
Activity Recognition on Streaming Sensor Data

Narayanan C Krishnan and Diane J Cook
School of Electrical Engineering and Computer Science, Washington State University, Pullman,
WA 99164-2752, USA

Abstract
Many real-world applications that focus on addressing needs of a human, require information
about the activities being performed by the human in real-time. While advances in pervasive
computing have lead to the development of wireless and non-intrusive sensors that can capture the
necessary activity information, current activity recognition approaches have so far experimented
on either a scripted or pre-segmented sequence of sensor events related to activities. In this paper
we propose and evaluate a sliding window based approach to perform activity recognition in an on
line or streaming fashion; recognizing activities as and when new sensor events are recorded. To
account for the fact that different activities can be best characterized by different window lengths
of sensor events, we incorporate the time decay and mutual information based weighting of sensor
events within a window. Additional contextual information in the form of the previous activity and
the activity of the previous window is also appended to the feature describing a sensor window.
The experiments conducted to evaluate these techniques on real-world smart home datasets
suggests that combining mutual information based weighting of sensor events and adding past
contextual information into the feature leads to best performance for streaming activity
recognition.

Keywords
streaming; online; real-time; activity recognition; mutual information

1. Introduction
Advances in pervasive computing have resulted in the development of unobtrusive, wireless
and inexpensive sensors for gathering activity information, which when coupled with state
of the art machine learning algorithms are critical to the development of a wide variety of
applications. One such application area is that of smart environments where activity
information is used to monitor and track the functional status of residents. A good number of
on-going projects in smart environment and activity recognition such as the CASAS project
[1], MavHome [2], PlaceLab [3], CARE [4] and the Aware Home [5] stand testimony to the
importance of this research area. The need for the development of such technologies is
underscored by the aging population[6], the cost of health care [7] and the importance that
individuals place on remaining independent in their own homes [8]. Individuals need to be
able to complete Activities of Daily Living (ADLs) such as eating, grooming, cooking,

© 2012 Elsevier B.V. All rights reserved.

Email address: ckn, cook@eecs.wsu.edu (Narayanan C Krishnan, Diane J Cook).

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

Published in final edited form as:
Pervasive Mob Comput. 2014 February 1; 10(Pt B): 138–154. doi:10.1016/j.pmcj.2012.07.003.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

drinking and taking medicine, to lead a functionally independent life. Thus automating the
recognition and tracking of these ADLs is an important step toward monitoring the
functional health of a smart home resident, which has also been recognized by family and
caregivers of Alzheimer’s patients. This is the primary motivation behind much of the
activity recognition research in smart environments.

Activity recognition (AR) is a challenging and well researched problem. The different
approaches proposed in the literature differ primarily in terms of the underlying sensing
technology, the machine learning models and the realism of the environment in which
activity information was gathered. Irrespective of the sensing technology and machine
learning model, literature is abundant with AR techniques that work extremely well on
scripted or pre-segmented sequences of activity. While this is a first step toward developing
AR, real-world deployment of these systems require AR techniques to work on streaming/
online data among other scenarios such as concurrent and interleaved activity execution.
This is also important in the context of developing assistive technologies for the elderly that
can help them in completing ADLs (such as prompting systems [9], [10]). There is a need
for online activity recognition techniques that can classify data as it is being collected which
is the basis for tracking the progress of the activity. This is a challenging problem as data
that completely describe an activity is not generally available in such situations and the
algorithm has to rely on the partially observed data along with other contextual information
to make a decision on the activity being performed.

The work presented in this paper attempts online AR on discrete binary motion sensor data
obtained from real-world smart homes. The approach classifies every sensor event based on
the information encoded in a sliding window of preceding sensor events. It explores both
fixed static window size and dynamic varying window size, along with investigating
modifications to the sliding window protocol that takes into account the temporal and spatial
relationships between the different sensors. It also encodes the context of the window in
terms of the classification probabilities of activities in the preceding window and the
previously recognized known activity. This methodology is evaluated on data collected from
three smart apartments over a period of six months. These datasets represent the activities
performed by a single resident of the smart home. One of the facets of the work presented in
this paper that sets it apart from other related work is the dataset that is used to evaluate the
algorithms. Our dataset reflects the complexities of unconstrained real-world data that
cannot be observed in other datasets. We present the first application of the sliding window
method for dealing with discrete motion sensor events. Another factor that distinguishes our
work from the rest is the inclusion of sensor events that do not belong to any of the known
activity labels for performance evaluation. This is a common problem that one faces when
scaling the AR approaches to real-world settings. It makes the first attempt at trying to
understand how the state of the art techniques perform in complex real-world settings, where
the subject is living in their natural habitat and conducting their daily routine with no
instructions of what so ever from the researchers. The focus on the evaluation is to study the
effectiveness of the activity models, trained and tested on data collected from the same smart
home. We are not trying to study how well the activity models generalize across different
apartment layouts and different residents.

The rest of the paper is organized as follows. Section 2 discusses briefly the related work on
AR. A discussion on the different methodologies for processing streaming data is presented
in Section 3. The sliding window methodology adopted in this paper along with the
accompanying modifications are described in Section 4. Section 5 presents the experimental
setup for evaluating the proposed methodology along with a description of the smart
apartment dataset. The results are presented and discussed in Section 6. Section 7
summarizes the work presented in the paper along with providing directions for future work.

Krishnan and Cook Page 2

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

2. Related Work
The goal of activity recognition is to recognize human physical activities from data collected
through different sensors. It is a well researched area and hence there exists a number of
approaches for activity recognition [11]. These approaches vary depending on the
underlying sensor technologies that are used for gathering the activity data, the different
machine learning algorithms used to model the activities and the realism of the environment
in which the activity data is collected and AR is performed.

2.1. Sensors for AR
Advances in pervasive computing have seen the development of a wide variety of sensors
that are useful for gathering information about human activities. Wearable sensors such as
accelerometers are commonly used for recognizing activities that are primarily defined by
ambulatory movements (such as walking, running, sitting, standing, lying down and falling)
as demonstrated by earlier efforts [12][13]. More recently researchers are exploring smart
phones equipped with accelerometers and gyroscopes to recognize ambulatory movements
and gesture patterns [14][15]. Most of these approaches have been able to recognize
activities primarily characterized by movements in real time [16] through a sliding window
protocol. Since the movement information related to activities is typically well represented
within a window of the data from accelerometers with a high sampling rate, a sliding
window based approach is appropriate for recognizing these activities in real-time.

Environment sensors such as infrared-based motion detectors or reed switches based door
sensors have also been used for gathering information about a more general set of ADLs
such as cook, leave home, sleep, eat, etc; as explored by others [17][18][19][20]. These
sensors are adept in performing location based activity recognition in indoor environments
just as GPS is used for outdoor environments [21]. Some actives such as wash dishes, take
medicine, use phone, etc are characterized by unique objects of interaction. Researchers
have explored the usage of RFID tags and shimmer sensors for tagging these objects of
interaction and thus be able to perform AR. For instance, Philipose et al.[22] use the count
of objects of interaction obtained through the activation of RFID tags to decipher the
activities being performed in the environment and Palmes et al. [23] mine the web to
determine which objects are essential for recognizing a particular activity and use this
information to build activity models.

