
Mobile Multimedia Streaming Techniques: QoE and Energy Consumption Perspective

Mohammad Ashraful Hoquea,c, Matti Siekkinena, Jukka K. Nurminena, Mika Aaltob, Sasu Tarkomac

aAalto University School of Science, firstname.lastname@aalto.fi
bNokia Solutions and Networks, mika.aalto@nsn.fi

cUniversity of Helsinki, firstname.lastname@cs.helsinki.fi

Abstract

Multimedia streaming to mobile devices is challenging for two reasons. First, the way content is delivered to a client must ensure
that the user does not experience a long initial playback delay or a distorted playback in the middle of a streaming session. Second,
multimedia streaming applications are among the most energy hungry applications in smartphones. The energy consumption
mostly depends on the delivery techniques and on the power management techniques of wireless access technologies (Wi-Fi, 3G,
and 4G). In order to provide insights on what kind of streaming techniques exist, how they work on different mobile platforms, their
efforts in providing smooth quality of experience, and their impact on energy consumption of mobile phones, we did a large set of
active measurements with several smartphones having both Wi-Fi and cellular network access. Our analysis reveals five different
techniques to deliver the content to the video players. The selection of a technique depends on the mobile platform, device, player,
quality, and service. The results from our traffic and power measurements allow us to conclude that none of the identified techniques
is optimal because they take none of the following facts into account: access technology used, user behavior, and user preferences
concerning data waste. We point out the technique with optimal playback buffer configuration, which provides the most attractive
trade-offs in particular situations.

Keywords: Performance analysis, measurement, power consumption, wireless multimedia, Quality of Experience (QoE).

1. Introduction

Digital video content is increasingly consumed using mo-
bile devices [1]. At the same time, the playback quality ex-
perienced by the user and the battery life of smartphones have
become critical factors in user satisfaction. Consequently, it is
essential that mobile video streaming not only provides a good
viewing experience but also avoids excessive energy consump-
tion.

Multimedia streaming services consider a number of chal-
lenges while sending content to the streaming clients for provid-
ing smooth playback, such as initial playback delay, clients with
different kinds of connectivity, and the bandwidth variation be-
tween a server and a client [2]. While consuming multimedia
streaming content, energy consumption of smartphones is also
considered as an important issue and consequently a significant
number of research work focused on reducing energy consump-
tion of mobile devices using streaming applications [3]. The
aforementioned streaming services have adopted various tech-
niques to deliver video content to mobile users, such as encod-
ing rate streaming, rate throttling, buffer adaptive streaming,
fast caching, and rate adaptive streaming over HTTP. Encoding
rate streaming is used to deliver content at the encoding rate.
Throttling and fast aching send video content at a higher rate
than the encoding rate. Buffer adaptive mechanisms work based
on the playback buffer status of a client player. In this case,
the client receives content from the server only when playback
buffer drains to a specific lower threshold. Fast caching allows
the player to download the whole content at the very beginning.

Rate adaptive mechanisms adapt video quality according to the
end-to-end bandwidth between a server and the client.

There has been work on analyzing the merits of these stream-
ing techniques from the server performance point of view. For
example, fast caching reduces start-up delay at the client and
guards against bandwidth fluctuation, but it also consumes a lot
of CPU and memory at the streaming server [2]. Although most
of the techniques are understood by research community, a thor-
ough study of these streaming techniques is still required from
the perspective of the mobile device and the user. Even though
some studies have looked at the traffic pattern of video stream-
ing services with Android, iOS devices, and desktop users [4,
5, 6], at present it is not well understood how the different tech-
niques are chosen, how they compare to each other, and what
are the optimal techniques to use in different contexts. Most im-
portantly, the effect of these streaming techniques on user satis-
faction on playback quality, Wi-Fi and cellular network usage,
and on the energy consumption of mobile devices is yet to be
fully uncovered. Such knowledge is imperative before one can
design a streaming service that satisfies users demands in terms
of quality of experience and battery life of their smartphones.

We actively captured traffic of more than five hundred video
streaming sessions, from YouTube, Vimeo, Dailymotion and
Netflix, via Wi-Fi, HSPA, and LTE. During those sessions we
estimated the joining time. From the captured traffic we com-
puted the playback buffer status. We also measured the en-
ergy consumption of smartphones during the streaming ses-
sions. Our main observations are the following:

Preprint submitted to Pervasive and Mobile Computing August 13, 2018

ar
X

iv
:1

31
1.

43
17

v2
 [

cs
.M

M
]

 2
4

M
ay

 2
01

4

• In general, fast caching and throttling are applied by the
server, whereas video players enforce encoding rate and
buffer adaptive mechanism by exploiting TCP’s flow con-
trol mechanism, hence, overriding the server selected mech-
anisms. In encoding rate streaming, the player uninten-
tionally triggers TCP flow control because the player has
too small playback buffer compared to the amount of
content the server offers. The buffer adaptive mecha-
nisms deliberately pause and resume download, and these
techniques are applied only by the video players in An-
droid phones. (Section 4)

• Our analysis reveals that in smartphones different tech-
niques are applied with little or no consensus: different
techniques are used by different clients to access the same
service in the same context. For example, Android de-
vices use three different techniques for YouTube videos.
The selection of those techniques depends on the quality
of the video and the player. However, the strategy selec-
tion does not depend on the wireless interface being used
for streaming and, thus, network operators do not play
any role. (Section 4)

• The joining time (a.k.a. initial playback delay) varies ac-
cording to the wireless interface being used for stream-
ing, the quality of the content, and the video service.
The players experience shorter delay when streaming via
Wi-Fi than HSPA or LTE. From the quality perspective,
low quality videos are played with a shorter initial de-
lay. Among the targeted video services, the Netflix play-
ers experience the longest delay. However, most of the
streaming strategies are optimized for providing uninter-
rupted playback by allowing the players to keep a large
amount of data in the playback buffer. (Section 5)

• There is a large variation in playback energy consump-
tion between different types of players and containers on
the same device. The differences are due to inefficient
player implementation. However, the video quality (res-
olution) does not seem to have a large impact on energy
consumption. (Section 6.1)

• When the user views the entire video clip, fast caching
and throttling are the most optimized techniques for pro-
viding uninterrupted playback at the client. At the same
time, they are the most energy efficient. If the user is
likely to interrupt the video viewing, buffer adaptive stream-
ing is more attractive as the player generates ON-OFF
traffic pattern and less energy is consumed for wireless
communication during an OFF period. However, the ON
period duration should be adjusted to match fast start pe-
riod in order to avoid server rate throttling. Similarly,
the duration of the OFF period should also be optimized
so that the player does not suffer from playback buffer
starvation. However, none of the identified techniques
alone is optimal because they do not adapt to the wireless
access technology, user behavior, and preferences. (Sec-
tion 6.3)

We structure our paper as follows. In the next section, we
briefly describe the energy consumption characteristics of wire-
less communication in smartphones, explain the characteristics
of mobile video streaming. In Section 3, we describe our mea-
surement and data collection methodology. In Section 4, we
investigate the different streaming techniques. Section 5 exam-
ines the effort of the streaming techniques in providing uninter-
rupted playback. Section 6 is devoted to presenting the results
from the energy consumption measurements. In section 7, we
discuss the tradeoff between energy savings and potential play-
back buffer underrun. Finally, we contrast our work with earlier
research in Section 8 before concluding the paper.

2. Background

Smartphones allow users to access Internet via Wi-Fi and
mobile broadband access. Mobile broadband experience is en-
abled by the latest 3G and 4G technologies such as EV-DO,
HSPA, and LTE. The most widely deployed mobile broadband
technology is currently HSPA, while LTE is the fastest ever
growing cellular and mobile broadband technology. In this sec-
tion, we first review the power consumption characteristics of
Wi-Fi and cellular interfaces that we use in this study. Then, we
explain the characteristics of mobile streaming services and the
metrics to assess the quality of experience of the users.

2.1. Power Saving Mechanisms for Wireless Network Interfaces
2.1.1. Wi-Fi

Smartphones implement 802.11 Power Saving Mechanism
(PSM) to manage the power consumption of Wi-Fi. There are
four states; transmit, receive, idle and sleep. PSM allows the
interface to be in sleep when there is not data activity. How-
ever, the client periodically powers up the interface to receive a
traffic indication map (TIM) frame from the access point (AP).
This interval is usually 100ms and also called listen interval.
The TIM frame tells a mobile client whether the AP has some
buffered data for the mobile device or not. If the AP has data for
the client, the client sends PS-Poll frame in return to receive the
buffered data. Otherwise, the client goes back to sleep. Modern
devices usually implement a timer which keeps the interface in
idle state for a few hundred milliseconds after the transmission
or reception of packets, which improves especially the perfor-
mance of short TCP connections. This is also known as PSM
adaptive [7].

