference problem, which in turn lead to
solutions that better match the original mobility.

Inferring node mobility based solely on contact information is an open problem
that has not yet received much attention in opportunistic networks. Walker
uses persistent homologies to characterize the topology of the surface on which
a given contact trace was collected [20]. Using this technique, it is possible to
identify if participants in a contact trace were moving on a “ring” for example.
Yoneki et al. have developed a visualization tool for opportunistic contact traces
but do not go try to infer a realistic mobility from it [21].

However, some similar questions have been addressed in other contexts. In
wireless sensors networks, sensors can estimate their position relatively to a small
number of anchor nodes (typically equipped with a GPS receiver) using either a
variety of distance measurement techniques based on received signal strength or
differences in beacon timings or simply contact information (i.e., range-free) [22].
However such methods often use computationally expensive techniques which
do not scale to a mobile environment [23]. Baggio et al. propose a lightweight
Monte-Carlo localization scheme for mobile scenarios but it requires a very high
density of anchor nodes [24].

3. Inferring mobility

In our approach, we must rely solely on contact information and assume
no low-level information on distances between nodes. Furthermore, unlike
most wireless sensor networks, our nodes are all mobile and the network is
sparse and disconnected. Finally, and perhaps most importantly, being free of
decentralization or real-time requirements, our calculations take place offline
and with full knowledge of past and future contacts.

3.1. Problem definition

Let us consider a fixed number of mobile nodes. A contact trace is the list
of contact events that occur between these nodes. Each event is recorded as a
quadruplet consisting of the identity of both nodes, the instant when the contact
is first established, and the instant when the contact goes down.

Noisy real-life traces. In real-life traces, depending on the scanning period and
the choice of radio technology (e.g., Bluetooth, ZigBee), a number of contact
opportunities may be missed, shortened, split, or merged. For example, using
Bluetooth, neighborhood scans typically take several seconds and may not detect
all reachable devices due to the frequency-hopping nature of the protocol. By
using longer sampling periods, it becomes difficult to detect short contacts; even
worse, a sequence of short contacts will likely be considered as a single long
contact. Furthermore, a Bluetooth device may not simultaneously scan and
respond to a scan. Therefore, many contacts will be missed simply because
of the nature of the underlying protocol. Other wireless technologies, such as
the custom-made Pocket Mobility Trace Recorders [19], can overcome these
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limitations but still have to contend with the traditional wireless issues such
as interferences or hidden terminals. For these reasons, real-life traces must be
considered noisy.

“Perfect” synthetic contact traces. Contact traces can also be extracted from
synthetic mobility models by simulating a beaconing protocol or using a simple
proximity-based model (i.e., a contact exists when two nodes are in transmission
range of each other). Traces obtained in this fashion can be considered perfect,
in the sense that we have full control over all parameters and all contact op-
portunities are recorded. We will use this approach to evaluate our heuristic
algorithm proposed in Section 5.

Additional topology information. Some nodes (i.e. anchor nodes) could have
known positions, such as base stations in a 3G/WiFi network or GPS-equipped
mobile nodes, which enables us to place other nodes relatively to them. On static
configurations, estimating positions based solely on connectivity information
has been well studied in wireless sensor networks [22]. When all nodes are
mobile, relative positioning information may still be available. For example, in
the Rollernet experiment [10], an iMote was given to a member of staff that
remained at front the rollerblading tour, while another was given to someone
who stayed at the back. All other nodes in the trace must therefore be placed
between these tail and head nodes. Finally, we could suppose that only the
initial positions of the nodes are known. For synthetic traces, this information is
readily available.

Plausible mobility. Since we cannot hope to recover the exact initial mobility
from a pure contact trace, we define the concept of plausible mobility. In order to
be plausible, the inferred movement must (i) realistically limit the speed of the
nodes and (ii) possibly produce the original contact trace, i.e. nodes in contact
must be within transmission range of each other while nodes not in contact
should be beyond transmission range. In the end, our objective is to develop
an algorithm that takes a contact trace and some additional information (e.g.,
fixed or relative positions) as input and generate a plausible movement trace as
output.

3.2. Evaluation framework

Fig. 1 outlines our evaluation framework. Basically, we consider two ways
of evaluating a mobility inference method: one comparing original and inferred
mobility, and the other comparing original and inferred contact traces. The
former option is only available with synthetic traces while the latter is available
for both synthetic and real-life traces.

Indeed, When using synthetic mobility models, we initially have information
of the nodes’ mobility. From this, we can extract a contact trace, which we will
use as input to our mobility inference algorithm. The inferred mobility can be
compared to the original mobility, but can also be used to extract an inferred
contact trace, which in turn can be compared to the original contact trace.
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Original movement

extract contacts

Original contact trace

infer movement

Inferred movement

extract contacts

Inferred contact trace

Compare
movements

Compare
contacts

Figure 1: Evaluation framework.

Table 2: Notation.

r transmission range
vmax maximum node speed
dij(t) distance between i and j at time t

n↑
ij(t) time of next link-up event after t between i and j

p↑ij(t) time of previous link-up event before t between i and j

n↓
ij(t) time of next link-down event after t between i and j

p↓ij(t) time of previous link-down event before t between i and j

When using real-life contact traces, the original mobility is not available, and
thus original and inferred mobility can no longer be compared. It is, however,
still possible to compare the original and inferred contact traces.

4. Formalization

In this section, we describe what would constitute an ideal inference of
mobility. The constraints defined below will guide us in the choice of the
parameters for the heuristic approach proposed in Section 5. Since the input
is a contact trace, complete knowledge of past, present, and future contacts is
assumed (offline inference).

