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Abstract

The current availability of interconnected portable devices, and the advent of the Web 2.0, raise the problem of supporting
anywhere and anytime access to a huge amount of content, generated and shared by mobile users. On the one hand,
users tend to be always connected for sharing experiences and conducting their social interactions with friends and
acquaintances, through so-called Mobile Social Networks, further improving their social inclusion. On the other hand,
the pervasiveness of communication infrastructures spreading data (cellular networks, direct device-to-device contacts,
interactions with ambient devices as in the Internet-of-Things) makes compulsory the deployment of solutions able to
filter off undesired information and to select what content should be addressed to which users, for both (i) better user
experience, and (ii) resource saving of both devices and network.
In this work, we propose a novel framework for pervasive social networks, called Pervasive PLIERS (p-PLIERS), able
to discover and select, in a highly personalized way, contents of interest for single mobile users. p-PLIERS exploits the
recently proposed PLIERS tag-based recommender system [2] as context a reasoning tool able to adapt recommendations
to heterogeneous interest profiles of different users. p-PLIERS effectively operates also when limited knowledge about
the network is maintained. It is implemented in a completely decentralized environment, in which new contents are
continuously generated and diffused through the network, and it relies only on the exchange of single nodes’ knowledge
during proximity contacts and through device-to-device communications. We evaluated p-PLIERS by simulating its
behavior in three different scenarios: a big event (Expo 2015), a conference venue (ACM KDD’15), and a working day
in the city of Helsinki. For each scenario, we used real or synthetic mobility traces and we extracted real datasets from
Twitter interactions to characterize the generation and sharing of user contents.

Keywords: pervasive content sharing, mobile social networks, opportunistic networks, personalized recommender
systems

1. Introduction

The amount of data accessible through the Internet has
dramatically increased over the last years. This trend has
been exacerbated by the advent of online social networks
(hereinafter OSNs) and by video-on-demand services like
Netflix [3]. It is then expected to boom with the Internet
of Things, where potentially every object in the physical
world will create and share information over the network.
The availability of this data represents an important re-
source that is revolutionizing our society, but it is also
posing some serious technological challenges in terms of
maintenance, management, indexing and identification of
contents. This affects especially mobile communications,
where users want to be always connected and able to share
contents anywhere and anytime. To alleviate the burden
of data traffic on cellular networks, several solutions based
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on device-to-device (D2D) wireless communications have
been proposed in the literature, such as opportunistic net-
works [7]. However, most of the classical mechanisms for
content identification and recommendation designed for
centralized infrastructures cannot be directly applied to
these scenarios, and ad-hoc solutions must be adopted.
This is the case of Mobile Social Networks (hereinafter
MSNs), designed to further improve social interactions and
inclusion through experience sharing based on opportunis-
tic communications, and to this aim they need efficient and
personalized mechanisms for useful content selection and
distribution.
The basic approaches to identify useful contents in oppor-
tunistic networks are based on publish/subscribe mecha-
nisms. Users have to explicitly define their interests by
subscribing to a fixed set of thematic channels and, when
they encounter other mobile users, they can ask them for
contents related to the channels they are subscribed to
(see for example the PodNet project [19]). