
A Location-based Policy-specification Language

for Mobile Devices

Joshua Finnis, Nalin Saigal, Adriana Iamnitchi, Jay Ligatti∗

Department of Computer Science and Engineering
University of South Florida

4202 E. Fowler Ave., ENB 118
Tampa, FL 33620

Abstract

The dramatic rise in mobile applications has greatly increased threats to the security

and privacy of users. Security mechanisms on mobile devices are currently limited, so

users need more expressive ways to ensure that downloaded mobile applications do

not act maliciously. Policy-specification languages were created for this purpose; they

allow the enforcement of user-defined policies on third-party applications. We have

implemented LoPSiL, a location-based policy-specification language for mobile

devices. This article describes LoPSiL’s design and implementation, several example

policies, and experiments that demonstrate LoPSiL’s viability for enforcing policies on

mobile devices.

Keywords: Policy-specification languages, location-dependent policies, mobile

devices, security and privacy.

∗Corresponding author. Tel: +1-813-974-0908; fax: +1-813-974-5456
Email addresses: jfinnis@mail.usf.edu (Joshua Finnis), nsaigal@cse.usf.edu (Nalin

Saigal), anda@cse.usf.edu (Adriana Iamnitchi), ligatti@cse.usf.edu (Jay Ligatti)

Preprint submitted to Pervasive and Mobile Computing November 7, 2010

1. Introduction

The widespread adoption of mobile devices and their rich computational and

communication capabilities has led to a plethora of applications for mobile platforms.

Apple’s App Store for the iPhone is the most prominent example of this, containing

over 130,000 applications [1] only a year and a half after launch, with a total of over 3

billion mobile applications downloaded [2]. The Android Market, which was developed

by Google for their Android mobile operating system, lists over 30,000 applications as

of March 2010 [3]. It is projected that 8 billion mobile application downloads will

occur during 2010 across all mobile platforms [4].

The producers of such applications range from large companies to individual

hobbyists who mostly provide no guarantee and no accountability for the quality and

security of their product. In particular, mobile devices have unprecedented access to

private, personal information through the use of location services such as GPS. The

security infrastructure of mobile devices such as roaming laptops, cell phones, and

PDAs, does not include sufficient control over how location information is accessed by

applications. On current mobile application platforms, users have no more

information than a description of the application from the developers and comments

from other users, which can easily be gamed. Many users simply do not think of their

mobile device as a PC—despite the current generation mobile chipsets being as

powerful as PC chipsets of only 10 years ago [5]—and do not realize that they need to

protect their mobile devices against applications just as they do PCs.

We identify two security risks that may occur from running untrusted mobile

applications on mobile devices:

1. Developers may insert code into an application a user would have no reason to

question. Such an application could, for example, access personal information

2

from the address book of a smartphone, retrieve photos taken by a camera, take

new photos, or access the user’s location using the GPS API. The user’s location

and other personal information could then be sent to an unknown server

through a Wi-Fi or 3G connection, all without the user’s knowledge. In fact, a

2010 study of 30 popular third-party Android applications found that half

shared location data with advertisement servers without user consent [6].

2. Despite the best intentions of developers, bugs within an application can be

exploited. In a large application, dozens of security checks might exist. Still, a

single bug might be enough to negate all the security checks. Extra care must

be taken to ensure mobile devices are free from such bugs, as mobile users are

less aware that their mobile devices can be subject to the same problems they

are used to computers having.

Some security measures in mobile operating systems attempt to guard against

these threats. For the first problem presented above, some mobile operating systems

have user alerts. For example, the iPhone alerts the user the first time an application

requests location data; subsequent requests can go unnoticed. The Android operating

system requires applications that use hardware capabilities like the GPS, camera, and

Internet access, to list all such capabilities up front. The user is able to see the

capabilities the application requested at install time and decide whether to allow it or

not. However, the average user is unaware of the complete functionality of the

application: the application may perform the tasks it says it will (e.g., updating a

Facebook page) while performing malicious actions in the background (e.g., sending

the user’s information to advertisers.

For the second problem presented above, protecting against application bugs that

can be exploited for malicious attacks, Android runs each application in its own

3

virtual machine and requires permissions for one application to access another’s

storage space. Thus, if one running application is compromised, it will not be able to

infect other running processes or their files. The compromised application will,

however, still have access to previously granted permissions, such as GPS, camera,

and Internet. There is no existing, transparent mechanism in place to allow the user

to discover if an application has unwanted behavior.

These problems can be mitigated by the use of policy-specification languages.

Policy-specification languages are intended to simplify the task of specifying and

enforcing security policies on untrusted (i.e., potentially insecure) software. A rich

variety of expressive, Turing-complete policy-specification languages and systems have

been implemented [7, 8, 9, 10, 11, 12]. All of these languages enable users to centrally

specify security and privacy policies to be enforced on untrusted software at runtime.

All of the cited languages have also been implemented as compilers that convert

untrusted code into trustworthy applications. They take as input the application

program and a policy and output a new application program equivalent to the one

input, except that the output program contains inlined enforcement code to ensure

that it satisfies the specified policy at runtime.

As far as we are aware, no expressive policy-specification languages have yet

targeted location-dependent policies for securing applications on mobile platforms.

Previously developed declarative (and Turing-incomplete) policy-specification

languages [13, 14, 15, 16] are limited to location-based access-control policies.

Access-control policies are a proper subset of the policies enforceable with expressive

enforcement systems, which can specify security constraints even outside the context

of accessing resources. Expressive enforcement systems can enforce non-access-control

policies such as that a navigational aid needs to be displayed whenever a mobile

device deviates from its expected path of travel, or that a user’s friends need to be

4

notified whenever the user’s device enters a new geographic region.

This paper extends our work on LoPSiL [17], an expressive location-based

policy-specification language, by proving its viability through implementation and

experimentation on an Android mobile device. LoPSiL provides abstractions for

conveniently accessing and manipulating location information in policy specifications.

Android was chosen because of its recent popularity, its open source platform based

on the Linux operating systems, and its support for Java. Still a somewhat nascent

operating system, Android is expected to have the second-highest market share by

2012 [18], and the number of mobile applications for Android is expected to grow to

150,000 by the end of the 2010 [19].