4.1. Definitions

Let N be the number of mobile nodes in the contact trace. These nodes move
on a 2D plane, have a maximum speed vmax and a transmission range r. Let
(xi(t), yi(t)) be the coordinates of node i ∈ {1, · · · , N}. For the pair of nodes
(i, j), let dij(t) denote the Euclidian distance between i and j at time t. At any

given time t, let n↑ij(t) (resp. p↑ij(t)) be the next (resp. previous) time the link

between i and j comes up. Conversely, let n↓ij(t) (resp. p↓ij(t)) be the next (resp.
previous) time the link between i and j goes down. In the rest of this paper,
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Figure 2: Notation for link-up and link-down events.
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k

r

vmax

(
t− n↓

ij

)

vmax

(
t− p↑ij

)

vmax

(
t− p↓ik

)

vmax

(
t− n↑

ik

)

i’s transmission range

Past event constraint

Upcoming event constraint

Existing contact

Node

Figure 3: Constraints on the positions of nodes j and k relative to node i. The contact between

nodes i and j came up at time p↑ij(t) and will go down at time n↓ij(t). The contact between

nodes i and k came down at time p↓
ik

(t) and will come back up at time n↑
ik

(t). Parameters r
and vmax denote the transmission range and maximum speed, respectively. See Section 4.2.

their dependence on the current time t is obvious and thus omitted for clarity.
This notation is summed up in Table 2, and Fig. 2 illustrates the time notation.

At any time t and any time interval ∆t, the maximum node speed vmax

imposes the following constraint on the positions of any node i:

Constraint 1:

√
(xi(t+ ∆t)− xi(t))2 + (yi(t+ ∆t)− yi(t))2 ≤ vmax∆t. (1)

This constraint imposes that, given a valid solution at time t and a short
time interval ∆t, the next valid position at time t+ ∆t should be very similar.

4.2. Case 1: Synthetic contact traces

In a synthetic contact trace, a contact appears when the distance between
two nodes is less than r and breaks when it is greater than r. Since we know
when current contacts are going to break and when new ones will appear, we
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can further constrain nodes’ positions. Indeed, nodes must get closer to each
other before the contact appears and move away from each other before it goes
down. This is illustrated in Fig. 3, where the contact at time t between nodes i
and j appeared at time p↑ij and will go down at n↓ij , and a contact between i

and k went down at time p↓ik and will reappear at time n↑ik.

Right after nodes i and j come into contact at time p↑ij , their initial distance is
r. Since their maximum speed is vmax, the distance between them cannot shrink
faster than 2vmax if both nodes are moving directly at each other. Conversely,
as t approaches the time n↓ij , when the contact between i and j goes down, both
nodes must be moving out of each other’s transmission range. Relatively to
i, j must be able, given its maximal speed vmax to move out of transmission
range at exactly n↓ij . Therefore, if i and j are in contact at time t, the following
constraint holds:

Constraint 2: r − 2vmaxmin
{
t− p↑ij , n

↓
ij − t

}
≤ dij ≤ r. (2)

A similar analysis holds for the contact between i and k. Their previous
contact ended at time p↓ik, and these two nodes cannot move apart faster than

2vmax. As t approaches the time n↑ik(t), when the contact between i and k will
reappear, k must come closer to i’s transmission range. Relatively to i, k must
be able to come within transmission range of i at exactly n↑ik. Therefore, while i
and k are not in contact, the following constraint holds:

Constraint 3: r ≤ dik(t) ≤ r + 2vmaxmin
{
t− p↓ik, n

↑
ik − t

}
. (3)

4.3. Case 2: Real contact traces

While we know that a movement satisfying constraints (1), (2), and (3) exists
for a synthetic contact trace (i.e., the original synthetic movement), this is less
clear for a real-life trace. Indeed, as previously discussed, a real-life contact
trace may be quite noisy and, in particular, miss many contacts. While this
may seem like a simple relaxation of our constraints, it could in fact make
the system unsolvable. Indeed, when considering real-life traces, the inclusive
(i.e., in-contact, Eq. 2) and the exclusive (i.e., not-in-contact, Eq. 3) constraints
no longer have the same importance. The inclusive constraint, based on the
presence of a contact, can be trusted. However, the exclusive constraint, based
on the absence of a contact, no longer strictly means that the distance between
two nodes must be greater than the transmission range r. Indeed, one could
imagine a node quickly passing by the other nodes, moving in and out their
transmission ranges without triggering any contact detection. If we strictly
enforce the exclusive constraint, such movements may no longer be possible.

5. Heuristic solution

In this section, we propose and evaluate a simple and efficient heuristic for
inferring node mobility from their contact traces. Note that in order for it to
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have broad applicability, it should make as few assumptions as possible on the
original mobility.

5.1. Dynamic graph drawing

Our heuristic approach is inspired by works in dynamic graph animation, even
though its objective is quite different. Graph animation aims at (i) producing a
sequence of readable and aesthetically pleasing representations of graphs and
(ii) animating the transitions between successive graph layouts in a way that
preserves the viewers’ mental map of the graph [25]. Sample applications include
visualization of communication networks, social networks, and software library
dependencies. Both goals are relevant to us. Not only do we wish to infer
a sequence of positions for each node in the contact trace (i.e., a sequence
of connectivity graph layouts), but real-life mobility intrinsically produces a
sequence of connectivity graphs in which the transitions are easy to follow.
However, while the function of dynamic graph animation is mostly aesthetic, our
heuristic aims at meeting the constraints set out in Section 4.

In the context of graph animation, online means that the graph layout
algorithm is continuously running while new nodes or links appear and disappear
on the fly, whereas offline means that each successive graph is laid out separately.
The offline method makes it difficult to preserve the viewer’s mental map during
transitions, particularly long ones, between successive graph layouts. The online
method procures an illusion of continuous mobility and allows for easy control
of nodes’ speed but is, in itself, insufficient in our case. Indeed, when a contact
occurs between two nodes, they may, at that time, be very far away from each
other in the online graph animation. This leads to a link in the connectivity
graph that will, at least temporarily, straddle several connected components,
which cannot constitute a satisfactory inferred movement.