Researchers have also used data from video cameras monitoring and recognizing different
activities [24][25]. The use of video cameras for AR is very prevalent in security related
applications. However, their usability in the context of smart homes for monitoring the
activities of residents is debatable as study subjects uniformly believe that it intrudes into
their privacy. There are many other challenges with video based AR such as illumination
variations, occlusion and background changes that make it somewhat impractical in certain
scenarios. The data used for the experiments conducted in this paper are primarily from
binary discrete passive IR sensors that can be easily embedded in a smart environment.

2.2. Machine Learning Approaches for AR
There have been a number of machine learning models that have been used for AR akin to
the variety of the sensor technologies. These can be broadly categorized into template
matching or transductive techniques, generative and discriminative approaches. Template
matching techniques employ k-NN classifier on either distance computed between a test
window and training windows through Euclidean distance in the case of fixed window size
[26] or dynamic time warping in the case of varying window size [27]. Generative
approaches to AR such as simple naive Bayes classifiers, where the activity samples are

Krishnan and Cook Page 3

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

modeled using Gaussian mixtures, have yielded promising results for offline learning of
activities when large amount of data is available for training [19][28][29]. Generative
probabilistic graphical models such as hidden Markov models and dynamic Bayesian
networks that are known for their representational power have also been used to model
activity sequences. HMMs have been used to model the activity sequences from data
obtained from both wearable accelerometers for recognizing dietary activities [30] and from
environmental sensors for recognizing ADLs [31]. HMM is employed as a post processing
tool by others [32] to smooth out the recognition results of an AdaBoost classifier for
detecting human activities using data from on-body sensors. Discriminative approaches that
model the boundary between the different classes have also been popular for AR. Decision
trees such as C4.5 [33] are natural choices for models that classify various activities based
on different threshold or properties of the associated features [28],[34]. Meta classifiers
based on boosting and bagging have also been experimented for AR [29][35]. Support
vector machine based activity models have been experimented for AR using accelerometer
data [13]. Discriminative probabilistic graphical models such as conditional random fields
have been explored for AR using motion sensor data [18],[19].

There are also a number of unsupervised activity discovery methods that mine for frequent
sensor sequences [36], or discontinuous activity patterns [37]. An activity discovery
algorithm based on compression of sensor data is presented in [38]. Most of these
approaches for AR predominantly work on pre-segmented activity sequences that have been
collected in controlled settings. More recently Wang et al. [39] propose a hierarchical
approach for activity recognition from data collected through body sensor networks. The
fundamental difference in our approach and that of Wang et al. lies in the underlying sensing
technology that is used for collecting activity data. While in the proposed approach we use
binary motion sensors that are triggered by human motion, Wang et al use inertial sensors
that have a constant sampling rate, which is well suited for sliding window based on time.
Secondly, the evaluation of Wang et al’s approach is conducted on data that is collected in a
laboratory setting does not reflect the performance of the approach in unconstrained real-
world settings. We evaluate our approach on real-world data that is collected from the house
of volunteers.

2.3. Experimental Settings for AR
The most common type of experiment is to ask subjects to perform a set of scripted
activities, one at a time in a laboratory setting [13][31][28][39]. In this case the activities are
well segmented, which facilitates the researchers to focus on the task of mapping the pre-
segmented sensor sequences to activity labels. With the ability of the algorithms to perform
well in these scripted settings, researchers are now more focused on algorithms for more
realistic and complex activity tasks. These include recognizing activities that are performed
with embedded errors, interleaved activities, concurrent activities performed by multiple
residents and activities with multiple goals. However the data for these settings are still
restricted to a laboratory/supervised setting where the activities are performed in a
controlled manner [40][41]. The next leap taken by the researchers is to recognize activities
in unscripted settings, an example of which is a smart home while residents perform their
usual daily routine, without being given explicit instructions on how to perform the activity.
However, these approaches include an offline annotation process that make use of human
annotators to analyze, segment and label the data. Activity recognition is then performed
only on the pre-segmented data [19] [17]. While this approach brings activity recognition
closer to practical everyday usage, to make it even more realistic, the activity recognition
algorithms will have to move away from pre-segmented sequences and focus directly on the
sensor streams. The work presented in this paper is an attempt in this direction, where AR is
performed on streaming data.

Krishnan and Cook Page 4

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Activity recognition from sensor streams has been explored with wearable sensor
technology [16]. The data from wearable sensors such as accelerometers are divided into
chunks of equal length, which are then classified as one of the activities by the classifier.
This is made possible by the fact that sensors provide a continuous sequence of data through
time (constant sampling rate) and most of the activities discerned from these sensors have
sufficient information characterizing them within a small time window. It is an interesting
problem to try to extend this approach to relatively sparse sensor streams, where sensor
events are triggered only because of human activities, such as motion sensor sequence from
a smart home. This is the primary feature that distinguishes the work presented in this paper
with other related work.

3. Processing Streams
This section briefly describes the three common approaches in the literature for processing
of streaming data. These three approaches are discussed in the context of the smart home
dataset used in this paper. The sensors embedded in the smart apartments are primarily
motion and door sensors that are in two states - ‘ON’ and ‘OFF’ for the motion sensors and
‘OPEN’ and ‘CLOSED’ for the door sensors. These sensors have a varying sampling rate
(when they switch to the ‘ON’ state) which is dependent on the human activity. Figure 1 is
an abstract illustration of the sequence of these sensor firings (represented as the vertical
lines). The data chunks that each of the three approaches analyze are then presented one
below the other in the figure. The underlying activity sequence that results in these sensor
firings is A1,A4,A2,A3. Each activity results in different number and type of sensor firings.

3.1. Explicit Segmentation
Some methodologies [42] adopt a two step approach for streaming activity recognition. In
the first step the streaming sensor events are segmented into chunks, each chunk possibly
corresponding to an activity and perform the classification of each of the chunk in the
second step. An example of this process is illustrated in Figure 1. The segmentation process
results in chunks C1,C2, . . . , C6. The first thing to notice is that the process does not result
in exact activity boundaries (Activity A1 is broken down to chunks C1 and C2), which is a
common property of the segmentation algorithms. While the segmentation process could
lead to chunks representing specific activities, it has some drawbacks. The first and the
foremost problem is trying to find the appropriate chunk size for learning the activity models
during the training phase. Typically a pre-segmented sequence of sensor events that
correspond to an activity is used to train the classifier. However during testing, since the
chunks do not necessarily represent the entire sequence of sensor events for a particular
activity, the performance of the classifier is thus lowered. Secondly, the approach has to wait
for future data to make a decision on past data rendering it a somewhat non-streaming
approach. Furthermore because of its dependency on the future data, large temporal gaps in
successive sensor events which are realistic in every day routines will result in the approach
waiting for a long time to make a decision on the past events. Finally the two level approach
also leads to additional complexity issues of the segmentation process to be dealt with such
as splitting and merging chunks. If the activities have very distinct boundaries, then this will
be a good approach, which is not the usual scenario.