LoPSiL addresses the problems listed above as follows:

1. In contrast to Android’s coarse-grained permissions, which either allow or

disallow all requests to a piece of hardware, a LoPSiL policy provides

fine-grained access over time and resources. For example, a LoPSiL policy can

enforce that locations will not be retrieved by an application while the user is in

a certain region. Another LoPSiL policy might enforce that outgoing network

messages will only be sent if the recipient is on a list of trusted servers, while

messages to other recipients will be dropped. This policy would allow, for

example, an untrusted application to contact Facebook’s servers to retrieve

information, but prohibit it from contacting an advertiser’s servers to deliver the

personal information.

2. Developers can use LoPSiL policies as a centralized security module, rather than

scattering security checks throughout the application. Separating the security

policy from the core application code provides application developers all the

standard software-engineering benefits one would expect from modularization: it

5

makes the centralized policy easier to create, locate, analyze, and maintain.

Centralizing all the security checks to a single module prevents small updates to

unrelated application code from causing security holes.

These policies can be written by tech-savvy users in the LoPSiL programming

language and stored in a shared policy repository. If a shared LoPSiL policy

repository exists, then all users, even those who are less tech savvy, will be free to

select (ideally via a user-friendly GUI) the specific policies to enforce on their devices.

One example policy might prevent a device’s GPS-location data from being sent over

the network outside of work hours; a user could install such a policy as a safeguard

against an employer-mandated supervisorial application. This example policy could

also be extended to disallow any personal information from being sent to unknown

(e.g., advertiser’s) servers. While we do not explicitly address the aspects of usability

and policy adoption in this paper, they are important directions for future work.

Section 2 describes the design of LoPSiL, with its core constructs for simplifying

the specification of location-dependent policies in Section 2.1 and several examples

highlighting its ease of use in Section 2.2. Section 3 discusses the technical aspects of

LoPSiL, including the implementation of a LoPSiL compiler in Section 3.1 and the

port to Android in Section 3.2. Experimental setup and results can be found in

Section 4, related work in Section 5, and the conclusion and future work in Section 6.

2. LoPSiL: A Location-based Policy-specification Language

Policy-specification languages enable the previously mentioned centralized security

modules to be specified as a policy. This section describes how LoPSiL structures

policies while providing language constructs for accessing and manipulating location

information.

6

2.1. Core Linguistic Constructs

LoPSiL is built on six core abstractions:

Locations

In LoPSiL, Locations are places. They may be abstract places, such as rooms,

floors, buildings, or campuses, or concrete places given by GPS coordinates. LoPSiL

provides many built-in utility methods for manipulating GPS locations such as

calculating distances between locations, defining regions of locations, and making

containment queries to determine whether and how points and/or regions overlap.

LocationDevices

A LocationDevice is LoPSiL’s interface to real-time location information.

Concrete LocationDevices must implement two abstract methods. The first simply

informs policies of the device’s current location, which could be determined using

GPS, Wi-Fi triangulation, IP address geolocation, or by inputting location

information from a user, a file, or another (networked) host, etc. The second abstract

method LocationDevices must implement informs LoPSiL policies of the device’s

location accuracy (or granularity), that is, with what precision is the device’s location

information accurate (e.g., accurate within 1 meter, 1 kilometer, etc). LoPSiL policies

can require devices to provide location information with particular granularity

thresholds.

Our LoPSiL implementation includes concrete implementations of three

LocationDevices: one represents and connects to a Garmin GPS device using Java’s

communication API and the GPSLib4J library [20], another provides a simple GUI

with which users can manually select their current location from a list of known

locations, and another is tailored to the Android API [21] and uses Android’s GPS.

Other implementations of LocationDevices are also possible.

7

PolicyAssumptions

LoPSiL policies may make two important requirements of LocationDevices.

First, as mentioned above, a policy may require location information with a particular

granularity (e.g., accurate within 15m). Second, a policy may require that location

updates arrive with a particular frequency (e.g., a new update must arrive within 10

seconds of the previous update).

LoPSiL policies encapsulate these requirements, along with the LocationDevices

whose location data they trust, in a PolicyAssumptions object. A LoPSiL policy

gets notified automatically whenever a LocationDevice violates the policy’s

granularity or frequency-of-updates requirements.

Actions

An Action encapsulates information about a security-relevant method (i.e., any

Java application or library method of relevance to a LoPSiL policy). LoPSiL policies

can interpose before and after any security-relevant action executes; the policy

specification then determines whether that action is allowed to execute. Policies may

analyze Action objects to determine which security-relevant method the action

represents, that method’s signature, run-time arguments, calling object (if one exists),

whether the method is about to execute or has just finished executing, and the return

value of the action if it has finished executing.

Reactions

LoPSiL policies convey decisions about whether and how to allow security-relevant

Actions to execute by returning, for every Action object, a Reaction object. LoPSil

implements the following reactions: an OK reaction indicates that the action is safe to

execute; an exception reaction indicates that the action is unsafe, so an exception

should be raised (which the application may catch) instead of allowing the method to

8

execute; a replace reaction indicates that the action is unsafe, so a precomputed

return value should be returned to the application in place of executing the unsafe

action; and a halt reaction indicates that the action is unsafe, so the application

program should be halted.

Policies

For expressiveness, LoPSiL policies incorporate all of the previously described

language constructs. There are four parts to a LoPSiL Policy object:

1. A policy may declare PolicyAssumptions upon which it relies.

2. A policy may define a handleGranularityViolation method and a

handleFrequencyViolation method, which get invoked when either all the

LocationDevices upon which the policy relies violate the policy’s

location-granularity assumption, or the LocationDevices violate the policy’s

frequency-of-updates assumption.

3. A policy may define an onLocationUpdate method, which will be executed any

time any LocationDevice associated with the policy updates its Location

information. This method enables a policy to update its security state and take

other actions as location updates occur in real time.

4. A policy must define a react method to indicate how to react to any

security-relevant method. LoPSiL requires every policy to contain a react

method, rather than providing a default allow-all react method; hence, policy

authors wanting to allow all security-relevant methods to execute

unconditionally must explicitly specify their policy to do so.