Of particular interest to us are the force-based layout algorithms [26], in which
attractive and repulsive forces are applied to nodes according to the connectivity
graph. As in a real physical system, the nodes then converge to a minimum
stress (or energy) position. Force-based algorithms are particularly well suited
to our problem because each pair of nodes that are in contact will tend to be
geographically close to each other.

Our heuristic for inferring a plausible mobility from a contact trace will
consist of running an online force-based dynamic graph layout algorithm, built
from the forces and refinements described in the next two sections.

5.2. Forces

As in a physical system, each node has a position, a speed, and an acceleration.
All nodes have the same mass. Between each pair of nodes is an attractive and a
repulsive force. Optionally a drag force may be added in certain circumstances.
While the mathematical expression of these forces has its roots in force-based
dynamic graph drawing, it has been modified to incorporate knowledge of past
and future contacts. We first present these forces before discussing how to set
their parameters in the next section. Fig. 4 shows how these forces add up.
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Figure 4: Forces applied to node i from nearby nodes j, k, l. Fa
ji is the attractive force of j on

i and Fr
ji is a repulsive force. F is the resulting force applied to i, bringing i closer to k before

the {i, k} contact appears. Full explanation in Section 5.2.

Hereafter, uij is the unitary vector directed from i to j. Otherwise, the notation
is the same as in Section 4.1 as summed up in Table 2.

5.2.1. Attractive force

Let j be one of node i’s contacts (i.e., a neighbor in the connectivity graph).
j attracts i with a spring-like force:

Faji =

{
Kdijuik if connected,

Ke−
vmaxdt

τ dijuik if not connected,
(4)

where dt = min{n↑ij − t, t − p
↓
ij} and K is a rigidity constant. When i and j

are connected, this force acts as a classical “spring” force which contributes
keeping to the two nodes within transmission range of each other (right part of
the constraint( 2)). When not connected, we consider the time to the closest
link-up event, that is either the previous time i and j came into contact, or the
next time they will come into contact. This ensures two things: (i) that after
a contact goes down, there is still a lingering force preventing the two nodes
from moving too quickly away from one another, and (ii) that, prior to a contact
appearing, the two nodes will become gradually more attracted to each other
and thus begin moving in each other’s direction (right part of constraint( 3)).
The intensity of this force is continuous over connection/disconnection events.
The vmax

τ fraction determines when upcoming or past events begin and cease to
have a noticeable influence. This is discussed in more detail in Section 5.3.

5.2.2. Repulsive force

Each node j 6= i pushes node i back with a Coulomb-like force:

Frji =

{
− G(

ε0+
dij+vmaxdt

r

)αuik if dij < dmax,

0 if dij ≥ dmax,
(5)

where

dt =

{
min{t− p↑ij , n

↓
ij − t} when connected,

0 when not connected.
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Furthermore, G is an intensity constant, ε0 is small strictly positive constant
to keep this force bounded, dmax is a cutoff distance beyond which this force
no longer acts, and α is a parameter that determines how this force’s intensity
decreases with distance.

When i and j are not in contact, this force acts as a classical Coulomb force
pushing nodes apart (left part of constraint (3)). When nodes i and j come
into contact, dt is equal to 0; as the contact lasts, dt first increases, thereby
diminishing the repulsive force, before decreasing to 0 as t approaches n↓ij . Nodes
i and j will therefore be drawn closer during the first part of the contact before
being progressively pushed apart soon before the contact ends. This corresponds
to the left part of constraint (2).

5.2.3. Drag force

In some cases, particularly on flat surfaces with no obvious borders or
constraints (e.g., the Infocom contact trace in Section 7.1), it may be desirable to
add a drag force that will reduce to 0 the speed of isolated nodes, thus preventing
them from moving excessively far away. The drag force has the following form:

Fdi = −Dvi, (6)

where D determines how strong the drag is and vi is the current speed of node i.

5.3. Issues and usage

Maximum speed. While the attractive force (Eq. (4)) prevents nodes from moving
apart from each other too quickly, it alone does not enforce the maximum speed
constraint (Constraint (1)). However, this constraint can be enforced while
integrating the movement equations, which we do in the rest of this paper.
Interestingly, this also seems to smooth the overall inferred movement and
improve the heuristic’s accuracy.

Relaxed constraints. When animating the graph, one must keep in mind that the
goal is for each node to be within transmission range r of its current contacts,
and outside of range of all the other nodes. This should be encouraged but
not strictly enforced, as it may otherwise lead to impossible configurations for
real-life contact traces. Allowing the possibility of inexactitudes (i.e., adding or
removing links in the inferred contact trace) is the price to pay for being able to
infer movement from real-life traces.

Parameters. The forces presented in the previous section have a number of
parameters. Some of their values are inevitably somewhat arbitrary but this
paragraph explains how they were chosen. A cluster of nodes can collectively
have a strong repulsive force. As such, if another node comes into contact with
one node in the cluster, they may never come into transmission range of each
other, despite the attractive force. Setting a strong rigidity constant and setting
the equilibrium length of the spring force to a point within the transmission
range shown in Eq. 4 offsets this. In the rest of this paper, we use K = 100.
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In Eq. 5, we set α = 3
2 and ε0 = 1. This ensures that the repulsive force (i) is

bounded by G and (ii) does not decrease too quickly. Finally, we choose G in
Eq. 5 so that the equilibrium distance between two nodes, absent all other forces,
is 3

4r at the exact moment they come into contact.