3.2. Time based windowing
The second approach to handling streaming data would be to divide the entire sequence of
sensor events into equal size time intervals as illustrated in Figure 1 by the chunks denoted
by T1, T2, . . . , T9. This approach has been adopted by many researchers [43][13][39]. This
technique offers a simpler approach to learn the activity models during the training phase
over the explicit segmentation approach. It further reduces the computational complexity of

Krishnan and Cook Page 5

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

the explicit segmentation process. This is a good approach when dealing with data obtained
from sensors that operate continuously in time. Data for every time interval is always
guaranteed in such a scenario. This is a common approach with accelerometers and
gyroscopes, where data is sampled at a constant rate from the sensors. However, one has to
deal with the problem of selecting the optimal length of the time interval. If a very small
interval is chosen, there is a possibility that it will not contain any relevant activity
information for making any useful decision. If the time interval is too wide, then information
pertaining to multiple activities can be embedded into it and the activity that dominates the
time interval will have a greater influence in the classification decision. This problem
manifests itself when dealing with sensors that do not have a constant sampling rate. In the
current context of motion and door sensor events, it is very likely that some time intervals do
not have any sensor events in them (e.g., T6 in Figure 1) . Then heuristics have to be
developed to extend the activity occurring in the previous time intervals to the current time
interval.

3.3. Sensor event based windowing
The third approach for sensor stream processing is to divide the sequence into windows
containing equal number of sensor events. This is illustrated in Figure1 by the chunks S1,
S2, . . . , S26. It is evident that the windows appear to vary in their duration. This is fine
considering that during the performance of activities, multiple sensors could be triggered,
while during silent periods, there will not be many sensor firings. The sensor events
preceding the last event in a window define the context for the last event. This method too
has some inherent drawbacks. For example, consider the chunk S26, in Figure 1. The last
sensor event of this chunk corresponds to the beginning sensor event of activity A4. There is
a significant time lag between this event and its preceding sensor event. The relevance of all
the sensor events in this chunk on the last event might be small if the time lag is large. Thus
treating all the sensor events with equal importance will not be a good approach. In the
presence of multiple residents, sensor firings from two different activities performed by the
different residents will be grouped into a single chunk, thereby introducing conflicting
influences for the classification of the last sensor event. While by itself this approach may
not be alluring, modifying it to account for the relationship between the sensor events is a
good method to process the stream of sensor events. This approach offers computational
advantages over the explicit segmentation process and does not require future sensor events
for classifying past sensor events. The methodology presented in the paper adopts this
approach for processing sensor streams in conjunction with three modifications that capture
the relation between the sensor events in a window and between multiple windows. The
results obtained on real-world datasets discussed in the paper advocate the advantage of this
methodology.

4. Methodology
This section discusses in detail the windowing methodology adopted in the work along with
the modifications. Let us begin by defining some of the notations used to describe the
approach. Let s1, s2, . . . , sN represent the sequence of sensor events. Example of these
events are motion and door sensor events as depicted from the sample data in Figure 2
collected from one of our smart home testbeds. Associated with each sensor event is the
calendar day, time of the day, sensor status. As a preprocessing step, we mapped the actual
sensor tags to their functional areas (a total of 15). The sensor locations in Figure 2
correspond to these functional areas. The objective of the proposed approach is to classify
every single sensor event with a corresponding activity label to the best possible extent.
Activity information of the individual sensor event is essential in some of the applications

Krishnan and Cook Page 6

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

such as prompting systems that will be built on this foundation. We first describe the basic
sensor windowing approach followed by the modifications.

4.1. Sensor windowing
A simple approach to provide context to a single sensor event is to consider the sensor
events that have preceded it. Formally, the sequence s1, s2, . . . sN is divided into windows of
equal number of sensor events S1, S2, . . . , SM and the Si window be represented by the
sequence [si−Δs, si]. The value of the parameter Δs varies depending on the experimental
context. It can be derived through an empirical process by studying the effect of the different
values of Δs on the performance of the classification system. Among the different factors
that influence the value for the parameter Δs is the average number of sensor events that
span the duration of different activities. At one end of the spectrum are activities such as
‘Leave Home’ that are defined by rapid firing of a small set of sensors as illustrated in
Figure 2, while at the other end is the activity ‘Sleep’ that continues for hours, but typically
leads to occasional firing of one or two sensors as illustrated in Figure 2. Ideally the number
of sensor events within the window should be sufficient enough to define the context of the
last sensor event. Heuristics such as the average length of the longest activity can be used to
bound the window size. Later in this section we describe a method to dynamically determine
the window size.

Once the sensor window Si is defined, the next step is to transform this window into a
feature vector that captures its information content. We perform this step by constructing a
fixed dimensional feature vector xi explicitly capturing the time of the first and last sensor
events, the temporal span of the window Si and a simple count of the different sensor events
within the window. With 15 different sensors, the dimension of the xi will be 18. Each xi is
tagged with the label yi of the last sensor event (si) in Si. Each label yi corresponds to an
activity class. A collection of xi and the corresponding yi then become the training data that
is fed into a classifier to learn the activity models in a discriminative manner. This will be
our Baseline approach against which we compare the proposed enhancements.

One of the problems associated with windowing based on sensor events for sensors that do
not have constant sampling rate is that windows could contain sensor events that are widely
spread apart in time. An illustration of this problem is presented in Figure 3(a). This is an
example of a sequence of sensor events from our dataset. Notice the the time stamp of the
last two events in this sequence. There is a gap of nearly one and half hours between these
sensor events. All the sensor events that define the context of the last event have occurred in
the ‘distant’ past. Thus in the absence of any weighting scheme, even though the sensor
event corresponding to the end of the ‘Personal hygiene’ activity occurred in the past, it has
an equal influence on defining the context of the event corresponding to ‘Enter home’. In
order to overcome this problem, we propose to use a time based weighting scheme
(described in Section 4.2) which takes into account the relative difference in the time the
sensors were triggered.

In situations when the sensor event corresponds to the transition between two activities (or
in other settings when multiple activities are performed by more than one resident in
parallel), the events occurring in the window might not be related to the sensor event under
consideration. An example of this situation is illustrated in Figure 3(b). This particular
sequence of sensor events from one of the testbeds represents the transition from the
‘Personal Hygiene’ activity to the ‘Leave Home’ activity. Notice that all the initial sensor
events in the window come from a particular functional area of the apartment namely the
Bathroom, whereas the second set of sensor events are from an unrelated functional area of
the apartment namely FrontDoor. While this certainly defines the context of the activity,
since the sensors from a particular activity dominate the window, the chances for a wrong

Krishnan and Cook Page 7

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

conclusion about the last sensor event of the window are higher. We try to overcome this
problem by defining a weighting scheme based on a mutual information type measure
between the sensors as described in Section 4.3.

4.2. Time Dependency
As described earlier, with a fixed length sliding window over sensor events, it is possible for
two sensor events that are spread apart in time to be a part of the same window. In order to
reduce the influence of such sensor events for deciding the outcome of the last sensor event,
we use a time based weighting factor for each sensor event relative to the time of the last
sensor event.

Formally, let {ti−Δs, ti−Δs+1, . . . , ti} represent the timing of the sensor events in the ith

window. We take into account the difference in the time for each sensor event with respect
to ti, for computing the feature vector describing the window. In particular we use an
exponential function to compute the weights. Thus, the contribution of sensor event k,
within the interval Δs to the feature vector describing the ith window is given as

(1)

The simple count of the different sensor events within a window is now replaced by a sum
of the time based contributions of each of the different sensor event within the window. The
value of χ determines the rate of decay of the influence. Figure 4 shows the effect of the χ on
the rate of decay. If χ > 1, then it is only the sensor events that are temporally very close to
the last event that contribute to the feature vector. With 0 < χ < 1, the feature vector is under
the influence of a temporally wider range of sensor events. When χ = 0, the temporal
distance has no influence on the feature vector, making it a simple count of the different
sensor events. We henceforth refer to this approach as SWTW that stands for Sensor
Windows Time Weighting.