Figure 1 contains a simple LoPSiL policy with all of these components. Existing

policy-specification languages, such as Naccio [10], PSLang [9], and Polymer [11],

provide constructs similar to our Actions, Reactions, and Policy modules with

9

public class AllowAll extends Policy {
public LocationDevice[] devices = { new AndroidGPS() };
public LocationGranularityAssumption lga =

new LocationGranularityAssumption(15, Units.METERS);
public FrequencyOfUpdatesAssumption foua =

new FrequencyOfUpdatesAssumption(10, Units.SECONDS);
public PolicyAssumptions pa =

new PolicyAssumptions(this, devices, lga, foua);
public void handleGranularityViolation() {System.exit(1);}
public void handleFrequencyViolation() {System.exit(1);}
public synchronized void onLocationUpdate() {

System.out.println("new location = " + devices[0].getLocation());
}
public synchronized Reaction react(Action a) {

return new Reaction("ok");
}

}

Figure 1: Simple LoPSiL policy that prints location information as it is updated and allows all security-
relevant methods to execute as long as its location-granularity and frequency-of-update assumptions
are not violated.

react-style methods. LoPSiL’s novelty is its addition of optional location-related

policy components: Locations, LocationDevices, granularity and

frequency-of-update assumptions, and methods to handle granularity and

frequency-of-update violations and to take action when location state gets updated

(with the onLocationUpdate method).

2.2. Example Policies

We next survey four location-dependent runtime policies and show how to specify

them in LoPSiL. The first is an example of the sort of policy a user might wish to

enforce on untrusted third-party software; it is able to restrict the functionality of the

original application under certain constraints. The second to fourth are examples of

policies an application developer might wish to enforce on their own software; these

10

public class NoGpsOutsideWorkTime extends Policy {
public LocationDevice[] devices = { new AndroidGPS() };
...
public synchronized Reaction react(Action a) {

if (matchesGpsRead(a) && !isWorkTime())
//return a null location to the application
return new Reaction("replace", null);

else return new Reaction("ok");
}

}

Figure 2: LoPSiL policy preventing an application from reading GPS data outside of work hours.

policies enhance the original application’s functionality. We have enforced and tested

versions of all these example policies on Java applications, executing both on a

roaming laptop and on an Android mobile phone, as described later in Section 3.2.

Access-control Policy

Our first example is a privacy-based access-control policy that constrains an

application’s ability to read location data at particular times. The policy, shown in

Figure 2, requires that monitored applications only access the device’s GPS data from

8am to 6pm on workdays. A user might want to enforce such a policy to prevent an

employer-provided application from learning the device’s location when the user is not

at work (e.g., so the employer does not know where the employee shops, or how much

time the user spends in certain places during the employee’s off hours). In fact, users’

ability to install such policies themselves might be the only way the user would allow

the work-related application to run on their mobile device.

11

public class ShowNavigation extends Policy {
public LocationDevice[] devices = { new AndroidGPS() };
...
public synchronized void onLocationUpdate() {

if (distanceToExpectedPath(devices[0].getLocation(), Units.MILES) > .5)
displayNavigationalAid();

else clearNavigationalAid();
}

}

Figure 3: Abbreviated LoPSiL policy requiring that navigational aid appear when the device’s current
location deviates from its expected path.

Deviation-from-path Policy

Our second example policy requires navigational aid to appear when the device’s

location deviates more than some specified distance off its expected path. The policy

code, shown in Figure 3, invokes a method called distanceToExpectedPath to

determine how far the user has drifted off course.

Safe-region Policy

Another example policy expressible in LoPSiL is shown in Figure 4. This policy,

intended to monitor software on a robot, requires the robot to encrypt all outgoing

communications when the robot’s location is outside a secure-region perimeter. This

policy is a subset of the type of policies a company might enforce on all of its

applications to ensure the protection of intellectual property or confidential data when

the application user is not in a trusted zone. When the application user is in a trusted

zone, though, the software is spared from having to perform costly cryptographic

operations.

12

public class SafeRegion extends Policy {
private Location[] safeRegionEndpoints;
private boolean inRegion;
public SafeRegion() {

safeRegionEndpoints = getSafeRegionLocs();
inRegion = devices[0].getLocation().inRegion(safeRegionEndpoints);

}
public PolicyAssumptions pa = ...
public synchronized void onLocationUpdate() {

inRegion = devices[0].getLocation().inRegion(safeRegionEndpoints);
}
public synchronized Reaction react(Action a) {

if(!inRegion && ActionPatterns.matchesPlainWrite(a)) {
String encMsg = encrypt(a.getArgs()[0].toString());
try { //to replace the unencrypted send with an encrypted send

((BufferedWriter)(a.getCaller())).write(encMsg);
} catch(IOException e) {...}
return new Reaction("replace", null);

} else return new Reaction("ok");
}

}

Figure 4: Abbreviated LoPSiL policy requiring robot-control software to encrypt outgoing messages
when the robot is outside a secure-region perimeter.

Social-networking Policy

Our final example is a social-networking policy in which the user’s friends get

invited to rendezvous when the user travels to a new location. Specifically, the policy

requires that if:

• the device has traveled more than 50 km over the past 2 hours (i.e., average

speed has been more than 25km/hr),

• the device has traveled less than 100m over the past 10 minutes (implying that

the user’s travels have at least temporarily ended), and

• the policy enforcer has not sent invitations to friends in the past hour,

13

public class InviteFriendsInNewArea extends Policy {
//maintain a buffer of two hours’ worth of location data
private LocBuffer longBuf = new LocBuffer(2, Units.HOURS);
//maintain another buffer of twenty minutes’ worth of location data
private LocBuffer shortBuf = new LocBuffer(10, Units.MINUTES);
private Time timeLastInvited = Time.NEVER;
...
public synchronized void onLocationUpdate() {

Location currentLoc = devices[0].getLocation();
longBuf.add(currentLoc);
shortBuf.add(currentLoc);
if(longBuf.earliest().distance(currentLoc, Units.KILOMETERS)>50

&& shortBuf.earliest().distance(currentLoc, Units.METERS)<100
&& timeLastInvited.elapsed(Time.getCurrentTime(),Units.HOURS)>1)

{
Location[] friendLocs = getFriendLocations();
inviteLocalFriends(friendLocs,currentLoc,1,Units.KILOMETERS);
timeLastInvited = Time.getCurrentTime();

}
}

}

Figure 5: A location-dependent social-networking policy specified in LoPSiL.

then the enforcement system must:

• broadcast a “Where are you?” message to all friends in the user’s address book,

• collect responses from the friends, and

• send invitations to meet to those friends now within 1km of the user.