Disconnected components. An issue not usually addressed in the graph drawing
community is how to deal with disconnected components. Since we are handling
DTN contact traces, we cannot avoid this problem, as the connectivity graph is
almost always split into several disconnected components and many isolated nodes.
Freivalds et al. propose laying out each connected component separately and then
using a packing algorithm to place them relatively to one another [27]. However,
this completely ignores that, in our case, the relative placement of connected
components should not be arbitrary. Fortunately, our forces circumvents this
problem by creating attractive forces between disconnected components and
thus guiding their relative movement, orientation, splits, and merges.

Influence of the future. The value of τ in Eq. (4) is a trade-off. Small values
of τ mean that only the very short term future is considered for animating
the contact trace, while large values can create so many constraints that no
movement is possible. Good values are linked to the characteristic evolution time
of the connectivity graph. Finally, cutting off the attractive force eliminates long
range interactions between nodes that could interfere with the initially weak
attractive forces. In the rest of this paper, we use dmax = 2r.

6. Evaluation 1: Synthetic traces

In this section, the heuristic described above is applied on a synthetic mobility
model where the contact trace is considered perfect. Note that our heuristic
makes absolutely no assumptions about the underlying mobility model. In fact,
it is particularly poorly adapted to Random Waypoint (RWP), which we have
chosen as the reference model, since in it the nodes try to avoid each other,
whereas in RWP nodes pay no attention to each other. Nevertheless, we still
manage to infer plausible movements.

The implementation was done in Java 1.6 and run on a 2.66 GHz Intel Core 2
Duo. Videos and animations comparing original and inferred mobility, for both
synthetic and experimental contact traces, are available online.2

6.1. Overview

The synthetic mobility scenario considered in this section consists of 50 nodes
moving according to the RWP model on a 1,000m × 1,000m torus, so as to avoid
any border effects. Generic RWP has some well known shortcomings, such as a
usually non-uniform steady state spatial distribution of nodes and gradual speed
decay [28]. However, in this work, we use “perfect simulation” of the RWP by

2http://www-npa.lip6.fr/~whitbeck/plausible.html
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(a) Original mobility (RWP) (b) Inferred mobility

Known Position Missing contact in the inferred mobility

Uknown Position New contact added by the inferred mobility

Figure 5: Mobility snapshots of the original Random Waypoint movement (a) and the movement
inferred from its contact trace (b) after 450 seconds. Nodes 0 through 9 have known positions.
The other 45 nodes move on a torus.

sampling the initial simulation state from the stationary regime [29]. In particular,
we use the methods first proposed by Navidi et al. to sample initial speeds,
positions, and progress along paths from the steady-state distribution [30]. Note
that the steady-state spatial distribution of nodes moving according to RWP on
a torus is in fact uniform. Each run lasts 1,000 seconds, but this section’s results
are usually truncated at 900 seconds. We do this to emphasize our heuristic’s
strengths. Indeed, its accuracy derives essentially from its knowledge of the
future, which gets progressively worse as it approaches the arbitrary 1,000-second
end of the RWP simulation. Other synthetic mobility models are considered in
Section 6.6.

Unless otherwise noted, nodes move at speeds chosen uniformly between 1m/s
and 10m/s (i.e., vmax = 10m/s) with no pause time, and their transmission range,
r, is 100m. For each run of this mobility scenario, a contact trace was extracted
from successive snapshots of the nodes’ positions with a certain sampling period,
by simply considering that any pair of nodes within transmission range of one
another is in contact. A snapshot of this mobility is shown in Fig. 5a. More
sophisticated radio models were not considered at this stage because our goal,
in this section, is to evaluate the heuristic’s behavior and the influence of its
parameters when constraints (2) and (3) are known with perfect certainty. Of
course, in real-life situations such as such of Section 7, radio or MAC-layer issues
lead to imperfect knowledge of these constraints.

Through some experimentation, the τ parameter of the anticipated attraction
force is set to 50. Since vmax is equal to 10, this means that future contacts start
significantly pushing their nodes closer to each other 5 seconds before the contact
actually appears (see Eq. (2)). Smaller values meant that contacts scheduled
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(b) 5 known nodes (0.84)
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(c) 25 known nodes (0.93)

Figure 6: Correlation between pairwise distances in a synthetic mobility trace and its inferred
mobility. Correlation values are given in parentheses.

to appear in the original trace would only show up later in the inferred trace,
because of the delay until both nodes would get into transmission range. Greater
values meant that each node would be attracted to a larger subset of the other
nodes. If too big, this can result in preventing most movement.

Furthermore, we assume that the positions of a subset of the nodes are known
at all times. We will refer to these as reference nodes. These could be special
GPS-equipped nodes, wireless access points, or 3G base stations, and help place
the other nodes relatively to them. Additionally, the initial positions of all nodes
were known to our heuristic. This is a very strong assumption, which allows us
to skip the transitory time during which the accuracy gradually improves. A
detailed analysis of this transitory time in the absence of any initial knowledge
can be found in Section 6.5.

All results in this section are averaged over 20 runs. 90% confidence intervals
where systematically calculated and, clarity permitting, shown in this section’s
results. Our heuristic is very fast and each run typically completed in 2 to 4
minutes. One intuitive idea is common to all the results in this section: more
information, better accuracy. Indeed, since the mobility inference problem is so
under-defined, any increase in information, e.g., through the presence of reference
nodes or a more intense contact process, improves the accuracy of the inferred
mobility.

6.2. Number of reference nodes

In this section, we run the above scenario for different numbers of reference
nodes. We first compare the inferred mobility to the original. Generally, while we
do not expect to be able to infer the exact node positions, the relative distances
between pairs of nodes should be correlated. Indeed, Fig. 6 examines the
correlation between the pairwise distances in the original and inferred mobility.
Every time step, the distance between each pair of nodes was measured in both
the original and inferred mobility. Fig. 6a represents the correlation scatter
plot over the entire simulation in the absence of any reference nodes. Figs. 6b
and 6c are obtained when the positions of 5 and 25 reference nodes are known,
respectively. Naturally, only pairs of nodes in which both were not reference
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Figure 7: Influence of the number of known node positions on accuracy.

nodes were considered. The progression in Fig. 7 demonstrates how increasing
the number of reference nodes improves the pairwise distance correlation between
original and inferred mobility, although with diminishing returns.

