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Abstract

Recognising human activities is a problem characteristic of a wider class of systems in which algorithms
interpret multi-modal sensor data to extract semantically meaningful classifications. Machine learning tech-
niques have demonstrated progress, but the lack of underlying formal semantics impedes the potential for
sharing and re-using classifications across systems. We present a top-level ontology model that facilitates
the capture of domain knowledge. This model serves as a conceptual backbone when designing ontologies,
linking the meaning implicit in elementary information to higher-level information that is of interest to
applications. In this way it provides the common semantics for information at different levels of granularity
that supports the communication, re-use and sharing of ontologies between systems.
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1. Introduction

The study of human activities has implication in domains such as personalised healthcare, the develop-
ment of more comfortable home environments, and improved energy conservation [1, 2]. Sensor researchers
have made substantial progress in producing small, easily pluggable, and energy-efficient sensors, making it
possible to deploy smart home technologies in real-world settings [3]. Machine learning techniques have been
successfully applied to recognising user activities from these sensor data [1, 4]. However, data, knowledge,
and application heterogeneity [5] restricts the wide deployment of these techniques in ordinary homes. Data
heterogeneity, caused by the diversity of sensors and the lack of a uniform markup language, hinders their
seamless exchange, integration, and reuse. Knowledge heterogeneity, caused by the lack of uniformity and
formality, prevents the sharing of defined or learned domain knowledge across different systems. Different
applications require the recognition of different human activities, while the lack of semantics to relate the
activities leads to application heterogeneity.

A variety of computer science fields, including e-commerce [6, 7], information integration [8–10], and the
semantic web [11, 12] recognise ontology, as a promising means for knowledge sharing and reuse. Ontology
is a formal explicit specification of a shared conceptualisation [13] in that it supports the capture and
specification of domain knowledge with its intrinsic semantics through consensual terminology and formal
axioms. Ontologies support a set of modelling primitives to define classes, individuals, their attributes and
their relations. The formal axioms specify the intended meaning of the terminology with the modelling
primitives and their a priori relationships in an explicit way [14]. The consensual terminology makes it
possible to share and reuse data and knowledge across different components in a system and across different
systems [5, 15]. Pervasive computing projects have applied ontologies in modelling and reasoning on concepts
and knowledge [16–18]. These works demonstrate that ontology is a promising technique that can be used
to address data, knowledge, and application heterogeneity.

Most ontologies developed for pervasive computing concentrate on modelling specific properties and
internal structures of concepts in individual domains such as Location, Person, and Computational Entity [5],
while ignoring the common semantics underlying them. This leaves developers a burden of engineering a
large amount of domain knowledge, which can be relieved through a higher-level uniform approach, and

Preprint submitted to Pervasive and Mobile Computing November 25, 2010



as well as of completing tasks such as detecting inconsistency of context, configuring new activities, and
customising application behaviours on a number of human activities.

For these reasons, it is desirable to underlay these domain ontologies with a foundational ontology
model, where domain concepts and knowledge are modelled uniformly among different types of information.
Based on the classic set theory, we propose such a model to address the above issues. The contribution
of this work is to provide a top-level ontology to model and reason on domain knowledge in a precise and
traceable manner, serving as a conceptual backbone for developing domain and application ontologies for
smart environments.

We start by capturing essential semantics common to all dimensions of an information space; i.e., levels
of granularity, conflicting, and overlapping relationships. These common semantics provide a uniform way
to represent and reason on domain knowledge. Ontologies built using them are straightforwardly used and
interpreted by evaluating and comparing these underlying semantics of the concepts and terms they define.
Based on these semantics, we employ a generic approach to derive knowledge about context predicates

and activities in a structured manner. We define a context predicate as a two-dimensional product space
of information, while an activity is a multiple-dimensional product space of information that indicates
a situation occurring in the environment. Through reasoning about the relationships between context
predicates, we can detect inconsistency between context; that is, when two pieces of context report conflicting
states of reality. We support defining two types of composite activities and inferring knowledge between
them, which can be used to check the consistency of activity derivation rules and to aid application design.

We structure the remainder of the paper as follows. Section 2 reviews literature pertaining to ontology-
based models in smart home environments. Section 3 presents how we represent and evaluate the common
semantics of domain concepts, based on which Section 4 and Section 5 describe how to infer relationships
between context predicates and activities. Section 6 presents the implementation of the top-level ontology
and demonstrates the use of the ontology model through a real-world smart home case study. Finally,
Section 7 summarises our work and outlines future research directions.

2. Related work

Gruber et al. introduce a precise definition of ontology: “a formal explicit specification of a shared
conceptualisation” [13, 19]. This definition describes the philosophical nature of ontology, which Guarino et
al. advances as “a logical theory accounting for the intended meaning of a formal vocabulary” [14, 20]. That
is, when an ontology models a particular aspect of reality – an intended domain – it specifies an ontological

commitment that is the underlying conceptualisation about the intended domain, including identities of
concepts and internal structures between them.

Following the logical definition of ontology, we propose an ontology on top of domain and application
ontologies (in Figure 1) that aims to provide a precise and traceable representation of the conceptualisation.
Domain ontologies model each dimension of information, including Object, Location, and Equipment, while
application ontologies describe concepts in particular application domains; for example, Patient and Perso-
nAndMedical in healthcare applications, Household in smart home applications, and MeetingVideoEvent in
intelligent meeting applications. The top-level ontology captures the common semantics among dimensions
of information that are described in the lower-level ontologies and exploits the semantics in compositions of
the information that are represented in predicates and derivation rules in the lower-level ontologies. Based
on the common semantics, this top-level ontology provides generic rules to facilitate pervasive tasks includ-
ing detecting inconsistency of information, generating new knowledge such as new activities for different
applications and new relationships between concepts, contexts, and activities, and designing applications
in a hierarchical way. It also encourages developers to define their own generic rules to perform similar
system-level tasks.

In the literature of ontological models in smart environments, the ontology proposed by Schmidtke et
al. is a top-level ontology that is similar to ours. Their ontology is built on the theory of mereotopology,
a formal theory of part and whole that has been widely used in the area of formal ontology [21]. From a
primitive relation part-hood, they discuss the overlap, underlap, and connection relations between contexts.
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Figure 1: Ontology Classifications

Two contexts overlap if and only if they share a part that is not identical to the empty (i.e., non-existing)
context, while two contexts underlap if and only if they are both part of a context that is not identical to the
whole domain. A connection can be introduced between two contexts, which is a reflexive and symmetric
relation. These relations are considered crucial in modelling the notions of reachability in a conceptual
hierarchy. Our ontology studies the semantics of information also based on partial ordering, while our
work instead focuses on structural semantics across different levels of information from domain concepts, to
context predicates, and to activities.

Most smart environment ontologies can be classified as either domain or application [5, 22–27]. Ye et
al. review the most popular ontologies in modelling and reasoning on contexts in pervasive computing [18].
Among them, SOUPA (Standard Ontology for Ubiquitous and Pervasive Applications) is one of the most
comprehensive ontologies. SOUPA not only includes standard domain ontologies such as FOAF, DAML-

Time, Region Connection Calculus, and Rei Policy ontology, but also defines ontologies specific to pervasive
computing like software agents, mobile devices, and events like meetings. It offers a formal and well-
structured way to model context and thus provides rich semantics for programming [18].

Gu et al. [24, 27] present an ontology-based model for context fusion in activity recognition. It is built in
a hierarchical manner from an upper-level ontology to a domain-specific ontology. The upper-level ontology
captures features in each type of basic contextual entities such as Person, Device, and Location, while
domain-specific ontologies are a collection of ontologies that define the features of a sub-domain, such as
smart homes or smart health care. The upper-level and domain-specific ontologies map to the domain and
application ontologies in Figure 1 respectively.

Beyond semantic enrichment at a conceptual level, ontology can also serve as an effective basis for the
development of knowledge-centric software, for example agent frameworks and middleware for context-aware
systems [5, 28, 29]. Gaia is an infrastructure for smart spaces, which aims to bring the functionality of an
operating system to physical spaces [30]. The Gaia ontologies work as a system specification by providing a
standard taxonomy to describe different kinds of entities including applications, services, devices, users, and
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data sources. The ontologies are mainly used for service discovery, matchmaking, interoperability between
entities, and interaction between human users and computers [30].