An abbreviated LoPSiL policy specifying such constraints appears in Figure 5.

3. A LoPSiL Compiler

Due to the popularity of Java, particularly Java ME, as an application

programming language for mobile devices [22], we have chosen to design and

14

implement LoPSiL constructs in Java source code. Also, to make it easy for security

engineers to learn and use LoPSiL, and to simplify the implementation of a LoPSiL

compiler, we have packaged LoPSiL as a Java library, to which LoPSiL policies may

refer (e.g., a LoPSiL policy may refer to the Location class in the LoPSiL library).

Although we treat LoPSiL in a Java context in this paper, we have built LoPSiL on

six core abstractions that are application-language independent, so we expect LoPSiL

to be portable to other languages and platforms.

This section describes our implementation of LoPSiL and its port to Android, and

briefly reports on our experiences designing and implementing LoPSiL policies. Our

implementation is available online [23].

3.1. Compiler Architecture

A LoPSiL compiler takes as input a LoPSiL policy and an untrusted application,

builds a trustworthy application by inserting code into the untrusted application to

enforce the input policy, and then outputs the trustworthy application. The standard

technique for implementing such a compiler involves inlining policy code into the

untrusted application. Several tools exist for inlining code into an application. A

convenient tool for our purposes is the AspectJ compiler [24]. AspectJ compilers

inline calls to advice at control-flow points specified by point cuts, modifying a target

program by inserting new lines of code [25]. In the domain of runtime policy

enforcement, advice refers to policy-enforcement code and point cuts refer to the set

of security-relevant methods. We wish to interpose and allow policy-enforcement code

to execute before and after any security-relevant method invoked by the untrusted

application.

LoPSiL users convert an untrusted application into a more trustworthy application

as follows:

15

void java.io.PrintStream.println(..)
* javax.swing.JOptionPane.*(..)
java.util.Date.new()

Figure 6: Example .srm file indicating that the accompanying LoPSiL policy considers se-
curity relevant all void-returning java.io.PrintStream.println methods, all methods in the
javax.swing.JOptionPane class, and the parameterless constructor for java.util.Dates.

1. The user creates a specification of the desired policy in a .lopsil file.

2. The user also creates a listing of all the methods the desired LoPSiL policy

considers security relevant. This listing indicates to the compiler which

application and library methods it needs to insert policy-enforcement code

around. Policies get to interpose and decide whether (and how) all

security-relevant methods may execute. The listing of security-relevant methods

goes into a .srm file, one method signature per line. Figure 6 contains an

example and illustrates how wildcards can be used in .srm files.

3. The LoPSiL compiler inputs the policy (.lopsil) and security-relevant-methods

(.srm) into a lopsil2aj converter, which converts LoPSiL code into AspectJ

code. The converter, implemented in 201 lines of Java, begins by converting the

LoPSiL policy to Java source (in a .java file) by simply inserting three lines of

code to import LoPSiL-library classes into the policy.

4. The converter then creates an AspectJ-code file (.aj) that defines two things.

First, the AspectJ code defines a pointcut based on the declared

security-relevant methods. Second, the AspectJ code defines advice to be

executed whenever the pointcut gets triggered (i.e., before and after any

security-relevant method executes). This advice builds an Action object to

represent the invoked security-relevant method, passes that Action to the

LoPSiL policy (now in a .java file), obtains the policy’s Reaction to the

16

LoPSiL policy (.lopsil)

Security-relevant
methods (.srm)

Untrusted
application (.class)

lopsil2aj
converter

Policy-enforcement code (.java)

AspectJ pointcut definition for
security-relevant methods (.aj)

AspectJ
compiler

Trustworthy
application (.class)

LoPSiL Compiler

Figure 7: Overview of the LoPSiL compiler. The compiler inputs .lopsil, .srm, and .class files and
outputs the same .class files but with policy-enforcement code inlined before and after all security-
relevant methods.

Action, and guides execution appropriately based on that Reaction.

5. Finally, the LoPSiL compiler inputs the untrusted mobile-device application

(comprised of a set of .class files) and the .java and .aj files created in Step

3 into a standard AspectJ compiler [24]. The AspectJ compiler inlines the

advice into the application before and after all security-relevant methods, thus

producing an application that is secure with respect to the original LoPSiL

policy.

Figure 7 presents an overview of this architecture.

Because LoPSiL uses AspectJ as its application rewriter, LoPSiL inherits

AspectJ’s limitations. Most importantly, the AspectJ compiler cannot rewrite (i.e.,

inline code into) methods in standard Java libraries; it can only rewrite application

files. Therefore, our LoPSiL compiler can only ensure that policy-enforcement code

executes before and after security-relevant methods invoked by the application being

monitored. While our implementation allows enforcement mechanisms to interpose

and make decisions concerning library methods, the enforcement mechanisms cannot

then repeat these decisions upon any library methods being called by the monitored

17

library methods. We could circumvent this limitation by writing our own LoPSiL

enforcement-code inliner (e.g., using tools like the Bytecode Engineering Library [26]),

as previous work has done [9, 11]. Moreover, to save users from the effort of creating

an .srm file, we could automatically extract a set of security-relevant methods by

performing static analysis on policy code [27, 28, 29]. For the sake of simplicity, we

did not include such features in our proof-of-concept compiler.

3.2. Porting LoPSiL to Android

The Android operating system uses a special Java virtual machine, the Dalvik

VM, which has its own .dex file format rather than normal .class files. AspectJ, as

described in Section 3.1, can still be used to inline code into applications. Running

Java classes on Android requires translating the policy classes and the external

LoPSiL and AspectJ libraries into the Dalvik VM’s .dex format, then packaging the

files into Android’s .apk application format. Conveniently, the Android SDK [21]

provides plug-ins for the Eclipse IDE [30] to automate this process, as well as

emulators for development and testing.