One artifact of our heuristic is visible in Fig. 6. Indeed, a horizontal “bar”
appears at 200m in the inferred mobility. This is particularly visible on Figs. 6a
and 6b. This means that a number of distances above 200m in the original
mobility are roughly mapped to precisely 200m in the inferred mobility. This is
a result of the cutoff distance of the repulsive force as discussed in Section 5.3.

Fig. 7a plots the pairwise correlation over time instead of averaged over the
entire movement, for different numbers of reference nodes. All curves begin at
1 but there is a clear difference between the situation with 0 reference nodes,
where the pairwise correlation steadily grows worse, and the situation with 25
reference nodes, where the pairwise correlation is steady around 0.9. Much of
this “stabilization” has already occurred with about 10 reference nodes (i.e.,
20% of the total number of nodes).

Not only does relative pairwise distance correlation improve with the number
of known nodes, but absolute positioning accuracy does so as well. This is visible
on Fig. 7b, which plots the mean distance error over time. If N is the set of all
nodes, R the set of reference nodes, and ri(t) (resp. r̂i(t)) the position of node i
in the original (resp. inferred) mobility at time t, then the mean distance error
at time t is 1

|N\R|
∑
i∈N\R ‖r̂i(t) − ri(t)‖. In Fig. 7b, the mean distance error

increases steadily to 3.8r when no nodes have known positions. Note that the
expected mean distance error for a randomly placed node on a 1,000m by 1,000m
torus is roughly 382m, i.e., 3.8r.3. Unlike the correlation scores on Fig. 7a, the
curves for 0 and 1 reference nodes are distinct. This suggests that even though
relative node positioning may be declining in both cases, knowing the position of

3The expected mean distance error for a node uniformly randomly placed on a h×w torus,

is 1
hw

∫ h/2

−h/2

∫ w/2

−w/2

√
x2 + y2dxdy.

16



0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120 140 160

C
o
rr
el
a
ti
o
n

Number of nodes

0% known
20% known

(a) Pairwise Correlation

0r

0.5r

1r

1.5r

2r

2.5r

3r

3.5r

4r

0 20 40 60 80 100 120140160

M
ea

n
D
is
ta
n
ce

E
rr
o
r

Number of Nodes

0% known
20% known

(b) Mean Distance Error

Figure 8: Influence of the network density on accuracy. Known percentage refers to the fraction
of nodes whose positions are known.

at least one nodes helps in inferring the absolute node positions of all the others.
When no such information is available, the absolute positioning accuracy of the
inferred mobility degrades very quickly.

The mean distance error converges below r with 10 reference nodes and
approaches 0.5r with 25 such nodes. It is difficult for our heuristic, based solely
on contact information, to achieve precisions greater than O(r). Indeed, in the
sparse scenario considered, nodes are rarely even connected to a single reference
node. This is visible, for 10 reference nodes, on Fig. 5a. Most of the positioning
is therefore achieved through multi-hop inference using past, present, and future
contacts. In fact, given how little information we use, the achieved absolute
positioning accuracy is surprisingly good.

6.3. Node density

Knowledge of past and future contacts is key to accurately positioning nodes.
Therefore we should expect denser scenarios with a higher contact intensity to
provide more information and thus improve our heuristic’s accuracy. Indeed,
in an extremely sparse scenario, nodes may remain completely isolated for a
long period of time. The exponential term in attractive force (Eq. (4)), will
remain close to 0 most of the time, thus letting the nodes merely drift relatively
to one another. Conversely, we expect a very dense scenario to provide very
fine-grained information on past, present, and upcoming contacts which should
greatly constrain possible movement and improve the overall accuracy.

In order to test this idea, we modify the previous scenario by simply modifying
the total number of nodes. For each total number of nodes, we run two scenarios:
one with no reference nodes and another with 20%.

The results are displayed on Fig. 8. Fig. 8a plots the average pairwise distance
correlation over the entire movement while Fig. 8b does the same for the mean
distance error. With 20% of reference nodes, these results confirm our intuition
that greater node density leads to more accurate mobility inference. In extremely
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Figure 9: Effects of contact trace randomization on inference accuracy. At any given time,
added and missed contacts are expressed as a percentage of the number of existing contacts at
that time.

sparse scenarios with only 10 nodes, the accuracy (3r) is not much better than
random placement (roughly 4r, see Section 6.2). However, in denser, completely
connected scenarios with close to 100 nodes, the accuracy is close to 0.25r.

Interestingly, in the absence of any reference nodes, two separate trends are
at work. On the one hand, greater node density still leads to improved pairwise
distance correlation with tight confidence intervals (Fig. 8a). On the other hand,
the mean distance error is very unstable, leading to larger confidence intervals
and an error increase for 150 nodes (Fig. 8b). Recall that with no reference
nodes, the mean distance error increases over time until reaching roughly 4r (see
Section 6.2). Increasing the node density merely changes the speed at which this
happens. More nodes mean more constraints and, given correct initial positions,
this prevents nodes from collectively drifting away from their correction positions
too quickly. This accounts for the initial improvement in mean distance error.
However, increased node density eventually leads to a fully connected network,
where local errors quickly ripple through the entire topology. Therefore an early
error can create a jump in mean distance error as it drags all the other nodes
with it. This accounts for the widening confidence intervals and the increasing
absolute positioning error with more than 100 nodes, in the absence of reference
nodes.