4.3. Sensor Dependency
The work presented in this paper uses a mutual information based measure between the
sensors, to reduce the influence of sensor events from very different functional areas on the
feature vector defining the last sensor event within a window. Mutual information is
typically defined as the quantity that measures the mutual dependence of two random
variables. In the current context, each individual sensor is considered to be a random
variable that has two outcomes, namely ‘ON’ and ‘OFF’. The mutual information or
dependence between two sensors is then defined as the chance of these two sensors
occurring consecutively in the entire sensor stream. If Si and Sj are two sensors, then the
mutual information between them MI(i, j) is defined as

(2)

where

(3)

The summation term takes a value of 1, when the current sensor is Si and the subsequent
sensor is Sj. If two sensors are adjacent to each other, such that triggering of one sensor is

Krishnan and Cook Page 8

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

most likely to trigger the other sensor, then the mutual information between these two
sensors will be high and similarly, if the sensors are far apart such that they do not often
occur together, then the mutual information between them will be low. Note that the
computation of mutual information using this bi-gram model depends on the order of
occurrence of the sensors.

The mutual information matrix is computed offline using the training sensor sequence. It is
then used to weigh in the influences of the sensor events in a window while constructing the
feature vector. Similar to the time based weighting, each event in the window is weighted
with respect to the last event in the window. Thus instead of the count of different sensor
events, it is the sum of the contribution of every sensor event based on mutual information
that defines the feature vector. We denote this approach as Sensor Windows Mutual
Information (SWMI) for future references.

4.4. Past Contextual Information
The methods described previously only take into account the sensor events in the current
window that is being analyzed. There is no information about the past that is encoded into
the feature vector. The information about the activity in the previous window, or the
previous occurrence of an activity are important factors that determine the activity in the
current window. In our dataset, there are certain activities that have a well defined past
activity; ‘Enter Home’ is an instance of such an activity that occurs only after the ‘Leave
Home’ activity. Thus adding the past activity information to the feature vector defining the
activity in the current window, will enhance the description of the current window.

One can simply add the ground truth of the previous window and the previous occurring
activity to the current sensor window, but then the approach would not generalize well as we
do not have ground truth about the past activity information during online recognition. Thus,
one has to rely on the model predictions of the previous window to obtain the past activity
information, which is similar to a semi-supervised learning paradigm. We incorporate this
into our learning problem in two steps as illustrated in Figure 5. In the first step, activity
models are learned by a classifier using training data that does not contain the past activity
information. Each of the training instances are then fed into this activity model to obtain the
probability of each window corresponding to the different activities. In the second step,
these classification probabilities of the immediately preceding sensor window are appended
to the feature vector describing the current sensor window along with the last predicted
activity (not the activity in the immediate preceding window). In the example illustrated in
the Figure 5, let us consider the sensor window Si+2. The feature vector describing this
window is appended with the probability of classification of the Si+1 sensor window, along
with the activity that occurred last, which in this case is am. These newly appended feature
vectors are then used to train another activity model. During the test phase, the feature
vector describing the test window is fed into the first activity model; the probability outputs
of this model are appended to the feature vector and the new feature vector is passed to the
second model to obtain the predicted activity. We call this technique as Previous Window
and Previous Activity (PWPA) for future references.

4.5. Dynamic Window Size
The previously described approaches employ a fixed window size for computing the feature
vectors. An important challenge with this approach is identifying the optimal window size.
Various heuristics such as the mean length of the activities and sampling frequency of the
sensors can be employed to determine the window size. However the best approach would
be to automatically derive the window size using a data-driven approach.

Krishnan and Cook Page 9

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

We use a probabilistic approach to derive the window size for every single sensor event. We
begin with first defining a fixed number window sizes {w1, w2, ..., wL}, where w1 = min
{ws(A1), ws(A2), ..., ws(AM)} and wL = median{ws(A1), ws(A2), ..., ws(AM)}. ws(Am)
corresponds to the mean window size of activity Am. The intermediate window sizes
between w1 and wL are obtained by dividing this interval into equal length bins. After
identifying the possible window sizes, we then compute the most likely window size for an
activity Am

(4)

We also determine the probability (P(Am/si)) of an activity Am being associated with the
sensor si. Thus given the sensor identifier si for the event under consideration, we can
determine the most likely activity A* associated with it as

(5)

Thus for the sensor event si the optimal window size can be determined by combining the
two equations according to the following factorization

(6)

The different probability vectors are computed using the training data. The window sizes for
the sensor events in the train and test data are then computed using these probabilities.
Considering that there are no significant changes to the routine of the residents of our smart
apartments and that the training data typically consists of over 400K sensor events, we
believe that there will not be significant differences to the probability vectors when
computed using train and test data independently. We call this approach as Dynamic
Window DW for future references.

4.6. Time Windows
We also evaluate our proposed approaches against the time window approach that is
commonly found in the literature dealing with wearable sensors such as accelerometers.
While there are different ways of defining the time windows, to align with our goal to
classify individual sensor events, we define time windows for every sensor event. Thus for a
sensor event si, the time window consists of all sensor events that fall within the time
interval of the fixed duration starting from the time stamp of si. The sensor events of a
particular time window are then aggregated to form the feature vector using the same
process that was adopted for sensor windows. The time window is labeled using the activity
associated with the last sensor event of the time window. We refer to this approach as Time
Window TW for future discussion.

4.7. Handling the ‘Other’ class
Most of the current AR approaches ignore the sensor events that do not correspond to any of
the known activity classes. To elaborate further, activity models that are trained for ‘Cook’,
‘Eat’ and ‘Sleep’ are experimented on data points that correspond to these three activities
only. However this does not correspond to a real-world setting, where data points can
correspond to other well defined activities such as ‘Bathing’ or transitions between different
activities. Typically data points from these other activity classes tend to dominate the real-
world data as illustrated by the high number of samples corresponding to the ‘Other
Activity’ in Table 1. Current AR approaches tend to ignore the presence of these other

Krishnan and Cook Page 10

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

activity classes while evaluating the performance of the algorithms. However, in this work
we include the sensor events from these ‘Other Activity’ classes as well to determine the
most realistic activity recognition performance.

There are two methods to handle the ‘Other’ class events. The first method relies on the
probability of classification obtained from models that have been trained only on events
belonging to the known classes. A threshold on this probability determines if the event
belongs to the other class. While this is a simple approach, it is hard to set the threshold as
there is no learning involved in determining its value. In the second approach an explicit
model for the other class events is learned by training the classifier on the events that do not
fall under any of the known classes. The increase in the computational complexity of this
method due to explicit learning of a new class can be forgone by considering that it is an
offline process.

Explicitly modeling the other class events brings the activity recognition system one step
closer to stream processing and hence is an important step. Table 1 shows that nearly half of
the sensor events in each of the smart apartment belong to the other class, further motivating
the need to learn a model for this class, which is the approach adopted in this paper.

5. Experiments
5.1. Dataset

Each smart environment is treated as an intelligent agent that perceives the state of its
residents and the physical surrounding using sensors and acts on the environment using
controllers in such a way that specified performance measures are optimized [44].