Our implementation of LoPSiL on Android compiles and inlines LoPSiL policies

using the same five-step procedure described, but with one minor addition: the

compiler-produced .aj file also contains a method that listens for GPS location

updates from the Android OS and forwards them to the policy. This extra method

uses the .lopsil policy’s given FrequencyOfUpdatesAssumption to specify the

frequency with which it expects location updates from the Android OS.

The lifecycle of a mobile application differs from a PC-based application.

Consequently, whereas LoPSiL policies on a PC application need to concern

themselves with an application starting and ending, LoPSiL policies on Android

applications have many more possibilities. An onResume function is called when an

18

application is brought to the foreground and onPause when it no longer holds the

foreground. The two functions that define when an application can be visible and

when it ceases being visible are onStart and onStop. Finally, initialization and

completion are controlled by onCreate and onDestroy. Throughout the lifecycle, an

application can lose and regain focus or be stopped and restarted (through

onRestart) many times before the process is finally destroyed. Mobile applications

also have more interrupts with which a policy may be concerned—an incoming phone

call or text message, the GPS being turned off, the mobile device having moved out of

Wi-Fi range, and so on. LoPSiL policies can interpose on and react to all these events.

Our port of LoPSiL to Android is a proof-of-concept implementation of a

location-based policy-specification language on a mobile device. The port proved to

be straightforward; only minor changes had to be made to LoPSiL (due to Android’s

omission of certain standard Java libraries and the way Android applications can

display data). The core logic of the policies implemented on Android was unchanged

from Section 2.2 other than changes to the graphical interface. We expect the porting

of LoPSiL to any platform that runs Java to be a similarly straightforward experience.

4. Experimental Results

Our proof-of-concept implementation of LoPSiL on an Android mobile phone

platform had multiple objectives. First, we wanted to evaluate the expressiveness of

the language for real location-specific scenarios. For this, we implemented four

location-based policies similar to the ones presented in Section 2.2 in four respective

target applications. Second, we wanted to test the practicality of using LoPSiL on a

typical, resource-constrained mobile device. Many such constrained devices take great

care to limit the strain upon the hardware by imposing restrictions on the operating

system (e.g., the iPhone prohibits most forms of multitasking, allowing only a small

19

set of operations like audio or push notifications to run in the background). With

these restrictions in mind, we evaluate experimentally the impact of enforcing LoPSiL

policies, in terms of execution performance, memory usage, battery usage, and code

size, to show that the action of policy enforcement does not impose a significant

burden on resource-constrained mobile devices.

4.1. Experimental Setup

We implemented the four location-based policies presented in Section 2.2 on an

Android G1. This device, an unlocked HTC Dream, has a 528 MHz processor,

192 MB RAM, 1 GB storage, 1150 mAh lithium ion battery, as well as a

3.2 megapixel camera, GPS, BlueTooth, and Wi-Fi support.

We enforced LoPSiL policies on the following four Android applications:

1. The first application repeats a numerical calculation 1000 times. On this

application we enforced the AllowAll policy of Figure 1. The policy returns an

OK reaction for every call made to the security-relevant method compute. The

purpose of this policy is to demonstrate the amount of overhead the LoPSiL

framework produces when enforcing the simplest policy possible. Other policies

will have additional overhead based on their complexity.

2. The second application uses the device’s GPS to deliver a status update to an

employer’s server every 5 seconds. The update contains an employee’s current

location and other work-related information. The AccessControl LoPSiL policy

we enforced on the application is a version of the NoGpsOutsideWorkTime policy

shown in Figure 2. It uses a replace reaction to omit the employee’s location

from the message sent to the server outside of work hours.

3. The third application uses the device’s GPS and the Google Maps API to

display the user’s current location on a map and an expected path that the user

20

will travel. The DeviationFromPath LoPSiL policy we enforced on the

application matches the policy in Figure 3. The onLocationUpdate method in

our DeviationFromPath policy prints a message if the distance between the user

and the expected path exceeds a certain distance

4. The fourth application uses the device’s GPS and the Google Maps API to

display the user’s current location on a map. We enforced the

SocialNetworking LoPSiL policy (Figure 5), which uses onLocationUpdate to

determine if the user has stopped traveling (defined as having traveled a

distance of 50 km over the past 2 hours). If the user has stopped traveling, the

policy sends a request to a server to invite any friends who are nearby, given

that no invitations have been sent in the last hour.

We ran each application until either 1000 function calls had been made or 1000

location updates had been received. For the SocialNetworking policy, we accelerated

the rate at which friend invitations were sent in order to collect sufficient data. To

keep the comparison apt, we kept the ratio of policy-enforced friend invitations to

location updates equivalent to the same ratio in the original policy. To determine the

performance and memory impact of a LoPSiL policy, we ran each application both

with and without enforcing their LoPSiL policies.

Policy running times were measured by timing both react and onLocationUpdate

methods. Memory usage was measured by a script running on the device that logs the

output of the meminfo system service at intervals of 5 seconds. Because the device has

a single CPU, meminfo and other system services are sometimes switched to run in

the middle of a react or onLocationUpdate method; when this occurs, the resulting

performance measurement of the interrupted method is not included in the collected

data. To measure battery usage, each application ran for 30 minutes, using a

21

 0

 20

 40

 60

 80

 100

AllowAll DeviationFromPath AccessControl SocialNetworking

T
im

e
 T

a
k
e
n
 (

m
s
)

Policy

Performance Overhead

Base Application
Policy-enforced Application

Figure 8: Performance overhead of the implemented Android applications with and without policy-
enforcement.

mechanism to prevent the device from turning its screen off and going to sleep.

Without this mechanism, it would have been impossible to determine whether any

battery drain was related to the policy or to other processes running on the mobile

device. It must be noted, however, that preventing the device from going to sleep is a

worst-case scenario. Mobile devices are typically used interactively; when not in

current use, the devices go to sleep. The battery usage information was recovered

from an API method that has a granularity of one percent. The battery experiments

were repeated eight times for consistency.