6.4. Contact trace randomization

In this section, we examine various ways of extracting and handling contact
traces. Whereas up until now, we have been comparing the original and inferred
mobility directly, in this section we compare original and inferred contacts. Every
time step, we check the constraints (2) and (3). If two nodes that should be in
contact are not within transmission range of each other, that contact is considered
missed. Conversely if two nodes not in contact are within transmission range of
each other, an added contact is counted. This is a rather strict way of comparing
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two contact traces, as even slight delays in the start or end of a contact will
register as respectively a missed or added contact for that time period.

When extracting contacts from a given movement, there are several ways
to proceed. The most straightforward method is to take snapshots of the
connectivity graph every T seconds. We will refer to this as the synchronous
method. A more subtle method involves simulating an actual contact trace
experiment in which each node periodically scans its neighborhood. Since each
node has a random starting time, we will refer to this as the asynchronous method.
This method, in fact, corresponds to the way the real-life iMote experiments
considered in Section 7 were collected.

Conversely, when using a contact trace with a known sampling period T , one
can either elect to use it “as-is”, or randomize the event times a little. Indeed,
if events are measured with a sampling period T , then an event (link-up or
link-down) measured at time t, really occurred between t and t − T . In this
paper, we randomize a contact trace with sampling period T by shifting all
events back by a time uniformly chosen between 0T and 0.8T .

Fig. 9, plots the percentage of added and missed contacts for different
sampling periods and for different combinations of synchronous or asynchronous
sampling and randomization.

In the synchronous approach, the sampling period of the original contact
trace has an important impact on the quality of our inference. The proportion
of both added and missed contacts increases with the sampling period. This
is due to several reasons. Firstly, as the sampling period increases, it becomes
more difficult to assume that a contact present in one period but not the next
lasted the whole period. Lacking other information, our heuristic does however
make this assumption. During a time period, a given node, when pushed by
the anticipated attraction force towards its next contact, is still restrained by
the attractive forces of the nodes that were in contact with it at the beginning
of the period. For longer sampling periods, we may overestimate the duration
of many contacts and therefore prevent a node from moving towards its future
contacts. This translates into both missed contacts, from not getting within
transmission range of new contacts in time, and added contacts from remaining
within transmission range of old contacts. Secondly, smaller sampling periods
also catches short contacts that would otherwise be ignored. These provide many
extra contacts that a node must meet on the way to meeting its next contacts
according to the longer sampling period, and thus enable a much smoother and
progressive mobility inference.

However, when contacts are measured asynchronously, the number of contacts
added or missed remains between 10% and 20% regardless of the sampling period.
This due to two reasons. Firstly, having each node scan its neighborhood with a
different phase results in a continuous, though incomplete, stream of information
on future contact events, thus providing a much finer-grained picture of the
contact trace than implied by the sampling period. Furthermore, each link is
being monitored by a pair of nodes, and the time of an event on that link is
measured as the minimum of the times at which it was noticed by each node in
the pair. This further increases the precision of the measured contact trace. As
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Figure 10: Transitory regime when initial positions of nodes are unknown.

most real-life contact traces are measured in this fashion, this is encouraging for
the applicability of our heuristic to existing real-life traces (Section 7).

Interestingly, contacts randomization has very different effects on synchronous
and asynchronous contacts measurements. Indeed, it considerably improves
the quality of the movement inferred from synchronous sampling, making it
comparable to that of the asynchronous approach. On the other hand, when
randomization is used with asynchronous sampling, it actively degrades the
quality of the inferred mobility.

6.5. No knowledge of initial positions

Up until now, all our simulations assumed that the initial positions of all
nodes were known. This conveniently allowed us to isolate the parameters we
wished to test (e.g., number of nodes with known positions and node density),
and ignore the effects of a transitory regime during which the inferred movement
converges over time towards the actual original movement. In this section we
assume that the initial positions of all nodes are random, and examine how this
impacts our results. We also show that by temporarily relaxing the maximum
speed constraint, convergence becomes much faster.

Figs. 10a and 10b describe, respectively, the pairwise distance correlation
and the mean distance error when starting from initially random positions. All
simulation parameters being exactly identical to those in Section 6.2, they should
be compared to Figs. 7a and 7b. Recall that the expected initial mean distance
error on a 1,000m by 1,000m torus is roughly 382m, i.e., 3.8r (see Section 6.2).

As expected, both the correlation and the mean distance error improve over
time and converge towards the values obtained when the initial positions are
known. However this convergence is much faster when more nodes have known
positions. For example, with 15 known nodes it takes about 200 seconds to
stabilize around the same pairwise correlation and mean distance error values as
when the initial positions are known. The convergence is faster with 25 nodes,
whereas 10 and 5 are slower. Unsurprisingly, in the absence of any reference
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Figure 11: Improving convergence time by relaxing the maximum speed constraint for 50
seconds when initial positions of nodes are unknown. Here, 15 out of 50 nodes are reference
nodes, i.e., with known positions.

nodes, the mean distance error never improves over a random guess (Fig. 10b).
However, the pairwise correlation does initially improve before stabilizing around
0.5 (Fig. 10a). After the transitory period, the accuracy achieved in each case
is the same as that obtained when the initial positions of all nodes are known
(Figs. 7a and 7b).

These results indicate that a certain proportion of nodes with known positions
(in this example, around 20%) are needed to achieve a good and stable accuracy.
When such reference nodes are present, the assumption that initial positions are
known allows us to eschew the transitory regime and does not fundamentally
change the results.

Furthermore, there are several ways in which the duration of the transitory
regime can be shortened. For example, temporarily relaxing the maximum
speed constraint enables the nodes to find their correct positions faster. Fig. 11
compares the pairwise correlation and the mean distance error with 15 reference
nodes when the maximum speed is enforced or relaxed. In the latter case,
during the initial 50 seconds, nodes were allowed to move according to the
accelerations determined by the force-based heuristic without any restrictions
on maximal speed. Therefore a little initial “cheating”, can significantly shorten
the transitory regime.