2.1.2. WCDMA/HSPA
3GPP standards specify the efficient usage of the radio re-

sources considering the mobility and power consumption of
smartphones via a resource control protocol (RRC). Figure 1
shows that there are a number of states and inactivity timers in
3GPP RRC protocol. These timers ensure that if a certain re-
source is not utilized for a certain period of time in a particular
state, the resource must be released. For example, high vol-
ume data transmission happens in CELL DCH state and small
packet transmission is possible in CELL FACH state. A mo-
bile device switches from CELL DCH to CELL FACH in ab-
sence of data activity for a period of T1 seconds. These timers

2

Figure 1: WCDMA/HSPA RRC states with typical values of the inac-
tivity timers and power consumption.

d
a
t
a

d
a
t
a

UE monitors
Data Activity

DRX inactivity
Timer (DRXidle)

RRC inactivity Timer (RRCidle)

DRX
Cycle(DRXc)

DRX onduration
Time (DRXon)

R
R
C

Idle State1

2

3

4

5

1 DRXidle started or re-started at every uplink or downlink transmission
2 DRX cycle triggered
3

Transition to idle
Shut down RX circuitry

4
5 Paging monitoring in idle state

DRX Parameter Options
DRX on-duration: 1,2,...6,8;10,20,...,60,80;100;200 ms
DRX cycle: 20;40;80;160;320;640;1280;2560 ms
DRX inactivity timer: 1,2,...,6,8;10,20,...,60,80;200;

300;500;750;1280;1920;2560 ms

Figure 2: LTE DRX Cycles and timers.

have static values and they are operator controlled. If the mo-
bile device and network both support Rel 8.0 Fast Dormancy
(FD) [8], CELL DCH→ CELL PCH transition happens. For
non standard FD, the transition is CELL DCH→ IDLE (Fig-
ure 1) which releases the RRC connection altogether.

RRC protocol has a large impact on the energy spending
of smartphones. Figure 1 also shows that average current con-
sumption in CELL DCH is 200mA, in CELL FACH is 150mA,
and in CELL PCH is 50mA approximately. The potential con-
sequence especially with long inactivity timers is high power
consumption at the mobile device. To learn more about differ-
ent cellular network configurations and their effect on energy
consumption, readers can follow [9].

2.1.3. LTE
The radio resource control protocol for LTE specifies only

two states; RRC IDLE and RRC CONNECTED. Similar to the
HSPA RRC protocol, an inactivity timer (RRCidle) controls the
connected to idle state transition. LTE includes a discontin-
uous transmission and reception (DTX/DRX) mechanism that
enables a mobile device to consume low power even being in
the RRC CONNECTED state. DRX in the connected state is
also called connected mode DRX or cDRX, and the associated
inactivity timer is DRXidle. Figure 2 shows that if there is no
data activity for DRXidle time, then a DRX cycle, DRXc, is
initiated. The length of a such cycle can vary from 20ms to
few seconds. The device checks data activity during the on pe-
riod, DRXon, of the cycle. If the data inactivity continues for a
long time, RRCidle, the network commands the device to switch
from RRC CONNECTED to RRC IDLE state. Then the device

Streaming Services YouTube, Vimeo, Dailymotion, and
Netflix

Players Native Application, Flash, and
HTML5

Video Quality LD (240p), SD (270-480p), HD
(720-1080p)

Containers 3GPP, MP4, WebM, X-FLV, ismv

Table 1: Streaming services, the players used by the clients for play-
back, the quality of the content and the containers to deliver the con-
tent.

enters in the paging monitoring mode in the IDLE state.

2.2. Mobile Video Streaming
Today mobile streaming services deliver content using HTTP

over TCP. Smartphone users can access these services using ei-
ther a native app or a browser. The browser may load a Flash,
HTML5 or Microsoft Silverlight player. The quality of the
video played is often denoted with a p-notation, such as 240p,
which refers to the resolution of the video. 240p usually refers
to 360x240 resolution. Different services use also low, stan-
dard, and high definition (LD, SD, HD) notations but the resolu-
tions that each one refers to varies between services. Therefore,
we define 240p videos as LD, 270-480p videos as SD and 720-
1080p or higher resolution videos as HD. MP4, WebM, and X-
FLV are the default containers for the players. The native apps
of YouTube, Dailymotion and Vimeo also play MP4 and 3GPP
videos. Netflix players play ismv videos. WebM and X-FLV
are the default containers for the HTML5, and Flash player re-
spectively. Table 1 shows the examples of examples of different
video services, the types of video players, video qualities, and
containers.

2.3. Quality of Experience
The quality of streaming perceived by a user is influenced

by the network condition, content quality (e.g. HD or SD),
user’s preference on the content, and the context in which the
user is viewing a video. The network condition translates to
network congestion caused by the bottleneck point in between
a streaming client and the server. This network congestion is
evidenced by the reduced available bandwidth and packet loss.
The impact is realised by the user as long initial playback delay
and pauses or playback starvation during playback. In wire-
less networks, the bottleneck situation can arise when multiple
users share the common resources and the throughput per user
is reduced so much that user experience is degraded. The bot-
tleneck also can be caused by the radio conditions, i.e. in cell
edge the available bit rate is much lower than peak HSPA/LTE
bit rates even in an empty cell. The state transition of the WNIs
can introduce additional delays.

For dealing with various network conditions, video services
apply a number of strategies; i) Encoding rate streaming, ii)
Throttling, iii) Buffer Adaptive Streaming, iv) Rate Adaptive
Streaming, and v) Fast Caching. A common feature of all stream-
ing services is an initial buffering of multimedia content at the
client. This initial buffering is also referred to as Fast Start. The

3

EPC

eNB

eNB

eNB

x2

x2x2

s1Uu

Traffic Capture

NodeB

Gn

Uu

Traffic Capture

RNC SGSN GGSN

Figure 3: Capturing traffic at the Gn interface between SGSN and
GGSN in the test HSPA Network.

EPC

eNB

eNB

eNB

x2

x2x2

s1Uu

Traffic Capture

NodeB

Gn

U
u

Traffic Capture

RNC SGSN GGSN

Figure 4: Capturing traffic at the S1 interface between the eNB (Base
Station) and EPC (Evolved Packet Core) in the LTE network.

name comes from the fact that a player downloads content us-
ing all the available bandwidth. Fast caching is similar to Fast
Start, the only difference is that fast caching lasts longer until
the whole content is downloaded. These techniques are used by
the services for constant bit rate streaming, except rate adaptive
streaming. The most prevalent forms of rate adaptive streaming
are HTTP live streaming (HLS), Microsoft Smooth Streaming
(MSS).

3. Measurement and Data Collection

3.1. Properties of the multimedia content
Compared with our earlier work [10], we excluded previ-

ous results for Meego, Symbian, and WP7.5 platforms. We in-
cluded three latest smartphones; iPhone5, Galaxy S3 LTE (GS3
LTE) and Lumia825. All the video services, YouTube, Dai-
lymotion, Vimeo and Netflix, have the native applications for
the target mobile platforms. The desktop edition of YouTube
was used only in the Android platforms as it provides the op-
portunity to use both Flash and HTML5 players. Our target
video services, players, and smartphones are listed in Table 3.
Whenever available for the particular smartphone and player,
we streamed videos of multiple qualities that range from LD to
HD. The average duration of the videos was 10 minutes.

3.2. Network Setup
We watched videos from the video services in the smart-

phones via Wi-Fi, HSPA, and LTE. In the case of Wi-Fi, a
802.11 b/g access point was used. The access point was con-
nected to the Internet via 100 Mbps Ethernet. AirPcap1 was

1AirPcap:www.cacetech.com/documents/AirPcap%20Nx%20Datasheet.pdf

Config Name Parameters
noDRX RRC idle=10 s
DRX80ms RRCidle=10 s, DRXcycle=80 ms,

DRXon=10 ms,
DRX160ms RRCidle=10 s, DRXcycle=160 ms,

DRXon=10 ms,
DRX640ms RRCidle=10 s, DRXcycle=640 ms,

DRXon=10 ms,

Table 2: LTE network configurations.

Media Player

Player Buffer

TCP Receive Buffer

block 1

block
2

block
3

block
4

block
5

block
6

block
7

block
8

Application

Client Server

block
9

block
10

block
11

TCP Send Buffer

Figure 5: Interaction between playback buffer and TCP receive buffer
for encoding rate streaming.

used to capture the Wi-Fi traffic. HSPA network measurements
were conducted in the Nokia Solutions and Networks test net-
works. The network parameters, i.e. states and inactivity timers,
were configured according to the vendor recommendation. The
values of the inactivity timers were from few seconds to few
minutes; T1=8s,T2=3s,T3=29min. The CELL PCH state was
enabled in the network. We captured traffic of the streaming
clients at the Gn interface between SGSGN and GGSN (see
Figure 3). The LTE measurements were conducted with con-
nected mode DRX enabled in the network. Traffic capture is
taken at the S1 interface between the eNB and EPC. We mea-
sured power consumption with three sets of DRX profiles. The
DRX profiles are described in Table 2.

3.3. Power Measurement
We used Monsoon2 and another custom power monitor for

measuring the energy consumption of the smartphones during
multimedia streaming. We removed the battery of most of the
mobile phones and powered them using the measurement de-
vices. Only the iPhones get power from the battery. All the
devices were in automatic brightness settings during the power
measurements.

4. Streaming Techniques

From traffic traces we inferred manually the type of stream-
ing technique used for each of the different combinations of
device, service, stream quality, player type, and access network
type. These findings are summarized in Table 3 and discussed
below.

2Monsoon Power Monitor : www.msoon.com

4

iPhone4S iPhone5 Galaxy S3/Galaxy S3 LTE(Android-4.0.4) Lumia825
iOS 5.0 (iOS 7.0) (WP8)

YouTube
Streaming

(App) Throttling
Factor=2.0

(App) Throttling
Factor=1.25

(Flash)
Encoding
rate(HD),
Throttling(<HD)
Factor=1.25

(App&
HTML5)
ON-OFF-M

(App)
Fast Caching

Quality LD(240p),
SD(360p),
HD(720p)

LD(240p),
SD(360p),
HD(720p)

LD(240p),
SD(360,480p),
HD(720,1080p)

LD(240p),
SD(360,480p),
HD(720p)

SD(270p),
HD(720p)

Container MP4(360,720p) MP4(360,720p)
3GPP(240p)

XFLV MP4(>240p)
WebM(>240p)
3GPP(270p)

MP4(720p)
3GPP(270p)

Vimeo
Streaming

(App)
HLS
Chunk Size=10s

(App)
ON-OFF-M

(App)
ON-OFF-S

(App)
Fast Caching

Quality * SD(270,480p),
HD(720p)

SD(270p), HD(720p) HD(720p)

Container MP4 MP4 MP4 MP4

Dailymotion
Streaming

(App)
Throttling
Factor=1.25

(App)
HSL
Chunk Size=10s

(App)
Fast Caching(288p),
ON-OFF-S(>288p)

(App)
Throttling
Factor=1.25

Quality LD(240) * SD(288,480p),HD(720p) SD(288p)
Container MP4 MP4 MP4 MP4

Netflix
Streaming

(App)
HLS
Chunk Size=10s

(App)
HLS
Chunk Size=10s

(App)
ON-OFF-S

(App)
MSS
Chunk Size=4s

Quality * * HD(720p) *
Container isma, ismv isma, ismv MP4 isma, ismv

Table 3: Streaming techniques for popular video streaming services to mobile phones of three major platforms. The selection of a streaming
technique does not depend on the wireless interface being used for, rather depends on the player, video quality, device and the video service
provider.

4.1. Encoding Rate Streaming
Encoding rate technique is exclusively applied by the stream-

ing clients. The server sends content using fast caching and the
player has a small playback buffer. Therefore, the playback
buffer and TCP receive buffer become full at the very begin-
ning. Since the player decodes content at the encoding rate, the
same amount of buffer is freed from the playback buffer and
also from the TCP receive buffer. The client again can receive
the same amount of content from the server. The mechanism is
illustrated in Figure 5. From Table 3, we can see that the Flash
player in Android devices receives HD videos from YouTube at
the encoding rate.

4.2. Throttling
Throttling is a server-side streaming technique. In this case,

the server sends content at a limited constant rate, which is
higher than the encoding rate. Therefore, the content is down-
loaded at the client at a faster pace than the encoding rate. The
multiple of the encoding rate is referred to as the throttle factor.
The throttling factor can vary depending on the video service
or even on the player type for the same service. For instance,
the native YouTube application receives content at a throttled
factor of 2.0 in iPhone4S, whereas the Dailymotion application
receives at a factor of 1.25. The Flash player in Android devices
and the native app in iPhone5 specify the throttling factor in the

0 100 200 300
0

0.2

0.4

0.6

0.8

1

Burst Size (KB)

F
(x

)

iPhone 240p

Galaxy S3 240p

iPhone 720p

(a) CDF of the chunk sizes YouTube.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Burst Interval (S)

F
(x

)

240p

360p

(b) CDF of the chunk intervals.

Figure 6: YouTube server sends content in small chunks and periodic
manner when throttling the sending rate.

request URL (e.g., algorithm = throttle-factor and factor =
1.25) or a service specific default throttle factor is used.

4.2.1. Single TCP connection
In general, throttling is carried over a single TCP connec-

tion and the data is sent in small chunks. Figure 6(a) shows that
in the YouTube player in iPhone receives a LD video in 64KB

5

chunks. This observation is similar to those explored in [11]
and [4] for YouTube. The chunk size increases to 192KB when
receiving the same video of HD quality. We observed variable
chunk sizes when streaming to Samsung Galaxy S3 (see Fig-
ure 6(a)). However, these chunks are sent by the streaming
servers at some periodic intervals to the streaming clients. The
interval increases as the encoding rate or quality of the video
decreases. Figure 6(b) shows that the chunks are separated by
few hundred milliseconds to 1.2s. This burstiness is indepen-
dent of the wireless interface being used at the client to receive
the content. Nevertheless, this kind of burstiness was absent in
Dailymotion and Vimeo traffic.

4.2.2. Multiple TCP connections
In iPhone4S, the YouTube application uses a significant num-

ber of TCP connections to receive HD quality videos. In an
example video session, we found that the player downloads a
HD video in 66 connections. The player maintains a 25MB
size playback buffer. At the beginning, the player receives con-
tent at the throttled rate. Since the playback continues at the
encoding rate, there is always some extra content in the buffer.
Therefore, this playback buffer becomes full at some point and
the player closes the existing TCP connection. Whenever some
buffer is freed, the player initiates another HTTP partial content
request over TCP.

In this way, the player actually receives more data from the
server than the actual size of the content. Finamore et al. [5]
also reported similar observation. From traffic traces, we identi-
fied that a YouTube server always sends media content from the
beginning of a key frame for any partial content request. The
reason is that the player is unable to keep track of the ending
position of the current key frame or the beginning of the next
key frame. Therefore, it may terminate the connection when
receiving a key frame. In addition, the player must support the
forward and backward seeking during playback. Subsequently,
each time the player requests content from the beginning of a
key frame, which it has received partially for the previous re-
quest. As a result, the player wastes all the data of the partially
received key frame. From traffic traces, we calculated that the
player received 160MB data in total for for a 76MB video.

4.3. Buffer Adaptive Streaming
Buffer adaptive techniques represent smart player imple-

mentation. The players maintain two thresholds of buffer level:
a lower and an upper. During a streaming session, the player
stops downloading content when the playback buffer is filled to
the upper threshold value and it resumes downloading when the
buffer drains to the lower threshold. The video players apply
buffer adaptation in two different ways and generate ON-OFF
traffic pattern. Some video players apply the buffer adaptation
over a single TCP connection. We refer this kind as ON-OFF-
S. The others use multiple TCP connections and we refer as
ON-OFF-M.

4.3.1. Single Persistent TCP Connection (ON-OFF-S)
The native applications of Dailymotion, Vimeo, and Netflix

video services apply buffer adaptation over a single TCP con-
nection in the Android devices (see Table 3). The players stop

TCP PlayerTCPApp

OF
F

ON

win=120k

zwa zwpzwazwa zwp
zwpzwa

win=120k zwp

ON

Server
Mobile
Device

x2x
4x

8x

(a) Buffer adaptive streaming over a single TCP con-
nection activates TCP flow control during an OFF pe-
riod.

1 2 3 4 5 6

415

420

425

Zero Window Probe Event

T
im

e
 (

S
)

YouTube

Dailymotion

Vimeo

Netflix

(b) The growth of the TCP persist timer at the stream-
ing servers during an OFF period.

Figure 7: ON-OFF-S mechanism and interaction with TCP flow con-
trol.

reading from the TCP socket and an OFF period begins. Fig-
ure 7(a) illustrates that TCP flow control packets are exchanged
during an OFF period.

The duration of an OFF period can be very long. The older
Android devices (e.g., Samsung Nexus S) use an upper thresh-
old of 5MB [10]. Therefore, the duration of the OFF period
is almost equivalent to the 5MB

Encodingrate s. On the other hand,
in latest devices the duration is 20MB

Encodingrate s. However, from
traffic traces we found that the TCP persist timer at the server
grows only to maximum 5s. The reason is that the players in-
tentionally reset the persist timer after every 16s by receiving
64KB data from the server. This behavior was absent in the
case of Netflix. Figure 7(b) shows how the TCP persist timer
values grow at the servers of different video streaming services.
In the case of Netflix, the OFF period is always 30s and the per-
sist timer increases to maximum 10s. Later in Section 6.3, we
will see how the TCP flow control messages and TCP persist
timer affects the power consumption of smartphones.

4.3.2. Non-persistent TCP connections (ON-OFF-M)
Only the native app and HTML5 player for YouTube in An-

droid devices use multiple TCP connections for buffer adapta-
tion. The players maintain dynamic lower and upper thresh-

6

0 200 400 600
0

0.5

1

1.5

2

2.5
x 10

6

Time (S)

T
h
ro

u
g
h
p
u
t
(B

yt
e
s/

S
)

60
S

60
S

60
S

60
S

Figure 8: The YouTube player in Galaxy S3 downloads a video by
initiating multiple TCP connections.

olds of playback buffer. When the playback buffer is filled
to the upper threshold, the player closes the TCP connection
and an OFF period begins. The ON period begins after a fixed
60s OFF period (see Figure 8). The recent version of Vimeo
player in iPhone5 also uses multiple TCP connections. Unlike
the YouTube player, the Vimeo player downloads 30MB dur-
ing the Fast Start and downloads rest of the content in 5MB
chunks. Therefore, the duration of an OFF period is equal to

5MB
Encodingrate s.

4.4. Fast Caching
Fast caching refers to downloading the whole content in

one go at the very beginning of the streaming using the max-
imum available bandwidth. The players continue playback and
at the same time maintains very large playback buffer. YouTube
Flash player uses ratebypass=yes parameter in the HTTP
request to deactivate any rate control at the server side. For
example, the YouTube player of Lumia825 downloaded a 10-
minute long 720p video within 120s via LTE or HSPA in our ex-
periments. Lumia825 also receives video content from Vimeo
at possible maximum rate.

4.5. Rate Adaptive Streaming
The streaming techniques we discussed so far are for stream-

ing constant quality content during a streaming session. The
players or the servers cannot change the quality on the fly, un-
less the user interrupts the playback. On the other hand, Dy-
namic Adaptive Streaming over HTTP (DASH [12])-like rate
adaptive mechanisms are able to change the quality on the fly
for adapting with bandwidth fluctuations. The quality switching
algorithms are implemented in the client players. A player es-
timates the bandwidth continuously and transitions to a lower
or to a higher quality stream if the bandwidth permits. We
identified two kinds of rate adaptive streaming; (i) HTTP Live
Streaming (HLS) and (ii) Microsoft Smooth Streaming (MSS).

4.5.1. HTTP Live Streaming
The Netflix and Vimeo players in iPhone4S, and the Daily-

motion player in iPhone5 use HTTP Live Streaming and down-
loads content in 10s chunks. At the beginning, a player receives

220 230 240 250 260 270
0

0.5

1

1.5

2

2.5

3 x 105

Time (S)

Th
ro

ug
hp

ut
 (B

/s
)

T=231 s, seg=29, Res=640x360
T=232 s, seg=23, Res=1280x720
T=252 s, seg=29, Res=1280x720

(a) The Vimeo player in iPhone4S, using HLS, discards content of low
quality from the playback buffer upon switching to a higher quality.

50 100 150
0

1

2

3

4

5
x 10

6

Time (S)

B
y
te

s

Video

Audio

(b) The Netflix player in iPhone5, using HLS, downloads audio and
video chunks asynchronously.

Figure 9: Joining observed for the video services and when streaming
via wireless network interfaces.

the media description files, which contain the chunk duration,
encoding rates and the bandwidth requirements for the chunk
download. The player begins by downloading seven 10s chunks
of the SD quality. After that, the player downloads chunks af-
ter every ten seconds. In this way, the player always keeps 60s
playback content in the buffer when streaming via Wi-Fi. In
case of transitioning to a higher quality, the player discards the
downloaded lower quality content in order to provide instant
response to the quality change to the user. One streaming sce-
nario via Wi-Fi is illustrated in Figure 9(a), where the player
switches from a SD to HD quality at 232s and downloads from
23rd to 29th segments of HD quality. In the case of HSPA, the
player wastes 20s content. This observation can change with
bandwidth variation.

Similarly, the Netflix player uses HLS in iPhones. How-
ever, the Netflix downloads the audio and video chunks sepa-
rately, where the chunks are of 10s. From multiple traces, we
verified that the audio and video chunk downloading are not
synchronized. Figure 9(b) shows that after the Fast Start phase,
the interval between an audio and a video chunk is approxi-
mately five seconds. There were also some cases where an au-
dio chunk appears very close to the next video chunk. Another

7

Have
enough
buffer
space ?

Pause
Download

?

Use
Persistent

TCP
connection?

Override server
rate control ?

(ratebypass=yes)

Bitrate
Streaming

NO

NO

ON-OFF-M

Throttling

Fast
Caching

ON-OFF-S
NO

NO

Y
es

Yes

Yes

Yes

Figure 10: The choice of a streaming technique by the client player
for constant bit rate streaming.

interesting observation is that the server specifies it’s TCP pa-
rameters in the HTTP response header, as for example X-TCP-
Info:rtt=11625;snd cwnd=217201;rcv wnd=1049800. The
reason is likely that the streaming server lets the client player to
calculate the bandwidth and to decide the quality accordingly.

4.5.2. Microsoft Smooth Streaming
The Netflix player in Lumia825 uses Microsoft’s smooth

streaming. The player receives video content in 4s chunks over
a single TCP connection. The same connection is used to re-
ceive audio content chunks also. However, the audio chunks are
received after every sixteen seconds, i.e. after four consecutive
video chunks. Unlike the Vimeo and Dailymotion rate adaptive
players in iPhones, Netflix is aggressive in providing the highest
quality of the stream in Lumia825. In traffic traces, we noticed
that the player begins with the lowest quality, and then switches
to the maximum quality within the first few seconds of stream-
ing. During this period, the player downloads 60s playback
content. However, unlike the desktop player [13], the mobile
version requests different filenames for different qualities and
specifies the byte range in the URL GET (abc).ismv/range/0-
40140/. In response, the server sends the chunks of the corre-
sponding quality. The server also sends a .bif file which con-
tains information about the frames, which is used by the player
upon forward or backward seeking by the user. We also found
that the Netflix server sends TCP parameters to the player.

4.6. Summary
Table 3 summarizes our findings on the usage of differ-

ent techniques in different mobile platforms with four video
services. Figure 10 illustrates how the client app behaviour
leads to the choice of particular streaming technique for con-
stant quality streaming. We sum up our main observations be-
low:

• Streaming servers use either throttling or fast caching to
deliver constant bit rate video to mobile devices. The
choice between these two is influenced by client player’s
request. For instance, YouTube Vimeo servers use both
throttling and fast caching. The Dailymotion servers use
throttling. Netflix servers use fast caching for constant bit
rate streaming, and MSS or HSL for rate adaptive stream-
ing. Some native mobile apps continuously pause and
resume downloading leading to ON-OFF traffic patterns.
Encoding rate streaming is the result of small playback
buffer at the client buffer and fast caching streaming by
the server.

• For constant bit rate streaming, the relevance of a tech-
nique depends on the mobile platforms to some extent.
Buffer adaptive streaming is commonly used by all the
video streaming services in the Android platforms. How-
ever, the only exception is Dailymotion. The reason is
that the videos are small in size and the throttling rate is
also small compared with YouTube and Vimeo. There-
fore, the player does not get enough buffer filled to apply
the adaptation. Fast caching is prevalent only in Windows-
based devices.

• None of the video services apply rate adaptive stream-
ing in Android mobile devices. The Netflix, Vimeo, and
Dailymotion players use HLS in iPhones. In iOS de-
vices, Netflix receives audio and video chunks in sepa-
rately streams. MSS is used only in Windows. This also
reflects the influence of platforms on the choice of steam-
ing techniques.

• Although the streaming strategies can vary based on the
quality of the video, platforms, and video services, we
could not find any evidence that the strategies vary ac-
cording to the wireless interface being used for stream-
ing.

• The amount of data wasted by the YouTube player in
iPhone4S is significant even when a user watches the
complete video. Although this problem could be solved
with a smarter player implementation, the YouTube player
in the latest iOS version sends request with a throttle
factor of 1.25. As a result, the playback buffer never
becomes full, and consequently, there is no data waste.
However, potential data waste is also possible when the
whole video is downloaded and the user abandons watch-
ing earlier.

5. Streaming Techniques and Quality of Experience

The key metrics that characterize the QoE perceived by a
user while streaming video are the initial playback delay which
is called joining time, and the occurrence and frequency of play-
back pause events experienced [14, 15]. As we discussed earlier
that playback pause events are the results of bandwidth vari-
ation due to various network conditions. In this section, we
take a look at the joining time and the performance of different

8

Netflix Vimeo Daily YouTube

5

10

15

20

25

J
o

in
in

g
 T

im
e

 (
S

)

(a) Streaming Service

LD SD HD Quality

2

3

4

5

6

J
o
in

in
g
 T

im
e
 (

S
)

Adaptive

(b) Wi-Fi

LD SD HD Quality

5

10

15

20

25

J
o
in

in
g
 T

im
e
 (

S
)

Adaptive

(c) HSPA

LD SD HD Quality

4

6

8

10

J
o

in
in

g
 T

im
e

 (
S

)

Adaptive

(d) LTE

Figure 11: Joining time observed for the video services and when streaming via wireless network interfaces.

0 100 200 300 400 500 600
−10

0

10

20

30

40

50

time (s)

re
m

a
in

in
g

 b
u

ff
e

re
d

 s
tr

e
a

m
 (

s
)

(a) Encoding rate streaming and playback buffer sta-
tus (in second).

0 100 200 300 400 500 600
0

100

200

300

400

500

Time (S)

R
e

m
a

in
in

g
 b

u
ff

e
r
e

d
 s

tr
e

a
m

 (
S

)

ON−OFF−M

ON−OFF−S

Throttling

Fast Caching

(b) Playback buffer status when using throttling,
buffer adaptive and Fast Caching

0 200 400 600 800
0

50

100

150

200

250

300

350

400

Time (S)

R
em

ai
ni

ng
 B

uf
fe

re
d

S
tre

am
 (S

)

Switching 360p to 720p

(c) Rate adaptive streaming and playback buffer sta-
tus

Figure 12: Playback buffer status of the streaming clients during multimedia streaming sessions using different techniques.

strategies in providing smooth playback during short/long term
bandwidth changes.

Figure 11 shows the joining time experienced by the play-
ers according the video service and the WNI. Although, all the
streaming services use fast start at the beginning of streaming,
it is shown in Figure 11(a) that the YouTube players take less
time than the other players. On the other hand, the other ser-
vices have longer joining time. The reason is that YouTube
caching servers are extensively spread around the globe. There-
fore, the content is served from the CDN that is very close to
the user. We validated this by measuring the roundtrip time
from the captured traces. Our observation is similar to [14],
in which the authors also proposed to serve content from the
nearby CDN to improve the playback experience. However, in
the case of Vimeo and Netflix two other facts also contribute in
higher joining time. The Vimeo player always receives the HD
quality video and the Netflix player always decides the max-
imum quality at the beginning of streaming, which take more
time than the players of other services.

We explained earlier that quality of the stream affects the
initial start-up time. The boxplots in Figure 11(b), 11(c), 11(d)
illustrate the similar findings. There are two observations. First,
streaming via Wi-Fi experiences less joining time than stream-

ing via HSPA and LTE. The joining time is the largest when
HSPA is used. We investigated and found that the wireless la-
tency plays the role when streaming via HSPA and LTE. This is
because, at the beginning of a streaming session, the HSPA in-
terface transitions from IDLE/CELL PCH to CELL DCH state
and the LTE interface switches from IDLE to the CONNECTED
state. The transition latencies for LTE and HSPA are 120ms and
2.0s respectively. In the case of Wi-Fi, the transition latency
from sleep to active state transition is few milliseconds which
is negligible. The other observation is that the rate adaptive
players experience more delay in the joining. This observation
is biased because of the Netflix’s rate switching strategy.

Next, we looked at the prefetching behavior of the players
by studying how much content they maintain in the playback
buffer throughout a streaming session. This analysis requires
the time series of content consumption and arrival. The arrival
time series is computed by extracting timestamps and playload
sizes of received packets from the traffic traces considering the
joining time. Although there are findings that YouTube-like
video services stream constant bit rate content [16], we found
that the video services use variable bit rate encoding for stream-
ing HD videos. Hence, we replayed each video using a VLC
player and extracted the instantaneous encoding rate of the con-

9

tent from VLC’s web interface module using a shell script. Fi-
nally, we compute the amount of buffered content as a function
of time by taking the difference of the cumulative sums of the
arrival and consumption time series.

Figure 12 shows the playback buffer status during the stream-
ing sessions using different streaming techniques. Using en-
coding rate streaming, a player always keeps 30-40s equivalent
content in the playback buffer. Hence, even if the player re-
ceives content at the negligible rate after the fast start phase, the
player can provide playback for that 30-40s period. Throttling
and fast caching continuously accumulate more content into the
buffer and therefore are more robust also towards longer peri-
ods of low available bandwidth. From 12(b), we can see that
when the playback is at 50s, the player already has content for
next 50s using throttling. In case of fast caching, the player
has 200 s worth of content in the buffer. When using the ON-
OFF strategies, the buffer is periodically filled up and drained
in between. ON-OFF-M begins refilling the buffer 40s earlier.
A surprising result is that ON-OFF-S (in Android 2.3.6) nearly
dries the buffer before new content is prefetched. Therefore,
the possibility of playback starvation increases, when streaming
via HSPA. The rate adaptive players maintain 60-100s playback
buffer, and at the same time they can select to a lower quality
(see Figure 12(c)). Nevertheless, the streaming strategies pro-
vide the best effort in guarding short term and long term band-
width fluctuations.

6. Streaming Services and Power Consumption

We also measured the total current consumed by the smart-
phones during the streaming sessions. We separated the total
current drawn into the average video playback and wireless in-
terface current consumption. The playback current includes de-
coding and display current. We can identify this current draw at
the end of the power trace of each streaming session when the
content has been fully delivered but playback still continues,
since some of content is always buffered at the end regardless
of streaming technique used. During this time, the WNIs are
in the lowest power consuming states according to their own
power savings protocols. We computed the average wireless
communication current, which we refer to as streaming current,
by subtracting the average playback current from the total cur-
rent. The results presented in this section are the average of
repeated measurements.

6.1. Playback Power Consumption
6.1.1. Video Quality

In Figure 13(a), we can see that playback current draw of
Galaxy S3 increases as the quality of YouTube video increases
as long as the same container is used. We also observed simi-
lar pattern for watching Dailymotion videos in iPhone4S and
Galaxy S3. It is logical that high quality videos have more
information to present than low quality videos and, therefore,
more current is drawn. However, in some cases even doubling
the resolution adds a relatively small increment to the average
playback current.

240 360 720 240 360 480 720 1080 360 480
0

200

400

600

800

Video Quality

 C
u
rr

e
n
t
C

o
n
s
u
m

p
ti
o
n
 (

m
A

)

3gpp
mp4 mp4

xflv

xflv mp4
mp4

xflv

Flash

App

webm
webm

HTML5

(a) Avg. playback current draw when streaming 240− 1080p YouTube
videos to the app and browser in Galaxy S3.

240 260 480 720 1080 480 240 360 720
0

20

40

60

Video Quality

%
C

P
U

 U
s
a

g
e

HTML5
webm

3gpp
mp4

App

mp4

Flash

xflv xflv xflv
mp4 mp4

(b) Amount of CPU used by different video players in Galaxy S3 while
playing different quality videos of different containers.

240 288 480 288 480 720 360 480 720 240 360 480
0

100

200

300

C
u

rr
e

n
t

C
o

n
s
u

m
p

ti
o

n
 (

m
A

)

mp4
iPhone

mp4
Galaxy S3

webm
Galaxy S3

YouTubeDailymotion

xflv
Galaxy S3

(c) Avg. playback current consumption while playing different quality
videos of different containers.

Figure 13: Playback current consumption of Galaxy S3 and CPU us-
age with different qualities, players and containers.

6.1.2. Video Player
For playing YouTube LD, SD and HD videos, the browser

loads a Flash player. Flash has support for different kind of
codecs and containers, such as X-FLV, MP4 and H.264. The
browser loads HTML5 player to play WebM videos. Figure 13(a)
compares the energy consumption when using different players
for streaming. It is noticeable that the native YouTube applica-
tion consumes the least amount of energy. In contrast, browser-
based players can draw even more than the double current com-
pared with the app when playing the same video. We discov-
ered that during playback the Flash player does not leverage
any native system support to decode the video but consumes a
significant amount of more CPU than the native application (see

10

0"

50"

100"

150"

200"

250"

GS3"LTE" GS3" iPhone"4S" iPhone"5" Lumia"825"

Cu
rr
en

t'C
on

su
m
p,

on
'(m

A)
'

HSPA"

W:Fi"

(a) Wi-Fi and HSPA

0"

50"

100"

150"

200"

250"

300"

350"

No"DRX" 80"ms" 160"ms" 640"ms"

Cu
rr
en

t'C
on

su
m
p,

on
(m

A)
'

GS3"LTE"

Lumia"825"

iPhone"5"

(b) LTE

Figure 14: Current consumption of wireless network interfaces in
smartphones.

Figure 13(b)). Although the HTML5 player takes native system
support, it consumes 60% of CPU even during the playback of
a 480p video. It seems that HTML5 player is required to go
through further optimization to be used in mobile platforms.

6.1.3. Video Container
We already showed how the videos of different quality and

different players affect the energy consumption of smartphones.
In Figure 13(a), we can see that playback of a 240p 3GPP video
requires less energy than that of an X-FLV video of the same
quality. It is also illustrated that the same 240p X-FLV re-
quires more current than a 720p MP4 video. Although from
Figure 13(a) we can infer that 3GPP is the least and WebM
is the most energy consuming containers, it is difficult to iso-
late the effect of the corresponding video containers since some
videos can be played only using browsers. Besides, the en-
ergy consumption of the browser-based players are very high.
Therefore, we downloaded some YouTube videos of X-FLV
and WebM formats and then measured energy consumption dur-
ing playback. The results are shown in Figure 13(c). This fig-
ure also illustrates that playback energy consumption does not
change significantly when the quality of video changes with the
same container category.

6.2. Device Variation
Before discussing the impact of different streaming strate-

gies on the streaming power consumption, we investigate the

130 140 150 160

200

300

400

500

600

Time (S)

C
u

rr
e

n
t

(m
A

)

(a) DRX cycle length 80 ms.

240 250 260 270

200

300

400

500

Time (S)

C
u

rr
e

n
t

(m
A

)

(b) DRX cycle length 640 ms.

Figure 15: Current consumption of GS3 LTE with different DRX cy-
cles.

power consumption of individual WNI in smartphones. In Sec-
tion 2.1, we described the standard power saving mechanisms
applied by different WNIs. We also discussed that there are a
number of states and a mobile device consumes different amount
of energy in different states. Consequently, we explore what
kind of power saving mechanism are applied by our target smart-
phones and the variation among them in consuming energy.

In Figure 14(a), we can see that the Wi-Fi interfaces in
iOS phones consume lowest energy. Android devices consume
more current when the Wi-Fi interface is active, whereas the
Wi-Fi interface in Lumia825 consumes the maximum energy.
However, all of them use PSM adaptive. iOS devices use an ag-
gressive idle period of 50ms. The other devices use 200ms. The
power consumption during this idle state is half of the active
state power consumption. Figure 14(a) shows the power con-
sumption of HSPA interface during data transfer in CELL DCH
state. In this case of also iOS devices consume the lowest en-
ergy when the HSPA interface is active. Lumia825 is the second
least. On the other hand Android devices consume the maxi-
mum energy. However, all the devices use Fast Dormancy with
an inactivity timer of 5s, except iPhone5 which uses an inactiv-
ity timer of 8s.

We measured power consumption of the LTE interface with
four different network configurations; DRX is disabled, DRX
is enabled with a short DRX cycle (80ms), with DRX cycles of
160ms and 640ms respectively. From the results presented in
Figure 14(b), we find that the smartphones consume the maxi-
mum energy when DRX is not enabled in the network. If DRX
is enabled in the network, the smartphones consume less power.
This is because the devices periodically wake up to check data
activity according to the DRX cycles in the connected state.
This Figure also depicts that Lumia825 consumes the lowest
current when LTE is active.

Figure 14(b) also depicts that iPhone5 is the most and Lu-
mia825 is the least energy consuming device when DRX is en-
abled. From power traces we identified that even though the
DRXon was configured to 10ms, iPhone5 spends 60ms. On the
other hand, Lumia825 and GS3 LTE spend 30 and 45ms respec-

11

0"

50"

100"

150"

200"

250"

300"

350"

Encoding"rate"
(GS3"LTE,"
YouTube)"

Thor=ling"
(iPhone"5,"
YouTube)"

Thor=ling"
(iPhone"4S,"
YouTube)"

ONCOFFCS"
(GS3"LTE,"
Vimeo)"

ONCOFFCS"
(GS3"LTE,"
NeGlix)"

ONCOFFCM"
(GS3"LTE,"
YouTube)"

Fast"Caching"
(GS3"LTE,"
YouTube)"

Cu
rr
en

t'(
m
A)
'

WiCFi"
HSPA"
LTE"

Figure 16: Avg. streaming current consumption of smartphones when streaming a 600 s long constant bit rate video using the streaming strategies.

tively in the on period of the DRX cycle. From Figure 14(b),
we can also see that the devices consume more current when
the cycle lengths are shorter. For instance, when DRX cycle
is of 80ms, GS3 LTE and Lumia825 consume around 120mA
current. If the cycle length is increased to 640ms, the power
consumption is decreased by a factor of three approximately.
The first reason is that when short DRX cycles are in action,
a mobile device will spend more time in the on period of the
cycles as there will be more cycles when the RRC inactivity
timer is active. Second, the LTE chipset is not optimized yet
to operate on such small cycles. They cannot efficiently shut-
down the power consumption during the DRX sleep phase. Fig-
ure 15(a) shows that current consumption of GS3 LTE is stable
at ≈220mA from 132 to 142s even though the DRX is active.
Current consumption during short DRX cycles does not scale
down like when DRX cycle is of 640ms (from 245 to 255s in
Figure 15(b)). This pattern is also consistent with iPhone5 and
Lumia825 (Figure 14(b)).

However, power consumption of these interfaces can vary
according to the downloading rate. The deviation can be±50mA.

6.3. Impact of Streaming Techniques
In the previous section, we showed the basic power con-

sumption characteristics of different WNI. In this section, we
discuss the effect of streaming techniques on the energy con-
sumption in smartphones. Since all the techniques are not avail-
able in a single platform, it is difficult to compare the energy
efficiency of the techniques. Therefore, we compare only the
current consumed by the wireless interfaces of the smartphones
and exclude the playback current in order to provide a compar-
ison ground. In the case of LTE, the DRX was enabled in the
network and we used a single DRX profile with DRX cycle of
80ms, as this profile is used by the network operators in Fin-
land. We compare them in Figure 16.

6.3.1. Encoding Rate Streaming
In this case, the content is delivered continuously through-

out the entire streaming session and the wireless interface is
active all the time. For example, downloading a 6 minute video
would require approximately six minutes. As a consequence,
the average streaming current drawn by Galaxy S3 LTE is very

high for the YouTube videos. Figure 16 also shows that Galaxy
S3 LTE (GS3 LTE) consumes around 77mA for Wi-Fi, 200mA
and 310mA for HSPA and LTE respectively (HD video us-
ing browser). The high current consumption of HSPA/LTE is
expected, since these interfaces are constantly in the highest
power consuming state. However, power consumption over
Wi-Fi is low with respect to the usage of the interface. This
is because, the Android devices use DVFS when streaming via
Wi-Fi.

6.3.2. Throttling
In Section 4.2, we discussed that in case of throttling, the

throttle factor defines the amount of time is used to deliver the
content to the client players. The higher is the throttle factor, the
lower is the time required at the client to download the content.
Therefore, this factor also determines the amount of time the
wireless radio will be powered on and hence it also determines
power consumption at smartphones. Energy consumption for
two throttled sessions is presented in Figure 16. In the first case,
the server uses the throttle factor 1.25 for iPhone5. The second
session is for iPhone4S, where the factor is 2. iPhone5 con-
sumes more current than iPhone4S for streaming via Wi-Fi and
3G. The obvious reason is that iPhone4S downloads at a faster
rate. And both smartphones consume less current than the GS3
LTE which downloads video at the encoding rate. Therefore,
throttling delivers energy savings over encoding rate streaming
as interface usage time is reduced.

6.3.3. Buffer Adaptive Streaming
Figure 16 shows that GS3 LTE consumes more current in

streaming a Vimeo video than the Netflix video via any WNI.
This is because of the player behavior in resetting TCP persist
timer. We described in Section 4.3.1 that the Vimeo player re-
sets TCP persist timer after every 16 seconds. Therefore, the
maximum interval between TCP control packets from Vimeo
can be 5s. On the other hand, the Netflix player rests after ev-
ery 30s and the maximum interval between TCP control packets
from Netflix is 10s. Therefore, the interfaces can spend more
time in low power consuming states when streaming from Net-
flix than streaming from Vimeo. However, the average stream-
ing current consumption is less than the encoding rate stream-
ing.

12

0"

50"

100"

150"

200"

250"

HSL"(iPhone"5,"
Dailymo6on)"

Ne9lix"(iPhone"5,"
Ne9lix)"

MSS"(Lumia"825,"
Ne9lix)"

Cu
rr
en

t'C
on

su
m
p,

o'
(m

A)
'

Wi?Fi"

HSPA"

LTE"

Figure 17: Avg. streaming current consumption of smartphones for
rate adaptive streaming techniques, HTTP Live Streaming, Microsoft
Smooth Streaming and Netflix’s own adaptive mechanism in iPhone5.

Figure 16 also includes a case where GS3 LTE receives con-
tent from YouTube in multiple TCP connections. Since the du-
ration of such an OFF period is 60s, the wireless interfaces can
be in sleep or the lowest power consuming states for very long
time. As a result, GS3 LTE consumes roughly 50% less en-
ergy when using ON-OFF-M than the encoding rate. However,
it can be seen that ON-OFF-M does not outperform throttling
(iPhone4S) in current consumption as the player receives con-
tent at the same throttled rate in each TCP connection.

6.3.4. Fast Caching
Fast caching is used to download content at the client with

as high throughput as possible. As a result the wireless interface
is maximally utilized for as little time as possible. Figure 16
shows that GS3 LTE consumes the least current, if the YouTube
player downloads the whole video using Fast Caching.

6.3.5. Rate Adaptive Streaming
Similar to the ON-OFF-M mechanism, the quality or rate

adaptive players also receive content in chunks over a single or
multiple TCP connections. The duration of a chunk varies from
a minimum four seconds to maximum ten seconds depending
on the service. Figure 17 shows the current consumption of
the WNIs when streaming Netflix and Dailymotion videos in
iPhone5 and Lumia825. In both devices, power consumption
of the Wi-Fi interface is about 30mA. The players in iPhone
receive content in 10s chunks. Therefore, the HSPA interface
avails the lower states rarely as the FD timer is 8s and conse-
quently current consumption is high. The LTE interface also
consumes significant current even though the DRX was en-
abled. This is because, the LTE interface in the iPhone5 takes
long time in the ON period of the DRX cycle. iPhone5 con-
sumes more current when streaming Netflix than the Dailymo-
tion via cellular networks. The reason is that the Netflix player
downloads audio and video chunks separately and their down-
loading was not synchronized. Compared with iPhone5, Lu-
mia825 consumes less current when the Netflix player streams
via LTE as the interface spends lesser time in the ON state of
the DRX cycles when DRX is active.

0 0.2 0.4 0.6 0.8 1
250

300

350

400

450

500

550

600

fraction of video watched (%)

av
er

ag
e

cu
rre

nt
 d

ra
w

(m
A)

Fast Caching: Vimeo SD on Lumia 800
ON−OFF−M: YouTube LD on Galaxy S3

Figure 18: Average draw of current as a function of viewing time for
HSPA access.

6.4. summary
From Section 6.1, we learned that native apps are the most

energy efficient. Since, HTML5 is an important technology at
this moment, optimizing the HTML5-based player implemen-
tations would be an important future work. We also noticed
that video container/codec also has significant impact on the
energy consumption (3GPP seems more efficient than MP4),
while video quality has a small impact. Therefore, the focus
should be choosing an optimal codec or container.

Concerning the current consumption of wireless network
interfaces, Wi-Fi is the the most energy efficient interface. When
using LTE, the smartphones are not optimized yet for 80-160ms
DRX cycles. Therefore, the network operators should use longer
DRX cycles in the network to improve the battery life time of
smartphones. The main lesson concerning the different stream-
ing techniques is that encoding rate streaming causes clearly
the largest amount of energy consumption. Fast caching is the
most energy efficient technique. An effective ON-OFF-M tech-
nique should deliver content without any rate control. Although
the rate adaptive techniques are similar to ON-OFF-M, higher
chunk size and synchronization between audio/video chunks
would reduce energy consumption significantly.

7. QoE and Energy Consumption Tradeoffs

In Section 5, we found that most of the video services use
optimized methods so that streaming quality does not deterio-
rate user experience by enabling the players in providing unin-
terrupted playback as long as possible. From this perspective,
fast caching and throttling are the most efficient techniques.
However, if the user does not watch the whole video, the down-
loaded data is wasted. Furthermore, using the cellular access to
download unnecessarily content is problematic for users having
small quota in their data plan and for the network resources. For
example, Finamore et al. analyzed YouTube traffic to desktop
computers and iOS devices accessed via Wi-Fi and discovered
that 60% of videos were watched for less than 20% of their du-
ration [5]. Therefore, ON-OFF mechanisms are attractive con-
sidering the unnecessary content download.

13

0 20 40 60 80 100
0.4

0.5

0.6

0.7

0.8

0.9

1

dynamic buffer size (s)

av
er

ag
e

re
la

tiv
e

po
w

er

S:400kbps, C:6Mbps
S:2Mbps, C:6Mbps
S:400kbps, C:3Mbps
S:2Mbps, C:3Mbps

Figure 19: Relative power draw as a function of dynamic buffer size
for HSPA access. S is the stream encoding rate and C is the available
bandwidth to download content.

From the energy consumption point of view, the download-
ing energy is also wasted to retrieve the unwanted content. In
Figure 18, we plot the average current draw for fast caching and
ON-OFF-M techniques as a function of percentage of watched
video computed out of the complete power traces. We see that
abandoning the video watching early on would cause a hefty
penalty in terms of wasted energy in both cases but the penalty
gets smaller faster with the ON-OFF-M streaming making it a
more attractive technique, since it is common not to watch the
video completely.

Since ON-OFF-M is the balanced technique in providing
both less data waste and less energy consumption, a tradeoff
between the buffer thresholds and energy consumption must
be understood. Assuming that the upper threshold is fixed, i.e.
the player allocates a fixed amount of memory for the playback
buffer in the beginning of a streaming session, the lower thresh-
old determines how large chunks of content will be downloaded
at a time, i.e. what is the duration and frequency of the ON pe-
riods. The lower the threshold, the less frequent are the buffer
refill events (ON periods), and the less power is consumed on
the average. On the other hand, the lower the lower thresh-
old is set, the higher is also the chance that there is a playback
pause event when the buffer refilling begins in case a transient
period of low bandwidth happens to coincide. For this reason,
there is a tradeoff between risking a buffer underrun event and
the power consumption which is controlled by the lower buffer
threshold.

We plot in Figure 19 the average power draw as a function
of the dynamic buffer size. The dynamic buffer size is directly
determined by the lower threshold if we keep the upper thresh-
old fixed. We notice that if there is plenty of spare bandwidth
available compared to the stream encoding rate, then the buffer
size should be set at least to a value around 40-50s, but setting
the buffer to a larger value than that no longer reduces the power
consumption significantly.

The current YouTube players in Android that use the ON-
OFF-M strategy set the upper threshold to a value equalling
100s × rs and the lower one to 40s × rs where rs is the aver-

age encoding rate. These thresholds translate to a 60s dynamic
buffer size which, in light of Figure 19, strikes a good balance.
Those players using ON-OFF-S technique in newer versions of
Android use a 20MB buffer size. Assuming a lower threshold
at zero, the dynamic buffer size would translate to 400s and
80s for videos having encoding rate of 400 kbps and 2 Mbps,
respectively. With the higher quality video, the lower thresh-
old could be set to 30 − 40s × rs in order to safeguard from
buffer underrun events, and that configuration would still pro-
vide good energy efficiency when using HSPA.

8. Related Work

The diverse nature of existing popular mobile streaming
services in delivering better user experience, and the resulting
energy consumption characteristics have so far not been com-
pletely uncovered. Krishnan et al. [17] studied the effect of ini-
tial joining time and playback pause events on the engagement
in watching videos for fixed host users. Their findings were
such that users cannot tolerate more than 2 seconds of joining
delay and if a pause event persists more than 1% of total du-
ration of the video the engagement decreases. Balachandran
et al. [15] proposed a machine learning approach which tries
to improve the engagement further by selecting the appropriate
CDN according to the bit rate of the content.

Many papers have studied the energy efficiency of multi-
media streaming over Wi-Fi and developed custom protocols or
scheduling mechanisms to optimize the behavior. Examples of
such work range from proxy based traffic shaping and schedul-
ing to traffic prediction and adaptive buffer management [3].
However, streaming over HSPA and the specific nature of the
streaming services and client apps provide new challenges that
these solutions cannot overcome. Balasubramanian et al. [18]
studied 3G power characteristics in general and quantified the
so called tail energy concept.

The most popular streaming services, especially YouTube,
have been subject to numerous measurement studies in recent
few years. Xiao et al. [19] measured the energy consumption of
different Symbian based Nokia devices while using a YouTube
application over both Wi-Fi and 3G access. A similar study
was done by Trestian et al. [20] for Android platform. They
investigated energy consumption while streaming over Wi-Fi
at different network conditions and studied the effect of video
quality on energy consumption. However, these studies did not
consider the details of traffic patterns and their impact on the
energy consumption.

In a measurement study, Rao et al. [4] studied YouTube and
Netflix traffic to different smartphones (iOS and Android) and
web browsers accessed via Wi-Fi interface. They found three
different traffic patterns of YouTube. In a similar passive mea-
surement study, Finamore et al. [5] also analyzed YouTube traf-
fic to PCs and iOS devices accessed via Wi-Fi and demonstrated
that iPhone and iPad employ chunk based streaming. Qian et
al. [21] explored RRC state machine settings in terms of in-
activity timers using real network traces from different opera-
tors and proposed a traffic shaping solution for YouTube which
closely resembles the ON-OFF streaming technique.

14

Liu et al. [22] studied power consumption of different stream-
ing services. However, the scope of their study is considerably
different from ours. They limit their study to streaming over
Wi-Fi and performed experiments with only iPod, while we ex-
plored all the major mobile platforms and contrasted Wi-Fi and
HSPA energy consumption in [10].

In contrast to these studies, our contributions are the fol-
lowings. (i) We investigated the traffic pattern of the streaming
techniques and the characteristics which influence the choice of
a streaming technique. (ii) We measured the initial joining time
that varies according to the service, quality of the content and
wireless access. (iii) We examined the playback buffer status
of the players during playback to understand to which extent
they can avoid a playback pause event in case of spurious net-
work condition. (iv) We also studied the impact of the stream-
ing techniques on the energy consumption on different smart-
phones using Wi-Fi, HSPA and LTE. (v) Finally, we proposed
playback buffer configurations for ON-OFF mechanism, which
can ensure significant energy savings, reduce data waste, and
can tolerate bandwidth fluctuations to some moderate extent.

9. Conclusions

We analyzed the performance of four video services in tol-
erating bandwidth fluctuation and the energy consumption of
smartphones. Based on he measurements with the latest smart-
phones, we identified five different streaming techniques. The
used technique depends on the service, client device or mobile
platform, player type, and video quality. In general, most of
the techniques are efficient in tolerating short term and long
term bandwidth fluctuations by prefetching content. Since an
interrupted video session can result in significant data and en-
ergy waste, ON-OFF-M provides a balance between quality of
experience, and data or energy waste. We investigated how
the buffer underrun and energy consumption are related and
showed the optimal buffer threshold configurations with which
a player can tolerate bandwidth fluctuation for 30 s to one minute,
at the same time reducing data waste and saving energy.

References

[1] Cisco visual networking index: Global mobile data traffic forecast update,
20112016 (Feb. 2012).

[2] L. Guo, E. Tan, S. Chen, Z. Xiao, O. Spatscheck, X. Zhang, Delving
into internet streaming media delivery: a quality and resource utilization
perspective, in: Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement, IMC ’06, ACM, New York, NY, USA, 2006, pp.
217–230.

[3] M. A. Hoque, M. Siekkinen, J. K. Nurminen, Energy efficient multimedia
streaming to mobile devices – a survey, To Appear in Communications
Surveys Tutorials, IEEE PP (99) (2012) 1 –19.

[4] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, W. Dabbous, Net-
work characteristics of video streaming traffic, in: Proceedings of the
Seventh COnference on emerging Networking EXperiments and Tech-
nologies, CoNEXT ’11, ACM, New York, NY, USA, 2011, pp. 25:1–
25:12.

[5] A. Finamore, M. Mellia, M. M. Munafò, R. Torres, S. G. Rao, Youtube
everywhere: impact of device and infrastructure synergies on user ex-
perience, in: Proceedings of the 2011 ACM SIGCOMM conference on
Internet measurement conference, IMC ’11, ACM, New York, NY, USA,
2011, pp. 345–360.

[6] J. Erman, A. Gerber, K. K. Ramadrishnan, S. Sen, O. Spatscheck, Over
the top video: the gorilla in cellular networks, in: Proceedings of the 2011
ACM SIGCOMM conference on Internet measurement conference, IMC
’11, ACM, New York, NY, USA, 2011, pp. 127–136.

[7] E. Tan, L. Guo, S. Chen, X. Zhang, Psm-throttling: Minimizing energy
consumption for bulk data communications in wlans, in: Proceedings of
the IEEE International Conference on Network Protocols, ICNP 2007,
October 16-19, 2007, Beijing, China, IEEE, 2007, pp. 123–132.

[8] Fast Dormancy, Fast dormancy best practices. GSM association, network
efficiency task force (2010).

[9] M. Siekkinen, M. A. Hoque, J. K. Nurminen, M. Aalto, Streaming over
3G and LTE: How to save smartphone energy in radio access network-
friendly way, in: 5th ACM Workshop on Mobile Video, MoVid’13, ACM,
2013, pp. 1–6.

[10] M. Hoque, M. Siekkinen, J. K. Nurminen, M. Aalto, Dissecting mobile
video services : An energy consumption perspective, in: Proceedings of
the 14th IEEE International Symposium on a World of Wireless, Mobile
and Multimedia Networks, WoWMoM’13, IEEE, 2013.

[11] S. Alcock, R. Nelson, Application flow control in youtube video streams,
SIGCOMM Comput. Commun. Rev. 41 (2) (2011) 24–30.

[12] T. Stockhammer, Dynamic adaptive streaming over http –: standards and
design principles, in: Proceedings of the second annual ACM conference
on Multimedia systems, MMSys ’11, ACM, New York, NY, USA, 2011,
pp. 133–144.

[13] S. Akhshabi, S. Narayanaswamy, A. C. Begen, C. Dovrolis, An experi-
mental evaluation of rate-adaptive video players over http, Image Com-
mun. 27 (4) (2012) 271–287.

[14] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, H. Zhang, A
quest for an internet video quality-of-experience metric, in: Proceedings
of the 11th ACM Workshop on Hot Topics in Networks, HotNets-XI, New
York, NY, USA, 2012, pp. 97–102.

[15] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, H. Zhang, De-
veloping a predictive model of quality of experience for internet video, in:
Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM,
SIGCOMM ’13, ACM, New York, NY, USA, 2013, pp. 339–350.

[16] X. Cheng, J. Liu, C. Dale, Understanding the characteristics of internet
short video sharing: A youtube-based measurement study, Multimedia,
IEEE Transactions on 15 (5) (2013) 1184–1194.

[17] S. S. Krishnan, R. K. Sitaraman, Video stream quality impacts viewer be-
havior: inferring causality using quasi-experimental designs, in: Proceed-
ings of the 2012 ACM conference on Internet measurement conference,
IMC ’12, ACM, New York, NY, USA, 2012, pp. 211–224.

[18] N. Balasubramanian, A. Balasubramanian, A. Venkataramani, Energy
consumption in mobile phones: a measurement study and implications for
network applications, in: Proceedings of the 9th ACM SIGCOMM con-
ference on Internet measurement conference, IMC ’09, ACM, New York,
NY, USA, 2009, pp. 280–293. doi:10.1145/1644893.1644927.

[19] Y. Xiao, R. S. Kalyanaraman, A. Yla-Jaaski, Energy Consumption of Mo-
bile YouTube: Quantitative Measurement and Analysis, in: Proceedings
of the 2008 The Second International Conference on Next Generation
Mobile Applications, Services, and Technologies, 2008, pp. 61–69.

[20] R. Trestian, A.-N. Moldovan, O. Ormond, G.-M. Muntean, Energy con-
sumption analysis of video streaming to android mobile devices., in:
Proceedings of the Network Operations and Management Symposium
(NOMS), 2012 IEEE, IEEE, 2012, pp. 444–452.

[21] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck, Char-
acterizing radio resource allocation for 3g networks, in: Proceedings of
IMC 2010, ACM, New York, NY, USA, 2010, pp. 137–150.

[22] Y. Liu, L. Guo, F. Li, S. Chen, An empirical evaluation of battery power
consumption for streaming data transmission to mobile devices, in: Pro-
ceedings of the 19th ACM international conference on Multimedia, MM
’11, ACM, New York, NY, USA, 2011, pp. 473–482.

15

http://dx.doi.org/10.1145/1644893.1644927

	1 Introduction
	2 Background
	2.1 Power Saving Mechanisms for Wireless Network Interfaces
	2.1.1 Wi-Fi
	2.1.2 WCDMA/HSPA
	2.1.3 LTE

	2.2 Mobile Video Streaming
	2.3 Quality of Experience

	3 Measurement and Data Collection
	3.1 Properties of the multimedia content
	3.2 Network Setup
	3.3 Power Measurement

	4 Streaming Techniques
	4.1 Encoding Rate Streaming
	4.2 Throttling
	4.2.1 Single TCP connection
	4.2.2 Multiple TCP connections

	4.3 Buffer Adaptive Streaming
	4.3.1 Single Persistent TCP Connection (ON-OFF-S)
	4.3.2 Non-persistent TCP connections (ON-OFF-M)

	4.4 Fast Caching
	4.5 Rate Adaptive Streaming
	4.5.1 HTTP Live Streaming
	4.5.2 Microsoft Smooth Streaming

	4.6 Summary

	5 Streaming Techniques and Quality of Experience
	6 Streaming Services and Power Consumption
	6.1 Playback Power Consumption
	6.1.1 Video Quality
	6.1.2 Video Player
	6.1.3 Video Container

	6.2 Device Variation
	6.3 Impact of Streaming Techniques
	6.3.1 Encoding Rate Streaming
	6.3.2 Throttling
	6.3.3 Buffer Adaptive Streaming
	6.3.4 Fast Caching
	6.3.5 Rate Adaptive Streaming

	6.4 summary

	7 QoE and Energy Consumption Tradeoffs
	8 Related Work
	9 Conclusions