4.2. Results

Figure 8 shows that the performance overhead of the AllowAll policy is a little

over 2%, or, in absolute terms, 0.74 ms for every monitored function call. To assess

the significance of this overhead, we ran a two-sample t-test in which we compared the

time taken for the compute method to run with and without the AllowAll policy. We

obtained a t-value of 1.61, thereby confirming that the overhead induced was

22

 0

 1

 2

 3

 4

 5

 6

AllowAll DeviationFromPath AccessControl SocialNetworking

M
e
m

o
ry

 U
s
a
g
e
 (

%
 o

f
T

o
ta

l
M

e
m

o
ry

)

Policy

Memory Usage Overhead (pss)

Base Application
Policy-enforced Application

Figure 9: Memory overhead of the implemented Android applications with and without policy-
enforcement.

statistically insignificant at the 1% confidence levels. The base overhead of the

framework when invoking a policy therefore does not significantly affect

performance—an important factor for CPU-limited mobile devices. Longer-running

enforcement code induces greater running-time overhead; the DeviationFromPath,

AccessControl, and SocialNetworking policies add about 20 ms of overhead per

location update and function call to the application. Across all four policies, we find

an average performance overhead per monitored function call or location update of

8.6 ms, or 27.4% (with the 95% confidence interval between 23.4% and 31.3%).

Android has two metrics available for memory usage of an application: the amount

of private memory in use (unique set size or uss) and the amount of total memory in

use, which includes shared pages (proportional set size or pss). Figure 9 shows that

the memory usage (pss) of the policy-enforced application very closely matches the

memory usage of the application run by itself. The y-axis represents the percentage of

total memory (including shared pages) that the application uses. On average, the use

23

 0

 5

 10

 15

 20

 25

 30

AllowAll DeviationFromPath AccessControl SocialNetworking

P
e
rc

e
n
ta

g
e
 U

s
e
d

Policy

Battery Consumption

Base Application
Policy-enforced Application

Figure 10: Measured battery consumption of an Android application vs. the policy-enforced applica-
tion.

of a LoPSiL policy took an extra 291 bytes of memory, or 6.6% more memory (with a

95% confidence interval from 5.8% to 7.4%), compared to the memory usage of the

application without a policy, less than 0.3% of the total memory available on the G1

device.

Battery results in Android are reported at the granularity of 1%, so results should

be considered accurate within 1%. Figure 10 shows that the AllowAll and

AccessControl policies have no significant impact on battery overhead, as the

numbers reported are within 1% of each other. The DeviationFromPath and

SocialNetworking policies use up a little more than 4% extra battery over a span of

30 minutes of execution. It should be noted that the SocialNetworking policy is

simulated at an accelerated pace, sending messages to a server once every 5 seconds

instead of once every hour. Overall, the battery overhead incurred from using LoPSiL

was on average 16.6% (the 95% confidence interval is between -3.2% to 36.4%).

The code size is particularly important in smartphones and other mobile devices

24

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

AllowAll DeviationFromPath AccessControl SocialNetworking

C
o
d
e
 S

iz
e
 (

B
y
te

s
)

Policy

Code Size Overhead

Policy Overhead
LoPSiL Overhead
Base Application

Figure 11: Code size of the implemented Android application with and without policy-enforcement.
The LoPSiL overhead represents the constant space required for the LoPSiL and AspectJ libraries,
while the policy overhead refers to the variable space used by the policy file.

with limited hard drive capacity. The minimum amount of extra space needed, as

seen in Figure 11, was 55.5 KB for the AllowAll policy. As this policy implements

only the minimal constructs (the aspect file and a mostly empty policy), the

AllowAll policy can viewed as the constant, minimum overhead of the AspectJ and

LoPSiL libraries. The average extra space required for our policies was 56.2 KB (or

less than one percent of the total available memory on the G1), indicating that the

more complex policies do not incur much overhead in terms of code size. Though the

overhead needed for the policies is greater than the average code size for the

applications in our examples, it is important to note that the base applications we

used were all simple and far smaller than actual Android applications commonly in

use; a survey of the top 9 featured applications in the Android market1, for example,

shows an average size of 1.96 MB, compared to an average size of 13 KB for the

1Top 9 free and paid applications as of March 10, 2010 according to http://android.com/market.

25

example applications. The code size required by the example policies would be much

less significant in comparison to these actual Android applications than they appeared

in comparison to the example policies.

Summary of Experimental Results. LoPSiL overhead is highly dependent on the

specific LoPSiL policy. The purpose of the AllowAll policy was to show what

overhead would be incurred by adopting the LoPSiL framework. The results—0.74 ms

per monitored function call, 244 bytes of runtime (non-code) memory, 55.5 kB of code

memory, and a negligible impact on battery life—show that the LoPSiL framework

induces quite tolerable overhead on mobile devices such as the G1.

However, the performance, memory, battery, and code size metrics are highly

dependent on the actual policy. A policy that enforces that an application must

frequently check in with a server will incur much more overhead than a policy that

infrequently checks a variable in memory, for example. We presented the

SocialNetworking, DeviationFromPath, and AccessControl policies to show that

realistic policies can be enforced without having a significantly detrimental effect on

the target application. Although these policies were invoked frequently—every 5

seconds for AccessControl, 1 second for DeviationFromPath and

SocialNetworking, and many times a second for AllowAll—many other policies, like

those concerned with whether a user is at a certain location or whether certain

conditions hold at the time of onStart and onResume functions, may invoke the

policy methods much less frequently and therefore induce overheads closer to our

AllowAll policy.

26

5. Related Work

A rich variety of policy-specification languages and systems have been

implemented, which enable users to centrally specify security and privacy policies to

be enforced on untrusted software at runtime. Ponder [7], XACML [8],

PoET/PSLang [9], Naccio [10], Polymer [11], and Deeds [12] are examples of

expressive (i.e., Turing-complete) policy-specification languages. However, none of

these languages provide users with built-in constructs for manipulating location

information.

SpatialP is a Turing-complete language in which policies can make decisions about

a program’s actions based on the location of the user [31]. However, users can specify

only equality and containment conditions on locations, so SpatialP users can

manipulate location information in only limited ways. For example, users cannot

specify conditions that capture their being within a certain distance of a fixed point.