We test the ideas described in this paper on sensor event datasets collected from three smart
apartment testbeds which we denote as B1, B2 and B3. Figure 6 shows the floor plan and
sensor layout for the three apartments. Each of the smart apartments housed an elderly
resident. During the six months that we collected data in the apartments, the residents lived
in these apartments and performed their normal daily routines. Figure 6 shows the
occurrences of activities in each of the testbeds for a sample of the data. Note that each of
the individuals had a fairly consistent daily routine.

Each of the smart home residents completed a generic questionnaire that asked them to mark
the time they performed the activities under consideration. Human annotators analyzed a 2D
visualization of the sensor events and used the information from the questionnaires to mark
the beginning and ending for each occurrence of the 11 activities listed in Figure 6. Each
smart home dataset was annotated by different human annotators. The annotations reflect the
activity associations for the sensor events as perceived by the annotator based on the ground
truth provided by the smart home resident. Thus there are possibilities for annotation errors.
While the labeling process is cumbersome and prone to error, as part of the future work we
will explore strategies to compensate and correct these errors.

The characteristics of each of these datasets are presented in Table 1. Reflective of the real-
world nature of the dataset, the imbalance in the number of data samples for the different
activities can be observed; with nearly 50% of the data samples belonging to the ‘Other’
class.

5.2. Classifier Model
In this paper we use support vector machines (SVM) as the choice for the classifier for
learning the activity models. In the past we have successfully tried other models such as
naive Bayes, hidden Markov models (HMM) and conditional random fields (CRF) [19].

Krishnan and Cook Page 11

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

While the discriminative CRF yielded better performance than naive Bayes or HMM, the
enormous training cost of CRF made us choose SVM over it. We used the LibSVM
implementation of Chang et al [45]. This implementation uses a one vs one SVM
classification paradigm that is computationally efficient when learning multiple classes with
class imbalance.

For computing the classification probabilities, the margin of the SVM classification was
converted into probability values using Platt’s scaling by fitting a logistic function [46]. A
five fold cross-validation strategy was employed to obtain the generalized performance of
the model on the three datasets. A radial basis function kernel was used with a width
parameter of 1. The penalty parameter was set at 100. These are the default parameter values
for the LibSVM classification implementation. The data samples were normalized before
being fed into the classifier. Since we are primarily interested in the performance on the
activities excluding the ‘Other’ activity, we computed the predefined activity classification
accuracy as well as the F score as measures to compare the performance of the different
methods.

The predefined activity classification accuracy is computed as follows. Let the total number
of sensor windows associated with a predefined activity Am (such as ‘Cook’) be denoted as
NAm and the number of correctly classified windows for this predefined activity be TPAm.
Then the predefined activity classification accuracy is defined as

(7)

where |A| are the total number of predefined activities excluding the ‘Other’ activity. Let P
and R represent the precision and recall for activity Am, then the F score for this activity is
computed as

(8)

6. Results and Discussion
In this section we present the results obtained on the three data sets using the different
proposed techniques. These techniques and their notations have been summarized in Table 2
for clarity.

We begin by studying the performance of the Baseline approach of sliding window of sensor
events for different number of sensor events per window. The results for this experiment are
summarized in Table 3. It is interesting to note that the performance is poor when the length
of window is greater than or equal to median of all the activities (presented in the second
column of Table 3). Furthermore, the performance drops significantly beyond 20 sensor
events per window for B1 and B2; much before the median value. It can be observed that the
performance peaks between 10 and 20 sensor events per window. We choose the number of
sensor events in a window to be the higher value, 20 as our modifications to the baseline
method ensures that the relevant information within this window is captured to define the
context for the last event of the window.

Having set the number of sensor events per window, we first check the performance of the
baseline approach with time based weighting of sensor events(SWTW). The summary of
these experiments are presented in Table 4. We did not explore values of χ greater than 1, as

Krishnan and Cook Page 12

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

they do not change the weights significantly. We varied the value of χ from 1 to 2−6 to give
non-zero weights to sensor events between 1 and 64 seconds. This means that with χ = 1, the
sensor window consists of events that happen within 1 second of last sensor event of the
window and similarly with χ = 2–6 the sensor events within the window within 26 seconds
of the last sensor event have non-zero weights. The accuracy for χ = 1 is the lowest as it
captures a very small number of sensor events preceding the last event of the window.
However as we decrease the value of χ, information from a larger number of preceding
sensor events are being used to characterize the sensor window leading to an increase in the
classification accuracy. This improvement occurs only till a certain value of χ, which
corresponds to sensor events within 64–128 seconds preceding the last event of the window,
after which the performance drops. There is no change in the accuracy beyond this temporal
span. Comparing the results obtained from the time based weighting scheme and the
baseline method leads to mixed observations. While there is a significant improvement of
10% for B3, B1 shows an improvement of only 4% and the performance deteriorates in B2
by 3%. This indicates that time-based weighing scheme of sensor events within a window is
not uniformly effective.

We compare the effectiveness of the time based weighting method against a method that
determines sensor windows based on time interval (TW). We varied the time interval from 5
seconds to 60 seconds. Prior literature [39] suggests 15 seconds to be the optimal time
interval. The results of this experiment are presented in Table 5. It can be observed that the
accuracies do not vary significantly across the different time intervals. For testbeds B1 and
B3, the accuracies are comparable to that obtained by SWTW approach with χ = 2−3.
However the TW approach results in markedly improvement in the accuracy for testbed B2.
While this is promising, our experiments with other approaches result in an improvement
over the TW approach.

The MI based similarity measure between the different sensors for the each of the three
testbeds is illustrated in Figure 7. Since we encode the actual sensor identifiers by the
functional areas, it is evident from the figure that each of the functional areas are very
dissimilar to each other. Furthermore the relatively strong diagonal elements indicate that
higher chances of self transition of sensors, instead of transitioning from one sensor to
another. Since each of the sensors is triggered by the human motion, it implies within the
current context that the residents of the testbed tend to remain at a single location in their
home more often than moving around. There are a couple of subtle observations that can be
made from Figure 7. For example consider the similarities between the sensors 5 and 6 for
B1. These two sensors correspond to the front door and kitchen sensors that are
geographically close to each other in the testbed (refer Figure 6 B1). This implies that
whenever the resident is entering the testbed; in addition to triggering the front door sensor,
the resident is also likely to trigger the kitchen sensors. However the kitchen door
sensors(sensor number 7) do not get triggered. Another subtle observation is the relatively
high similarity between the medicine cabinet sensor (sensor number 13) and kitchen (sensor
number 6) and the kitchen door sensors (sensor number 7) for B1. This is because the
resident of this testbed stores the medicines in the kitchen. Thus when he/she takes the
medication, they are likely to trigger the other kitchen sensors as well.

Modifying the baseline approach by using the MI measure for weighting the sensor events
boosted the overall performance uniformly across the three testbeds by an average of 7% (p
< 0.01) with respect to the baseline. These accuracy values are presented in Table 6. We also
inlcude the best accuracies obtained by Baseline, SWTW and TW approaches for the
different parameter choices. In comparison to the time based sensor weighting scheme, the
MI based scheme outperforms only for testbed B1 and B2. There is a marginal dip in the
performance for testbed B3. However the consistent improvement in the accuracy of

Krishnan and Cook Page 13

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

predefined activities over the baseline approach suggests the context of the last sensor event
of a sliding window can be enhanced by considering the relationship between the different
sensors. Further it is interesting to note that combining the MI based scheme with the time
based weighting scheme with the best performing χ factor (SWTW+SWMI) resulted in a
performance that is closer to the time based weighting scheme. The results for this
experiment are presented in Table 6. It can be seen from the accuracy values that the
combination model was more influenced by the time based weighting scheme. This result is
understandable considering that the combination scheme gives equal importance to both the
sets of weights and as a result, the set of weights that are numerically significant (time based
weights) tend to dominate the other set (MI based weights).