Chen et al. [5] propose a layered conceptual architecture for semantic smart homes. The novelty of this
architecture is that there exists a Semantic layer and an Intelligent Service layer between the Data and
Application layers. The Semantic layer achieves data interoperability and machine understandability by
using ontologies to provide a homogeneous view over heterogeneous data, while the Intelligent Service layer
delivers the capability of interoperability and high level automation by exploiting semantics and descriptive
knowledge in the ontologies.

Latfi et al [28] also propose an ontology-based model of the Telehealth Smart Home. It aims to provide
assistance to a patient by preventing any potentially dangerous situation that could endanger his life.
The ontologies are partitioned into seven sub-domains, including the Habitat ontology that describes the
structure of the housing facility; the PersonAndMedical ontology for representing patients’ medical history
and caregivers’ caring duties; the Equipment ontology, which describes the equipment setup in the house;
the Software application ontology for the modules of the system; the Task ontology, which describes the
tasks that the patient, the operation actor, and the system aims to achieve; the Behaviour ontology, which
captures patients’ life habits and critical physiological parameters; and the Decision ontology, which describes
behaviours when a critical situation or a change of habits is detected. These ontologies serve not only as a
conceptual model to represent domain concepts, but they also provide an effective basis for the development,
configuration, and execution of software applications.

In summary, most of the above ontologies follow the philosophical nature of ontology; that is, defining
a commonly agreed vocabulary for representing data and knowledge structure; i.e., domain concepts, at-
tributes, and relations between them. The vocabulary makes data understandable, sharable, and reusable
by both humans and machines. For such ontologies, we provide a complete methodology to help developers
analyse and capture common semantics in any type of information, from low-level elementary information to
high-level activity descriptions. This model enables reasoning on the underlying correlation across the levels
of information, automatically deriving higher level concepts and inferring their relationships. The resultant
knowledge can facilitate system-level tasks such as checking the consistency of a system, and also aid the
process of application design.

3. Concept model

This section introduces a formal concept model, where we employ a generic approach to analyse and
structure an information space. This model forms a basis for reasoning about the common semantics of
context predicates and activities.

3.1. Dimensions of information

An information space can be divided into multiple dimensions, each dimension with its own structural and
relational characteristics, distinguishable from other dimensions of information. For example, one dimension
is Location, which can be represented as a coordinate consisting of three numerical values with a given unit
of length measurement or as a descriptive term, such as livingRoom, which indicates a symbolic place in a
house. Time is another information dimension; its information can be represented as an instant, interval, or
a term with associated temporal semantics, such as Monday or evening. Other dimensions of information
include Distance, Speed, Acceleration, Temperature, Humidity, Person, and HeartRate.

3.2. Abstraction of information

Each dimension of information contains a set of irreducible ground values; that is, the smallest values
perceivable. In one dimension, ground values are disjoint and exhaustive so as to cover the whole information
space of the dimension. Depending on the dimension, a ground value set may be finite or infinite, continuous
or discrete. A dimension may have multiple sets of ground values, each characterised by a measurement
system. Throughout the rest of this paper we assume the existence of a principal measurement system for
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Figure 2: Relationships between abstract values in one dimension of information. Note: each circle represents a set of ground
values that an abstract value maps to.

the ground value set in each dimension of an information space, to which we can convert ground value sets
expressed using other measurement systems.

For example, we can compose the ground value set of the Location dimension using GPS coordinate points
that cover an environment, where no two coordinates are the same. This set is infinite and continuous, and
we can convert coordinate points expressed using other coordinate systems (e.g., a user-defined Cartesian
coordinate system) to this principal measurement system [31]. Temperature ground values can be any
numerical value expressed in, say, Kelvin, Celsius or Fahrenheit, which are also infinite and continuous.
Another dimension example is Boolean state, whose ground value set of true and false is finite and
discrete.

Each information dimension can have a set of abstract values, which are usually human-friendly or
application-interesting concepts. For example in the Location dimension, an abstract value may be the
symbolic location livingRoom, which maps to a set of coordinate points bound to the living room of a
house. In the Temperature dimension, an abstract value of hot may indicate an individual’s perception
of the temperature through a mapping to a range of ground values expressed in Celsius. Similarly, we
may define the abstract values for the Acceleration dimension as fast or slow, each mapped to a range of
ground values appropriate to the application at hand. We give a formal definition of an abstract value set
in Definition 1.

Definition 1.
1 Let V g be a ground value set of one dimension of information. A set of abstract values V a

is defined via a mapping function µ : V a → P(V g), where P(V g) is the power set of V g.

3.3. Semantics of information

Figure 2 describes the core semantics of abstract values that are common to all information dimensions –
equal to, finer-grained, conflicting and overlapping – using a set-theoretic approach. Definition 2 defines how
these are evaluated from the mapping functions of abstract values. We base the definition of more complex
semantics on these elementary semantics; for example we may define a strictly finer-grained relationship to
represent one abstract value that is finer-grained than but not equal to another.

Definition 2. Given two abstract values in one dimension of information: vai , v
a
j ∈ V a,

• vai is finer-grained than vaj , denoted as vai � vaj , iff µ(vai ) ⊆ µ(vaj ). Particularly, vai is equal to vaj ,

denoted as vai =c v
a
j , iff µ(vai ) = µ(vaj );

• vai conflicts with vaj , denoted as vai ∦ vaj , iff µ(vai ) ∩ µ(vaj ) = ∅;

• vai overlaps with vaj , denoted as vai �� vaj , iff µ(vai ) ∩ µ(vaj ) �= ∅, µ(vai ) � µ(vaj ), and µ(vaj ) � µ(vai ).

1The rest of the paper follows the same symbolism and terminology used in this definition.
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Figure 3: Context examples in different domain concepts

The interpretation and evaluation of these semantics varies with the dimension of information under
consideration. For example, we interpret relationships in the Location dimension as spatial relationships
between symbolic locations, which we evaluate by projecting their coordinate sets onto a coordinate system
and comparing them [32]. Figure 3 (a) illustrates that: (1) the abstract value of house contains another three
abstract values livingRoom, diningRoom, and bedroom (granularity); (2) livingRoom and diningRoom are
disjoint from bedroom (conflicting); and (3) livingRoom and diningRoom share a common location foyer
(overlapping).

With Time, we define temporal terms using a range of time instances, and infer relations between two
temporal terms by projecting their ranges on the time axis. As shown in Figure 3 (b), morning, afternoon
and evening conflict with each other, while the three share an overlapping time period with Friday, defined
as FridayMorning, FridayAfternoon, and FridayEvening. Similarly with Temperature, we define each
term using by a degree range in Celsius, and evaluate their relations by comparing these ranges. In Figure 3
(c), hot conflicts with cold if their degree ranges are exclusive, while warm is finer-grained than hot if its
degree range is contained within that of hot. The ground value set of Boolean information consists of true
and false. All of its abstract values map to one member of this pair, but may take different names in
different contexts, such as on or off as shown in Figure 3 (d). Boolean values are either equal or conflicting.

Through explicit mappings to ground values, Definition 2 provides an approach through which we com-
pare terms or concepts defined in different ontologies in a quantifiably measurable way. This forms a basis
for mapping, communicating, and sharing ontologies across different smart environments.

The above examples demonstrate how we use Definitions 1 and 2 to “compute” the common semantics of
information. We use these semantics directly as a medium with which to model expert knowledge about one
information dimension in a certain domain; for example, a space map, or knowledge about the relationships
between a person’s different social circles (e.g., an overlap between friends and colleagues).

3.4. Meta-properties

As shown in the previous section, our concept model provides a uniform way to model knowledge with
the same inherent semantics in any domain. We use these semantics in this Section to develop a generic
reasoning approach, uncovering the implicit knowledge in any single dimension. The meta-properties of the
four relationships in Definition 2 support this process.

Lemma 3. An equal relationship is reflexive, transitive, and symmetric.

Lemma 4. A finer-grained relationship is reflexive, transitive, and antisymmetric.

Lemma 5. Conflicting and overlapping relationships are symmetric.