Thus, SpatialP cannot be used to specify policies such as the DeviationFromPath and

SocialNetworking (shown in Figures 3 and 5). Also, as far as we are aware, SpatialP

does not have an implementation.

There are other policy-specification languages that do have primitives for

manipulating location information, but as far as we are aware, none of these

languages are Turing-complete, which prevents specification of arbitrary policies. For

example, OpenAmbient, an access-control architecture for web services, provides a

policy-specification language in which policies can reason about location information

(as part of the system’s ambient state) but cannot maintain a state of their

own [13, 14]. Not being able to maintain state prevents policies from (1) basing

decisions on previous policy actions and (2) executing arbitrary code in response to

application actions. For these reasons, it would be impossible to specify the

27

DeviationFromPath and SocialNetworking policies using OpenAmbient.

Another location-based but Turing-incomplete policy-specification language is

Geo-RBAC [15]. The Turing-incompleteness of Geo-RBAC derives from its targeting

only RBAC (role-based access-control) policies, which are safety policies and therefore

a proper subset of the policies enforceable at runtime [32]. In addition, role

assignment and location information are fixed per session in Geo-RBAC, so policies

on systems with dynamically changing roles or locations (e.g., the policies in

Figures 3–5) could not be specified with Geo-RBAC.

Ray and Kumar describe a formal, Turing-incomplete model that extends a MAC

system with location primitives [16]. They describe how the location of a subject and

an object can be used to make decisions about granting subjects access to objects,

while keeping the locations of subjects and objects private from each other. Because

their model is an access-control (safety-policy) model, its users cannot specify the

DeviationFromPath and SocialNetworking policies.

The Android operating system also lets users specify and enforce location-based

access-control policies [21, 34]. These policies get specified in the form of permissions

in XML manifest files and optional implementations of checkPermission() methods.

Additionally, Ongtang et al. have implemented a system called Saint that extends

Android’s security model and enables users to specify fine-grained permissions [33].

However, similarly to Geo-RBAC and the model of Ray and Kumar, Saint and

Android’s built-in enforcement system are limited to access-control policies and

therefore cannot enforce more general runtime policies such as DeviationFromPath

and SocialNetworking.

28

6. Conclusions and Future Work

We have presented LoPSiL, a language for specifying location-dependent runtime

security policies. LoPSiL’s novelties are its abstractions for accessing and reasoning

about location information in expressive policy specifications; existing

policy-specification languages up to this point either did not target location-dependent

policies or lacked expressiveness (by being confined to access-control policies). In our

experiments specifying location-dependent policies for mobile-device applications, we

found LoPSiL expressive and efficient. Through experimentation, we have also noticed

some common, recurring uses of location information in security and privacy policies.

Our location-dependent security policies consistently based policy decisions on:

• The current absolute location of the device (e.g., whether the device is in the

user’s office);

• The geographic relationship of the device’s current location with another

location (e.g., whether the device is north of or within 1km of another location);

• The geographic relationship of the device’s current location with a region of

locations (e.g., whether the device is in an area of trusted terrain or within 10m

of an expected path);

• The velocity or acceleration of the device.

Because location-dependent policies consistently use location information in these

ways, LoPSiL provides core linguistic constructs, as well as utility methods, designed

to make it easy for policies to calculate and keep track of distances, boundaries,

velocities, and accelerations between locations, all in a centralized policy module.

Future work could improve the usability of the process of policy creation and

enforcement. Presently, users have to create and compile their own LoPSiL policies

29

before being able to run an application with inlined policy-enforcement code. One

helpful extension would be to create a centralized LoPSiL policy repository, where

like-minded LoPSiL developers could share policies that either restrict or enhance the

functionality of applications. Such a repository, in conjunction with an easy-to-use

interface, could provide non-technically inclined users the ability to select and apply

LoPSiL policies to enhance their mobile-device security. A user-friendly “Security

Center” application could provide the mechanism for downloading and automatically

enforcing LoPSiL policies in such a repository. By increasing the ease of use of

locating and managing LoPSiL policies, we hope to foster a community of policy

creation and sharing as a bastion against the current untamed state of mobile

applications.

Acknowledgments

We would like to thank Billy Rickey for helping implement the original version of

LoPSiL. This research was funded in part by National Science Foundation grants

CNS-0716343 and CNS-0831785. Any opinions, findings, conclusions, or

recommendations expressed in this material are those of the authors and do not

necessarily reflect the views of the sponsors.

References

[1] GigaOM, The apple app store economy (Feb. 2010).

URL http://gigaom.com/2010/01/12/the-apple-app-store-economy/

[2] Apple, Apple’s app store downloads top three billion (Feb. 2010).

URL http://www.apple.com/pr/library/2010/01/05appstore.html

[3] R. Wauters, Google: Android market now serving 30,000 apps (Mar. 2010).

30

URL http://www.mobilecrunch.com/2010/03/16/

google-android-market-now-serving-30000-apps

[4] MobileBits.net, Mobile app stores to register purchases worth of $6.2 billion in

2010 (Feb. 2010).

URL http://www.mobilebits.net/items/view/4599

[5] Qualcomm, Qualcomm products and services - the Snapdragon platform (Feb.

2010).

URL

http://www.qualcomm.com/products_services/chipsets/snapdragon.html

[6] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, A. N. Sheth,

Taintdroid: An information-flow tracking system for realtime privacy monitoring

on smartphones, in: To appear at the 9th USENIX Symposium on Operating

Systems Design and Implementation (OSDI’10), 2010.

[7] N. Damianou, N. Dulay, E. Lupu, M. Sloman, The Ponder policy specification

language, Lecture Notes in Computer Science 1995 (2001) 18–39.

[8] OASIS, eXtensible Access Control Markup Language (XACML) version 2.0

(2005).

[9] Ú. Erlingsson, F. B. Schneider, IRM enforcement of Java stack inspection, in:

IEEE Symposium on Security and Privacy, Oakland, CA, 2000.

[10] D. Evans, A. Twyman, Flexible policy-directed code safety, in: IEEE Security

and Privacy, Oakland, CA, 1999.

[11] L. Bauer, J. Ligatti, D. Walker, Composing expressive runtime security policies,

ACM Transactions on Software Engineering and Methodology 18 (3) (2009) 1–43.