The accuracies of the predefined set of activities for the third proposed modification that
integrates the previous contextual information in the form of classification probabilities of
the previous window and previous recognized activities (PWPA) are presented Table 6.
Here too, there is an improvement in the performance by an average of 4% (p < 0.01) over
the baseline approach. However, this approach does not match up to the performance of MI
based weighting scheme. Finally we combine this method with MI based weighting scheme.
These results for this approach (SWMI+PWPA) are presented in Table 6. It can be noticed
that combining these two methods results in a marginal improvement in the performance
over SWMI approach. However this is the highest performance obtained among all the
techniques for B1 and B2.

The results for the DW approach that used dynamic window sizes is presented in the last
row of Table 6. It is evident that this approach performs better than the Baseline method that
used a fixed window size. This clearly indicates the advantage of using varying window
size. However the resulting performance is not better than the SWMI+PWPA approach
indicating scope for further improvement.

While measuring the accuracy of predefined activities is one metric to evaluate the
algorithms, the skewed data distributions for the different activity classes necessitates other
measures such as Fscore. The average F score over all the activities obtained for the
different methods is summarized in Table 6 in parenthesis. It can be observed that SWMI
+PWPA approach increases the F score over the Baseline approach by 10% for B1 and B2
and about 8% for B3. The F score obtained by SWMI+PWPA is comparable to the SWMI
approach. These results are along the lines of what we had observed when comparing the
accuracies of the predefined activities.

Going further we wanted to study which activities benefited by the proposed modifications.
For this we plotted the individual F score for each activity that is summarized in Figure 8.
We observed that ‘Leave Home’ and ‘Enter Home’ activities benefited the most by adopting
the SWMI+PWPA approach. This resulted in improving the F score on an average by 16%
for ‘Leave_Home’ and 41% for ‘Enter_Home’ activity across the three testbeds. The
significant improvement for ‘Enter_Home’ is understandable as it has a well defined past
context. The best performance for these activities was observed using the SWMI+PWPA
approach.

The variation in the performance of the different methods for each activity across the three
testbeds can also be observed from Figure 8. There are some activities like ‘sleep’, ‘personal
hygiene’ and ‘bathing’ that are recognized relatively better than the rest of the activities.
‘Leave Home’ is the most difficult activity to discern uniformly across all the three testbeds.
This can be attributed to the fact that these activities are performed in well-defined locations
and/or static time during the day. For example, the activity ‘bathing’ occurs in the morning

Krishnan and Cook Page 14

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

in the ‘bath tub’ region of the testbed. Each testbed has a specialized sensor that monitors
movement in the ‘bath tub’ region and therefore, acts as a robust marker for the activity.

An interesting observation can be made with respect to the ‘Eating’ activity. This activity
has high F score for testbeds B2 and B3, and very low values for B1. While this is a
universal activity performed by all the residents in all the three testbeds, the results suggests
that residents in testbeds B2 and B3 performed this activity in a structured manner, meaning
the activity ‘Eating’ consistently took place in the ‘Dining Room’. However the annotations
for testbed B1 suggest that the resident carried out the activity in other locations of the
apartment as a result of which it was often misclassified.

There is no significant change in the F scores for the ‘Other’ activity with different
approaches across all the three testbeds. Furthermore the F scores for this activity average
around 0.8, which is relatively high suggesting the ability of the current techniques to handle
the data from this class. However notice from Table 1 the skewness towards the number of
samples in the ‘Other’ class. Nearly 50% of the sensor windows belong to the ‘Other’ class.
Thus a high true positive rate can boost the F score for this class. We computed the
confusion matrix for each of the testbed using the approach that resulted in the best
classification accuracy of predefined activities(SWMI+PWPA) to study the impact of the
large ‘Other’ activity class. These are summarized in the form of normalized confusion
matrices presented in Figure 9. Normalization was performed row-wise. Blocks that are
darker imply less confusion between the corresponding activities and vice versa for the
lighter blocks. The lighter diagonal entires indicate a high true positive rate for each of the
activities. The large number of darkly shaded blocks dominating the rest of matrix except
the last column and diagonal entires suggests that the proposed technique results in low
confusion amongst the known set of activities. However, the last column of each of the three
confusion matrices is signficantly lighter than the rest of the matrix, indicating that many
sensor windows corresponding to known activities are being misclassified as ‘Other’
activity.

The proposed approach took on an average 4 days to learn the different activity models for
each technique. Though this value is high, it does not have an impact on real-time
recognition as training is typically performed offline. All the approaches were able to
classify test samples at the rate of more than 100 samples per second implying online
recognition.

7. Summary, Limitations and Future Work
In order to provide robust activity related information for real-world applications,
researchers need to design techniques to recognize activities in real-time from sensor data.
Activity recognition approaches have so far experimented on either a scripted or pre-
segmented sequence of sensor events related to activities. In this paper we propose and
evaluate a sliding window based approach to perform activity recognition in an on line or
streaming fashion; recognizing activities as and when new sensor events are recorded. To
account for the fact that different activities can be best characterized by different window
lengths of sensor events, we incorporate the time decay and mutual information based
weighting of sensor events within a window. Additional contextual information in the form
of the previous activity and the activity of the previous window is also appended to the
feature describing a window. These techniques are evaluated on three real-world smart home
datasets collected over a period of 6 months. While each of these modifications show
improvement over the baseline approach, we observe that combining mutual information
based weighting of sensor events and adding past contextual information into the feature
leads to best performance for streaming activity recognition.

Krishnan and Cook Page 15

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

While the recognition accuracies of this sliding window approach over the entire dataset is
lower than the sensor windows corresponding to only known activity sequences, it is a
promising step in the direction of developing online activity recognition. A limitation of the
proposed approach is its inefficiency in modeling the ‘Other’ activity class. The current
approach associates all sensor windows that do not correspond to any of the known activity
as a single ‘Other’ activity resulting in skewness in the data. The activity models learned
from this categorization are inherently biased due to this skewness as evidenced by the
results that show a high degree of confusion between windows corresponding to known
activities and the ‘Other’ activity. Reducing this confusion by exploring other ways of
modeling the ‘Other’ activity class is a future direction that we plan to pursue. In the current
evaluation methodology, the train and test sensor windows are drawn from the samples of
the same smart apartment. As part of the future work, we will also evaluate the effectiveness
of the proposed approach on train and test data being sampled from different smart
apartments.

Acknowledgments
We would like to acknowledge support for this project from the National Science Foundation (NSF grant
CNS-0852172), the National Institutes of Health (NIBIB grant R01EB009675), and the Life Sciences Discovery
Fund.

References
1. Cook D, Schmitter-Edgecombe M, Crandall A, Sanders C, Thomas B. Collecting and disseminating

smart home sensor data in the casas project. Proceedings of the CHI Workshop on Developing
Shared Home Behavior Datasets to Advance HCI and Ubiquitous Computing Research. 2009

2. Cook, DJ.; Youngblood, M.; Heierman, E.; Gopalratnam, K.; Rao, S.; Litvin, A.; Khawaja, F.
Mavhome: An agent-based smart home; Proceedings of the International Conference on Pervasive
Computing; 2003.

3. Intille S, Larson K, Tapia EM, Beaudin J, Kaushik P, Nawyn J, Rockinson R. Using a live-in
laboratory for ubiquitous computing research. Proceedings of Pervasive. 2006:349–365.

4. Krse, BJA.; Kasteren, TLMV.; Gibson, CHS.; den Dool, TV. Care: Context awareness in residences
for elderly; Proceedings of Sixth International Conference of the International Society for
Gerontechnology; 2008.

5. Kidd, CD.; Orr, RJ.; Abowd, GD.; Atkeson, CG.; Essa, IA.; Mac-Intyre, B.; Mynatt, E.; Starner,
TE.; Newstetter, W. The aware home: A living laboratory for ubiquitous computing research;
Proceedings of the Second International Workshop on Cooperative Buildings; 1999.

6. Vincent G, Velkoff V. The next four decades - the older population in the united states: 2010–2050.
US Census Bureau. 2010

7. House A, Fox-Grage W, Gibson M. State by state long term health care costs. AARP. 2009

8. Gross J. A grass-roots effort to grow old at home. The New York Times. 2007

9. Pollack ME, Brown LE, Colbry D, McCarthy CE, Orosz C, Peintner B, Ramakrishnan S,
Tsamardinos I. Autominder: an intelligent cognitive orthotic system for people with memory
impairment. Robotics and Autonomous Systems. 2003; 44:273–282.

10. Das, B.; Chen, C.; Seelye, A.; Cook, D. An automated prompting system for smart environments;
Proceedings of the International Conference on Smart Homes and Health Telematics; 2011.

11. Kim E, Helal A, Cook D. Human activity recognition and pattern discovery. IEEE Pervasive
Computing. 2010; 9:48–53. [PubMed: 21258659]

12. Maurer, U.; Smailagic, A.; Siewiorek, D.; Deisher, M. Activity recognition and monitoring using
multiple sensors on different body positions; Proceedings of the International Workshop on
Wearable and Implantable Body Sensor Networks; p. 113-116.

13. Krishnan, NC.; Panchanathan, S. Analysis of low resolution accelerometer data for human activity
recognition; International Conference on Acoustic Speech and Signal Processing, ICASSP; 2008.

Krishnan and Cook Page 16

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

14. Gyorbiro N, Fabian A, Homanyi G. An activity recognition system for mobile phones. Mobile
Networks and Applications. 2008; 14:82–91.

15. Kwapisz, JR.; Weiss, GM.; Moore, SA. Activity recognition using cell phone accelerometers;
Proceedings of the International workshop on Knowledge Discovery from Sensor Data; 2010. p.
10-18.

16. Krishnan, NC.; Colbry, D.; Juillard, C.; Panchanathan, S. Real time human activity recognition
using tri-axial accelerometers; Sensors Signals and Information Processing Workshop; 2008.

17. Logan, B.; Healey, J.; Philipose, M.; Tapia, EM.; Intille, S. A long-term evaluation of sensing
modalities for activity recognition; Proceedings of the International Conference on Ubiquitous
Computing; 2007.

18. van Kasteren, T.; Krose, B. Bayesian activity recognition in residence for elders; Proceedings of
the IET International Conference on Intelligent Environments; p. 209-212.

19. Cook D. Learning setting-generalized activity models for smart spaces. IEEE Intelligent Systems
(to appear).

20. Tapia EM, Intille SS, Larson K. Activity recognition in the home using simple and ubiquitous
sensors. Proceedings of Pervasive. 2004:158–175.

21. Liao, IL.; Fox, D.; Kautz, H. Location-based activity recognition using relational Markov
networks; Proceedings of the International Joint Conference on Artificial Intelligence; 2005. p.
773-778.

22. Philipose M, Fishkin KP, Perkowitz M, Patterson DJ, dieter Fox, Kautz H, Hahnel D. Inferring
activities from interactions with objects. IEEE Pervasive Computing. 2004; 3:50–57.

23. Palmes P, Pung HK, Gu T, Xue W, Chen S. Object relevance weight pattern mining for activity
recognition and segmentation. Pervasive and Mobile Computing. 2010; 6:43–57.

24. Hongeng S, Nevatia R, Bremond F. Videobased event recognition: activity representation and
probabilistic recognition methods. CVIU. 2004:129162.

25. Brdiczka O, Crowley JL, Reignier P. Learning situation models in a smart home. IEEE
Transactions on Systems, Man, and Cybernetics, Part B. 2009; 39

26. Foerster F, Smeja M, Fahrenberg J. Detection of posture and motion by accelerometry: a validation
study in ambulatory monitoring. Computers in Human Behavior. 1999; 15:571–583.

27. Alon J, Athitsos V, Yuan Q, Sclaroff S. A unified framework for gesture recognition and
spatiotemporal gesture segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 2008; 31:1685–1699. [PubMed: 19574627]

28. Bao L, Intille SS. Activity recognition from user-annotated acceleration data. Pervasive
Computing. 2004:1–17.

29. Ravi, N.; Dandekar, N.; Mysore, P.; Littman, ML. Activity recognition from accelerometer data;
IAAI’05: Proceedings of the 17th conference on Innovative applications of artificial intelligence;
2005. p. 1541-1546.

30. Amft O, Troester G. On-body sensing solutions for automatic dietary monitoring. IEEE Pervasive
Computing. 2009; 8:62–70.

31. Singla G, Cook D, Schmitter-Edgecombe M. Recognizing independent and joint activities among
multiple residents in smart environments. Ambient Intelligence and Humanized Computing
Journal. 2010; 1:57–63.

32. Lester, J.; Choudhury, T.; Kern, N.; Borriello, G.; Hannaford, B. A hybrid discriminative/
generative approach for modeling human activities; IJCAI’05: Proceedings of the 19th
international joint conference on Artificial intelligence; 2005. p. 766-772.

33. Quinlan, JR. C4.5: Programs for machine learning. Morgan Kaufmann Publishers; 1993.

34. Chen, C.; Das, B.; Cook, D. A data mining framework for activity recognition in smart
environments; Proceedings of the International Conference on Intelligent Environments; 2010.

35. Wang, S.; Pentney, W.; Popescu, AM.; Choudhury, T.; Philipose, M. Common sense based joint
training of human activity recognizers; IJCAI’07: Proceedings of the 20th international joint
conference on Artificial intelligence; 2007. p. 2237-2242.

36. Gu T, Chen S, Tao X, Lu J. An unsupervised approach to activity recognition and segmentation
based on object-use fingerprints. Data and Knowledge Engineering. 2010

Krishnan and Cook Page 17

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

37. Pei, J.; Han, J.; Asl, MB.; Pinto, H.; Chen, Q.; Dayal, U.; Hsu, MC. Prefixspan: Mining sequential
patterns efficiently by prefix projected pattern growth; Proceedings of International Conference on
Data Engineering; 2001. p. 215-226.

38. Rashidi P, Cook D, Holder L, Schmitter-Edgecombe M. Discovering activities to recognize and
track in a smart environment. IEEE Transactions on Knowledge and Data Engineering. 2011;
23:527–539. [PubMed: 21617742]

39. Wang L, Gu T, tao X, Lu J. A hierarhical approach to real-time activity recognition in body sensor
networks. Journal of Pervasive and Mobile Computing. 2011

40. Singla G, Cook D, Schmitter-Edgecombe M. Tracking activities in complex settings using smart
environment technologies. International Journal of BioSciences, Psychiatry and Technology. 2009;
1:25–35.

41. Hu, DH.; Pan, SJ.; Zheng, VW.; Liu, NN.; Yang, Q. Real world activity recognition with multiple
goals; Proceedings of the Tenth International Conference on Ubiquitous Computing; 2008. p.
30-39.

42. Junker H, Amft O, Lukowicz P, Troster G. Gesture spotting with body-worn inertial sensors to
detect user activities. Pattern Recognition. 2008; 41:2010–2024.

43. Kasteren TLMV, Englebienne G, Krse B. An activity monitoring system for elderly care using
generative and discriminative models. Journal Personal and Ubiquitous Computing, Special Issue
on Pervasive Technologies for Assistive Environments. 2010:489–498.

44. Cook D, Das SK. Smart environments: Technology, protocols and applications. 1995

45. Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM Transactions on
Intelligent Systems and Technology. 2011; 2:1–27.

46. Platt J. Probabilistic outputs for support vector machines and comparison to regularized likelihood
methods. Advances in Large Margin Classifiers. 1999:61–74.

Krishnan and Cook Page 18

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 1.
Illustration of the different approaches for stream processing. The different motion/door
sensor firings are depicted by the colored vertical lines. The color indicates the type and
location of the sensor that was switched on. The sensor windows are obtained using a sliding
window of length 10 sensor events.

Krishnan and Cook Page 19

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 2.
An example of a sequence of sensor events from one of the smart home testbeds.

Krishnan and Cook Page 20

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 3.
Illustration of the different dependencies when considering sensor based windows.

Krishnan and Cook Page 21

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 4.
Effect of χ on the weights.

Krishnan and Cook Page 22

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 5.
Illustration of the two phase learning process that includes past contextual information

Krishnan and Cook Page 23

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 6.
The occurrences of the different activities in each of the smart apartment.

Krishnan and Cook Page 24

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 7.
Mutual Information between every pair of sensors for the three smart apartment testbeds.

Krishnan and Cook Page 25

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 8.
F scores for the individual activities for each testbed as obtained by the different
approaches.

Krishnan and Cook Page 26

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Figure 9.
Normalized confusion matrix for each of the three testbeds. The labels are 1) Bathing, 2)
Bed to Toilet, 3) Cook, 4) Eat, 5) Enter home, 6) Leave home, 7) Personal Hygiene, 8)
Relax, 9) Sleep, 10) Take Medicine, 11) Work and 12) Other Activity.

Krishnan and Cook Page 27

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Krishnan and Cook Page 28

Table 1

Characteristics of the three datasets used for this study. It presents the number of samples/sensor events
associated with each activity for each testbed. Each testbed had 32 sensors deployed in the environment

Dataset B1 B2 B3

Bathing 7198 16177 5113

Bed to toilet 4168 14418 2806

Cook 101899 55080 44824

Eat 28687 24403 39380

Enter home 3685 2240 877

Leave home 4304 2457 1246

Personal Hygiene 40506 16949 37054

Relax 39929 38879 8207

Sleep 33212 10428 20676

Take Medicine 5388 7156 700

Work 0 0 108645

Other 391443 382422 249212

Total # of Activity Events 658,811 572,255 518,759

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Krishnan and Cook Page 29

Table 2

Notation and description of the different approaches experimented in this paper.

Notation Description

Baseline baseline approach of fixed length sliding windows

SWTW fixed length sensor windows with time based weighting of the sensor events

SWMI fixed length sensor windows with Mutual Information based weighting of sensor events

PWPA two level fixed length sensor window approach that includes the probabilities of activities in the previous window and the
previously occurred activity into the feature vector at the second level classification

DW sensor window approach where the window length is determined dynamically

TW fixed length time window approach. The window length is defined in terms of the time interval.

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Krishnan and Cook Page 30

Ta
bl

e
3

T
he

 c
la

ss
if

ic
at

io
n

ac
cu

ra
cy

 o
f

on
ly

 th
e

pr
ed

ef
in

ed
 a

ct
iv

iti
es

 f
or

 v
ar

yi
ng

 w
in

do
w

 le
ng

th
s.

 M
ed

 c
or

re
sp

on
ds

 to
 th

e
m

ed
ia

n
of

 o
ve

ra
ll

nu
m

be
r

of
 s

en
so

r
ev

en
ts

 o
f

al
l t

he
 a

ct
iv

iti
es

.

T
es

tb
ed

M
ed

10
20

30
50

B
1

47
0.

59
0.

58
0.

49
0.

43

B
2

42
0.

45
0.

47
0.

40
0.

43

B
3

64
0.

71
0.

68
0.

66
0.

65

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Krishnan and Cook Page 31

Ta
bl

e
4

T
he

 c
la

ss
if

ic
at

io
n

ac
cu

ra
cy

 o
f

on
ly

 th
e

pr
ed

ef
in

ed
 a

ct
iv

iti
es

 f
or

 v
ar

yi
ng

 v
al

ue
s

of
 χ

 f
or

 th
e

SW
T

W
 a

pp
ro

ac
h.

χ
=

1
2−1

2−2
2−3

2−6

B
1

0.
52

0.
55

0.
56

0.
62

0.
57

B
2

0.
41

0.
41

0.
42

0.
45

0.
44

B
3

0.
78

0.
78

0.
78

0.
77

0.
69

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Krishnan and Cook Page 32

Ta
bl

e
5

T
he

 c
la

ss
if

ic
at

io
n

ac
cu

ra
cy

 o
f

on
ly

 p
re

de
fi

ne
d

ac
tiv

iti
es

 u
si

ng
 th

e
T

W
 a

pp
ro

ac
h

w
ith

 v
ar

yi
ng

 ti
m

e
in

te
rv

al
 v

al
ue

s.

T
im

e
In

te
rv

al
 =

5s
10

s
15

s
30

s
60

s

B
1

0.
59

0.
59

0.
59

0.
60

0.
58

B
2

0.
50

0.
51

0.
52

0.
55

0.
54

B
3

0.
76

0.
76

0.
75

0.
74

0.
74

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Krishnan and Cook Page 33

Table 6

Classification accuracy for the known set of activities obtained using the different approaches. The value in
the parenthesis refers to the average F Score obtained across all activities.

Dataset B1 B2 B3

Baseline 0.58(0.51) 0.48(0.49) 0.67(0.40)

SWTW 0.62(0.55) 0.45(0.55) 0.78(0.48)

TW 0.59(0.53) 0.52(0.54) 0.75(0.50)

SWMI 0.64(0.60) 0.54(0.57) 0.75(0.51)

SWTW+SWMI 0.61(0.54) 0.44(0.52) 0.78(0.47)

PWPA 0.62(0.55) 0.50(0.51) 0.72(0.45)

SWMI+PWPA 0.65(0.61) 0.56(0.61) 0.75(0.48)

DW 0.59(0.58) 0.55(0.58) 0.72(0.56)

Pervasive Mob Comput. Author manuscript; available in PMC 2015 February 01.