Lemmas 3-5 provide the meta-properties of the four relationships, which describe how we derive rela-
tionships between concepts in a model that are not explicitly stated. There are also generic properties
relating to the structure of these relationships that make it possible to derive further knowledge. That is,
if two abstract values conflict, then any of their finer-grained abstract values also conflict with each other
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(Lemma 6); also, if one abstract value is finer-grained than another two abstract values, neither of which are
finer-grained than the other, then the latter two values overlap (Lemma 7). The finer-grained, conflicting,
and overlapping relationships form an exhaustive and mutually exclusive set of relationships between any
two concepts; that is, any two concepts must have one and only one of these three relationships (Lemma 8).
For example, if two concepts are neither finer-grained than each other nor overlapping with each other, then
they conflict with each other.

Lemma 6. ∀vai , vaj ∈ V a, if vai ∦ vaj , then ∀vai� � vai and ∀vaj� � vaj , v
a
i� ∦ vaj� .

Proof. By Definition 2,
vai ∦ vaj ⇒ µ(vai ) ∩ µ(vaj ) = ∅ (1),
vai� � vai ⇒ µ(vai�) ⊆ µ(vai ) (2),
vaj� � vaj ⇒ µ(vaj�) ⊆ µ(vaj ) (3),
From (1), (2), and (3) ⇒ µ(vai�) ∩ µ(vaj�) = ∅, by Definition 2 ⇒ vai� ∦ vaj� .

Lemma 7. Given vai , v
a
j , v

a
k ∈ V a, if µ(vak) �= ∅, vak � vai , v

a
k � vaj , v

a
i � vaj , and vaj � vai , then vai �� vaj .

Proof. By Definition 2,
vak � vai ⇒ µ(vak) ⊆ µ(vai ) (1),
vak � vaj ⇒ µ(vak) ⊆ µ(vaj ) (2),
From (1) and (2) ⇒ µ(vak) ⊆ µ(vai ) ∩ µ(vaj ) (3).
From (3) and µ(vak) �= ∅ ⇒ µ(vai ) ∩ µ(vaj ) �= ∅ (4).
vai � vaj ⇒ µ(vai ) � µ(vaj ) (5),
vaj � vai ⇒ µ(vaj ) � µ(vai ) (6),
From (4), (5), and (6), by Definition 2 ⇒ vai �� vaj .

Lemma 8. Given vai , v
a
j ∈ V a,

(1) if ¬(vai �� vaj ), v
a
j � vai , and vai � vaj , then vai ∦ vaj ;

(2) if ¬(vai ∦ vaj ), v
a
j � vai , and vai � vaj , then vai �� vaj ;

(3) if ¬(vai �� vaj ), ¬(vai ∦ vaj ), and vaj � vai , then vai � vaj ;

(4) if ¬(vai �� vaj ), ¬(vai ∦ vaj ), and vai � vaj , then vaj � vai .

The above lemmas provide a theoretical foundation for generic reasoning. This keeps developers from
laborious coding of domain knowledge. We need only define mapping functions, or specify the set of primary
relationships. We apply the generic reasoning schema uniformly to the whole information space to derive
more knowledge about the relationships between concepts. Figure 4 demonstrates how we use the above
lemmas to infer additional knowledge from that which is pre-specified. Without defining a mapping function
on the coordinates of the house in Figure 3, developers define the relationships on the left-hand side of
Figure 4; that is, the immediately spatial containment relationships between the locations. Lemmas 3-8
are then used to automatically infer new knowledge that has not been explicitly defined, as shown on the
right-hand side of Figure 4.

It is worth noting at this point that the above meta-properties are uniformly applied at all levels of the
model allowing us to explore the knowledge about context predicates and activities as well. We will return
to this later.

4. Context model

We use the similar definitions proposed by Yao et al. [33] and Loke [34] to define context as “any
information acquired from a system or an environment”. Developers or users can profile context, or acquire
it from physical or virtual sensors [35]. A piece of context asserts a state of reality, which we model as a
relation between two abstract values, each belonging to a dimension of information [36]. Figure 5 shows
examples of relations between abstract values in different dimensions of information. We define two relations
on Object and Location: locatedIn, which links objects to the symbolic location that contains them, and
contains, which is the inverse of this relationship. Also shown are relations on the Person dimension and
other dimensions via the relations hasBloodPressure, hasHeartRate, and accesses.
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Specified Relationships

1. livingRoom ! house

2. diningRoom ! house

3. foyer ! livingRoom

4. foyer ! diningRoom

5. kitchen ! house

6. hallway ! house

7. powderRoom ! house 

8. office ! house

9. bedroom ! house

10.bathroom ! bedroom

Inferred Relationships

11. foyer ! house    (from 1 and 3, by Lemma 4)

12. bathroom ! house (from 9 and 10, by Lemma 4)

13. livingRoom " diningRoom  (from 3 and 4, by Lemma 7)

14. diningRoom " livingRoom  (from 13, by Lemma 5)

15. livingRoom # kitchen (from 1-14, by Lemma 8.(1))

16. livingRoom # hallway (from 1-14, by Lemma 8.(1))

17. livingRoom # powderRoom (from 1-14, by Lemma 8.(1))

18. livingRoom # office (from 1-14, by Lemma 8.(1))

19. livingRoom # bedroom (from 1-14, by Lemma 8.(1))

20. livingRoom # bathroom (from 10 and 19, by Lemma 6)

21. foyer # bathroom (from 3 and 19, by Lemma 6)

......

Figure 4: An example to demonstrate the inference of new knowledge
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Figure 5: An example of relations between dimensions of information
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4.1. Context predicate

A context predicate encapsulates two abstract values engaging in a relation, which corresponds to a prod-
uct space these two values form in an information space. We represent this as a triple �s, p, o�, where the
subject s and object o are abstract values in two dimensions; for example, �{Bob}, locatedIn, livingRoom�.
A pair of abstract values validate a context predicate when they fall into its corresponding product space.
For example, the pair ({Bob}, foyer) validates the context predicate �{Bob}, locatedIn, livingRoom� ac-
cording to their spatial relationships in Figure 3 (a). A context predicate can also incorporate variables;
for example �?b, locatedIn, ?l�, where b and l indicate any abstract value from the Object and Location
dimensions. Any pair of abstract values in Object and Location that are related by the locatedIn rela-
tionship validates such a predicate. Context, also called an instantiated context predicate, is a validated
context predicate with a timestamp, which represents a state of reality, denoted as ��s, p, o�, t�. For example,
we represent that Bob is in the bedroom during a specific time period as ��{Bob}, locatedIn, bedroom�,
[2006-08-23T23:48:43Z, 2006-08-23T23:48:45Z]�. We provide a formal definition of a context predicate
as follows.

Definition 9. Let p be a relation: Sa ×Oa, where Sa and Oa are abstract value sets from two dimensions

of information.

• We define a context predicate as �s, p, o� → {0, 1}, where s ∈ Sa and o ∈ Oa.

• A pair of values (s�, o�) validate a context predicate �s, p, o�, where s� ∈ Sa and o� ∈ Oa, iff s� � s and

o� � o.

• An instantiated context predicate is a valid context predicate with a timestamp, denoted as ��s, p, o�, t�,
where t is either a time instant or interval.

4.2. Relationships between context predicates

We use the relations that has been defined within the information dimensions to study semantics be-
tween context predicates. Intuitively, when the user Bob is in the living room, we consider that (1) he is
also in the house (�{Bob}, locatedIn, livingRoom� is finer-grained than �{Bob}, locatedIn, house�);
(2) he cannot be in the bedroom (�{Bob}, locatedIn, livingRoom� conflicts with �{Bob}, locatedIn,
bedroom�); and (3) he may also be in the dining room (�{Bob}, locatedIn, livingRoom� overlaps with
�{Bob}, locatedIn, diningRoom�). We formally define these relationships in Definition 10.

Definition 10. Given two context predicates �si, p, oi� and �sj , p, oj� that share the same relation p: Sa×Oa,

• �si, p, oi� is finer-grained than �sj , p, oj�, denoted as �si, p, oi� � �sj , p, oj�, iff ∀(s, o) ∈ Sa ×Oa, (s, o)
validates �si, p, oi� implies that �sj , p, oj� is also validated;

• �si, p, oi� conflicts with �sj , p, oj�, denoted as �si, p, oi� ∦ �sj , p, oj�, iff � ∃(s, o) ∈ Sa×Oa, (s, o) validates
both �si, p, oi� and �sj , p, oj�;

• �si, p, oi� overlaps with �sj , p, oj�, denoted as �si, p, oi� �� �sj , p, oj�, iff ∃(s, o), (s�, o�), (s��, o��) ∈ Sa ×
Oa, (s, o) validates both �si, p, oi� and �sj , p, oj�, (s�, o�) validates �si, p, oi� but not �sj , p, oj�, and

(s��, o��) validates �sj , p, oj� but not �si, p, oi�.

As we define a context predicate on dimensions of an information space, we can infer the above relation-
ships based on the relationships in their corresponding dimensions of information, as we show in Lemma 11.

Lemma 11. Given two context predicates �si, p, oi� and �sj , p, oj�, where si, sj ∈ Sa and oi, oj ∈ Oa,

• �si, p, oi� � �sj , p, oj�, if si � sj and oi � oj;

• �si, p, oi� ∦ �sj , p, oj�, if si =c sj and oi ∦ oj, or oi =c oj and si ∦ sj;

• �si, p, oi� �� �sj , p, oj�, if si =c sj and oi �� oj, or oi =c oj and si �� sj, or both.

9



Proof. By Definition 9, ∀(s, o) ∈ Sa ×Oa, if (s, o) validates �si, p, oi�, then s � si (1) and o � oi (2).
Finer-granularity. If si � sj and oi � oj , from (1) and (2) by Lemma 4, we get s � sj and o � oj . By
Definition 9, �sj , p, oj� is validated by (s, o). By Definition 10, �si, p, oi� � �sj , p, oj�.
Conflict. If si =c sj and oi ∦ oj , from (2) by Lemma 6, we get o ∦ oj . Given si =c sj , (si, o) cannot validate
�sj , p, oj�, so any pair of value that validates �si, p, oi� cannot validate �sj , p, oj�. By Defintion 10, �si, p, oi�
∦ �sj , p, oj�. In the same way we can prove that when oi =c oj and si ∦ sj , these two context predicates also
conflict.
Overlap. Given that si =c sj and oi �� oj , there exists an abstract value ol ∈ Oa such that µ(ol) =
µ(oi) ∩ µ(oj) �= ∅, so ol � oi and ol � oj . So (si, ol) validates both �si, p, oi� and �sj , p, oj� by Definition 9.
Also by Definition 2, oi �� oj implies that there exists om and on ∈ Oa such that µ(om) = µ(oi) \ µ(oj) �= ∅
and µ(on) = µ(oj) \ µ(oi) �= ∅, where \ is the set minus operator. ∀om� � om, (si, om�) validates �si, p, oi�
but not �sj , p, oj�. Similarly, ∀on� � on, (sj , on�) validates �sj , p, oj� but not �si, p, oi�. By Definition 10,
�si, p, oi� �� �sj , p, oj�. In the same way, we can prove that when oi =c oj and si �� sj , they overlap.

4.3. Applications of relationships between context predicates

We use Lemma 11 to uncover knowledge about the relations between context predicates from the relations
between the abstract values in each information dimension. In Figure 6, we specify finer-grained relationships
in the Person and Location dimensions: (1) Bob is one of houseOccupants and (2) livingRoom is spatially
contained by house. Using Lemma 11, we can derive well-structured but implicit relationships between the
four possible context predicates formed by these abstract values, as shown on the right-hand side of Figure 6.

{Bob}

houseOccup

ants house

livingRoom

<{Bob}, locatedIn, 

livingRoom>

<houseOccupants, 

locatedIn, 

livingRoom> 

<{Bob}, 

locatedIn, 

house>

<houseOccupants, 

locatedIn, house> 

Relationships between 

dimensions of information Relationships between context predicates

Figure 6: An example of inferring relations between context predicates from those between their involved abstract values

The derived knowledge aids developers in defining application actions using more general concepts.
For example in a house emergency application a “calling ambulance” action may trigger if sensors detect
an occupant in the house �houseOccupants, locatedIn, house� when a fire is detected. Our approach
ensures that the assertion of any finer-grained context predicate will validate this more-general predicate
(see Figure 6), leading to the execution of the corresponding action.

The relations between context predicates are also useful in detecting inconsistency between context. In-
consistency between context is a well-known issue in activity recognition research; that is, when two pieces
of context report two conflicting states at the same time. For example, ��{Bob}, locatedIn, bedroom�,
[2006-08-23T23:48:43Z, 2006-08-23T23:48:45Z]� is inconsistent with ��{Bob}, locatedIn, foyer� ,
[2006-08-23T23:48:44Z, 2006-08-23T23:48:46Z]�. Our model supports a generic way to write an in-
consistency detection rule that we may apply uniformly to any context; i.e., given two pieces of context,
if their context predicates conflict while their temporal values do not then these two pieces of context are
inconsistent:
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Let ��si, p, oi�, ti� and ��sj , p, oj�, tj� be two instantiated context predicates that share the same relation p.

They are called inconsistent if ¬(ti ∦ tj) and �si, p, oi� ∦ �sj , p, oj�.

Whatever the root cause of inconsistency, be it sensor failure or some other problem such as a break-in
accident, inconsistency detection provides useful information that can aid the smooth running of systems
and applications. Beyond detecting inconsistency, we can base quantification of the uncertainty in context
on their underlying semantics with ground values, and use an uncertainty resolving technique, such as Fuzzy
Logic, to integrate the inconsistent context [36].

5. Activity model

Activities, or situations, are a higher-level concept that represents states of affair that are interesting to
applications [37]. Here, we consider activities as a term that indicates a user behaviour or a state relevant to
the user, such as “watching TV”, “using a computer”, or “making coffee”. We define activities on a logical
description of context predicates. When the information in the environment satisfies an activity description,
we assume the user is engaging in that activity. In the following section, we explore the semantics of activities
based on the semantics of the context predicates that define them.

5.1. Ground activities

To begin, we analyse activities as another dimension of information using the same set-theoretic approach
adopted above. As with other dimensions, there exists a ground value set for the Activity dimension, which
is a collection of activity terms that experts or developers define. This ground value set is not physically
measurable as those in other dimensions are. Additionally, what one perspective considers as a ground
activity, another may not [23]. For example, one perspective may view “making coffee” as a ground activity,
while from another we may break down this activity into finer-grained activities such as “boiling water”,
“retrieving coffee”, and “retrieving cups”. A general principle to define a ground activity set is that they
should be the finest granularity of activities identifiable by available sensor information.

We relate each ground activity to a collection of context predicates using a derivation rule. For example,
Roy et al. [27] define a “watching TV” activity as follows:

�?user, locatedIn, livingRoom� ∧ �TVSet, locatedIn, livingRoom� ∧
�TVSet, isTurnedOn, true�⇒ �?user, engagesIn, {“watching TV”}�

We can infer knowledge about the relationships between activities from their context predicates. Intu-
itively, if an activity is finer-grained than another activity, then when we consider a user to engage in the
former activity then he is also engaging in the latter activity. If two activities conflict with each other, then a
user cannot engage in both at the same time, like “lying down” and “making coffee”. If two activities overlap
then the user can engage in both at the same time, for example “watching TV” and “using a computer”.

Definition 12. We define a ground activity on le, where le is a logical expression that takes a collection

of context predicates as input and applies logical operators on them. Given two ground activities v
g
i and v

g
j

defined on lei and lej respectively,

• v
g
i is finer-granularity than v

g
j , denoted as v

g
i � v

g
j , iff lei � lej, where � is the logical entailment;

• v
g
i conflicts with v

g
j , denoted as v

g
i ∦ v

g
j , iff lei ∧ lej = FALSE;

• v
g
i overlaps with v

g
j , denoted as v

g
i �� v

g
j , iff lei � lej, lej � lei, and there exists a logical expression le�

such that le� �= FALSE, le� � lei, and le� � lej.
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With the relationships between context predicates and the above definition, we can infer the relationships
between ground activities. However, we note that the complexity of comparing logical expressions compu-
tationally varies with different systems. For example, the type of logical operators supported in different
reasoning engines will have a major effect on their evaluation, possibly requiring customised software to
perform this task.

5.2. Abstract activities

Compared with other dimensions of information, activities are higher-level concepts with richer semantics,
consisting of generalisation and composition relations. Correspondingly, we propose two ways to define
abstract activities. A generalised activity means that we consider any of its ground activities as a type of

it [38]. For example, if we define a generalised activity “working” on the set of activities {“doing paperwork”,
“using a desktop”, “reading”}, then any of these activities is a type of the “working” activity. A derivation
rule of a generalised activity is a disjunction of the logical descriptions of all its corresponding ground
activities.

A composite activity contains all of its ground activities [35]. For example, if we define an “actively
watching TV while drinking” activity on {“actively watching TV”, “drinking”} [39], then these activities
form part of the composite activity, but only when we recognise all do we recognise the composite activity.
Accordingly, a derivation rule of a composite activity is a conjunction of the logical descriptions of all its
corresponding ground activities.

Generalised and composite activities provide two ways for developers to flexibly define new higher-
level activities. Defining a derivation rule for an activity can be challenging, involving significant knowledge
engineering effort [40], or needing a large number of training data for machine learning techniques to generate
rules [39]. We provide a methodology to allow developers to structurally analyse relationships from the finest-
grained activities, and to generate other activities using different semantics to meet requirements of different
applications.

We can infer relationships in generalised and composite activities from their corresponding ground ac-
tivities. Take an example using generalised activities. If we define a generalised activity “information or
leisure” on {“watching TV”, “reading”, “listening to music”, “using a computer”}, this “information or
leisure” activity overlaps with the above “working” activity if the ground activity “using a desktop” is finer-
grained than the ground activity “using a computer”. That is, when the user is using his desktop, he may
be working or entertaining. The following lemmas present how to infer relationships between generalised
and composite activities. We list their proofs in Appendix A and Appendix B.

Lemma 13. Let V a and V g be a generalised abstract and ground activity set and µ : V a → P(V g) be the

mapping function. Given any two generalised activities vai and vaj ∈ V a,

• vai � vaj , if ∀ v
g
k ∈ µ(vai ) and ∃ v

g
l ∈ µ(vaj ), v

g
k � v

g
l ;

• vai ∦ vaj , if ∀ v
g
k ∈ µ(vai ) and ∀ v

g
l ∈ µ(vaj ), v

g
k ∦ v

g
l ;

• vai �� vaj , if ∃ v
g
k ∈ µ(vai ) and ∃ v

g
l ∈ µ(vaj ), (1) v

g
k �� v

g
l ; or (2) v

g
k � v

g
l or v

g
l � v

g
k, with the following

condition ∃ v
g
k�( �= v

g
k) ∈ µ(vai ), ∀ v

g
l� ∈ µ(vaj ), v

g
k� � v

g
l� , and ∃ v

g
l�( �= v

g
l ) ∈ µ(vaj ), ∀ v

g
k� ∈ µ(vai ), v

g
l� �

v
g
k� .

Lemma 14. Let V a and V g be a composite abstract and ground activity set and µ : V a → P(V g) be the

mapping function. Given any two composite activities vai and vaj ∈ V a,

• vai � vaj , if ∀ v
g
k ∈ µ(vaj ), ∃ v

g
l ∈ µ(vai ) such that v

g
l � v

g
k;

• vai ∦ vaj , if ∃ v
g
k ∈ µ(vai ) and ∃ v

g
l ∈ µ(vaj ), v

g
k ∦ v

g
l .

• vai �� vaj , if (1) ∀vgk ∈ µ(vai ) and ∀vgl ∈ µ(vaj ), ¬(v
g
k ∦ v

g
l ), and (2) ∃vgk� ∈ µ(vai ) and ∃vgl� ∈ µ(vaj ),

v
g
k� �� v

g
l� or v

g
k� � v

g
l� or v

g
l� � v

g
k� , and (3) ∃vgk��( �= v

g
k�) ∈ µ(vai ) and ∃vgl��( �= v

g
l�) ∈ µ(vaj ), v

g
k�� � v

g
l�� and

v
g
l�� � v

g
k�� .
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5.3. Applications of semantics in activities

Exploration of the semantics between ground activities can help developers to improve their derivation
rules. For example, if we independently define two similar activities, such as “eating” and “drinking”,
there is a chance that imprecision in one or the other of their derivation rules may result in the inference
that “drinking” is finer-grained than “eating”. If an application requires that it be possible to distinguish
between these two activities, then the inferred finer-grained relationship between them serves as a prompting
for developers to provide more precise rules.

We can also use the semantics to check the consistency of relationships between activities. If developers
understand the activities well; that is, which cannot co-occur, then they can use their expert knowledge
to check the conflicting and overlapping relationships that a reasoner infers. We detect inconsistency (1)
if the reasoner infers any two activities that the developer knows cannot co-occur as overlapping or if the
model declares one as finer-grained than the other; and (2) if the reasoner infers any two activities that
the developer knows can co-occur as being in conflict. In either of these cases, the developer can check and
update the activity derivation rules to resolve the inconsistency.

A structured activity hierarchy can also augment the knowledge produced by other techniques; for ex-
ample, machine learning algorithms. When the reasoner infers that a user is engaging in one activity, we can
use the activity hierarchy to tell (1) which additional activities the user is engaging in (from the granularity
relationship); (2) which activities the user cannot be engaging in (from the conflicting relationship) [21];
and (3) which activities the user may also be engaging in (from the overlapping relationship). These rich
inferences about activities can act as a guideline for application design. Developers should not define appli-
cations that negate the effect of each other on non-conflicting activities. An activity automatically inherits
any applications that developers specify against its coarser-grained activities.

call 

ambulance

call fire 

brigade

accident on house
accident on 

occupant

call police

{"fire accident"}

{"fire accident with 

occupant"}

{"break in"}
{"heart attack"}

accident
call 

emergency 

contact

generalised 
activities

ground 
activities

Hierarchy of Activities

Applications

Figure 7: An example of defining applications on a hierarchy of activities

Take the example in Figure 7 that launches phone calling actions to different situations in a smart home.
On the left-hand side is a hierarchy of activities, where ground activities include “break in”, “fire accident”,
“fire accident with occupant”, and “heart attack”. Among them, “fire accident with occupant” is finer-
grained than “fire accident”. Generalised activities include “accident on house”, “accident on occupant”,
and “accident”. On the right-hand side are a set of phone calling actions defined on the occurrence of an
activity:

• when any accident occurs, call the house occupants’ emergency contact;
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• when any accident occurs involving an occupant, call the ambulance service;

• when any fire occurs, call the fire brigade;

• when a break in occurs, call the police.

As we show in Figure 7, when there is a fire accident with a house occupant, then we also recognise all
its coarser-grained activities. Thus we launch the applications specified on each, including calling the fire
brigade (from “fire accident”), the ambulance (from “accident on occupant”), and the emergency contact
(from “accident”). The hierarchy of activities can help developers to design applications in a more concise
and accurate way, compared to the way that developers currently assign actions to individual non-related
situations or activities.

6. Implementation and demonstration

This section demonstrates the application of the top-level ontology model to a real-world smart home
scenario. It describes an implementation of the ontology model through a set of rules and software com-
ponents that operate over it. We use OWL DL to describe the model as it provides a distributed formal
model with advantages over alternative modelling approaches [16]. As a description logic, OWL DL also
lends itself to the application of reasoning. We implement the model using the Named Graphs for Jena
(NG4J) software library2. The NG4J extension to Jena supports modelling named graphs, which, as we will
discuss, allows us to easily model relations between context predicates. These are not the only formalisms
and tools applicable, and the reader may implement our model using other formalisms and software of
their choice. The interested reader can download the ontologies and rules we describe in this section from
http://ontonym.org.

6.1. Real-world smart home – PlaceLab

The PlaceLab smart home environment [3], developed by MIT and the TIAX company, is a residential
“living laboratory” where it is possible to test and evaluate new technologies and design concepts in the
context of everyday living. As part of the project, researchers released a data set (known as PLCouple1 3)
that captures the interactions of a married couple over two weeks’ residence. The data covers a broad range
of commonly used smart home sensors and consequently we choose the PlaceLab to demonstrate the use of
our ontology.
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bathroom
powder 

room

foyer hallway

Figure 8: The space layout of the PlaceLab

The PlaceLab consists of a living room, a dining room, a kitchen, an office, a bedroom, a bathroom,
and a powder room, as shown in Figure 8. The PlaceLab is instrumented with over nine hundred sensors,

2Named Graphs for Jena: http://www4.wiwiss.fu-berlin.de/bizer/ng4j/, while the rules operate using the general pur-
pose rule engine feature of the Jena software. Ontologies in this section are represented in TriG, a syntax to serialise named
graphs: http://www4.wiwiss.fu-berlin.de/bizer/TriG/.

