
Accepted Manuscript

Detecting abnormal events on binary sensors in smart home
environments

Juan Ye, Graeme Stevenson, Simon Dobson

PII: S1574-1192(16)30080-3
DOI: http://dx.doi.org/10.1016/j.pmcj.2016.06.012
Reference: PMCJ 718

To appear in: Pervasive and Mobile Computing

Received date: 17 November 2015
Revised date: 5 April 2016
Accepted date: 21 June 2016

Please cite this article as: J. Ye, G. Stevenson, S. Dobson, Detecting abnormal events on binary
sensors in smart home environments, Pervasive and Mobile Computing (2016),
http://dx.doi.org/10.1016/j.pmcj.2016.06.012

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The manuscript
will undergo copyediting, typesetting, and review of the resulting proof before it is published in
its final form. Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.pmcj.2016.06.012

Detecting Abnormal Events on Binary Sensors in Smart Home
Environments

Juan Ye, Graeme Stevenson, and Simon Dobson

School of Computer Science, University of St Andrews, UK
E-mail: juan.ye@st-andrews.ac.uk

Abstract

With a rising ageing population, smart home technologies have been demonstrated as a promising paradigm
to enable technology-driven healthcare delivery. Smart home technologies, composed of advanced sensing,
computing, and communication technologies, offer an unprecedented opportunity to keep track of behaviours
and activities of the elderly and provide context-aware services that enable the elderly to remain active and
independent in their own homes. However, experiments in developed prototypes demonstrate that abnormal
sensor events hamper the correct identification of critical (and potentially life-threatening) situations, and
that existing learning, estimation, and time-based approaches to situation recognition are inaccurate and
inflexible when applied to multiple people sharing a living space. We propose a novel technique, called
CLEAN, that integrates the semantics of sensor readings with statistical outlier detection. We evaluate the
technique against four real-world datasets across different environments including the datasets with multiple
residents. The results have shown that CLEAN can successfully detect sensor anomaly and improve activity
recognition accuracies.

Keywords: Ontologies, Smart home, Fault detection, Semantics, Domain knowledge

1. Introduction

As our population ages there will be increasing need for developing cost-effective solutions to reduce
burdens on over-stretched healthcare resources. Smart home technologies have been widely recognised as a
promising solution to support independent assistive living [4]. A smart home is a residential home setting
where sensors are embedded and attached to all sorts of everyday objects such as beds, mugs, appliances,
and even our bodies. These sensors perceive the state of the physical environment through the interactions
people have with these instrumented objects. By reasoning on these captured states, an intelligent system
can infer what tasks residents are carrying out, and therefore automatically provide services to help achieve
these goals without the need of direct or explicit guidance from the residents [7]. Beyond this, smart home
technologies have a potential to automatically identify early symptoms of illness and help the elderly live
independently in their own homes [4].

Research in smart home technologies has been popular in the last decade, and many prototypes have
been developed, including the Aware Home [1], MavHome [38], Gator Tech Smart Home [14], and iDorm [8].
However, the possibility of widespread deployment of such systems remains unclear. One obstacle among
many (such as privacy and ethical issues) is the high likelihood of sensor anomalies. Researchers from
the University of Virginia conclude their experience of deploying sensors with the following observation:
“Homes [...] can be hazardous for sensors, particularly when hundreds of sensors are deployed over long
time durations” [16]. During their years of experimenting, they report an average of one sensor failure per
day. The high rate of failure can result in incorrect activity detection (e.g., unable to detect life-threatening
situations), leading to the failure of delivering appropriate services in time.

The high rate of sensor failure results from various types of technical limitation in pervasive sensing
technologies [25]. The sensors are subject to hardware failure, disconnection from the network, vulnerability

Preprint submitted to Pervasive and Mobile Computing April 5, 2016

*Manuscript
Click here to view linked References

to environmental interference, and limited battery life. For example, sensors are more likely to produce
erratic readings when the battery has reached the end of its life. Or the presence of metallic structures or
electronic equipment could lead to interference with the location detection hardware that use ultra-wideband
technologies [5].

Another major factor contributing to sensor anomaly in smart home environments is the presence of
humans; that is, users (including both foreground users who are target subjects and background users
who are active in the same environment like visitors, children, or pets) might dislodge or move sensors
accidentally [16, 19]. This often leads to sensor anomaly, where sensors do not fail, but continue to report
values that are technically reasonable (e.g., the reported values are still within a reasonable range) but are
unexpected or contradict the events occurring in the world.

Addressing sensor anomalies is more challenging than detecting sensor failure or sensor readings that are
out of range. Hnat et al. [16] discuss solutions towards addressing the sensor failure. For example, they set
a time interval that is reasonably long for any two consecutive data points. If no data is reported from a
sensor within the interval since the last report, then this sensor can be considered broken. In contrast, sensor
anomalies can be much more subtle and thus more difficult to detect. Simply setting fixed or variable time
intervals or checking the valid range of readings cannot solve the problem, and often we need to validate
collected values against either a data model that represents expected sensor values or values collected from
neighbouring sensors via a correlation model.

A large number of fault detection techniques have been proposed in sensor network, which mainly
deal with homogeneous, periodic, and real-numbered readings. These techniques often target individual
sensors by tracking their historic values. However, the most common classes of sensors deployed in a smart
home are infrared sensors, RFIDs, motion sensors, accelerometers, camera and microphones [33]. These
sensors produce heterogeneous, event-triggered, and binary or featured readings. First of all, compared
to the homogeneous, real-numbered sensor readings, it is not straightforward to define an explicit numeric
relationship between readings of the smart home sensors, such as correlation between infrared sensor readings
and acceleration data. Secondly, it is difficult to define a range limit over RFID readings or a seasonal pattern
of sound.

To address these challenges, we propose CLEAN — a knowledge-driven technique to detect anomalies in
event-driven binary sensors [37]. We focus on two types of anomaly — random events that occur sporadically
due to short or intermittent environmental interference; and systematic events where sensors consistently
behave abnormally due to the sensor recalibration or dislodgement. We claim the following novelty and
contributions:

• It is knowledge-driven in that it does not rely on any training data or annotated data and thus can
be used from system initialisation and is not affected by changes in the patterns or routines of users’
activities.

• It novelly combines knowledge and statistical models by using well-defined knowledge as part of a
clustering-based outlier detection technique. It is equipped with a flexible and dynamic mechanism to
configure and adjust thresholds at runtime, which reduces engineering effort in setting parameters for
different environments.

• It can detect multiple sensor anomalies simultaneously, and can scale up to a large number of sensors.

• It is not constrained by the number of users cohabiting the same environment.

To demonstrate the wide applicability, we evaluate CLEAN over four third-party real-world datasets
with different sensor deployments, user profiles, and collection periods. As dealing with sensor faults for
a long-term smart home environments becomes a more and more important topic, there is a need for a
standard methodology to assess the effectiveness of fault detection algorithm. In this paper we present such
methodology including how to systematically inject random and systematic abnormal events into a dataset,
measure the accuracies of a detection algorithm, and study the impact of the fault detection algorithm on
activity recognition.

2

The rest of the paper is organised as follows. Section 2 briefly discusses existing fault detection work
in sensor network and identifies their limitations and differences from CLEAN. Section 3 introduces the
proposed approach where we discuss a similarity measure between sensor events and elicit a clustering-
based outlier detection algorithm. In Section 4 we design a set of evaluation algorithms and assess the
performance of CLEAN through a comprehensive set of experiments. We discuss the benefits and limitations
of the approach in Section 5 along with directions for future work. Finally, we conclude in Section 6.

2. Related Work

Sensor fault detection is a popular topic in sensor network, and numerous techniques have been proposed.
We will introduce the most representative techniques and discuss why they are not applicable to detect
anomaly on event-driven, binary sensors. In addition, we will describe the recent anomaly detection in
smart home environment in particular and highlight the difference of our work from them.

2.1. Fault detection in Wireless Sensor Networks
Fault detection has gained much attention in wireless sensor networks, as longer-term deployment in real-

world settings significantly increases [29]. Fault detection techniques can be categorised into four groups:
rule-based methods, estimation methods, time series analysis, and learning-based methods [25, 29].