31

[12] G. Edjlali, A. Acharya, V. Chaudhary, History-based access control for mobile

code, in: ACM Conference on Computer and Communications Security, 1998.

[13] M. Anisetti, C. Ardagna, V. Bellandi, E. Damiani, OpenAmbient: A pervasive

access control architecture, in: A. Schmidt, M. Kreutzer, R. Accorsi (Eds.),

Long-Term and Dynamical Aspects of Information Security: Emerging Trends in

Information and Communication Security, Nova Science Publisher, Inc., 2007.

[14] C. A. Ardagna, M. Cremonini, E. Damiani, S. D. C. di Vimercati, P. Samarati,

Supporting location-based conditions in access control policies, in: Symposium

on Information, computer and communications security, 2006.

[15] E. Bertino, B. Catania, M. L. Damiani, P. Perlasca, Geo-rbac: a spatially aware

rbac, in: SACMAT ’05: Proceedings of the tenth ACM symposium on Access

control models and technologies, 2005, pp. 29–37.

[16] I. Ray, M. Kumar, Towards a location-based mandatory access control model,

Computers and Security 25 (1) (2006) 36–44.

[17] J. Ligatti, B. Rickey, N. Saigal, LoPSiL: A location-based policy-specification

language, in: International ICST Conference on Security and Privacy in Mobile

Information and Communication Systems (MobiSec), 2009.

[18] M. Hamblen, Symbian, Android will be top smartphone OSes in ’12, Gartner

reiterates (Feb. 2010).

URL http://www.computerworld.com/s/article/9139301/Symbian_Android_

will_be_top_smartphone_OSes_in_12_Gartner_reiterates

[19] H. Miller, Google’s Android apps may soon top 150,000 (Feb. 2010).

URL http://www.mercurynews.com/news/ci_14058873?source=rss

32

[20] SourceForge.net, GPSLib4J v0.1 (2009).

URL http://gpslib4j.sourceforge.net/

[21] Google, Android Developers (Feb. 2010).

URL http://developer.android.com/

[22] Sun Microsystems, The Java ME Platform - the Most Ubiquitous Application

Platform for Mobile Devices (2009).

URL http://java.sun.com/javame/index.jsp

[23] J. Finnis, B. Rickey, N. Saigal, A. Iamnitchi, J. Ligatti, LoPSiL Implementation

(2009).

URL

http://www.cse.usf.edu/~ligatti/projects/runtime/LopsilAndroid.zip

[24] A. Coyler, A. Clement, W. Isberg, M. Kersten, A. Vasseur, M. Webster, The

AspectJ Project (2009).

URL http://www.eclipse.org/aspectj/

[25] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold, An

overview of AspectJ, in: European Conference on Object-oriented Programming,

Springer-Verlag, 2001.

[26] Apache, Byte Code Engineering Library, Apache Software Foundation (2003).

URL http://jakarta.apache.org/bcel/

[27] X. Zhang, A. Edwards, T. Jaeger, Using CQUAL for static analysis of

authorization hook placement, in: Proceedings of the 11th USENIX Security

Symposium, USENIX Association, Berkeley, CA, USA, 2002.

33

[28] V. Ganapathy, T. Jaeger, S. Jha, Automatic placement of authorization hooks in

the linux security modules framework, in: CCS ’05: Proceedings of the 12th

ACM Conference on Computer and Communications Security, ACM, New York,

NY, USA, 2005.

[29] V. Ganapathy, T. Jaeger, S. Jha, Retrofitting legacy code for authorization

policy enforcement, in: SP ’06: Proceedings of the 2006 IEEE Symposium on

Security and Privacy, IEEE Computer Society, Washington, DC, USA, 2006.

[30] Eclipse, Eclipse.org home (Feb. 2010).

URL http://www.eclipse.org/

[31] D. Scott, A. Beresford, A. Mycroft, Spatial security policies for mobile agents in

a sentient computing environment, in: 6th Fundamental Approaches to Software

Engineering (FASE), volume LNCS 2621, Springer-Verlag, 2003, pp. 102–117.

[32] J. Ligatti, L. Bauer, D. Walker, Run-time enforcement of nonsafety policies,

ACM Transactions on Information and System Security 12 (3) (2009) 1–41.

[33] M. Ongtang, S. McLaughlin, W. Enck, P. McDaniel, Semantically rich

application-centric security in android, in: ACSAC ’09: Proceedings of the 2009

Annual Computer Security Applications Conference, IEEE Computer Society,

Washington, DC, USA, 2009.

[34] W. Enck, M. Ongtang, P. McDaniel, Understanding android security, IEEE

Security and Privacy 7 (1) (2009) 50–57.

34

List of Figures

1 Simple LoPSiL policy that prints location information as it is updated

and allows all security-relevant methods to execute as long as its location-

granularity and frequency-of-update assumptions are not violated. . . . 10

2 LoPSiL policy preventing an application from reading GPS data outside

of work hours. 11

3 Abbreviated LoPSiL policy requiring that navigational aid appear when

the device’s current location deviates from its expected path. 12

4 Abbreviated LoPSiL policy requiring robot-control software to encrypt

outgoing messages when the robot is outside a secure-region perimeter. 13

5 A location-dependent social-networking policy specified in LoPSiL. . . . 14

6 Example .srm file indicating that the accompanying LoPSiL policy con-

siders security relevant all void-returning java.io.PrintStream.println

methods, all methods in the javax.swing.JOptionPane class, and the

parameterless constructor for java.util.Dates. 16

7 Overview of the LoPSiL compiler. The compiler inputs .lopsil, .srm,

and .class files and outputs the same .class files but with policy-

enforcement code inlined before and after all security-relevant methods. 17

8 Performance overhead of the implemented Android applications with and

without policy-enforcement. 22

9 Memory overhead of the implemented Android applications with and

without policy-enforcement. 23

10 Measured battery consumption of an Android application vs. the policy-

enforced application. 24

35

11 Code size of the implemented Android application with and without

policy-enforcement. The LoPSiL overhead represents the constant space

required for the LoPSiL and AspectJ libraries, while the policy overhead

refers to the variable space used by the policy file. 25

36