3The PLCouple1 data set can be downloaded from http://web.media.mit.edu/~intille/data/PLCouple1/.
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(a) Class structure of the domain 

concept ontology
(b) Object properties of the domain concept ontology

Figure 9: The concept ontology

including: infra-red sensors to detect motion in different rooms, object motion sensors to detect access and
movement of everyday articles such as the television remote control, sensors to monitor the usage of electrical
current, water and gas, RFID sensors, and switch sensors that sense the open and closed states of doors. It
requires a considerable amount of knowledge engineering effort to describe each aspect of information sensed
by these sensors, and is additionally challenging to define relations between these aspects of information.

We now show that with the help of generic rules our ontology model allows developers to specify a smaller
percentage of the knowledge, deriving the remainder automatically. We also demonstrate how we use the
common semantics in contexts to define a generic approach to detect inconsistency between inherently
imperfect sensor data.

The PlaceLab is equipped with an audio-visual recording infrastructure that records the activities of
the participants living in the PlaceLab during the data collection period. The monitored activities include
actively watching TV or movies, doing paperwork, using a computer, reading, preparing a meal, drinking,
and hygiene. The participants can perform multiple activities simultaneously; e.g., having a drink while
watching TV. We demonstrate how to compose these ground activities into generalised and composite
abstract activities and derive the semantic relationships between them. We also show how these relationships
facilitate the design of applications.

6.2. Concept ontology

We define a class, Concept, as a superclass of all the dimensions of information, including Location,
Humidity, BooleanState, and Temperature. Figure 9 shows the screenshots of the concept ontology in
Protégé [41]. Four predicates describe the common semantic relations between any two abstract values in
one dimension: equals, finerGrainedThan, conflictsWith, and overlapsWith. The basic meta-properties
of these relationships as we describe in Lemma 3-5 are part of the OWL specification, and we specify these
as characteristics of the corresponding object properties, as we show in Figure 9 (b). We implement the
more complex properties in Lemma 6-8 as rules in Listing 1.

Each concrete dimension of information has its own structure and relationships. In order to exploit
the common semantic relationships we implement above, the application developer can either associate
the generic relationships with the relationships specific to each dimension or provide a mapping from the
concrete dimension of information to the generic form. Listing 2 shows an example of defining the generic
relationships from the spatial relationships between location concepts.

Listing 3 gives an example of defining an abstract temperature value hot. The naming and definition
of concepts can vary with different environments, users, and applications, without risk of conflict as we
identify each by a URI. We define the abstract value on a set of ground values on the Celsius scale, using the
temp:lowerBound and temp:upperBound properties to state the lower and upper bounds of each respectively.
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Listing 1 Generic rules implemented for Lemmas 6-8.(1)
# Lemma 6:

[conflictInheritance: (?a concept:conflictsWith ?b), (?c concept:finerGrainedThan ?a),

(?d concept:finerGrainedThan ?b) -> (?c concept:conflictsWith ?d)]

# Lemma 7:

[sharedGranularityImpliesOverlap: (?a concept:finerGrainedThan ?b),

(?a concept:finerGrainedThan ?c), noValue(?b concept:finerGrainedThan ?c),

noValue(?c concept:finerGrainedThan?b) -> (?b concept:overlapsWith ?c)]

# Lemma 8.(1):

[onlyConflict: (?a concept:conflictsWith ?b) <- (?a rdf:type ?ta), (?b rdf:type ?tb),

equal(?ta, ?tb), noValue(?a concept:finerGrainedThan ?b),

noValue(?b concept:finerGrainedThan ?a), noValue(?a concept:overlapsWith ?b)]

Listing 2 Defining the generic relationships from the spatial relationships
# Granularity: if a location a contains another location b, then b is finer-grained than a.

[granularityLoc: (?a location:contains ?b) -> (?b concept:finerGrainedThan ?a)]

# conflicts: if a location a is disjoint with another location b, then a conflicts with b.

[conlfictLoc: (?a location:disjointWith ?b) -> (?a concept:conflictsWith ?b)]

Symbolic terms in other dimensions of information can be similarly defined, such as high, low, and off in the
usage of electrical current. Next, Listing 4 shows how to write a rule to map the containment relationship
between two temperature ranges to the finerGrainedThan relationship. Mappings of the other generic
relationships are similarly implemented. Once achieved, we may infer that warm is finer-grained than hot,
and that the concepts warm and hot both conflict with the concept of cold, as shown in Figure 3.

Listing 3 Defining concepts within the temperature domain
:hot a temp:SymbolicTemperature ;

temp:lowerBound

[ a muo:QualityValue ;

muo:numericalValue "20"^^xsd:integer ;

muo:measuredIn ucum:degree-Celsius

] ;

temp:upperBound

[ a muo:QualityValue ;

muo:numericalValue "50"^^xsd:integer ;

muo:measuredIn ucum:degree-Celsius

] .

In the above examples, we have demonstrated two principal methods to define common semantics in
individual dimensions of information, which link the top-level ontology with domain or application ontologies.
One of the advantages of defining the common semantic relationships between domain concepts is that we
can use generic rules to derive new knowledge; this reduces the knowledge engineering effort required of
developers. There typically exist O(n2) of these relationships among n concepts, given that any two concepts
can either be conflicting, overlapping, or at different levels of granularity. Using these rules, developers need
only to define the immediately finer-grained relationships between concepts in the model, that is O(n).
Take an example of encoding the PlaceLab map shown in Figure 8, which consists of 10 symbolic locations
(including the house itself). The left-hand side of Figure 4 lists the 10 immediately containment relationships
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Listing 4 Defining the temperature mapping rules
# Granularity: if the temperature range of a contains the temperature

# range of b then b is finer-grained than a.

[granularityTemp: (?a temp:lowerBound ?alb), (?alb muo:numericalValue ?alow),

(?a temp:upperBound ?aub), (?aub muo:numericalValue ?ahigh),

(?b temp:lowerBound ?blb), (?blb muo:numericalValue ?blow),

(?b temp:upperBound ?bub), (?bub muo:numericalValue ?bhigh),

le(?alow, ?blow), ge(?ahigh, ?bhigh) -> (?b concept:finerGrainedThan ?a)]

between two locations. A reasoner uses the rules to infer the remaining 78 relationships, some of which are
listed in the right-hand side of Figure 4.

Listing 5 Derive the conflicting relationship between accessible objects
[conflictWithobj_loc: (?a location:locatedIn ?al), (?b location:locatedIn ?bl),

(?al concept:conflictsWith ?bl) -> (?a concept:conflictsWith ?b)]

We also use common semantic relationships to derive new knowledge across dimensions of information.
For example, we can use the inferred relationships between the locations to further derive a conflicting
relationship between two static objects by assuming that they cannot be simultaneously accessed by the
same user if they are not co-located. This is achieved in one simple rule as defined in Listing 5. Using
this rule, we derive 32170 conflicting relationships between 605 objects that are extracted from the RFID
sensors and the object motion sensors in the PlaceLab sensor configuration file. These examples show that
the common semantics allow a generic way to specify domain knowledge, which can help to reduce the load
of knowledge engineering effort.

6.3. Context ontology

In Definition 9 we define a context predicate to be a triple consisting of a subject, a predicate, and an
object, where the subject and object are abstract values in two domains. For example,

:bob location:locatedIn :diningRoom .

We express the validation of context predicates, which we base on the occurrence of finer-grained context
predicates in the model (also Definition 9), using the rule in Listing 6. This rule allows us, for example, to
infer the statement

:bob location:locatedIn :house .

as :diningRoom is finer-grained than :house and by definition, :bob is finer-grained than :bob.