2.1.1. Rule-based Methods
A rule-based method relies on expert knowledge about sensor readings to develop heuristic rules for

identifying and classifying faulty sensor data. This method works best when the types of faults that can
occur and the methods to detect them are known a priori. An early solution adopted by Mourand et
al., defines ranges for valid sensor readings so as to exclude any observations falling out of reasonable
domain limits [23]. This approach is mainly used to clean the data and thus reduce the burden from the
domain experts before performing any data analysis process. A more recent example is Suelo, an embedded
networked sensing system designed for soil monitoring [27]. Suelo centres on human experts in that human
experts need to define a feature space transform that are a set of functions to be called on data points to
help assess whether they are valid or not. Based on the initial setup, it actively requests the help of a human
when it is necessary to validate, calibrate, repair or replace sensors. Also it learns from the human’s actions
and responses to automatically update its knowledge base.

The rule-based method could apply to detecting binary sensor anomaly; for example in a single-resident
environment, positioning sensors in both front door and bedroom door cannot fire at the same time, sug-
gesting that it is impossible that a person is reported present at these two spatially disjoint places. However,
this method requires a great deal of knowledge on spatial layout of the environment or resident behaviour
pattern, which might incur a large amount of knowledge engineering effort. Also it is less feasible and
error-prone if many sensors are deployed in an environment; for example, it is difficult to specify all the
valid rules for a dozen of or twenty sensors, not to mention hundreds of sensors [21].

2.1.2. Estimation methods
An estimation method learns sensor correlations to predict normal behaviour of sensor observations.

For physical phenomena like temperature or light, there often exist statistical correlations between sensor
measurements. For example, correlations between measurements of sensors that monitor the same physi-
cal phenomena but are deployed at different locations, correlations of readings across time, or correlations
between measurements of sensors that monitor potentially related phenomena (e.g., temperature and humid-
ity) but are deployed spatially together [10]. For example, Sharma et al use previous reported temperature
by one sensor to estimate the future reading by another sensor [29]. If the deviation between the predicted
and actual reported readings is over a threshold, then they classify the reported reading as erroneous. Lin-
ear Least-Squares estimation is a commonly used method, which is data-centric and mainly based on the
covariance between the readings of two sensors. In terms of choosing a threshold, there are two heuristics:

3

either using the maximum estimation error if there are no faulty samples in the training data, or using the
confidence limit if the training dataset has faults.

In CLEAN, we also assume that there exists a correlation between event-driven sensors which is not
statistical between their values but semantic in nature, related to the locations in which sensors are placed
and objects to which they are attached. We use such semantic relations to spot abnormal sensor events. For
example in a single-resident environment, we could regard as abnormal a single firing of a sensor deployed
in a bathroom among a collection of kitchen-hosted sensor firings.

2.1.3. Time series analysis
Time series analysis builds a model for data streams collected by the same sensor to exploit their temporal

correlations over a long-term period. To detect a fault, a sensor measurement is compared against its
predicted value computed using time series forecasting. This method works best if the monitored physical
phenomena such as temperature or light exhibits a certain periodic or seasonal pattern. If these phenomena
are measured periodically over a long period of time, the resulting time series of measurements can capture
the pattern as well as other time scale temporal correlations.

AutoRegressive Integrated Moving Average (ARIMA) is a common time series model for fault detec-
tion [11, 29]. The model can account for periodicity in that the predicted measurement at a certain time
t depends not only on the measurement at previous time sample t − 1 but also on measurements made s
time samples in the past; that is, at times t− s and t− s− 1. Similar to the estimation method, the fault
detection is done by checking whether the difference between the predicted measurement and the reported
measurement at a certain time is greater than a threshold. The prediction is often done at one-step ahead –
forecast the sensor measurement for the next time t+1 and L-step ahead – forecast the sensor measurements
for time t + i where 1 ≤ i ≤ L [29].

Fang et al. [11] also propose to use ARIMA to reduce errors in data collection while achieving energy
efficiency. Each node learns an ARIMA model that will predict if the measurements sampled by the node are
within a certain error bound. If the sampled measurement does not agree with the predicted measurement,
then it will be further validated by a spatial model to determine whether the model is out of date, or the
sampled data is faulty.

The assumption of the time series analysis is that sensors report values in a fixed frequency, which does
not hold for event-driven sensors that only report when a triggering condition is satisfied.

2.1.4. Learning-based methods
A learning-based method uses a certain amount of training data to derive a model for normal and

faulty sensor readings and then, given an input sensor reading, statistically detects and identifies classes of
sensor faults. It is usually integrated with the above estimation and temporal correlation based methods.
Bayesian networks, Hidden Markov Models, and neural networks are the most common techniques applied.
Dereszynski et al. [6] propose to use Bayesian Network for real-time fault detection and correction on
temperature sensor stream collected in an ecological monitoring setting. The approach has two steps: (i)
inferring a Bayesian network structure for each sensor deployment site, which captures spatial relationships
between sensors and then (ii) extending the network structures to a Dynamic Bayesian network (DBN)
to incorporate temporal correlations. The spatial and temporal correlations captured in different Bayesian
networks can help to distinguish sensor failures from valid observations and as well as to predict the true
values for the missing or corrupted readings. Similarly, Hill et al. [15] apply a DBN to analyse and diagnose
anomalous wind velocity data. They build individual sensor models, on top of which a coupled DBN model
is learned to represent the joint distribution of two sensors.

Garneriwal et al. proposes a reputation-based framework for sensor networks [12], where each sensor
node maintains a reputation metics about the other nodes in its neighbourhood. The reputation is obtained
by making direct observation about these other nodes, and is used to predict their future behaviours. A
Bayesian formulation is employed for the algorithm steps of reputation representation, update, integration,
and trust evolution.

Paschalidis et al. [26] use Markov models to characterise the normal behaviour of sensor networks; that is,
a Markov model at each sensor node is built to estimate anomaly-free probabilities from its past observation

4

traces, and a tree-indexed Markov model is developed to capture their spatial correlations across the network.
Based on derived optimal anomaly detection rules, the approach can assess whether its most recent empirical
measure is consistent with the anomaly-free probability model.

The learning-based method is more useful if the phenomena of interest is not spatio-temporally correlated,
or the pattern of “normal” sensor readings and the effect of sensor faults on the reported readings are well
understood [29]. The need for training data is the main obstacle to the use of learning-based techniques. This
is particularly a problem in smart home applications, compared to environmental monitoring applications.
First of all, collecting a high quality of training data is difficult [35]. Secondly, the firing of event-driven
sensors is subject to the activities being undertaken by human users, whose pattern may vary from time to
time. Thirdly, given that the sensors in a smart home environment have a high number of interactions with
human users, they are subject to displacement or misuse.

2.2. Detection Techniques in Smart Home Environments
Munir et al. [24] proposes FailureSense to detect sensor failures by monitoring the usage of electrical

appliances in the home. The assumption behind the algorithm is that there is a correlation between the
presence of the users and the activation of the electrical appliances; that is, for the majority of the appliances,
they can only be switched on when the user is physically present. Based on this assumption, they learn all
the regular intervals between the motion sensors that detect users’ presence and the appliance activation,
using the Gaussian Mixture Model. The system will report a failure when there is a significant deviation
from the regular pattern.

Researchers also propose top down, application-level methods to detect sensor faults [19, 28]. The
principle is to look at how sensor failure affects reasoners. Such techniques build a performance profile for
a set of classifier instances that are trained with all possible combinations of sensors. Detecting a sensor
failure is achieved by comparing the runtime performance with these acquired profiles.

For example, Kapitanova et al. [19] train state-of-the-art classifiers (like Naive Bayes and Hidden Markov
Model) to learn high-level human activities (like cooking) from a subset of sensors: excluding one sensor
from the whole set of sensors at a time. Fault detection is performed by comparing the performance of
these classifiers at recognising real-time activities. There are three main drawbacks to this method: i)
its principle is to spot single sensor failure at a time, however in reality there could be multiple sensors
failing simultaneously, ii) while the method might work on a small number of sensors (e.g., dozens) the
complexity of constructing the classifier profile suggests that the technique is unlikely to scale to hundreds
or thousands of sensors, iii) over the long term, sensors never function the same as they do in the training
data collection period, and neither do residents behave as expected. During the trial period, the sensors are
typically in their best condition (e.g., fully charged and finely tuned) and the residents carefully (sometimes
deliberately) interact with sensors. However when the sensors are not under the close watch of professional
technicians, they frequently exhibit quite different behaviour. The proposed technique, CLEAN, overcomes
these drawbacks.

