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Abstract

A noise map facilitates the monitoring of environmental noise pollution in urban
areas. It can raise citizen awareness of noise pollution levels, and aid in the
development of mitigation strategies to cope with the adverse effects. However,
state-of-the-art techniques for rendering noise maps in urban areas are expensive
and rarely updated (for months or even years), as they rely on population and
traffic models rather than on real data. Smart phone based urban sensing can
be leveraged to create an open and inexpensive platform for rendering up-to-
date noise maps. In this paper, we present the design, implementation and
performance evaluation of an end-to-end, context-aware, noise mapping system
called Ear-Phone.

Ear-Phone investigates the use of different interpolation and regularization
methods to address the fundamental problem of recovering the noise map from
incomplete and random samples obtained by crowdsourcing data collection.
Ear-Phone, implemented on Nokia N95, N97 and HP iPAQ, HTC One mo-
bile devices, also addresses the challenge of collecting accurate noise pollution
readings at a mobile device. A major challenge of using smart phones as sensors
is that even at the same location, the sensor reading may vary depending on the
phone orientation and user context (for example, whether the user is carrying the
phone in a bag or holding it in her palm). To address this problem, Ear-Phone
leverages context-aware sensing. We develop classifiers to accurately determine
the phone sensing context. Upon context discovery, Ear-Phone automatically
decides whether to sense or not. Ear-phone also implements in-situ calibration
which performs simple calibration that can be carried out without any technical
skills whatsoever required on the user’s part. Extensive simulations and outdoor
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experiments demonstrate that Ear-Phone is a feasible platform to assess noise
pollution, incurring reasonable system resource consumption at mobile devices
and providing high reconstruction accuracy of the noise map.

Keywords: Noise map reconstruction, participatory urban sensing,
context-aware sensing

1. Introduction

At present, a large number of people around the world are exposed to high
levels of noise pollution, which can cause serious problems ranging from hearing
impairment to negatively influencing productivity and social behavior [1]. As an
abatement strategy, a number of countries, such as the United Kingdom [2] and
Germany [3], have started monitoring noise pollution. These countries typically
use a noise map to assess noise pollution levels. A noise map is like a weather
map for noise but it shows areas which are relatively louder or quieter [2]. It is
computed using simulations based on inputs such as traffic flow data, road or rail
type, and vehicle type. Since the collection of such input data is very expensive,
these maps can be updated only after a long period of time (e.g. 5 years for
UK [2]). To alleviate this problem, a recent study [4] proposes the deployment
of wireless sensor networks to monitor noise pollution. Wireless sensor networks
can certainly eliminate the requirement of sending acoustic engineers to collect
real noise measurements, but the deployment cost of a dedicated sensor network
in a large urban space will also be prohibitively expensive.

In this paper, we instead propose an opportunistic sensing approach, where
noise level data contributed by pedestrians’ mobile phones are used for moni-
toring environmental noise, especially roadside ambient noise1 . The key idea in
opportunistic sensing [5] ) is to “crowdsource” the collection of environmental
data in urban spaces to people, who carry smart phones equipped with sensors
and Global Positioning System (GPS) receivers. Due to the ubiquity of mo-
bile phones, the proposed approach can offer a large spatial-temporal sensing
coverage at a small cost. Therefore, a noise map based on participatory data
collection can be updated within hours or days compared to months or years,
making information provided by such a noise map significantly more current
than that provided by traditional approaches.

It is non-trivial to build a noise pollution monitoring system based on mobile
phones. Mobile phones are intended for communication, rather than for acoustic
signal processing.2 To be credible, noise pollution data collected on mobile
phones should be comparable in accuracy to commercial sound level meters
used to measure noise pollution. For practical deployability, a detailed analysis
must be carried out to find out the life of calibration offset, furthermore, an

1We focus on roads because typically noise pollution is most severe on busy roads.
2For example, devices such as the Nokia N95, N97 or HP iPAQ do not support floating-

point arithmetic, which must be emulated with fixed point operations.
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in-situ calibration technique is inevitably required, which can be easily carried
out by non-technical users whenever needed.

Since a people-centric noise monitoring system relies on volunteers contribut-
ing noise pollution measurements, these measurements can only come from the
place and time where the volunteers are present. Note that volunteers may
prioritize the use of the microphone on their mobile phones for conversation.
Furthermore, they may choose to collect data only when the phone has suffi-
cient energy. Consequently, samples collected from mobile phones are typically
randomly distributed in space and time, and are incomplete. To develop a use-
ful noise pollution monitoring application, the noise map need to be recovered
from random and incomplete samples obtained via crowdsourcing.

It is also unrealistic to expect that volunteers will always carry the phones
in their palm, with the microphones correctly positioned for sampling ambient
noise. Research conducted by Nokia [6] suggests that people tend to carry the
mobile phone in their trouser pockets, bags, belt cases and in their palm. In
this paper we use the term “sensing context” to refer to the phone carrying
locations. Because volunteers may contribute samples when the phone is in
different sensing contexts, it is necessary to investigate if the sensing context
has a significant impact on the noise level recorded by the phone and address
it if so. In this paper, we address these challenges. Our key contributions are
summarized as follows:

1. We present the design and implementation of an end-to-end noise mapping
system, which we name Ear-Phone, to generate the noise map of an area
using people-centric urban sensing. The data collection method of this
new noise mapping system is expected to cost less than the traditional
noise monitoring systems.

2. We study the impact of sensing context on the measured noise level. We
find that when the phone is held in palm, the deviation from ground truth
in the noise level is insignificant, but the deviation is quite significant
when the phone is placed in trousers’ pocket or in a bag. To enable data
collection only in appropriate sensing contexts, we develop an energy-
efficient classification algorithm, which detects the sensing context with
84% accuracy.

3. We evaluate Ear-Phone with extensive simulations and real-world outdoor
experiments. The results based on our datasets show that (depending on
the compressibility of the noise profiles) Ear-Phone can offer an accuracy
of up to 3 dB3 while incurring affordable resource consumption.

The rest of the paper is organized as follows. In the next section, Section 2,
we contrast our work with the existing literature. We then describe the Ear-
Phone architecture in Section 3, followed by the system design in Section 4.
Then, we evaluate Ear-Phone with both outdoor experiments (Section 5) and

3A difference of 3 dB is barely perceptible by human ear [7].
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extensive simulations (Section 6). Finally, we conclude in Section 8 after a
discussion in Section 7.

2. Related Work

We contrast Ear-Phone with the existing literature on the basis of the con-
tributions claimed in the paper. To facilitate the comparison, we discuss the
literature in four different areas: mobile phones for noise mapping in general,
noise reconstruction algorithms, context classification algorithms, and finally,
microphone (mobile phone’s) calibration.

Work conducted by Santini et al. [8], is one of the very first work, where
mobile phones were used for assessing environmental noise. The authors sur-
vey technical issues influencing the design and implementation of systems that
use mobile phones to assess noise pollution, however, their focus is not on de-
veloping end-to-end system and reconstructing noise map from incomplete and
random samples. In [9] the authors present a noise mapping system, however,
the proposed work is at very preliminary stage as it does not apply A-weighting
on the equivalent noise level. Furthermore, we could not find any information
about the accuracy of the phone based sound level meter. Noisetube [10, 11]
and da sense [9] are recently developed systems to generate the noise map by
aggregating measurements collected from public. However, we could not find
any details on the data aggregation methods they use in these papers; therefore,
we cannot contrast EarPhone with their work.

Recent research in plenacoustic functions [12] studies the sampling require-
ment of an acoustic field. While the work in [12] deals with a continuous signal,
our work considers a discrete signal over time and space. Specifically, we con-
sider the equivalent noise level over a physical area and time duration. Work
presented in [13] studies the compressibility of acoustic signals in both spatial
and temporal dimensions. This work is based on a single acoustic source in a
laboratory setting, where the authors reconstruct the pressure waveform. This
is different from our focus on studying the compressibility of temporal-spatial
field of noise levels in an outdoor environment, which are influenced by mul-
tiple acoustic sources. Reconstruction using `1 norm minimization has been
used in various application domains, e.g. in [14], methods involving `1-norm
minimization have been proposed for estimating unknown “spatial” fields, such
as facies distributions or porosity maps. Our work is different as we consider
to reconstruct the temporal-spatial noise map. Recently, `1-minimization has
also been used in some other wireless sensor network applications. For example,
[15] uses `1-minimization for ranging based localization. The authors use `1-
minimization for classification, whereas we use `1-minimization for reconstruc-
tion. `1-minimization has also been used in [16]. This paper is centred around
proposing a sparsifying basis function where the moisture signal has sparse rep-
resentation. However, we show that environmental noise is sufficiently sparse in
standard DCT basis and focus on reconstruction.

Phone sensors have been used to detect the context of the person [17], how-
ever, the contexts used in the paper are different and defined in terms of deter-
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mining the user activity such as running, dancing, etc. In contrast, our work
defines context as the locations people tend to carry mobile phone e.g. hand,
bag, or pocket. In [18], similar to our work, authors present some preliminary
results on classification of phone sensing contexts. The authors use audio modal-
ities to detect in or out of pocket context, whereas we use the accelerometer and
proximity sensor for context classification. Recently, authors in [19] used special
hardware capacitive sensing grid to improve the accuracy of context detection.
However, we wanted to use the existing sensors on the phone for automatic con-
text detection. In addition, we have taken an analytical approach to determine
the features for different sensing modalities, therefore, we have achieved slightly
higher accuracy compared to the proposed method. For example, fusing the
accelerometer and the proximity sensor data we achieve 84% accuracy, whereas
the authors achieve 83% accuracy for similar sensor combination.

Hondt et al. in [20] have put numerous efforts on calibration by calibrating
each phone independently in an anechoic chamber. As we discuss later in the
paper, the calibration offset of each phone is different. Our goal is to study
this calibration offset and introduce in-situ calibration which can be operated
without requiring special skills on the user’s part.

3. Ear-Phone Architecture

In this section, we provide an overview of Ear-Phone. A detailed description
of the system components is presented in Section 4.

The overall Ear-Phone architecture, depicted in Fig. 1 consists of a mobile
phone component and a central server component. Noise levels are assessed
on the mobile phones and then transmitted to the central server. The central
server reconstructs the noise map from the available noise measurements. Note
that reconstruction is required because the urban sensing framework cannot
guarantee that noise measurements are available at all times and locations.

Let us begin with a user who is carrying a mobile phone. We call the
Ear-Phone application on the mobile phone a MobSLM, where SLM stands
for “sound level meter” which is the instrument used by acoustic engineers to
measure environmental noise level. When the mobile phone is not used for
conversation, the MobSLM is turned on. This is implemented through a call
detection module (see Section 4). When turned on, the context discovery module
first discovers the sensing context (such as hand, pocket or bag) and decides
whether to trigger the speed detection module. Note that we record noise level
only for certain sensing contexts because only certain contexts provide accurate
noise measurements (see Section 5.2.1 for details). The context discovery module
does not run continuously, instead it runs at a regular interval. In Section 5.3
we determine an optimal execution interval for the context classifier.

Upon activation, the context discovery module first uses the GPS signal
to determine whether the user is outdoor. If the user is outdoor, the context
discovery module invokes the signal processing module to start recording noise
levels. If there is a change in the context or speed and location, the recording
decision is recalculated.

5
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Figure 1: Ear-Phone Architecture.

When triggered, the signal processing module starts computing a loudness
characteristic known as the equivalent noise level (LAeq,T) over a time interval
T from the raw acoustic samples collected by the microphone over the corre-
sponding time interval. The computed noise level is further tagged with the
GPS coordinates (Latitude (lat) and Longitude (lon) ) and system time before
being stored in the phone memory. The stored records 〈 time-stamp, lat, lon,
LAeq,T〉 are uploaded to the central server when the mobile phone detects an
open WiFi access point. 3G services on mobile phones can also be used to
upload data.

The communication manager at the central server waits for user transmis-
sions. When it receives user data, it converts the GPS coordinates of a record
to a Military Grid Reference System (MGRS, see Section 4.5 for the detailed
description) grid index and stores the information 〈 time, grid index, LAeq,T 〉
in a data repository. Reconstruction is performed at (predefined) periodic in-
tervals4. When triggered, the reconstruction module is invoked to reconstruct
the missing data. The reconstructed data is then stored in the data repository.

A query from an end user (e.g. what is the noise level on Oxford Street at
5pm on 28 October 2009?) is processed by a query manager at the central server.

4Note that in this paper we primarily focus on the accuracy of the noise map obtained
from participatory sensing. Determination of a suitable update interval is left for future work.
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The location information (e.g. Oxford Street) of the query is first resolved into
grid indices and the reconstructed data associated with those grid indices is
fetched from the data repository. Then, the grid indices are converted back to
GPS coordinates and the corresponding noise levels are overlaid on a web-based
map before being displayed to the end user.

4. System Components

In this section, we describe the major components of Ear-Phone in detail.

4.1. Call Detection Module

This module detects whether there is an active call in progress. We use
Python S60 to query the Symbian phone system via a module called telephone.
This module returns the state of the phone using the function stateInforma-
tion. The Ear-Phone module is invoked when the phone is in idle state, which
happens when the following expression is TRUE

stateInformation == telephone.EStatusIdle.

If the phone is in the idle state, context classifier (see Section 4.4.3) is invoked
by the call detection module, otherwise it checks the phone status at a regular
interval until the phone becomes idle.

4.2. Signal Processing Module

The aim of the signal processing module is to measure the environmental
noise as an A-weighted equivalent continuous sound level or LAeq,T. The In-
ternational standard “IEC 61672:2003” defines 5 different frequency weightings
(called A, B, C, D and Z) for measuring sound pressure level. Among these,
A-weighting is now commonly used for the measurement of environmental noise
and industrial noise, as well as when assessing potential hearing damage and
other noise health effects at all sound levels [21].

Measured in A-weighted decibels, LAeq,T captures the A-weighted sound
pressure level of a constant noise source over the time interval T that has the
same acoustic energy as the actual varying sound pressure level over the same
interval. The A-weighted equivalent sound level LAeq,T in time interval T is
given by

LAeq,T = 10 log10(
1

T

∫ T

0

(vA(t))2dt︸ ︷︷ ︸
v̄A(T )

) + ∆ (1)

where vA(t) is the result of passing the induced voltage v(t) in the microphone
through an A-weighting filter and ∆ is a constant offset determined by calibrat-
ing the microphone against a standard sound level meter. Since the sound level
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meter supports several sampling rates and observation intervals, average signal
power (weighted average) is used to compute LAeq,T.

To compute vA(t), we design a tenth-order digital filter (coefficients of the
filter are given in Table 8 in the Appendix.) whose frequency response matches
with that of A weighting over the range 0–8 kHz. This range is chosen because
the acoustic standard, IEC651 Type 2 SLM [22], requires measurement of envi-
ronmental noise between 0 and 8 kHz. For details on the algorithm to compute
LAeq,T, please refer to [23]. In order to safeguard user privacy, after the signal
processing module computes the equivalent noise level, the audio streams are
immediately deleted from the phone.

4.3. Speech Detection module
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Figure 2: Frequency spectrum of voice+noise and noise alone.

Since Ear-Phone will be used while the mobile phone users go about their
own business, the microphone on the mobile phone unit may pick up ambient
noise, which Ear-Phone wants to measure, but also conversations that are taking
place around the phone. However, conversations should not be considered as an
ambient noise, especially along the roadside. It will only increase the noise level
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locally but will not contribute significantly to the ambient noise. Ear-Phone
includes a speech detection module to detect whether the sound it picks up is
speech, and if so, the samples are discarded.

The speech detection module makes use of spectral characteristics to clas-
sify speech from noise. Figure 2(a) and 2(b) show the frequency spectrum of,
respectively, traffic noise with simultaneous conversation and traffic noise alone.
These plots are generated from Ear-Phone measurements using two phones:
one phone was with a couple engaged in conversation along roadside, the other
phone was sitting on a bus stop bench, 5 meters away from the first phone. It
can be seen that the combined voice and traffic spectrogram is quite different
from traffic noise spectrum. We tested three different features: mean, median
and variance of the amplitude of the spectrogram within 0-4kHz and found that
median gave the best results to detect whether a conversation is present. Figure
2(c) shows the median amplitude in 0-4kHz for both voice with traffic noise and
traffic noise alone for 5 different experiments.

4.4. Context Discovery Module

The usability of the sound data collected from the mobile phone depends
on the phone sensing context, that is where the phone is being carried. An
extensive survey [6] conducted by Nokia which queried people from over 11
different countries reports that the trouser’s pocket, bag and hand are three
common places to carry mobile phone. This study also identifies belt-case as
a popular choice for carrying mobile phone. However, due to the increased
size (width and height) of the latest smart phones, it is impractical to carry
the phone in belt-case. In fact, belt-cases are not commercially available for
many latest smart phones. We therefore consider hand, pocket and bag as three
possible sensing contexts.

Later in Section 5.2, we report that the best quality data can be recorded
when the phone is held in the palm. The equivalent noise level recorded in
trousers’ pocket and bag has a large deviation from the ground truth and is
therefore not useful. We therefore cluster the sensing contexts into two groups
- (i) hand (ii) pocket or bag. We seek to develop a context classifier that can
distinguish these two groups.

4.4.1. Feature Selection

We investigate the feasibility of using the data from 3-axis accelerometer,
the proximity sensor and the light sensor as features for context classification.
We recruit 10 subjects to collect readings from these sensors while keeping the
phone in different sensing contexts. Each subject was given one Android phone
- “HTC One” for data collection. While walking along the street each subject
kept the phone in various sensing contexts in the order reported in Fig. 3 to
carry the phone. In each sensing context the phone stayed for 60 seconds. The
subjects were given stop watch to control the time.

We normalize various sensor readings in non-overlapping bands to represent
them in one figure (Fig 4) without much cluttering. This plot is representative
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Figure 4: Plot of various sensor data normalised in non-overlapping bands (y
axis values). x,y and z represent the three axis of the accelrometer. “prx” and
“lgt” represent the proximity and light sensor respectively.

of all 10 subjects. Based on the response of various sensors, we decide to exclude
the light sensor as it mostly remains unchanged, except some initial variation at
the start of the experiment. We nominate the accelerometer and the proximity
sensor readings for context classification.

Accelerometer Feature In order to use accelerometer data for context
classification, we first investigate the distribution of various axis readings in
various contexts. For various sensing contexts, we plot the histogram of various
axes and then find the best fit for the histogram. For choose to fit Normal
distribution because of its generality. We observe that the z-axis data fits normal
distribution for various contexts. We also observe that the mean for various
contexts is different, therefore, mean of “z-axis” is our primary accelerometer
feature. However, we also study other features, such as, various percentiles and
median for classification.

In Fig. 6, for various axes and for various sensing contexts we plot the values
of various accelerometer features. The idea is to identify feature(s) that shows
clear distinction amongst groups. We find that features from x and y axis data
do not reveal any clear distinctions. However, features from z axis data show
some clear distinctions. For example, we draw a blue dotted line which suggests
a threshold for hand sensing context. Precisely, “mean” value of z-axis readings
above this threshold indicate the hand sensing context and mean value below
this threshold indicate bag or pocket sensing context. Similarly, the orange and
magenta dotted lines suggest a threshold for hand sensing context while using
75 percentile and median, respectively.
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We further plot a scatter including all the 10 participants data for various
accelerometer features in Fig 7(a) to Fig. 7(c). For “mean”, the data points
from hand sensing context and pocket or bag sensing contexts are well separable,
however, for median and 75 percentile, the data points from the three sensing
contexts are overlapped.

Proximity Sensor Feature In order to extract a feature from the prox-
imity sensor data, we refer back to Fig. 4. The number of times the proximity
sensor is being triggered is a distinctive feature among hand and pocket or bag.
We plot the number of times the proximity sensor is triggered in various sensing
contexts for all ten subjects in Fig. 7(d). We observe a good separation between
hand sensing context and pocket or bag sensing context.

In Section 5.3, we report the classification performance of proximity is poor
while we use it to classify various sensing contexts. However, further investiga-
tion reveals that applying a threshold on the number of firings we can improve
the classification performance. In addition, we also observe that the proxim-
ity sensor is particularly suitable to determine the hand sensing context, not
the bag and pocket sensing contexts. We therefore, apply a threshold on the
proximity sensor data and apply it to only determine hand sensing context.

Sensor Fusion We also investigate the feasibility of fusing the classifica-
tion results form accelerometer sensor and the proximity sensor. In the fusion
mechanism, we override the classification decision taken from the accelerometer
sensor data with the classification decision taken by the proximity sensor data,
if the context is classified (by proximity sensor) as hand sensing context. How-
ever, for rest of the sensing contexts the proximity sensor data is not accounted
for classification.

4.4.2. Context Classification

We use k-nearest neighbour (kNN) algorithm for context classification. We
choose kNN as it is light weight compared to support vector classification, yet
produce good classification accuracy. We use leave-one-out cross fold validation
for calculating the classification accuracy.

4.4.3. Automatic Context Switch Detection

The context classifier runs in the background on the phone. We find that
it is wasteful to run the classifier every second. We conduct experiments to
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Figure 6: Acceleromter feature for context classification.
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across all 10 subjects.

determine an interval (∆) for executing the context classifier. We describe these
experiments in Section ??. The context switch detection process is presented in
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Algorithm 1.

ALGORITHM 1: Automatic Context Switch Detection
Data: Acceleromter and proximity sensor feed
Result: Senisng context
while The phone is identified in outdoor do

- acquire ∆ seconds of accelerometer z-axis and proximity sensor
reading and compute mean and number of prolixity sensor trggers;
- use kNN to classify the sensing context using accelerometer data
and use threshold on the proximity sensor data to determine hand
sensing context;
if proximity sensor determines “in hand” then

context = “in hand”;
else

context = context determined by the accelerometer;
end

end

4.5. GPS, MGRS conversions

The reasons for approximating GPS with square areas are two fold. First,
computing the LAeq,T for every possible GPS coordinate is impractical because
there are infinite GPS coordinates. Secondly, the acoustic standards for monitor-
ing noise pollution recommend measuring the pollution in square areas (Section
5.3.1(a) in [24]) assuming that the noise level is constant over that area. We fol-
lowed the Australian acoustic standard to determine an appropriate size of the
measuring square. We assume that the volunteers walk along the pavement (or
sidewalk) and measure ambient noise on the street level, which is the aggregate
of the noise generated by multiple moving vehicles. The Australian acoustic
standard restricts the noise level difference between two adjacent grids to be
no more than 5 dB (Section 5.3.2 in [24]). Therefore, we conducted a number
of experiments where we put a MobSLM at a static position and put another
MobSLM at varying distances from the first MobSLM and recorded the differ-
ence in LAeq,1s readings for each distance. For grid sizes of 10 m × 10 m, 20 m
× 20 m, 30 m × 30 m, 40 m × 40 m and 50 m × 50 m, the corresponding noise
level differences between adjacent grids were found to be 2.26± .06, 3.82± .05,
3.86±.03, 4.11±.02 and 4.97±.03 dB, respectively. We can therefore use square
grids which are less than or equal to 50 meters in each dimension. In order to
minimize the error, we chose to use a grid size of 10 m × 10 m.

To approximate GPS with grids, we use the Military Grid Reference System
(MGRS) [25]. MGRS can divide the earth surface into squares of 100 m × 100
m, 10 m × 10 m or 1 m × 1 m. As we used a grid size of 10 m×10 m, we can sim-
ply plug in the MGRS grid reference system without any further modification,
might be required if we would have used other reference systems, such as, UTM
(Universal Transverse Mercator), UPS (Universal Polar Stereographic) [26] etc.
Equivalent noise level LAeq,1s can be recorded at any point (A) of a MGRS grid.
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Figure 8: Reconstruction Problem.

We assume that at any point in the grid, the value of LAeq,1s would be same as
of point A.

4.6. Signal Reconstruction Module

In the participatory noise mapping system, the availability of samples is not
strictly guaranteed. The missing samples need to be reconstructed to recover
the complete noise map. We will use Fig. 8 as an illustrative example to help
with the explanation. In this example, we assume the road segment consists of
four MGRS grids of resolution 10m × 10m, which are labelled by A, B, C and D.
We consider a two second (10:00:01 and 10:00:02) noise from spanning over these
four grids. If there is a MobSLM returning noise measurement from each MGRS
grid every second, then there is no missing data. However, this is not always
possible in participatory noise mapping. In our example, the question marks
indicate missing data points. The reconstruction problem refers to recovering
the complete noise map from these incomplete samples.

For computation purpose, we use a vector to represent the output of the
entire noise map. For our example, we can equivalently represent the noise map
by a vector with 8 elements where each element is the noise level in a MGRS
grid. The middle and rightmost drawings in Fig. 8 explains how we derive the
vector from the noise map.

In order to recover the missing LAeq,1s samples we investigate the feasibil-
ity of four different reconstruction algorithms which include basic interpolation
techniques such as, linear interpolation and nearest neighbor interpolation and
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advanced interpolation such as, Gaussian process interpolation (widely known
as Kriging) and regularization technique namely `1-norm minimization. We
study algorithms with different capability so that we can select the appropriate
one for our problem. Below we provide a brief description of these algorithms
and discuss how we apply them to solve the noise map reconstruction problem.

4.6.1. Linear Interpolation

We assume that noise levels from n MGRS grids are available. Let us denote
the available data by (gi, ti, xi) where xi is the noise level in grid gi at time ti
with i = 1, ..., n. Since noise level is specific to time and location, we assume
that xi is a multivariate linear function of gi and ti as follows:

xi = agi + bti + c, i = 1, .., n (2)

and use least-squares to determine the coefficients a, b and c. Missing mea-
surements are then estimated using (2). For example, if noise measurement
in grid gn+1 at time tn+1 is not available, we estimate that by evaluating
âgn+1 + b̂tn+1 + ĉ where â, b̂ and ĉ are the least-squares estimates of a, b and c.

4.6.2. Nearest Neighbor interpolation

Let us assume that the noise samples are available at the grid time pair
{(g1, t1), (g2, t2), , (gn, tn)} and the noise level at the grid time pair (gn+1, tn+1)
is unknown. The Nearest Neighbour Interpolation (NNI) algorithm assigns the
noise level of grid time pair (gi, ti) to (gn+1, tn+1), if

i∗ = arg min
i=1,,n

dist((gi, ti), (gn+1, tn+1)),

where dist((gi, ti), (gn+1, tn+1)) =
√

a∆g2 + b∆t2. Here ∆g is the distance
between the centres of grids gi and gn+1 divided by spatial resolution, and
∆t = ti − tn+1. Similar to linear interpolation, we use least square to estimate
the coefficients a and b.

4.6.3. Gaussian process Interpolation

Gaussian process Interpolation (GPI) [27, 28] performs little bit differently
from NNI. Let us consider that the noise level at grid time pair (gi, ti) is denoted
by xi. In order to recover an unknown noise level xi+1, GPI performs the
following steps.

Let us define e a number of notation first. Let x̄ be the column vector
[x1, x2, ...., xn]T , µn be the mean x̄, Σn be an n-by-n matrix whose (i, j)-element
(where 1 ≤ i, j ≤ n) is the covariance between xi and xj , µn+1 be the mean of
xn+1 without the knowledge of x, k be a n×1 column vector whose i-th element
is the covariance between xi and xn+1, and σn+1 be the auto-covariance of xn+1

without the knowledge of x̄. The aim of the Gaussian process interpolation is
to use the knowledge of the available data x̄ to estimate xn+1. Without the
knowledge of x̄, xn+1 is Gaussian distributed with mean µn+1 and covariance
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σn+1. With the knowledge of x̄, xn+1 is Gaussian distributed with mean µn+1|x
and covariance σn+1|x, where

µn+1|x = µn+1 + kT Σn(x̄− µn) (3)

σn+1|x = σn+1 − kT Σnk (4)

One can readily see that Gaussian process interpolation uses the knowledge of
x̄ to reduce the variance of the estimate of xn+1.

4.6.4. `1-norm minimization

The `1-norm minimization method is useful when the underlying data is
sparse or compressible. In order to explain the concept of sparsity and com-
pressibility, we need to introduce the notion of transform basis. As earlier, let
us represent the noise level data by a vector x with N elements. A transform
basis Ψ can be represented by an orthonormal N × N matrix whose columns
form the basis vectors. Given the transform basis Ψ, let v be an equivalent rep-
resentation of x in this basis, where x = Ψv. The vector x is said to be sparse
(resp. compressible), if its equivalent representation v in Ψ has a small number
non-zero elements. In other words, let S be the number of non-zero elements in
v, then the vector x is sparse (compressible) if Ψ if S � N .

Basis selection is important for successful `1 recovery, since a good basis of-
fers better compressibility and thus better recovery. In Section 9.1, we use noise
maps collected from real-life experiments to show that they have compressible
representations in the Discrete Cosine Transform (DCT) basis. Hence we use
DCT as a transform.

For the `1-norm minimization method, we also represent the noise map as
a vector x. We assume that M (< N) elements of the vector x are known.
We denote the indices of these known elements by i1, i2, ..., iM . Let x̄ be the
M × 1-vector that contains the i1-th, i2-th, ..., iM -th elements of x. Let also Ψ̄
be the M ×N matrix consisting of the i1-th, i2-th, ..., iM -th rows of Ψ. Let ṽ
denote an unknown vector with N elements. If the vector ṽ is chosen such that
x̄ = Ψ̄ṽ, then we say that this ṽ is consistent with the available data in x. This
is because, for any such ṽ, the i1-th, i2-th, ..., iM -th elements of Ψṽ are equal to
the i1-th, i2-th, ..., iM -th elements of x. Since M < N , there are many choices
of ṽ that are consistent with the data in x and our goal is to choose the sparest
ṽ. Since the `0 norm of a vector returns the number of non-zero element in that
vector, we can express our problem as an optimization problem:

arg min
ṽ
||ṽ||0, s.t. x̄ = Ψ̄ṽ (5)

Unfortunately, the problem (5) is NP hard. A computationally viable solution
which approximates the solution given by `0-norm, uses the `1-norm minimiza-
tion [29] and is expressed as:

arg min
ṽ
||ṽ||1, s.t. x̄ = Ψ̄ṽ (6)

Whether the recovery of a signal x from x̄ succeeds depends on the choice of M .
Typically, the signal is reconstructed asymptotically whenM > O(S. log4N/M).
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5. Implementation and Evaluation

In this section, we first describe the implementation details of various Ear-
Phone component. Then, we evaluate the system performance in terms of
measurement accuracy( noise-level), classification performance, resource (CPU,
RAM and energy) usage and noise-map generation.

5.1. System Implementation

We have implemented the mobile phone system components on five hardware
platforms - Nokia N95, Nokia N96, Nokia N97, HTC One and Google Nexus
4S. We chose Java for the Nokia phones and android for the others. Note
that Android supports most of the Java libraries, however, there are a number
of differences between these two programming languages. Such as, Java code
compiles to Java bytecode, while Android code compiles in to Davilk opcode
etc. We implement the context classification module on the Anrdoid phones.
Various mobile components are implemented as separate application threads
(e.g. signal processing thread) in Java.

The server component consists of a MySQL database and PHP server-side
scripting. We used the MySQL database to store both the collected noise level
data and the reconstructed noise level data. We used a PHP script to imple-
ment the server-side modules such as the communication manager, the GPS to
MGRS converter and the query manager. The signal reconstruction module was
implemented using Matlab.

5.2. Calibration and Measurement Accuracy

Recall from Section 4 (Eq.(1)) that calibration offset ∆ needs to be estimated
to calculate the correct LAeq,T. Comparing the sound level responses of different
phone microphones with that of a commercial sound level meter, Center-322
SLM [30], we observe that even for the same phone model, the calibration offset
varies from phone to phone. For example, as shown in Fig. ??, the calibration
offset for phone 2, 3 and 4 are different (just compare day 1), although they are
all Nokia N97. We therefore, introduce and implement an in-situ or on-phone
calibration system. In-situ calibration is used to determine a calibration offset
specific to each phone.

We construct a calibration tone using freely available Audacity [31] software.
The calibration tone is made up of a series of 1 kHz sinusodial tones5 (span-
ning the complete amplitude scale: 0.20 to 1) and silence. Note that we change
amplitude and add silence to obtain a robust offset. The total length of the cal-
ibration tone is five minutes, consisting of five segments of one minute duration.
The first segment is comprised of 30 seconds of Sine tone with amplitude 0.20
followed by 30 seconds of silence. The amplitude of sine tone increases by 0.2
units in consecutive segments.

5We use a pure tone for calibration, since standard calibrattion process uses one single
frequency, namely 1 kHz.
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A user invokes the calibration process by pressing the calibrate button on
the Ear-Phone interface (see Fig. ??). We suggest to leave the phone in a quite
room for best performance of the calibration. A convenient time can be chosen
on the interface when the user wants the calibration process to start. When
calibration starts, the phone plays the calibration tone and at the same time
makes a recording. At the end of the calibration tone, mean absolute difference
between the recorded and reference tone sound levels is calculated and used as
the offset.

Figure 9: Changes of calibration offset.
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Figure 10: Measurement accuracy of mobile phone in different sensing contexts
during (a) peak (b) off-peak hour.

5.2.1. Measurement Accuracy in Different Sensing Contexts

In the above calibration experiments, we compute the calibration offset ∆
and use it to calculate the LAeq,T. We then conduct experiments to investigate
how the positioning of the phone affects the measurement accuracy. In these ex-
periments, we placed four MobSLM in three different locations: palm, trouser’s
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Table 1: Measurement accuracy (mean) in various sensing contexts. Experiment
time is 10 minutes. For both pocket we present two set of results: for “lead
removed”, we remove the time lead before computing the mean-square error
while “with lead” is simply the mean-square error. All results are reported in
dBA.

MobSLM hand MobSLM pocket MobSLM bag

lead removed with lead

Peak 2.5 3.12 4.01 4.91

Off-peak 2.96 3.11 3.89 4.68

pocket and bag, and recorded equivalent noise levels while walking along the
road. The experiments were conducted outdoor on the street during both peak
and off-peak traffic. It was done three times during peak and three times during
off-peak and each time the duration of experiment was 10 minutes. To compare
the noise measurements with ground truth, the volunteer also carried a RefSLM
in his other hand.

Table 1 reports the mean absolute difference between ground truth (RefSLM
reading) and the MobSLM measurements while the phone is placed in the three
sensing contexts. We also plot the first 60 seconds of data in Fig. 10(a) and
10(b) which corresponds to peak hour and off-peak hour results, respectively.
There are a few interesting observations from this plot: while the mobile phone
is held in hand, the response of the RefSLM and MobSLM are quite aligned and
the mean difference is about 2.5 dBA. While the mobile phone is kept inside
pocket, the responses of RefSLM and MobSLM are aligned, however the pocket
measurements lead the RefSLM by a time interval of about 10s. Finally, when
the mobile phone is carried inside a bag the responses are not similar to that of
RefSLM; there are noises and the overall magnitude of the signal is lowered.

Based on these observations we decided to keep the LAeq,1s samples from
hand and discard the samples from pocket and bag. In future, we plan to devise
a mechanism to automatically remove the time lead so that we can use the
LAeq,1s recorded from pocket.

5.3. Performance of the Context Classification module

We run simulations on the data collected from the 10 participants to de-
termine the context classification accuracy. We first determine context classifi-
cation accuracy individually for accelerometer and proximity sensor. Then we
determine context classification accuracy while fusing these two sensor data.

For accelerometer we use time window as a control parameter. We use the
data in a time window to calculate the features, such as mean, median etc. In
Table 2, we report the classification accuracy of the accelerometer sensor for
two time windows (∆): 60 second and 30 second. We obtain the best accuracy
when the feature is mean and the length of the time window is 60 second.

For proximity sensor, we perform similar experiments to compute classifi-
cation accuracy. Within the time window we calculate the number of triggers
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Table 2: Clas-
sification Accu-
racy:Accelerometer
z-axis.

60 S 30 S
mean 75 73.57

median 76.86 75.23
75 Percentile 67.91 71.66

Table 3: Classification
Accuracy:Proximity
Sensor.

Mean Accuracy Std
30 S 51.04 1.44
60 S 52.08 2.88

Table 4: Classification Accuracy: Sensor fusion of the proximity sensor and
z-axis of the accelerometer.

60 Second 30 Second
5 10 20 30 5 10 20 30

mean 83 84 77 79 74.13 75.43 73.91 73.91
median 80.16 78.33 75.83 76.33 73.13 72.3 73.27 72

75 Percentile 71.9 65.20 65.90 68.50 63.33 67.04 67.15 67.31

and use it as a feature for classification amongst hand enclosure and pocket or
bag enclosure. The 60 second interval provides better accuracy, however, the
overall accuracy is quite poor. We apply “threshold” on the number of firings
of the proximity sensor and use it only for hand sensing context. Note that in
the other sensing contexts the sensor firings are not significant enough or does
not have pattern to use as a classifier.

We use thresholds 5, 10, 20 and 30. A threshold 5 means if the number of
triggers is more than or equal to 5, we consider it as a hand sensing context. We
fuse the classification decision with that of accelerometer and the accuracy for
various selection of interval (∆), accelerometer feature and threshold is reported
in Table 4. We obtain the best classification accuracy as 84%. It is obtained
when interval is 60 second and threshold is 10. The accuracy is significantly
higher compared to using only accelerometer sensor which is reported 76.86%
in Table 2.

5.4. Performance of Speech Detection Module

We conducted experiments to determine the accuracy of the threshold based
speech detection module discussed in Section 4.3. Four couples: two including
two males and the other two including one male and one female, were used in
the experiments. The training set was constructed from similar experiments
described in Section 4.3: conversation of two of the couples along roadside was
contrasted to traffic noise alone recording to determine a threshold, where the
recording took place in both peak and off-peak hours.

In the test phase, the other two couples (those, who were not used in the
training) were asked to engage in conversation in five 15 minutes sessions at 5
different times of a day, which include peak and off-peak periods. Two phones
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Table 5: Clasisification accuracy of speech detection module.

Classified Context
traffic noise with human voice traffic noise

Actual Context
traffic noise with human voice 139 11

traffic noise 6 144

Table 6: CPU and RAM usage.

CPU Load (%) RAM (MB)

Signal processing 35.99±29.72 90.21
+GPS threads

GPS thread 1.606±1.34 80.199

Ambient light sensor 1.29±0.59 79.66

Signal processing thread 43.68±35.22 86.55

with the Ear-Phone client were used for each couple. One phone was held by
the participant to measure conversation with traffic noise, while the other phone
was placed 5 meters away to measure traffic noise only. Classifier was executed
every minute6 on each of the phone, therefore, in total there were 150 events
of conversation with traffic noise and 150 events of traffic noise alone. The
confusion matrix is reported in Table 5. In summary, both the precision and
recall of the classifier is 94.33%.

5.5. Resource Usage

5.5.1. Memory and CPU Benchmarks

We carried out benchmark experiments to quantify the RAM and CPU usage
of Ear-Phone running on the N97 using the Nokia Energy Profiler tool [32]. We
first measured the CPU and RAM usage for individual components: ambient
light sensor, GPS thread and signal processing thread. Since the GPS thread
and signal processing thread can run simultaneously, we then measured the
combined CPU and RAM usage of these two components. The results are
summarized in Table 6. Encouragingly, overall CPU utilization is quite low
since the combination of GPS thread and signal processing thread (which will
be running most of the time) use approximately 36% of CPU. However, the
memory usage is high, since it takes up about 90% of RAM when the GPS and
signal processing thread run simultaneously.

5.5.2. Power Draw

We use the Nokia Energy Profiler, which is a standard software tool to mea-
sure energy usage of Nokia hardware, to calculate the power draw on the Nokia
N97 phone. We assume a seven minute cycle, where the first two and a half min-
utes are used to get a GPS lock (or fix) and read the co-ordinates and speed, the

6We tested various intervals, for example, 30 seconds, one minute, 90 seconds and observed
one minute interval provides best accuracy.
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following half a minute is used for context discovery and the remaining four min-
utes is used for the signal processing module. Due to negligible power draw, we
did not consider the phone status discovery module in this cycle. As expected,
the GPS module is the dominant power consumer, it draws approximately 0.5
Watt-Hour. The context classifier draws 0.312 Watt-Hour and finally the signal
processing module draws 0.237 Watt-Hour.

Note that once the GPS gets the lock, the consecutive steps would be just
reading co-ordinates and speed from GPS receiver, however, we take a conser-
vative approach and consider that the GPS gets a lock every time. In the urban
areas due to high-rise buildings, the GPS may often lose the fix. We note that
most modern smart phones interpolate locations between GPS readings from
WiFi signals to conserve energy. A similar approach would greatly reduce the
energy footprint of Ear-Phone

Nokia N97 uses a Lithium Polymer (abbreviated Li-poly) battery of 5.6
Watt-Hour. If the above cycle is repeated continuously, the battery will last for
approximately for 5.33 hours. Note that we did not optimize the mobile phone
module for energy consumption. A number of energy optimisation techniques
have been suggested in [17], which we will consider to adopt in our future study.

5.6. Performance Evaluation

To evaluate the performance of Ear-Phone as an end-to-end system, we con-
ducted several outdoor experiments. Our primary goal is to investigate the
impact of data (LAeq,1s samples) availability on the reconstruction performance
( Based on our simulation results in Section 6, `1-norm offers the best reconstruc-
tion accuracy compared to linear interpolation, nearest neighbor interpolation
and Gaussian process interpolation. We therefore reconstruct using `1-norm in
the outdoor experiments.). In the experiments, we reconstructed the noise map
along two different road intersections in Brisbane, Australia. The first intersec-
tion includes the intersection of Woogaroo Street and Roxell Street and Chapple
place, located in a residential suburb named Forest Lake. The second intersec-
tion is in a semi commercial suburb, Oxley. This intersection includes a major
road named Blunder Road and few other suburban roads. In Blunder Road,
road traffic does not vary too much in peak and off-peak, however in other two
intersections peak hour traffic is significantly higher than off-peak traffic.

We reconstructed an hourly noise map separately during peak ( 7:30-8:30
for Roxell Street, 10:00-11:00 for Blunder road) and off-peak ( 20:00-21:00 for
Roxell Street and 15:00-16:00 for Blunder Road) hours. To collect noise samples,
five subjects walked along these segments several times within the one hour
period with Ear-Phone running on the Nokia N97. We first constructed the
ground truth by using all the noise samples. The ground truth along Roxell
Street intersection during peak and off-peak are shown in Fig 11(a) and 12(a),
respectively. We randomly chose various percentages of the total data (collected
from all users) and investigated the corresponding reconstruction performance.
Due to similarity of reconstruction, we only show the reconstruction results
at Roxell Street; reconstruction result at Blunder Road can be found in the
Appendix B. In Fig. 14(a), we summarize the reconstruction error for various
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(a)

(b) (c)

(d)

Figure 11: Noise map reconstruction during off-peak traffic hour (20:00 -21:00)
at the Roxell Street intersection. (a) Ground Truth (b) Reconstruction using
90% missing samples, (c) Reconstruction using 50% missing samples, and (d)
Reconstruction (very close to the ground truth) using 30% missing samples.
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(a)

(b) (c)

(d)

Figure 12: Noise map reconstruction during peak traffic hour (7:30-8:30) at
Roxell Street. (a) Ground Truth (b) Reconstruction using 90% missing samples,
(c) Reconstruction using 50% missing samples, and (d) Reconstruction (very
close to the ground truth) using 70% missing samples.
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percentage of data for all three of these intersections. We observe that during
peak hour, when the percentage of missing data is 30%, the reconstruction error
can be brought down to approximately 3dB.

6. Simulation

Real experiments certainly provide valuable information. However, real ex-
periments are not repeatable. Furthermore, conducting a real experiment on a
large scale is expensive and time consuming. We therefore conducted simulation
experiments where factors such as the number and mobility patterns of volun-
teers can be varied easily. In this section, we will first describe how we perform
measurement campaigns to collect noise profiles. These noise profiles will be
fed into the simulation as ground truth. Next, we will describe the simulation
method and performance evaluation.

6.1. Simulation Design

6.1.1. Noise Profile

As in Section 5, we limit our consideration to noise measurements along a
road, which can be modelled as a scalar field over a 2-dimensional lattice of
cells with one spatial and one temporal dimension. We assume that each cell
has a spatial width of Ω meters and a temporal width of T seconds. We use the
ordered pair (i, j) to refer to the cell bounded by the spatial interval [(i−1)Ω, iΩ]
and temporal interval [(j − 1)T, jT ]. Assuming that i ∈ Ns = {1, 2, ..., ns} and
j ∈ Nt = {1, 2, ..., nt}, the reference lattice covers a length of nsΩ meters and
a duration of ntT seconds. We assume that the equivalent noise level LAeq,T

measured over each cell is almost constant. Now let d(i, j) denote the equivalent
noise level LAeq,T measured in cell (i, j), then a noise profile S is defined as the
set of all LAeq,T measured over the defined lattice, i.e. S = {d(i, j)}(i,j)∈Ns×Nt

.

6.1.2. Measurement Campaign

Our first task is to conduct a number of measurement campaigns to obtain
reference noise profiles which we can feed into the simulation as ground truth.
We conducted four experiments to collect LAeq,1s under a variety of noise condi-
tions and settings. The experimental conditions and parameters used are sum-
marized in Table 77. During each of these experiments, we measured LAeq,1s

along Forest Lake Boulevard, which is a major artery road in Brisbane. This
road has two-way traffic with 2 lanes in each direction. The traffic flow was
reasonably high as indicated by the mean noise level in Table 7. We used 6
MobSLMs (Nokia N97) to capture the reference noise profile and placed them
in 6 equidistant locations along the road with the microphone pointed towards
the road. Different spatial separations are used in the experiments, see Table 7.

7The experiments were conducted during saturdays, however, due to the proximity of
the experimental areas to the lake, where every saturdays amusement events like boat rowing,
jumping castle etc. take place, there was high density traffic during the afternoon and evening.
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The clocks on the phones were synchronized to ensure that all phones start
and stop sampling at the same time. The MobSLMs measured LAeq,1s during
the experiment and stored the data in a text file which was downloaded to a
computer at the end of the experiment. From each experiment, we created a
reference noise profile, where |Ns| = 6 and |Nt| is the experimental duration in
seconds. We deliberately conducted one experiment (see Table 7) with a side
road (Woogaroo st) between the mobiles to create a reference profile with high
noise variation. A side road divides the traffic flow, therefore noise levels on
either side of the road typically have high difference.

6.1.3. Simulation Method

Let di ∈ [0, nsΩ] denote the position of the agent (simulated volunteers)
at time iT seconds. The location of this agent at time (i + 1)T is given by
di+1 = di +ViT where Vi is the average speed (in ms−1) of the agent in the time
interval [iT, (i + 1)T ]. The value of Vi is assumed to be uniformly distributed
in [0, 1.31] since pedestrian speed range from 1.25 to 1.31 ms−1 [33]. The sign
of Vi determines the direction of movement. We used the probabilistic random
walk model [34] to generate the mobility pattern. People typically do not move
in purely random manner (moving back and forth), instead they keep on moving
in a given direction for a while before they change their direction. Probabilistic
random walk model implements this behavior using a three state Markov Chain
model. The state transition parameters of our Markov Chain model are reported
in Fig. 13. The agent is in cell (ddi

Ω e, i) ∈ Ns×Nt at time iT , where due denotes

0.7
0.7

Figure 13: Probablistic random walk model parameters.

the smallest integer that is greater than or equal to u. Consider W ⊂ Ns ×Nt

denote all the cells visited by this particular agent. To simulate urban sensing,
we assume that an agent does not take samples at all visited cells (Due to privacy
concerns, volunteers may not contribute samples near their home or office. The
microphone may be in use for conversation). Let W̃ ⊂ W denote the set of all
cells whose data is contributed by this agent. In the simulation we vary W̃ to
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Table 7: Experimental settings for collecting the reference noise profiles.

Exp Date and time Mean, Standard Spatial Duration Continuous road % of DCT coefficients
No. Deviation of separation (min) segment without to approximate the profile within

sound level (dBA) (meters) side roads 1 dBA RMS error
1 17/11/12 11:00 am 63.05,3.15 10 60 yes 22.83
2 17/11/12 2:30 pm 67.11,4.43 10 60 yes 30.15
3 24/11/12 4:14 pm 69.43,6.01 50 60 yes 37.33
4 24/11/12 6:24 pm 73.22,6.79 50 60 no 43.91

understand the relationship between reconstruction accuracy and percentage of
missing data.

6.2. Reconstruction Performance

We now proceed to study the trade-off between the reconstruction accuracy
and the percentage of missing data for different reconstruction algorithms. We
use the four different noise profiles as reference and evaluate the reconstruction
performance under varied mobility patterns and number of agents.

In Figs. 15(a) to 15(d) we plot the reconstruction accuracy versus sampling
requirements. We observe that among all the reconstruction algorithms, `1-
norm has better reconstruction accuracy for all 4 reference profiles. Precisely,
except for profile 4, Ear-Phone can reconstruct the profiles to within 3 dB (re-
call that a 3 dB difference is not perceptible by human beings) error with 40%
missing samples. However, for linear, nearest neighbor and Gaussian process
interpolation methods, the percentage of missing samples must be less than 5%
in order to achieve the same accuracy. Profile 4 can accept the smallest missing
samples, which. This increase in sampling requirements for profile 4 can be
explained in terms of the compressibility of the noise profile. One way to deter-
mine the compressibility of a noise profile is to study the percentage of transform
coefficients needed to approximate a profile to a given level of accuracy. The
last column of Table 7 shows that profile 1 is the most compressible, since it
required the smallest percentage of coefficients to represent the signal within 1
dBA RMS error. On the other hand, profile 4 is the least compressible, since
it required the largest percentage of coefficients to represent the signal within 1
dBA RMS error. Note that profile 4 spans over two road segments with varying
traffic, therefore, contains relatively high variance in noise levels.

7. Discussion

7.1. Need for Incentives

In this paper we propose participatory sensing to generate the noise map
in an urban environment. We propose `1-minimization to reconstruct the noise
map from the incomplete and missing samples contributed by mess, which is a
prevalent problem in participatory sensing. We demonstrate that `1 minimiza-
tion offers a good compressibility- accuracy trade-off in reconstructing the noise
map, however, the sampling requirements may still be high for crowd sourced
application. We therefore recommend incentive mechanism as a complement to
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Figure 14: (a) 1’s are the error curves for the Roxell Street intersection and 2’s
are the error curves for the Blunder Road intersection (b) Compressibility plot
for Roxell Street intersection. To avoid cluttering the image, compressibility of
noise level at only Roxell Street is shown. To obtain this plot, we first compute
the DCT coefficients of the true spatial-temporal noise map (ground truth) and
then sort the absolute value of the coefficients (vertical axis) in descending order.

`1 reconstruction. Note that incentive mechanisms are likely to be necessary
for many crowdsourcing applications in general in order to obtain the requisite
data.

Designing an incentive mechanism is out of the scope of our paper. “Platform-
Centric Model” proposed by Yang et al. in [35] offers one potential solution,
which reward people for holding the phone in hand wherein the holding time
can be determined from the output of our context classifier.

7.2. Noise Level Dynamics in Peak and Off-Peak

Based on our datasets we observed one interesting property of noise map re-
construction: reconstruction during peak hour requires fewer samples compared
to reconstruction during off-peak. To investigate the reason we compared the
compressibility of sound profile during peak and off-peak (see Fig 14(b)) and
found that the ground truth during peak hour is more compressible compared
to ground truth during off-peak. In order to determine why the noise profile
during peak is more compressible compared to that of off-peak hour, we further
computed the variance of noise level during peak and off-peak hour and found
that during off-peak the variance is higher than that of peak hour. Intuitively,
during off-peak hour due to intermittent vehicles passing, there is a higher level
of variance in sound level, whereas, during the peak hour due to near continuous
vehicle passing, the sound level is less varying.

8. Conclusions

In this paper, we present the design, implementation and evaluation of Ear-
Phone, an end-to-end noise pollution mapping system based on participatory
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Figure 15: Comparison of various reconstruction algorithms. Along the x-axis is
the percentage of missing data points and its impact on reconstruction accuracy
expressed in RMS error is given in the y-axis. The reconstruction methods are
`1 = `1-minimization; LI = linear interpolation; NNI = nearest neighbor inter-
polation; and GPI = Gaussian process interpolation. Note that LI (represented
by green circles) and NNI (represented by blue diamonds) give almost identical
results, so the blue diamonds obscure the view of the green circles.

urban sensing. Ear-Phone comprises signal processing software to measure noise
pollution, calibration software to perform in-situ calibration, and context dis-
covery software (to discover user context in terms of phone placement) at the
mobile phone, as well as signal reconstruction software and query processing
software at the central server. We draw the following conclusions from our
experiments and evaluations.

To address the problem of noise map reconstruction from incomplete data
samples, we investigate the feasibility of various interpolation and regulariza-
tion techniques which include linear interpolation, Gaussian process modelling
and nearest neighbor interpolation and `1-norm minimization, respectively. We
conclude that `1-norm offers better accuracy compared to others.

Using simulation experiments, we show that Ear-Phone can recover a noise
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map with high accuracy, allowing nearly 40% missing samples. Furthermore,
experiential results from two outdoor noise mapping experiments reveal that
Ear-Phone can accurately characterize the noise levels along roads from incom-
plete samples.

Experiments relating to calculating measurement accuracy in various sensing
contexts reveal that only usable noise level data can be acquired while the
phone is held in hand. In other contexts e.g. in bag and pocket noise levels
get corrupted due to time lag and amplitude shift. The proposed classification
algorithm can detect the mobile phone in hand with 84% accuracy.

We also implement an in-situ calibration system which can be easily operated
by the general public.

In summary, our work demonstrates that it is feasible to use mobile phones
for environmental sensing applications such as noise pollution monitoring, over-
coming the real-world challenges of irregular sampling, calibration variations
among devices, and irregular placement of the mobile phones.
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Figure 16: Compressibility of the noise profile.

In order to study the compressibility of noise profile, we compute their rep-
resentations in a number of transform bases, which include DCT, Fourier and
different wavelets such as Haar, Daubechies, Symlets, Coiflets, and Splines etc.
For each basis, we compute the root mean square (RMS) error between the orig-
inal profile and its approximation by retaining only the largest k (k = 1, 2, ...)
coefficients in that basis. Fig. 16 is a representative plot that shows the com-
pressibility of noise profile in DCT, Haar and Fourier basis (The results in Figure
16 is obtained from reference profile 4 mentioned in Section 6. We have carried
out similar study using the other collected noise profiles, and they give similar
results.). We observe that for same number of coefficients, the representation
in DCT gives a lower error compared to other bases. In the last column of
Table 7, we have summarized the percentage of DCT coefficients required to
approximate the profiles collected in all experiments within 1 dBA RMS error.
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(a) (b) (c)

(d)

Figure 17: Noise map reconstruction during peak traffic hour (10:00 -11:00
) at Blunder Road. (a) Ground Truth (b) Reconstruction using 90% missing
samples, (c) Reconstruction using 50% missing samples, and (d) Reconstruction
(very close to the ground truth) using 30% missing samples.
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(a) (b) (c)

(d)

Figure 18: Noise map reconstruction during off-peak traffic hour (15:00 -16:00
) at Blunder Road. (a) Ground Truth (b) Reconstruction using 90% missing
samples, (c) Reconstruction using 50% missing samples, and (d) Reconstruction
(very close to the ground truth) using 30% missing samples.

9.2. Reconstruction performance

Reconstruction performnace at Blunder Road during peak and off-peak hours
are shown in Fig 17 and Fig 18, respectively.
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Table 8: Coefficient of the digital filter that approximates A-weighting.

` 0 1 2 3 4 5 6 7 8 9 10

b` 0.9299 -2.1889 0.7541 1.3229 -0.7728 0.1025 -0.2398 -0.0098 0.1154 -0.0103 -0.0033

a` 2.1856 -0.7403 -1.0831 0.6863 -0.2274 0.2507 -0.0058 -0.0821 0.0153 0.0004
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