Listing 6 The rule for validating context predicates
# Validation rule: infers a context predicate based on the presence of finer

# grained context predicates in the model

[contextPredicateValidation: (?p rdf:type contextPredicate:RelationProperty),

(?a ?p ?b) (?a concept:finerGrainedThan ?y), (?b concept:finerGrainedThan ?z) -> (?y ?p ?z)]

Wemake use of named graphs to express the possible relations between context predicates (see Lemma 11)
in our model. A named graph is a collection of one or more context predicates, identified by a URI. Named
graphs provide a pointer to a statement or a set of statements, and we express a relation between two (or
more) statements as a relation between the graphs that contain them. For example if a named graph G1
contains context predicates C1 and C2, and a named graph G2 contains a context predicate C3, and we wish
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to express that both C1 and C2 conflict C3, we do this by writing G1 conflicting with G2. Context predicates
may belong to more than one graph if we need to describe multiple relationships. Listing 7 models that Bob
is reported in the bedroom and the bathroom (graph g:G1), this conflicts (graph g:G3) the context predicate
that describes Bob’s location as within the foyer (graph g:G2). We represent the other two relationships
between context predicates in the same way.

Listing 7 Expressing the conflicts between context predicates
g:G1 {

:bob location:locatedIn :bedroom .

:bob location:locatedIn :bathroom .

}

g:G2 {

:bob location:locatedIn :foyer .

}

g:G3 {

g:G1 contextPredicate:conflictsWith g:G2 .

}

Although it is straightforward to represent relations between context predicates, we are aware of no
reasoner for OWL models that supports named graphs. Therefore, as a work around, we extend the standard
Jena reasoner with a number of functions that allow us to work with relations between graphs. To illustrate,
consider the task of identifying when two pieces of context report conflicting states at the same time.
Following Listing 7, the graphs g:G4 and g:G5 in Listing 8 present an example where sensors report Bob
to be in the bathroom, bedroom, and foyer during the overlapping periods. To detect the inconsistency in
the model, we must compare not only the context predicates, but also their validity time. Listing 9 shows
the rule used to detect this form of inconsistency. Its implementation makes use of two external methods:
temporalConflict(...) takes the components of the two predicates we are interested in and compares
the timestamps associated with each statement, while if we detect a conflict, the conflictDetected(...)
method asserts a conflict between the graphs that contain the conflicting statements. The representation of
this model is similar to that in Listing 8.

To prove the concept, we take one day’s infra-red sensor data from the PlaceLab data set, which reports
possible motions in each room between 18:00:00 and 23:59:57 on 23rd August 2006. We assume that a user
cannot be in two conflicting rooms at the same time. Applying the above detection rule, we detect 178
inconsistent pairs out of 2316 pieces of sensor data4.

6.4. Activity ontology

As we specify how we compose ground activities from context predicates externally from the model, the
process of inferring the relationships between them is carried out by the custom software. The software
works by taking each pair of activities in turn and performing a pairwise comparison of all of their con-
stituent context predicates to discover the relations defined in Definition 12. For example, Listing 10 defines
derivation rules for the two ground activities “actively watching TV or movies” and “watching TV”.

The above definitions differ by a context predicate (?p location:locatedIn :livingRoom) and (?p
location:locatedIn :house). By inspection of the model we know that livingRoom is finer-grained than
house, thus we can infer that the latter context predicate entails the former and therefore by Definition 12.
By evaluating the other parts of logical expressions on these two activities and the semantics of the logical
connectives used in them, we can infer that the activity “actively watching TV or movies” is finer-grained
than “watching TV”. We express the resultant relation as part of the model:

:activelyWatchTV activity:finerGrainedThan :watchTV .

4In the PlaceLab data set the location sensors are not person-specific, therefore inconsistent pairs imply that either sensor
data is inaccurate or that the participants are in different rooms during these times.
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Listing 8 Time extension on context predicates
g:G4 {

:G1 temporal:validDuring

[a owltime:Interval ;

owltime: hasBeginning ;

[a owltime:Instant ;

owltime:inXSDDateTime "2006-08-23T23:48:43Z"] ;

owltime: hasEnd ;

[a owltime:Instant ;

owltime:inXSDDateTime "2006-08-23T23:48:45Z"] ;

}

g:G5 {

:G2 temporal:validDuring

[a owltime:Interval ;

owltime: hasBeginning ;

[a owltime:Instant ;

owltime:inXSDDateTime "2006-08-23T23:48:44Z"] ;

owltime: hasEnd ;

[a owltime:Instant ;

owltime:inXSDDateTime "2006-08-23T23:48:46Z"] ;

}

g:G6 {

:G4 context:conflictsWith :G5 .

}

Listing 9 A portion of the rule to detect conflicts between context predicates
[conflictDetectionOnObject: ... , (?a ?p ?b), (?a ?p ?c),

(?b concept:conflictsWith ?c), temporalConflict(?a, ?p, ?b, ?c)

-> conflictDetected(?a, ?p, ?b, ?c)]

Listing 10 Derivation rules for two “watching TV” ground activities
[activelyWatchTVRule: (?p location:locatedIn :livingRoom),

(tv eleObject:isTurnedOn true), (?p accObject:accesses :couchInLivingRoom)

-> (?p activity:engagesIn :activelyWatchTV)]

[watchTVRule: (?p location:locatedIn :house), (tv eleObject:isTurnedOn true),

-> (?p person:engagesIn :watchTV)]
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We can compose ground activities into high-level abstract activities. Listing 11 gives two examples that
define generalised and composite activities from ground activities. We use the properties generalisedFrom
and composedOf to represent the relationships between abstract activities discussed in Section 5. We use
another software add-on to analyse the relationships between activities using Lemmas 13 and 14 and add
the resulting relationships to the model. The implementation of these lemmas are straightforward, and
Algorithm 1 shows an example where we derive the finer-grained relationships from two generalised abstract
activities.

Listing 11 An exmaple of defining abstract activities from ground activities
:working activity:generalisedFrom :usingDesktop , :reading , :doingPaperWork .

:informationOrLeisure activity:generalisedFrom :watchingTV , :reading , :listeningToMusic ,

:usingComputer .

:activelyWatchingTVWhileDrinking activity:composedOf :activelyWatchTV , :drinking .

:bathingWhileDrinking activity:composedOf :bathing , :drinking .

Algorithm 1: The algorithm of deriving the finer-grained relationships on two generalised activities

input : Two abstract activities and their associated ground activities (vai , µ(v
a
i )), (v

a
j , µ(v

a
j ))

isF inerGrainedThan = true;
for vgk ∈ µ(vai ) do

foundAFinerGround = false;
for vgl ∈ µ(vaj ) do

if vgk.finerGrainedThan(vgl ) then
foundAFinerGround = true;
break;

if !foundAFinerGround then
isF inerGrainedThan = false;
break;

if isFinerGrainedThan then
vai .addF inerGrainedActivity(vaj );

Using the implemented lemmas, we can infer the relationships between the abstract activities in Listing 11
as follows:

:working activity:overlapsWith :informationOrLeisure .
:activelyWatchTVWhileDrinking activity:conflictsWith :bathingWhileDrinking .

The rules in Listing 12 apply the relationships between abstract activities in recognising activities. These
rules guarantee that when a developer defines an application on a finer-grained activity it will take place on
its coarser-grained activities. In this way, developers may define applications on activities in a hierarchical
and traceable way. The rules also prompt the system when conflicting activities are inferred at the same
time. Finally, we specify application actions as rules that, when triggered, call appropriate methods in
application code. For example, Listing 13 shows how we express the application rules from Section 5.3 that
call the fire brigade and emergency contact.

6.5. Discussion

In this section we discuss the utility of our top-level ontology model, and the practical issues of imple-
menting and using it from the perspective of software developers.
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Listing 12 Rules to relay specified relationships between abstract activities in activity recognition
# Granularity: if an activity a is inferred and a is finer-grained than

another activity b, then b will be inferred, too.

[granularityAct: (?p activity:engagesIn ?a), (?a activity:finerGrainedThan ?b)

-> (?p activity:engagesIn ?b)]

#Conflict: if an activity a is inferred and its conflicting activity b is also

inferred, then an inconsistency is detected.

[conflictAct: (?p activity:engagesIn ?a), (?p activity:engagesIn ?b),

(?a activity:conflictsWith ?b) -> activityConflictDetected(?p, ?a, ?b)]

Listing 13 A set of application rules defined on the occurrence of activities
[generalAccident: (?p activity:engagesIn :accident) -> callEmergencyContact()]

[fireAccident: (?p activity:engagesIn :fire) -> callFireBrigade()]

6.5.1. Formality

The proposed top-level ontology model partitions the problem of how to transform raw sensor data
into application-level data in a set of well defined steps. Each step is structured, and governed by a set of
generic rules that describe how to transform or augment knowledge from the previous step into the necessary
knowledge required by the next step in the process. Whereas previous approaches to managing sensed data
operate over one big general purpose model with no strict rules on how one piece of information relates to
another, our model supports the correlation of knowledge across all layers in a sound reasoning schema.