3. Proposed Approach

We consider sensor anomaly detection as an outlier detection problem, where we assume the majority of
sensor events function coherently and we try to detect the minority of sensor events that behave inconsistently
from the majority. There are many different outlier detection algorithms [17], and here we choose an
unsupervised solution, a clustering-based outlier detection algorithm – FindCBLOF [13]. This technique
has been successfully applied to detecting abnormal network behaviours, and shares the above assumptions.
The basic principles of FindCBLOF are as follows:

1. Cluster all the data points into groups, and sort the groups by their size in descending order;
2. To each data point, assign a Cluster-Based Local Outlier Factor (CBLOF), which is a product of the

size of the cluster that the point belongs to and the similarity between the point and the closest large
cluster. The large cluster here means the cluster containing the majority of data points (say 90%). The
CBLOF suggests the similarity between a data point and a cluster in a statistical way that represents

5

the probability that the point belongs to the larger cluster. Any data point whose CBLOF is below
a pre-defined threshold is considered an outlier. That is, the smaller the CBLOF, the less similar the
point and the larger cluster are, and thus the point is more likely to be an outlier.

To adapt the FindCBLOF algorithm to detect anomaly in sensor events, we need to address the following
four questions:

• What is the distance measure between two sensor events?

• How do we define a cluster as “large”?

• As sensor events are not static but streaming and continuous data, it is highly likely that abnormal
sensor events occur repeatedly. How do we take into account the historic behaviour of sensors and
combine it with the CBLOF?

• How do we set a threshold on the CBLOFs to decide which data points are outliers?

In the following we propose strategies to address these questions.

3.1. Distance Measures between Sensor Events
Event-driven sensor readings are binary, and the distance between these binary numbers alone has little

meaning. However, each sensor can be characterised by its implicit semantics such as where the sensor is
placed, which object the sensor is attached to, and to whom the room or object belongs. These semantics
provide more information than the binary readings alone. In this section we follow the approach we proposed
in [35] to characterise the semantics of a sensor event and quantify their distance measure. More technical
details can be found in that paper.

We characterise a sensor event into semantic features [t, l, o, u], describing that at the timestamp
textttt, a sensor that is installed on an object texttto at a location textttl reports a reading about a user
textttu. For example, a sensor event can be represented as [2008-02-25T00:20:14Z, bedroom, door,
main user], indicating that the sensor installed at the door of the bedroom that belongs to the main user fires
at the give timestamp. We adopt an ontological approach where we organise concepts in each feature space
into a hierarchy based on their granularity level [34]. In the above example, bedroom, door, and main user
are concepts or instances in the Location, Object, and User feature space, and their relationships with the
other peer concepts can be: bedroomv sleeping areav living environment, doorv movable structure
(from WordNet [22]), and main user v any resident.

We can use the hierarchy to quantify the similarity of any two of its concepts. Wu et al. [31] propose a
conceptual similarity function that works by finding the Least Common Subsumer (LCS) of the two input
concepts and computing the path length from the LCS up to the root node. The LCS is the most specific
concept that both concepts share as an ancestor. This is given by:

sim(c1, c2) =
2×N3

N1 + N2 + 2×N3

where c1 and c2 are concepts in a feature space, N1 (N2) is the path length between c1 (c2) and the LCS
node of c1 and c2, and N3 is the path length between the LCS and the root.

When c1 is equal to c2, their LCS node is itself and the similarity is 1.0. When c1 is semantically far
from c2, their LCS node might be close to the root in the hierarchy, which makes N1 and N2 large and
N3 small, so the similarity is close to 0. Therefore, the higher the similarity measure, the closer the two
concepts. There exist other measures to quantify the distances between categorical values [2]; most are
based on frequencies of the values occurring in a certain dataset, which is not applicable in our approach.

Finally the distance between any two sensor events s1 and s2 can be defined as

1−
∑

i∈{l,o,u}
sim(si

1, s
i
2)× ωi, (

∑

i∈{l,o,u}
ωi = 1)

6

where sim is the above similarity function of the hierarchical concepts, and ωi is the weight of each feature,
which reflects the importance of each feature on capturing the similarity of two sensors. For example, if the
activities of interest are location-specific, a higher weight can be placed on the location feature. For the
purposes of the evaluation in this paper, we uniformly assign the same weight to these three features across
all the datasets; that is, 0.33. We use this calculation of similarity between sensors to spot the abnormal
sensor events that are distant from dense clusters.

3.2. Ordering of Clusters
Once we have defined the distance measure between any two sensor events, we can cluster them. Let

a sensor sequence contain a temporally-ordered list of sensor events. Clustering this sensor sequence will
lead to multiple groups, some of which may correspond to different activities from different users while the
others could contain the abnormal events. Therefore, it is not as likely that one cluster takes the absolute
majority of data points as the original algorithm assumes. To solve this problem, we use the shoulder-locating
method; we order the clusters by their size, and an abrupt change in their sizes suggests a threshold for
distinguishing large and small clusters. For example in Figure 1, we cluster a given sensor sequence into six
clusters, and the percentages of their size to the whole number of data points in a descending order are 40%,
38%, 12%, 5%, 3%, and 2%. As we can see, the shoulder point is at the cluster whose percentage is 12%,
where we observe the maximal difference between the size percentages. We then consider any cluster whose
size percentage is above 12% to be large; that is, any cluster to the left of the dotted red line is considered
as large and thus normal; i.e., Cluster 1 and 2. If the clustering results in one group or groups with identical

Figure 1: Distribution of Cluster Sizes and the corresponding shoulder locating

sizes, the shoulder cannot be located; i.e., the percentage on the shoulder point will be zero. If so, we cannot
find the minority of sparse points and thus we conclude there is no anomaly in this sensor sequence. If the
gaps of sizes between groups are the same; e.g., a slope line, then the shoulder point will move downward
to the smallest group. In this case, all groups with the exception of the smallest are considered large.

The shoulder-locating method provides a flexible alternative to using a predefined fixed threshold (say
50% or 30%) to determine a “large” group. The reason is that the threshold always depends on the number
of sensors deployed, the number of currently fired events, and activities being conducted at the moment.
This saves effort, both in terms of knowledge engineering and training normally required to configure or
adjust the best threshold setting. In Section 4 we will demonstrate that we run CLEAN over four datasets
without the need to re-configure any of these thresholds.

3.3. Considering Historic Sensor Behaviours
As mentioned earlier, abnormal sensor events may be persistent rather than one-off, especially for the

systematic type of anomaly caused by technical degradation or dislodgement. Here we consider two extra
factors: frequency and temporality. We assume that the more often and the more recent a sensor behaves

7

abnormally, the more likely it is that a fault occurs again. We apply these two factors as a weight to CBLOF
in an exponential function:

fw = e−f/N

where N is the total number of sensor events being monitored and f is the number of times that abnormal
events among the last N events are reported by a certain sensor. The choice of N depends on the intensity
of sensing. In the following experiments, we set it universally to be 100; that is, we will look at how many
times a sensor will function abnormally in the last 100 events.

tw = emin(1,td/T)−1

where td is the temporal distance between the current time and the reported event, and T is the range of
time of interest (for example, one day is used in our experiment).

Finally for each data point, the extended CBLOF will be

size of cluster ∗ sim to large cluster ∗ tw ∗ fw

To decide the threshold below which the data point is considered as an outlier, it is unrealistic to set a
fixed threshold because the number of sensor events varies with the activities being conducted by the users;
for example, some activities like cooking tend to fire more sensors, while the other activities like sleeping
only fires a limited number of sensors (e.g., the bedroom door) at its beginning and ending states. It also
matters with the number of sensors being installed and the number of users living in the environment.
Also different parameters in both temporal and frequency weight functions will make it difficult to fix the
thresholds. To solve the problem, we re-use the shoulder-locating method; that is, we order all the CBLOFs
in a descending order, and find the shoulder point where the maximum change is found. Then we use the
CBLOF at this shoulder as the threshold. Any data point whose CBLOF is below this threshold is treated
as an outlier.

4. Experiment and Evaluation

The main objective of the evaluation is to assess the effectiveness of the CLEAN algorithm in detecting
random and systematic abnormal events. Expanding from this objective, we evaluate whether CLEAN can
help improve activity recognition accuracies, and uncover insights on the features of abnormal events that
are more likely to be detected by CLEAN. In the following, we introduce the datasets to be evaluated,
experiment methodologies, and evaluation results.

4.1. Datasets
CLEAN is evaluated on four third-party, publicly-available, real-world datasets that are collected from

different smart home environments with different human users and sensor configurations. These datasets
capture typical activities and more importantly they represent common types of smart home datasets in
terms of the number of sensors, the number of users cohabiting, and the degree of inherent noise. We believe
that experimenting on these datasets gives us a comprehensive view of the effectiveness of the proposed
technique.

The first two datasets are collected by the University of Amsterdam (named TVK A and TVK B
respectively in the following) from two real-world, single-resident houses which were instrumented with
wireless sensor networks. The sensor network in the first house is composed of 14 state-change sensors
attached to household objects like doors, cupboards, and toilet flushes, while the network in the second
house contains reed switches to measure whether doors and cupboards are open or closed; pressure mats
to measure sitting on a couch or lying in bed; mercury contacts to detect the movement of objects (e.g.,
drawers); passive infrared to detect motion in a specific area; float sensors to measure the flush of toilet. All
these sensors output binary readings (0 or 1), indicating whether or not a sensor fires. These two datasets

8

aim to support the recognition of a similar set of activities (e.g., TVK B contains one more activity), while
the TVK B sensory data contains more noise than the TVK A data [20].

The third dataset is the PlaceLab Couple dataset [21]. To the best of our knowledge, this dataset
is by far the most complicated and largest dataset collected in a real-world environment that is publicly
available. The PlaceLab dataset contains over nine hundred sensor inputs, among which 707 are object
sensors, including wireless infra-red motion sensors, stick-on object motion sensors, switch sensors, and
RFIDs. The dataset was gathered over a period of 15 days during which a married couple (who were
unaffiliated with the PlaceLab research) lived in the PlaceLab, generating 455,852 object sensor events in
total. This dataset is not only composed of the highest variety of sensors but also contains many noisy
events, which is due to the following three reasons: (1) the majority of the sensors (except RFID sensors)
are not identity-specific, (2) they are very sensitive to environmental interference (e.g., motion detection
sensors), and (3) this couple often perform interleaved activities and only one subject’s activities have been
annotated [21].

The fourth dataset is the interleaved activities of daily living (labelled as IAA) dataset from the CASAS
smart home project [3]. This dataset was collected in a smart apartment testbed hosted at Washington
State University during the 2009-2010 academic year. The apartment was instrumented with various types of
sensors to detect user movements, interaction with selected items, the states of doors and lights, consumption
of water and electrical energy, and temperature, resulting in 2, 804, 812 sensor events. The apartment housed
two people, R1 and R2, who performed their normal daily activities during the collection period. This dataset
will demonstrate CLEAN’s performance in detecting abnormal sensor events in a multi-user environment.

4.2. Experiment and Evaluation Methodology
In this section, we will describe the measurements that we use to evaluate the effectiveness of CLEAN, the

techniques and parameters to configure CLEAN, and the specific evaluation goals of each of the experiments
we conduct.

4.2.1. Measurements
CLEAN is designed as a knowledge-driven anomaly detection algorithm, so we do not need any training

data to build the model and use the whole data set for testing. The effectiveness is measured in precision –
the percentage of the times of detected abnormal events are actually noise being injected into the data, and
recall – the percentage of the times of injected abnormal events are detected.

4.2.2. Technique and Parameter Selection
In terms of the clustering algorithm, we use DBSCAN [9], which does not require pre-defined cluster

sizes and is amenable to our needs – grouping events by their distance and neighbourhood density, which
are set as 0.5 and 2 respectively. That is, we cluster events if their distance is close enough (i.e., within 0.5)
and have enough close neighbours (i.e., 2 is the minimum number for being a group). This is the only place
that we need to set thresholds for the clustering algorithm to work. As mentioned in Section 3, we do not
need to configure the thresholds to determine whether a cluster is large or whether an event is an outlier.

4.2.3. Experiments
We conduct two types of experiments relating to the detection of both random and systematic anomalies.

To evaluate CLEAN, we inject different types of noisy events into these datasets and assess how accurately
CLEAN can detect them. As the four datasets we evaluate against were collected in real-world environments
over a long period of time, it is reasonable to assume that they contain noise; we will discuss the impact of
this inherent noise in our evaluation. In the following, we introduce the evaluation methodology for each
type of experiments in terms of specific goals and experiment setup.

Random Anomaly Detection Experiment – RADE
Specific Goals. We assess the anomaly detection accuracies of CLEAN. Beyond this, we also assess the

9

impact of CLEAN on activity recognition. We hypothesise that after running CLEAN, higher activity
recognition accuracies will be achieved relative to the accuracies obtained on noisy data. We investigate this
using off-the-shelf widely adopted classifiers from the Weka software toolkit [13], including the J48 Decision
Tree, Naive Bayes, Bayes Network, and Random Forest. We present the accuracies of recognising activities,
and employ Welch’s t-test to test the statistical significance of the difference in accuracies. This comparison
will demonstrate the effectiveness of CLEAN in terms of helping recognise activities more accurately in the
presence of noise, and further demonstrate the resilience of the different classifiers to varying degrees of
noise.
Noise Injection and Detection Process. We prepare the datasets by segmenting the sensor events into one-
minute time slots—the most common segmentation technique in use [19, 30]. Algorithm 1 illustrates the
random anomaly injection and evaluation process. If we want to inject a percentage, P , of abnormal events
into the dataset, the total number of abnormal events is given by P ∗ N , where N is the total number of
sensor events in the original data. For each injection, we randomly (i) select a time slot, (ii) generate a
timestamp within the interval of the time slot, and (iii) select a sensor id distinct from all the sensor ids
contained in the time slot, which indicates this injected sensor event as a noise. Then we create a new
sensor event with the timestamp and sensor id and inject it into the time slot. We repeat the experiment
with values of P chosen from 10% to 90%. For each percentage, we run I iterations (in our experiment, I
= 100). The results are presented in a box plot, showing the precision and recall distribution of detection,
including the minimum, maximum, and mean. This gives a more detailed and complete view than the
averaged precision and recall.

Algorithm 1: Evaluation of Random Abnormal Events
Data: L: a list of one-minute segments of sensor events
I: the number of iterations
N : the number of sensor events in total
P : the injection rate of abnormal events
S: the number of sensors
Result: A: the detection precision and recalls
for i← 1 to I do

IL = L
for n← 1 to P ∗N do

seg id = rand gen(1, size(L))
ts = rand gen(L.get(seg id).start time, L.get(seg id).end time)
found = False
while !found do

sid = rand gen(1, S)
if !L.get(seg id).contains(sid) then

found = True

IL.get(seg id).inject(create event(timestamp, sid))
// run CLEAN over CL and put the evaluation accuracy into results
CL = clean(IL)
A.append(eval(CL,L))

Activity Recognition Process. We take the whole dataset and randomly shuffle it into training and testing
sets. For example, we use 50% of the data for training a classifier, and then use the remaining 50% to test
the classifier’s accuracy. We execute the classifier over three “versions” of the test data:

1. the original, unmodified test data, where we expect the best recognition accuracies.
2. the noise injected data; that is, we inject random noisy events into the original testing data, and run

the classifier. We expect recognition accuracies to drop.

10

3. the noise removed data; that is, we run the CLEAN algorithm on the noise injected data, and run
the classifier on the output of the CLEAN algorithm. We hypothesise that the recognition accuracies
should improve upon the accuracies attained on the noise injected data.

Algorithm 2 summarises the above process.

Algorithm 2: Impact study experiment setup
Data: L: a list of one-minute segments of sensor events annotated with activities
I: the number of iterations
TP : the training data percentage
T : the number of sensor events in total
P : the injection rate of abnormal events
C: the classifier
Result: A: the detection accuracies on the original, noise injected, and noise removed data
for i← 1 to I do
{train data, test data } = shuffle(L, TP)
train(C, train data)
A O = test(C, test data)
test injected data = random injection(test data, P ∗ T)
A I = test(C, test injected data)
test removed data = clean(test injected data)
A R = test(C, test removed data)
A.append(A O, A I, A R)

Systematic Anomaly Detection Experiment – SADE
Specific Goals. Beyond evaluating the anomaly detection accuracies, we assess the features of abnormal
sensor events that affect the effectiveness of CLEAN; that is, what types of abnormal sensor events are more
likely to be detected by CLEAN. To do this, we extract features of injected systematic noisy events and run
a linear regression algorithm to build relationships between the features and the detection accuracies, and
to identify which features contribute the most.
Noise Injection and Detection Process. To simulate systematic anomalies, we randomly select a number of
sensors, and for each randomly selected sensor we create a sensor event and inject it into each time slot,
indicating this sensor has been constantly faulty. The number of sensors is chosen from 1 to half of the total
number of sensors. For the PlaceLab dataset we only chose 10% of the sensors (i.e.,71). For each number
of selected sensors, we run 100 iterations and present the precision and recall over these iterations in a box
plot. For example, if the number is 20, then the 100 iterations generates 100 combinations of sensors, each
20 in size. Algorithm 3 illustrates the process.
Correlation study. We attempt to understand whether the following features of sensors have an impact on
detection if they suffer systematic faults:

• the number of sensor faults occurring simultaneously: N s; we expect that the more faults there are,
the more difficult detection becomes;

• the occurrence and contribution to activities of the sensors before they suffer systematic faults. We
consider:

– the occurrence distribution: the max Max o, mean Mean o, and standard deviation Std o. We
want to understand whether faults with sensors that report less frequently will be easier to detect
if they suddenly report events constantly.

11

Algorithm 3: Evaluation of Systematic Abnormal Events
Data: L: a list of one-minute segments of sensor events
I: the number of iterations
N : the number of sensors to be injected
S: the set of sensors
Result: A: the detection precision and recalls
for i← 1 to I do

// randomly select N number of sensors from S
NS = random generate(N , S)
foreach l in L do

foreach ns in NS do
ts = rand gen(l.start time, l.end time)
// create a sensor event using the randomly generated timestamp with each sensor in NS
and inject it into each segment.
l.inject(create event(ts, ns))

// run CLEAN over CL and put the evaluation accuracy into results
CL = clean(IL)
A.append(eval(CL, L))

– the contribution degree of each faulty sensor to the activities; that is, the probabilities of a sensor
reporting when an activity is being performed: the max Max P(S|A), mean Mean P(S|A), and
standard deviation Std P(S|A). We want to understand whether a sensor fault is easier to detect
if the sensor is a significant indicator of a certain activity.

We record the above features along with the precision and recall, when running Algorithm 3. We apply
a regression model, where the sensor features are input as predictor variables, and the precision and recall
as response variables. The coefficients (e.g., t values) on the predictor variables tell us whether they have
a positive or negative impact on predicting the response variables, and their probability values (Pr(> |t|)
indicate whether we should reject the null hypothesis; that is, the coefficients have values of zero. For
example, if the probability on a predictor variable is less than 0.05, then there is a strong evidence that
the coefficient on this predictor is significantly different than zero, implying this predictor has a significant
impact on predicting the response variables.

We also adopt a method called relative weights, described in [18], to rank the importance of each pre-
dictor variable to predicting the response variables. This method approximates the average increase in
R-Square obtained by adding a predictor variable across all possible regression submodels; that is, the
higher contribution to R-Square a predictor accounts for, the greater relative importance it has.

4.3. RADE Results
The majority of detected events are abnormal. Figure 2 presents the precisions of detecting

random anomalies on these four datasets. The precision is consistently high across all the datasets, indicating
that the most detected events are abnormal. Note that the assumption of the algorithm is that the majority
of sensor events are normal, which suggests that the majority of sensor events are more likely to form into
a cluster whose density is greater than the clusters that contain abnormal events. So, although we inject
noisy events that are over 50% percent of the total number of sensor events, it is less likely that these events
form a high-density group. For example in the IAA dataset, in one sensor segment that originally contains
the events from the three sensors 46, 47, and 48, which are all installed in the front hall, we randomly inject
eight sensors which are spread across different bedrooms, the hallway, kitchen, and toilet. Some of these
eight sensors form into groups, however, these groups are less cohesive than the group formed by the original
three sensors.

12

0.1 0.3 0.5 0.7 0.9

0.
0

0.
4

0.
8

TVK A
Pe
rc
en
ta
ge

Injection Rate
0.1 0.3 0.5 0.7 0.9

0.
0

0.
4

0.
8

TVK B

Pe
rc
en
ta
ge

Injection Rate

0.1 0.3 0.5 0.7 0.9

0.
0

0.
4

0.
8

PlaceLab

Pe
rc
en
ta
ge

Injection Rate
0.1 0.3 0.5 0.7 0.9

0.
0

0.
4

0.
8

IAA

Pe
rc
en
ta
ge

Injection Rate

Figure 2: Precisions of detecting random noise on the original datasets. The consistently high precision indicates that detected
noise has a high chance of being the injected random noise.

Precision drops more quickly on multi-resident dataset. We observe that the precision on the
IAA dataset, which involves two residents, decreases more rapidly than the precision on the other datasets.
The reason for this is that the injected noise might form a cluster which is not significantly different from
the cluster representing a less active behaviour being conducted by a background user. Taking an example
in the IAA dataset, one segment originally contains the events from the five sensors: three in one of the
bedrooms, and two in the bathroom. We randomly inject another nine sensor events, among which four of
them are from the same sensor. In this case, these four sensors form the biggest group, while the original
two events from the bathroom are detected as noise.

Not all abnormal events can be detected by CLEAN, especially when the number of the
abnormal events is very small. From Figure 2 and Figure 3, we can see that the recall is much lower
than precision, indicating that CLEAN is not effective at detecting all the injected noise events. Also
Figure 3 illustrates that the recalls on these four datasets increase with the injection rate; that is, the more
noise injected, the more visible they are and thus the higher chance of detecting them. When there are a
small number of noisy events being injected, there is a chance that they are grouped with existing sensor
events, which cannot be picked up by our algorithm. As more events are injected, the chance of them being
separated in different groups becomes higher. The recalls on the TVK B and PlaceLab datasets are worse
than the other two datasets, which is partly due to the inherent noise in these datasets [20, 21, 32]; e.g., we
detect abnormal events that are not injected but already exist in the data.

Our second experiment is to remove noisy sensor events inherent to the original datasets and repeat the
above random noise evaluation process. Although we do not have ground truth about which sensor events
correspond to noise, we assume that running the CLEAN algorithm on the raw datasets will remove the
majority of inconsistent sensor events from the data. We note that not all the removed sensor events will
necessarily be noise, however, this process will give us a cleaner testbed on which to assess the algorithm’s
accuracy. From this starting point we inject the random noise and see if we can achieve better detection
rates.

After cleaning, recall improves. Figure 4 presents the improved recalls on the cleaned datasets. The
reason behind this improvement is that after cleaning, the sensor events reported in one time slots are more

13

0.1 0.3 0.5 0.7 0.9

0.
0

0.
4

0.
8

TVK A

Pe
rc
en
ta
ge

Injection Rate
0.1 0.3 0.5 0.7 0.9

0.
0

0.
4

0.
8

TVK B

Pe
rc
en
ta
ge

Injection Rate

0.1 0.3 0.5 0.7 0.9

0.
0

0.
4

0.
8

PlaceLab

Pe
rc
en
ta
ge

Injection Rate
0.1 0.3 0.5 0.7 0.9

0.
0

0.
4

0.
8

IAA

Pe
rc
en
ta
ge

Injection Rate

Figure 3: Recalls of detecting random noise on the original datasets. The various recalls over different datasets are due to the
potential noise in the original datasets.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

TVK A

Pe
rc
en
ta
ge

Injection Rate
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

TVK B

Pe
rc
en
ta
ge

Injection Rate

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

PlaceLab

Pe
rc
en
ta
ge

Injection Rate
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.
0
0.
2
0.
4
0.
6
0.
8
1.
0

IAA

Pe
rc
en
ta
ge

Injection Rate

Figure 4: Recalls of detecting random noise in the cleaned datasets.

14

consistent, and thus any injected abnormal event is more standout and easier to be detected. We also run
Welch’s t-test to compare the precision and recall on the cleaned datasets to those on the original datasets.
The majority of the p-values reported in Table 1 are less than 0.05, demonstrating that the improvement of
both the precisions and recalls are statistically significant, especially for the precision on the TVK B and
PlaceLab datasets. The improvement on the other two datasets is less significant, as the cleaning process on
them is not as effective. The TVK A dataset is relatively clean. The IAA dataset contains two residents, so
each segment is often composed of multiple groups of sensor traces to represent activities from each resident.
Due to the nature of these activities, the groups of sensor traces may have unbalanced sizes, which makes it
difficult to distinguish between noisy events and sensor events representing less active activities.

Table 1: p-values on improved precision and recall of detecting random noisy events on the original and cleaned datasets

p-value TVK A TVK B PlaceLab IAA
Precision 0.05 1.9e-09 7.93e-08 1

Recall 0.0002955 5.15e-05 5.209e-07 6.689e-05

To characterise the potential noise in the original dataset, we present the frequency of sensors that have
reported abnormal events on a daily basis from the original TVK B dataset in Figure 5. It is clear that
sensor 28 consistently reports abnormal readings. We manually examine the raw data and find that this
sensor is a passive infra-red sensor installed in the kitchen, which reports all the time, especially on the
last day of data collection. CLEAN does not detect any abnormal events from this sensor because as the
user was not at home on that day, no other sensor fired. Without peer comparison, CLEAN always forms
one cluster that contains only this sensor, thus the conclusion that there is no anomaly is drawn. This is
one drawback of CLEAN, which can be complemented by a rule based check; that is, if one sensor reports
continuously over an long period (e.g., one day), then this sensor should be considered abnormal.

Figure 5: Frequency of sensors that have been detected to report abnormal events on a daily basis in TVK B dataset

4.4. Impact Study Results

Running CLEAN can improve activity recognition accuracies. Figure 6 shows the activity
recognition accuracies across three classifiers – J48, Bayes Network, and Random Forest on the TVK A
dataset when the classifiers are trained on 50% of the data. We can observe that the accuracies achieved on
noise removed data lie between those attained on the original and the noise injected data. The accuracies
on the noise removed data are very close to those on the original data, and there is an observable increase
compared to the the accuracies on the noise injected data as the error injection rate increases. The higher
the error injection rate, the larger the gap between the accuracies on the noise injected data and the noise
removed data, indicating the better improvement is achieved.

15

TVK A, J48

Error Injection Rates

A
cc
ur
ac
ie
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

Original data
Noise injected data
Noise removed data

TVK A, BayesNet

Error Injection Rates

A
cc
ur
ac
ie
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

Original data
Noise injected data
Noise removed data

TVK A, RandomForest

Error Injection Rates

A
cc
ur
ac
ie
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

Original data
Noise injected data
Noise removed data

Figure 6: Comparison of activity recognition accuracies across different classifiers on TVK A with 50% of training data

TVK B, J48

Error Injection Rates

A
cc
ur
ac
ie
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

Original data
Noise injected data
Noise removed data

TVK B, BayesNet

Error Injection Rates

A
cc
ur
ac
ie
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

Original data
Noise injected data
Noise removed data

TVK B, RandomForest

Error Injection Rates

A
cc
ur
ac
ie
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.4

0.5

0.6

0.7

0.8

0.9

Original data
Noise injected data
Noise removed data

Figure 7: Comparison of activity recognition accuracies across different classifiers on TVK B with 50% of training data

16

The improvement on activity recognition accuracies is less observable on the originally
noisy datasets. Figure 7 presents the impact study results on the TVK B dataset. Compared to the
results on the TVK A dataset, the improvement of the recognition accuracies from the noise removed data
to those from the noise injected data across all the four classifiers is much less significant. This phenomena
is consistent with the relatively lower anomaly detection precision and recall on the TVK B dataset in
Figure 2 and 3. The detection recall in Figure 3 is approximately running from 25% to 60%, indicating that
the injected noisy events have not been sufficiently detected. Thus, the noise removed data are still heavily
combined with noisy events, so the recognition accuracies on the noise injected and removed data are not
significantly different.

PlaceLab, J48

Error Injection Rates

A
cc
ur
ac
ie
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

Original data
Noise injected data
Noise removed data

PlaceLab, BayesNet

Error Injection Rates

A
cc
ur
ac
ie
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

Original data
Noise injected data
Noise removed data

PlaceLab, RandomForest

Error Injection Rates

A
cc
ur
ac
ie
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.3

0.4

0.5

0.6

Original data
Noise injected data
Noise removed data

Figure 8: Comparison of activity recognition accuracies across different classifiers on PlaceLab with 50% of training data

Figure 8 presents the impact study results on the PlaceLab dataset. Compared to the previous two, the
recognition accuracies on the PlaceLab dataset are much poorer. With the exception of the J48 decision
tree, the recognition accuracies on the original data and noise removed data are very close on the other
two classifiers, which have exhibited visible improvement from the accuracies on the noise injected data. As
mentioned earlier, both the PlaceLab and TVK B datasets contain a significant number of noisy events,
consequently we would expect similar results on both datasets. However, we note that the PlaceLab dataset
contains far more sensors (i.e., 700 vs 22) and its total number of sensor events is also much higher—injecting
noise at higher injection rates has a larger impact on the original data, leading to faster degradation of
recognition accuracies.

Ensemble classifiers are good at dealing with noisy data. In summary, the above results demon-
strate the effectiveness of the CLEAN algorithm by showing the improved accuracies from the noise removed
data compared to the noise injected data. The results also show the noise resistance degrees of different
classifiers. The Random Forest achieves the best recognition accuracies overall, as it is an ensemble learning
method that makes a prediction on multiple decision trees constructed at the training time. The recognition
accuracies on the noise injected data from the J48 decision tree and Bayes Network degrade faster as the
error injection rate increases. Both phenomena can also be explained by the large number of sensors in the
PlaceLab dataset and the feature selection in these two classifiers. For example, from manual inspection of
the J48 decision tree model, we find that the tree is only built on around 70 sensors, which is 10% of the
total input sensors on the PlaceLab dataset. With the higher error injection rate, this subset of sensors is
more likely to be contaminated, leading to a different decision path and thus incorrect inference result.

4.5. SADE Results
Systematic detection accuracies vary with individual sensors being faulty. Figure 9 and 10

present the precisions and recalls of detecting systematic sensor anomalies. We can see that there are

17

TVK A

1 2 3 4 5 6 7
0.00

0.25

0.50

0.75

1.00

Pe
rc
en
ta
ge

Number of sensors being injected

TVK B

1 3 5 7 9 11
0.00

0.25

0.50

0.75

1.00

Pe
rc
en
ta
ge

Number of sensors being injected

PlaceLab

1 11 21 31 41 51 61 71
0.00

0.25

0.50

0.75

1.00

Pe
rc
en
ta
ge

Number of sensors being injected

IAA

1 6 11 16 21 26 31 36 41
0.00

0.25

0.50

0.75

1.00

Pe
rc
en
ta
ge

Number of sensors being injected

Figure 9: Precisions of detecting systematic noise on the original datasets. Precision of detecting systematic sensor noise is
highly influenced by the chosen sensors.

fluctuations in both precision and recall, especially on the PlaceLab dataset. It shows that different sensors
being consistently faulty will have different impact on the detection accuracies. For example, for a sensor
that fires already frequently throughout the dataset, if we set this sensor to be constantly faulty and report
readings all the time, then it being faulty will be less likely to be detected. On the contrary, our algorithm
will be more likely to detect the other co-occurring normal events as abnormal, and thus update their
temporal and frequency weights to make them more likely to be detected as an outlier.

On the other hand, if a generated event is associated with a sensor that is critical to a less frequent
activity, then it is more likely that this sensor event will be detected as being abnormal. For example, when
we deliberately set the sensor on the front door – which only contributes to identifying the user’s entry
and departure from the house – in the TVK A dataset to report readings in every time slot, the detection
precision and recall are 94.3% and 80% respectively. Because of these frequency and contribution factors
of sensors, the precisions and recalls do not follow a more observable trend as that of detecting random
anomaly.

4.6. Results on Correlation Study
As the correlation study is independent of datasets, we combine the collected features and precision

and recalls on all the TVK A, B, and PlaceLab datasets. As we do not have ground truth on how each
sensor event contributes to the co-occurrence of activities, we exclude the IAA dataset from this correlation
study. We fit the data to a linear regression model, which achieves a p-value <2.2e-16, indicating that the
data fits the model well and is better than random noise. Table 2 presents the coefficients (i.e., t value)
and probability values (i.e., Pr(> |t|)) on each predictor variable (i.e., sensor features) to the two response
variables (i.e., precision and recall).

Since the linear regression model is data-driven and the systematic anomaly detection experiments are
conducted on randomly shuffled and generated data, the actual t values for each predictor variable are
irrelevant and will be more likely to change if we run Algorithm 3 another 100 times. Therefore, we focus
on their positive and negative impact on predicting the precision and recall, and the relative importance
between these variables. As presented in Table 2, the number of faulty sensors has a negative impact on
both precision and recall as expected. In terms of sensor occurrence profile, from the negative impact of

18

TVK A

1 2 3 4 5 6 7
0.00

0.25

0.50

0.75

1.00

Pe
rc
en
ta
ge

Number of sensors being injected

TVK B

1 3 5 7 9 11
0.00

0.25

0.50

0.75

1.00

Pe
rc
en
ta
ge

Number of sensors being injected

PlaceLab

1 11 21 31 41 51 61 71
0.00

0.25

0.50

0.75

1.00

Pe
rc
en
ta
ge

Number of sensors being injected

IAA

1 6 11 16 21 26 31 36 41
0.00

0.25

0.50

0.75

1.00
Pe
rc
en
ta
ge

Number of sensors being injected

Figure 10: Recalls of detecting systematic noise on the original datasets

Table 2: Coefficients and probabilities of a linear regression model on correlating sensor features to systematic anomaly detection
precision and recall on the TVK A, B, and PlaceLab datasets

Predictor Precision Recall
t value Pr(> |t|) t value Pr(> |t|)

N s -20.85 <2e-16 -51.82 <2e-16
Max o -15.49 <2e-16 -10.24 <2e-16
Mean o 24.39 <2e-16 14.8 <2e-16
Std o 0.51 0.612 7.14 9.9e-13

Max P(S|A) -48.11 <2e-16 -16.63 <2e-16
Mean P(S|A) 5.6 <2e-16 -4.13 3.74e-5
Std P(S|A) 10.25 <2e-16 8.79 <2e-16

19

Max o we can derive that if a sensor with high occurrence ratio becomes faulty, then it will be more difficult
to detect, given that this sensor is expected to report frequently. However, if all the sensors with high
occurrence ratio become faulty, then it is less likely they will be detected. The reason is that it is less likely
that all these sensors are semantically consistent, and thus it would be easier to detect contradiction by
CLEAN. In terms of the correlation between sensors and activities, the higher the contribution of a sensor
to an activity, the less likely an anomaly is to be detected. This shares the same reason as above: that is,
the sensor is expected to report whenever an activity is being performed. However, the average contribution
of faulty sensors to all the activities has less impact on either precision or recall, given that the coefficients
on this predictor are much smaller than those on Max P(S|A).

N_s Max_o Mean_o Std_o Max_P(S|A) Mean_P(S|A) Std_P(S|A)

Relative importance of sensor features to predict systematic anomaly detection precision

Sensor features
 R-Square = 0.552

%
 o

f R
-S

qu
ar

e

0
5

10
15

20
25

30

(a) Precision

N_s Max_o Mean_o Std_o Max_P(S|A) Mean_P(S|A) Std_P(S|A)

Relative importance of sensor features to predict systematic anomaly detection recall

Sensor features
 R-Square = 0.504

%
 o

f R
-S

qu
ar

e

0
10

20
30

40
50

(b) Recall

Figure 11: Relative importance of sensor features to predict systematic anomaly detection accuracies on the TVK A, B, and
PlaceLab datasets

Figure 11 ranks these features according to their relative importance to predicting the precision and
recall. The ranking is based on their contribution to the R-Square value, indicating how well the data fits
the model. In terms of precision, the most important indicator is the maximum contribution degree of a
sensor to an activity. It is consistent with what we have observed during the diagnosis process. As discovered,
if the front door sensor becomes faulty, then it is highly likely to be detected, because it contributes 100%
to identifying the leaving house activity. In terms of recall, the most important indicator is the number of
faulty sensors. Comparing Figure 10 with Figure 9, we can see that there is an observable trend of recall
increasing with the number of sensors being injected across all the datasets.

5. Discussion

In this section we discuss the utility of the CLEAN technique, and the practical issues of using it and
improving it in the future.

5.1. Novel Integration of Knowledge and Statistical Techniques
CLEAN novelly integrates knowledge within a clustering-centred technique. It is built on top of a general

ontological model that formally represents the semantic concepts of a sensor event, such as its location and
originating object. The hierarchy of such conceptual models allows us to quantify the distance between any
two sensor events, so that we may cluster a sequence of sensor events into groups and further identify the
minority of outlier events inconsistent with the majority.

5.2. Independence of Training Data
The novel integration of knowledge with statistical techniques makes CLEAN independent of training

data; that is, we do not need the training data to build a model describing what “properly functioning”
sensor events are; for example, which sensors should fire together, or which sensors should fire with what
activities. Such information is often difficult to specify, especially when there are many sensors deployed
(e.g., hundreds or thousands), or sensors are unreliable and subject to change in the environment along with

20

residents’ behaviour patterns; that is, users might change the way that they perform certain activities, leading
to different associations between sensor events and activities. CLEAN does not rely on such information but
on a more reliable knowledge model. This makes it possible to use CLEAN for a long-term period without
the need to collect training data or to update a model.

In Section 4.4, we evaluated the impact of CLEAN on improving the activity recognition on four classic
supervised classifiers that make use of training data. However, we consider that CLEAN would better
compliment unsupervised activity recognition approaches, such as USMART [36], thus removing the need
for training data at any part of the recognition process.

5.3. Scalability and Extensibility
The independence of training data makes CLEAN applicable to a wide range of home environments

in that the ontological model is generic enough to be reused without much re-engineering effort [35]. The
main change resides in the location model; that is, the location ontology needs to capture the spatial layout
particular to each environment.

CLEAN is neither constrained by the number of sensors being deployed nor by the number of sensors
being faulty at the same time. Kapitanova et al. [19] build numerous classifier profiles by excluding each
single sensor so as to spot single sensor failure. This approach is inefficient when it comes to a large number
of sensors, and infeasible as there might be multiple sensors being faulty at the same time. CLEAN detects
anomalies by comparing semantic distances between co-reporting sensor events. CLEAN is not constrained
by pre-trained models and thus is more flexible.

Recognising co-occurring activities for multiple users cohabiting the same environment is challenging,
and detecting abnormal events in such an environment is even more challenging as it is difficult to distinguish
which sensors contribute to which user’s activities. CLEAN adopts the FindCBLOF technique that supports
the clustering of multiple groups of events and only identifies the inconsistent minority as an outlier.

5.4. Use of CLEAN
The main functionality of CLEAN is to identify abnormal sensor events and clean the incoming sensor

stream. We have demonstrated that it can help improve the activity recognition accuracies across multiple
off-the-shelf classifiers. On top of the identified sensor events, we can further define application logic about
customised actions to take when anomaly is detected on certain sensors. For example, the system might
just log abnormal events from most sensors without taking any action, but it may want to keep an eye on
critical sensors such as a fire detection sensor. Even if a single abnormal event is detected from such sensor,
the system should raise an alarm on either checking whether the fire is actually happening or the sensor is
dislodged.

5.5. Limitations and Future Work
5.5.1. Improving Recall

The results presented in Section 4 demonstrate that CLEAN achieves high precision, indicating that it
is good at detecting injected noisy events; however lower recall implies that not all the detected events are
injected noise. This is partly due to the noise inherent to in the original datasets, as after cleaning the
original datasets, we demonstrate significant improvements in recall. However, on the PlaceLab dataset,
which contains far more sensors than the other datasets, recall is relatively low. The clustering on a
sequence of sensor events often results in a number of small groups, which all are regarded as outliers.
Further investigation of a more nuanced approach to quantifying the distance between sensor events, or
setting of the distance threshold may achieve better clustering and outlier detection.

5.5.2. Isolated Single Sensor Failure
As shown in Section 4.3, CLEAN does not work well when the fault sensor is the only sensor reporting,

because only a single cluster is created. However, this situation may be easily resolved by combining CLEAN
with a rule: Any sensor that reports continuously over an unreasonably long period should be considered as
faulty. The time threshold could be customised to different types of sensors, based on how often each sensor
normally fires.

21

5.6. Missing Data Detection
Currently, CLEAN is designed to detect “excessive” data, and cannot yet detect “missing” data. Missing

sensor data is subtle in that not reporting a value does not imply a sensor is broken, and could simply mean
that the user has not interacted with the object that the sensor is attached to. For example, in the activity
of making coffee, we cannot conclude that the sensor on the sugar jar is not working just because it did not
fire as the activity was carried out—the user could simply have chosen not to add sugar to the coffee. That
is, we need to distinguish the causes of the missing sensor data: whether the sensor becomes faulty or the
users change their behaviour pattern, thus not firing certain sensors. Another missing data example would
be that a temperature sensor originally on a kettle that reports the boiling of the water has been dislodged
and thus has not reported any reading. This case can also be classified as a missing data problem. One way
to address this is to look for the correlations between sensors. In this particular example, we could check
whether the electricity current monitoring sensor (if exists) reports valid readings for the usage of the kettle.
If so and the temperature sensor has not reported as expected, then we can conclude that the temperature
sensor has becomes faulty or been dislodged. However, the correlation between these two sensors will need
to be either trained from historical data or specified by the domain experts. Our future work will look into
correlations between sensors, and between sensors and activities, and integrate such knowledge with CLEAN
to try to detect missing events.

6. Conclusion and Future Work

This paper presents CLEAN, a technique that leverages sensor semantics in a statistics-driven outlier
detection method to detect abnormal events, which does not rely on any training data nor requires ground
truth annotation. It is generic in that it scales well with the number of sensors, can be deployed with single-
or multi-resident environments, and can be integrated with existing activity recognition techniques. By
taking the streaming sensor events gathered from various sensors as input, CLEAN detects and removes
abnormal events, which can be used to filter data fed as input to any activity recognition algorithms. We
demonstrate its performance on four real-world datasets with various environments, sensor deployments,
the number of users living in an environment, and the extent of noise underlying in the dataset. Using four
different activity recognition classifiers, we demonstrate that CLEAN improves activity recognition rates in
the presence of noise. We discuss the benefits and limitations of CLEAN, and identify areas of future work.

References

[1] G. D. Abowd and E. D. Mynatt. Designing for the Human Experience in Smart Environments, pages 151–174. John
Wiley & Sons, Inc., 2005.

[2] S. Boriah, V. Chandola, and V. Kumar. Similarity measures for categorical data: A comparative evaluation. In Proceedings
of the SIAM International Conference on Data Mining, SDM 2008, April 24-26, 2008, Atlanta, Georgia, USA, pages
243–254. SIAM, 2008.

[3] D. Cook and M. Schmitter-Edgecombe. Assessing the quality of activities in a smart environment. Methods of Information
in Medicine, 48:480–485, 2009.

[4] D. Cook, M. Schmitter-Edgecombe, and P. Dawadi. Analyzing activity behavior and movement in a naturalistic en-
vironment using smart home techniques. IEEE Journal of Biomedical and Health Informatics, 19(6):1882–1892, Nov
2015.

[5] L. Coyle, J. Ye, E. Loureiro, S. Knox, S. Dobson, and P. Nixon. A proposed approach to evaluate the accuracy of tag-based
location systems. In Ubicomp 2007 Workshops Proceedings: the First Workshop on Ubiquitous Systems Evaluation, pages
292 – 296, Innsbruck Austria, September 2007.

[6] E. W. Dereszynski and T. G. Dietterich. Spatiotemporal models for data-anomaly detection in dynamic environmental
monitoring campaigns. ACM Transactions on Sensor Network, 8(1):3:1–3:36, Aug. 2011.

[7] D.J.Cook. How smart is your home? Science, pages 1579–1581, 2012.
[8] F. Doctor, H. Hagras, and V. Callaghan. A fuzzy embedded agent-based approach for realizing ambient intelligence in

intelligent inhabited environments. IEEE Transactions on Systems, Man, and Cybernetics (A), 35(1):55–65, 2005.
[9] M. Ester, H. peter Kriegel, J. S, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases

with noise. In Proceedings of Knowledge Discovery and Data Mining: KDD’96, pages 226–231. AAAI Press, 1996.
[10] L. Fang and S. Dobson. In-network sensor data modelling methods for fault detection. In Evolving Ambient Intelligence,

volume 413 of Communications in Computer and Information Science, pages 176–189. Springer International Publishing,
2013.

22

[11] L. Fang and S. Dobson. Unifying sensor fault detection with energy conservation. In Proceedings of International Workshop
on Self-Organizing Systems IWSOS’13, 2013.

[12] S. Ganeriwal, L. K. Balzano, and M. B. Srivastava. Reputation-based framework for high integrity sensor networks. ACM
Transaction on Sensor Network, 4(3):15:1–15:37, June 2008.

[13] J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques, 3rd Edition. Morgan Kaufmann, 2011.
[14] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen. The gator tech smart house: a programmable

pervasive space. Computer, 38(3):50–60, March 2005.
[15] D. Hill, B. Minsker, and E. Amir. Real-time bayesian anomaly detection for environmental sensor data. In Proceedings of

IAHR’ 07, Marid, Spain, 2007.
[16] T. W. Hnat, V. Srinivasan, J. Lu, T. I. Sookoor, R. Dawson, J. Stankovic, and K. Whitehouse. The hitchhiker’s guide to

successful residential sensing deployments. In Proceedings of SenSys ’11, pages 232–245. ACM, 2011.
[17] V. J. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial Intelligence Review, 22:2004, 2004.
[18] R. Kabacoff. R in Action. Manning Publications, 2011.
[19] K. Kapitanova, E. Hoque, J. A. Stankovic, K. Whitehouse, and S. H. Son. Being smart about failures: Assessing repairs

in smart homes. In Proceedings of UbiComp ’12, pages 51–60, 2012.
[20] T. L. M. Kasteren, G. Englebienne, and B. J. A. Krose. Human activity recognition from wireless sensor network data:

Benchmark and software. In Activity Recognition in Pervasive Intelligent Environments, volume 4 of Atlantis Ambient
and Pervasive Intelligence, pages 165–186. 2011.

[21] B. Logan, J. Healey, M. Philipose, E. M. Tapia, and S. Intille. A long-term evaluation of sensing modalities for activity
recognition. In Proceedings of UbiComp ’07, pages 483–500, 2007.

[22] G. A. Miller. Wordnet: a lexical database for English. Communications of the ACM, 38(11):39–41, Nov. 1995.
[23] M. Mourad and J. Bertrand-Krajewski. A method for automatic validation of long time series of data in urban hydrology.

Water Science Technologies, 45:263–270, 2002.
[24] S. Munir and J. Stankovic. Failuresense: Detecting sensor failure using electrical appliances in the home. In Mobile Ad

Hoc and Sensor Systems (MASS), 2014 IEEE 11th International Conference on, pages 73–81, Oct 2014.
[25] K. Ni, N. Ramantahan, M. Nabil, H. Chehade, L. Balzano, S. Niar, E. Zahedi, S. Kohler, G. Pottie, M. Hansen, and

M. Srivastava. Sensor network data fault types. ACM Transaction on Sensor Network, 5, 2009.
[26] I. C. Paschalidis and Y. Chen. Statistical anomaly detection with sensor networks. ACM Transaction on Sensor Network,

7, 2010.
[27] N. Ramanathan, T. Schoellhammer, E. Kohler, K. Whitehouse, T. Harmon, and D. Estrin. Suelo: Human-assisted

sensing for exploratory soil monitoring studies. In Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems, SenSys ’09, pages 197–210, New York, NY, USA, 2009. ACM.

[28] H. Sagha, J. Millan, and R. Chavarriaga. Detecting and rectifying anomalies in body sensor networks. In Proceedings of
the International Conference on Body Sensor Networks, 2011.

[29] A. B. Sharma, L. Golubchik, and R. Govindan. Sensor faults: Detection methods and prevalence in real-world datasets.
ACM Transaction on Sensor Network, 6(3):23:1–23:39, June 2010.

[30] T. van Kasteren, A. Noulas, G. Englebienne, and B. Kröse. Accurate activity recognition in a home setting. In Proceedings
of UbiComp ’08, pages 1–9, 2008.

[31] Z. Wu and M. Palmer. Verbs semantics and lexical selection. In Proceedings of the 32nd annual meeting on Association
for Computational Linguistics, ACL ’94, pages 133–138, Stroudsburg, PA, USA, 1994.

[32] J. Ye, L. Coyle, S. Dobson, and P. Nixon. Using situation lattices in sensor analysis. In Proceedings of PERCOM ’09,
pages 1–11, 2009.

[33] J. Ye, S. Dobson, and S. McKeever. Situation identification techniques in pervasive computing: a review. Pervasive and
mobile computing, 8:36–66, Feb. 2012.

[34] J. Ye, G. Stevenson, and S. Dobson. A top-level ontology for smart environments. Pervasive and Mobile Computing,
7:359–378, June 2011.

[35] J. Ye, G. Stevenson, and S. Dobson. KCAR: A knowledge-driven approach for concurrent activity recognition. Pervasive
and Mobile Computing, (0), 2014.

[36] J. Ye, G. Stevenson, and S. Dobson. Usmart: An unsupervised semantic mining activity recognition technique. ACM
Transactions on Interactive and Intelligent System, 4(4):16:1–16:27, Nov. 2014.

[37] J. Ye, G. Stevenson, and S. Dobson. Fault detection for binary sensors in smart home environments. In Pervasive
Computing and Communications (PerCom), 2015 IEEE International Conference on, pages 20–28, March 2015.

[38] G. Youngblood and D. Cook. Data mining for hierarchical model creation. IEEE Transactions on Systems, Man, and
Cybernetics (C), 37(4):561–572, July 2007.

23