6.6. Other Mobility Models

While the evaluation above focused on Random Waypoint, our plausible
mobility heuristic of course works with different synthetic mobility models. In
this section we consider three recent state-of-the-art mobility models: (i) SLAW
(Self-similar Least Action Walks [31]), (ii) SWIM (Small World in Motion [32]),
and (iii) TVC (Time-Variant Community Model [33]). SLAW generates fractal
waypoints and then plans trips while trying to minimize overall travel distance.
SWIM is based on the intuition that we spend long amounts of time in a few
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Figure 12: Inferred mobility accuracy for different mobility models. (50 nodes including 10
with known positions)

popular areas (e.g., home or office) and small amounts of time in the others, and
that the further the destination the faster the travel speed. TVC captures non-
homogeneous behaviors in both time and space by using preferred communities
that change at successive time epochs. Unfortunately, the TVC model exhibits
a “hopping” behavior where nodes “teleport” to their new favored communities
at the beginning of each new epoch. This completely throws off our heuristic,
which involves gradually bringing together nodes before their next contact comes
up. It is therefore not included in this section’s results.

We use the default parameters for both SLAW and SWIM except for the
number of nodes (50), the maximum speed (10m/s), and the simulation area
(1000m × 1000m). The RWP results are those of our default scenario. In order
for the results to be comparable, we did not try to adjust the parameters of our
plausible mobility heuristic to each type of mobility. The exact same parameters
were used for inferring mobility from RWP, SLAW, and SWIM contact traces.
Fig. 12 shows the accuracy over time for all three models. The results are
averaged over 20 runs. As RWP, the accuracy for SLAW and SWIM quickly
stabilizes, albeit at slightly worse values. This is primarily due to two factors.
Firstly, both SWIM and SLAW have pause times, whereas our RWP runs did
not. This results in an overall reduction of the intensity of the contact process
and thus less information on the future. Secondly, SWIM and, even more so,
SLAW exhibit spatial inhomogeneity. This means that certain nodes can spend
long periods of time without coming close to a reference node.

7. Evaluation 2: Real-life traces

Ideally, evaluation should be conducted against traces that measure both
contacts and node locations but, unfortunately, no such traces are available. We
also chose not to use existing GPS traces because, as discussed in Section 2, these
require significant pre-processing (e.g., scaling, adding new nodes, time-shifting)

22



100

101

102

103

0.01 0.1 1 10 100

C
o
u
n
t

Time (hours)

Original contacts
Inferred contacts

(a) Inter-contact times

10−4

10−3

10−2

10−1

100

0.01 0.1 1 10 100

P
[X

>
x
]

Time (hours)

Original contacts
Inferred contacts

(b) Inter-contact time distribution (CDF)

Figure 13: Comparison of original and inferred contacts in the Infocom 2005 dataset [18].
Values were smoothed over 120-seconds time periods.

before they can produce enough contacts to make our heuristic relevant. For
example, let us consider the UMass Dieselnet GPS traces, composed of 30-40
buses in an area covering approximately 150 square miles [16]. If we were to use a
sufficiently long transmission range (e.g., 1.5 km) for each bus to be, on average,
within range of one other, we estimate, based on the results in the previous
section, that our localization accuracy would be around 3km. Extremely sparse
GPS traces therefore lead to unusable localization information.

Therefore, in this section, we instead focus on real-life contact traces, specifi-
cally the Infocom 2005 dataset [18] and the Rollernet dataset [10]. The Rollernet
trace is particularly interesting because of its short sampling period (see Table 1)
and relatively constrained environment.

In these cases, the ground truth (i.e., the original node mobility) is obviously
not available, hence we cannot evaluate how accurate the inferred mobility is.
However it is still possible to compare original and inferred contacts. Compared
to the synthetic mobility in the previous section, such real-life contact traces
results must be considered lossy, i.e., the absence of a contact in the dataset
does not imply that two nodes weren’t within transmission range of each other.
Such lossy information may even lead to an impossible system of constraints in
the strict sense of Section 4. In this case, our force-based heuristic will tend to
place some nodes close to each other even though there is no registered contact
in the trace, thereby adding many new contacts. Furthermore, their sampling
periods (120 and 15 seconds, respectively) are significantly longer than the 1
second sampling period previously used in the synthetic scenarios. However,
since the sampling periods are asynchronous (see Section 6.4), we expect this to
have a smaller impact on accuracy than the lossy measurements.

7.1. Infocom

The Infocom dataset used Bluetooth Intel iMotes to capture the contacts
between participants at the Infocom 2005 conference. Our plausible mobility
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algorithm ran on the entire contact trace using the same parameters as previously,
except for τ . Previously, with a 1 second sampling period, τ was equal to 50
which meant that upcoming events started having a significant influence on
movement 5 seconds before they actually occur. With a the Infocom dataset’s
120 second sampling period, we increased τ to 500. The nodes were placed on a
boundless planar area. The anticipated attraction forces generally prevent nodes
from moving too far away. However, this was not sufficient and a drag force
(Eq. (6)) was added to gradually reduce the speed of isolated nodes to zero.

Fig. 13a plots the raw inter-contact distribution of both the original and
inferred contact traces. It shows that the inferred mobility tends to increase the
number of short inter-contacts but then closely follows the original contact trace
for longer inter-contact times. This is not the case for the Rollernet inferred
mobility, discussed below. On average, as a percentage of the total number of
contacts at each given time, the inferred mobility adds 16.3% extra contacts,
many of them short-lived.

Interestingly, these extra short inter-contact time are comparatively few
compared to the longer inter-contact times and thus have nearly no impact on
the inter-contact time cumulative distribution function. Indeed, in Fig. 13b,
the original and inferred contacts cumulative distribution function are nearly
identical.