6.5.2. Consistency

Relations in this model are fully integrated: from ground values at one extreme, to complex activities at
the other. Therefore, the knowledge the reasoner automatically infers from that which is explicitly stated
can inform developers about inconsistencies between sensed context, and across activity derivation rules.
This is useful, both in the development and debugging of systems. The formal semantics also provide a
form of provenance; for example, when we find two activities to be inconsistent, we can pinpoint the specific
context predicates that are the cause of the inconsistency. Not only is this useful to the developer, but
runtime resolution techniques may be available in some instances that can resolve inconsistencies given this
information as an input.

6.5.3. Rich Semantics

The top-level ontology starts from the classic set theory by analysing ground value ranges in each
dimension of an information space. It extracts four basic structural semantics in concepts, which we also
study in relational compositions of concepts; that is, contexts and activities. We demonstrate that these
common semantics across different levels of information play an important role in aiding tasks particular
to pervasive computing, including detecting inconsistency of sensor inputs, and designing applications in a
hierarchical and traceable manner.

The richness of the semantics in this ontology model, however, can be improved by incorporating the
semantics of predicates and temporal semantics. So far, we have not taken into consideration the relation-
ships that can exist between predicates, such as the inverse relationship of locatedIn and notLocatedIn.
Adding such semantics to our model will increase the amount of knowledge that we will be able to infer
automatically, and enhance the expressiveness of our model.

Temporal semantics have been identified as another principal feature of activities [1, 42]. Augusto et
al. [43] take the initiative in introducing temporal operators in defining derivation rules in recognising
activities in smart homes. Bui et al. [44] propose a Hidden Permutation Model to learn high-level activities

21



from temporally ordered lower-level activities. To better support activity recognition techniques and activity-
aware applications, our model needs to be extended with temporal semantics.

6.5.4. Engineering Effort

From the perspective of an implementer of the model (i.e., the data storage and reasoning aspects),
the different parts of our model correspond to a set of orthogonal layers, each of which the developer may
optimise for the set of tasks each carries out. Application developers only need to define abstract values
in each information dimension, specify the necessary amount of domain knowledge on them allowing the
reasoner to derive further relationships, and define activity derivation rules. After developers carry out these
processes in an environment, the information is reusable across multiple applications. Over time, application
developer effort decreases as previously specified domain concepts are reused.

We contend that this top-level ontology model complements, rather than replaces, domain and applica-
tion ontologies. Developers still need to define structures and relationships of concepts and specify derivation
rules for activities in domain and application ontologies. These processes, especially specifying derivation
rules, still involve significant engineering effort, while hand-coding rules in ontology- or logic-based models
is common. Our ontology model can assist in reducing, rather than eliminating, the effort in engineering
domain knowledge by using generic rules. As demonstrated in Section 6.2, by predefining 10 spatial rela-
tionships, we can automatically derive the other 78 spatial relationships and 32170 conflicting relationships
between the objects.

We also expect application developers to reuse existing activity derivation rules and compose new ones
from those already defined so as to meet different application requirements. Not only does this keep devel-
opers from laborious coding but also facilitates knowledge reuse about activities across different applications
and environments.

7. Conclusion and future work

This paper presents a top-level ontology that captures in a uniform manner the inherent semantics
that different types of domain knowledge share. We model the semantics across information at different
levels of abstraction and reason on them by using a sound reasoning schema. This ontology model serves
as a conceptual backbone for developing ontologies that accommodate these semantics. Developers are
encouraged to use provided generic rules and define their own rules to facilitate performing system-level
tasks, such as checking the consistency of both context and derivation rules that describe activities, and
integrating the model with statistical techniques to help build activity recognition models; wrapping these
semantics around their output [45].

In the future, we will extend the ontology with the semantics of predicates and temporal semantics of
abstract activities. We will define a new type of abstract activities and introduce an additional structure
to represent the temporal sequences between them. Based on this information, we may infer the temporal
relationships between abstract activities from their associated ground values. The implementation of the
rules described in this paper is currently restricted by the lack of a reasoner for working with named
graphs; requiring us to augment the Jena reasoner with custom operations. We will address this problem
by integrating the Jess reasoning framework with the NG4J software library.
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Appendix A. Proof of Lemma 13: Relationships between generalised abstract activities

Proof. Let a logical expression of a generalised abstract activity va be represented as le1 ∨ . . .∨ lem where
le1. . . lem are logical expressions of ground activities on va. Let a logical expression of vai and vaj be

22



represented as lei1 ∨ . . .∨ leim and lej1 ∨ . . .∨ lejn respectively.
Finer-granularity. ∀ v

g
k ∈ µ(vai ) and ∃ v

g
l ∈ µ(vaj ), given v

g
k � v

g
l , we get lek � lel. So lei1∨. . .∨leim

� lej1∨. . .∨lejm. It is possible that there exists one logical expression lejs (1 ≤ s ≤ n) that multiple
expressions on vai entail, so for matching, lejs can be repeatedly used in the expression lej1∨. . .∨lejm with
lejs ∨ . . .∨lejs = lejs. If there exists any other expression on vaj that does not match, then lej1∨. . .∨lejm
� lej1∨. . .∨lejn, so lei1∨. . .∨leim � lej1∨. . .∨lejn. By Definition 12, vai � vaj .
Conflict. ∀ v

g
k ∈ µ(vai ) and ∀ v

g
l ∈ µ(vaj ), v

g
k ∦ v

g
l , so lel ∧ lek = FALSE. So lek ∧ (lej1 ∨ . . . ∨ lejn) =FALSE.

(lei1 ∨ . . . ∨ leim) ∧ (lej1 ∨ . . . ∨ lejn) = (lei1 ∧ (lej1 ∨ . . . ∨ lejn)) ∨ (leim ∧ (lej1 ∨ . . . ∨ lejn)) = FALSE ∨
. . .∨ FALSE = FALSE. By Definition 12, vai ∦ vaj .
Overlap. ∃ v

g
k ∈ µ(vai ) and ∃ v

g
l ∈ µ(vaj ), given v

g
k �� v

g
l , we get lek � lel (1), lel � lek (2), and there exists

le� such that le� � lek, le� � lel (3).
From (1) ⇒ lei1∨. . .∨leim � lej1∨. . .∨lejn (4),
From (2) ⇒ lej1∨. . .∨lejn � lei1∨. . .∨leim (5),
From (3) ⇒ le� � lei1∨. . .∨leim and le� � lej1∨. . .∨lejn (6),
From (4), (5), and (6), by Definition 12 ⇒ vai �� vaj .
In another case,vgk � v

g
l ⇒ lek � lel (7);

From (7) and lel � lej1 ∨ . . . ∨ Lejn ⇒ lek � lej1 ∨ . . . ∨ lejn (8);
From (8) and lek � lei1 ∨ . . . ∨ leim ⇒ lek entails the logical expressions on both vai and vaj (9).
Similarly from v

g
l � v

g
k, we can derive that lel entails the logical expressions on both vai and vaj (10).

From (9) or (10), we conclude that there exists a logical expression that entails the logical expressions on
both vai and vaj . According to the rest of the condition, ∃ v

g
k�( �= v

g
k) ∈ µ(vai ), ∀ v

g
l� ∈ µ(vaj ), v

g
k� � v

g
l� , and ∃

v
g
l�( �= v

g
l ) ∈ µ(vaj ), ∀ v

g
k� ∈ µ(vai ), v

g
l� � v

g
k� , we can derive lei1∨. . .∨leim � lej1∨. . .∨lejn and lej1∨. . .∨lejn

� lei1∨. . .∨leim. By Definition 12, vai �� vaj . Therefore, we have proved that vai �� vaj under two cases.

Appendix B. Proof to Lemma 14: Relationships between composite abstract activities

Proof. Let a logical expression of a composite abstract activity va be represented as le1 ∧ . . .∧ lem where
le1. . . lem are logical expressions of ground activities on va. Let a logical expression of vai and vaj be
represented as lei1 ∧ . . .∧ leim and lej1 ∧ . . .∧ lejn respectively.
The proof is similar to that of Lemma 13 in Appendix A.
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