These results show that the proposed mobility is clearly plausible, and could
have produced the original contact trace, or at least one very similar. What
about the added short inter-contact times? Are we introducing bogus contact
opportunities? Or are we identifying contacts that the experiment missed? Or
both? Bluetooth contact traces have long sampling periods and an intrinsic
lack of reliability, thus making it difficult to decide. However, the results in the
following section, based on the Rollernet contact trace in which node mobility
has many more constraints, lead us to believe that the we may be detecting
many contact opportunities missed by the Bluetooth measurements.

7.2. Rollernet

The Rollernet contact trace [10] was collected using Bluetooth Intel iMotes
during a rollerblading tour around Paris. It has the shortest sampling period, 15
seconds, of all Bluetooth contact traces, and therefore comes closest to capturing
the evolution of the connectivity graph. Furthermore, the nodes are highly
mobile and the average contact duration (26 seconds) is barely longer than the
sampling period (15 seconds).

When inferring mobility for the Rollernet contact trace, we used the same
parameters as in the synthetic simulation with the following modifications.
There are no fixed anchor nodes in the trace, but the head and tail nodes of the
rollerblading tour are known. No participant skated ahead (resp. behind) the
head (resp. tail) node. The head and tail nodes were constrained to moving
along a horizontal axis. If ever a node wants to pass the head node for example,
then the head node is moved to ensure that it remains ahead. This enables all
nodes to be placed relatively to the head and tail nodes. Furthermore, since
the rollerbladers go down Paris streets, we can approximate the shape of the
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Figure 14: Comparison of original and inferred contacts in the Rollernet dataset [10]. Values
were smoothed over 15-seconds time periods.

crowd as a 50-meter wide rectangle.4 This width constraint is added to our
heuristic in the form of a potential well, i.e., walls at ±25 meters that push
nodes away. Finally, the iMotes have a relatively short transmission range (30
meters) and the heuristic’s range parameter is set accordingly. Our plausible
mobility heuristic ran on the first 5, 000 seconds of the contact trace.

Due to the rapid contact process in the Rollernet trace, the anticipated at-
traction forces are sufficient to keep the rollerblading tour compact and naturally
lead to the emergence of the accordion phenomenon [10] because the head and
tail node get closer when the contact density increases and pushed apart when
it decreases. The resulting mobility is aesthetically pleasing and helps guide
intuition when working on the dataset.

Fig. 14a plots the raw inter-contact distribution of both the original and
inferred contact traces. Not only does the inferred mobility add a huge number
of short inter-contacts, but, unlike in the Infocom example, also adds many
longer inter inter-contacts as well. On average, the inferred mobility more than
doubles the number of existing contacts at any given time (116.3% of extra
contacts as a percentage of the total number of contacts at each given time).
Several things may account for this. Firstly, the Infocom mobility, consisting of
participants in a conference, attending sessions, meeting for lunch and buffets, is
intrinsically a lot more static than the very dynamic mobility of participants in
a rollerblading tour. Therefore, the Rollernet contact trace is probably “lossier”
than the Infocom one. Secondly, the 50-meter width constraint imposed in the
Rollernet inferred mobility, practically forces any two rollerbladers passing one
another to create a contact opportunity. In the Infocom example above we
placed no constraints on the spatial extension of the inferred mobility. Indeed

4The largest avenue on the path of the rollerblading tour is the 70-meter wide (including
sidewalks) Champs-Elysées.
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during the day, participants may all be in the same room, whereas later in the
evening, they may be spread out around the entire city.

However, as with the Infocom trace, this does not have any influence on
the inter-contact time cumulative distribution function as seen in Fig. 14b.
This suggests that even though many new contacts are indeed added, these
are consistent with the measured ones. As nodes move back and forth in the
rollerblading tour, they meet other nodes and create contact opportunities that
are not in the original contact trace but could plausibly have been captured with
a finer measurement technique. Of course this interpretation is tentative and
needs to be confirmed using more precise and reliable contact measurements, but
if true, means that the plausible mobility proposed by our heuristic is a pretty
close to the original mobility, even with a lossy contact trace.

8. Conclusion and further work

In this paper, we examined a new and interesting problem, the inference of a
plausible mobility from a wireless contact trace. Indeed, mobility is more difficult
to measure but enables movement visualization, contact-trace transformations
(e.g., adding new nodes or increasing the overall density), and better simulations,
particularly in dense networks. On the other hand, contact information is easier
to measure but makes direct transformations of the contact trace difficult and
only allows for simplistic simulation models. Our heuristic solution, based on
ideas from dynamic graph drawing, can animate any wireless contact trace,
while making practically no assumptions on the mobility that produced the
contact trace. Our results highlight the need for reliable high-frequency contact
traces in order to extract a plausible mobility from a wireless contact trace.
Furthermore, the collection of combined contacts and GPS coordinates traces,
in dense environments, would provide a firm ground truth and greatly enchance
our ability to evaluate mobility inferrence techniques.

This work, a first approach of a difficult problem, can be pursued in several
directions. Firstly, the heuristic presented in this paper still makes a small number
of errors (i.e., added and missed contacts) on synthetic scenarios. Perhaps the
plausible mobility obtained from the techniques in this paper could be used,
not as the definitive solution, but as an initial “good bet”, or first-pass, in a
more complete algorithm that actually solves the large constraint system of
Section 4. Secondly, being able to infer mobility from a contact trace opens up
many possibilities for transforming these, and then re-using them in scenarios
other than the exact circumstances in which they were obtained. Finally, the
idea that inferring mobility from a contact trace before running simulations on
it ought to lead to more realistic results than just using the contact trace alone,
must be properly tested. For example, one could compare the performance of
various network protocols in an opportunistic network based on simulations, with
complete knowledge of the mobility, with only contact information, and with
the plausible mobility inferred from the contacts. The results on the inferred
mobility should be closer to those using the real mobility than to those using
only the contact information.
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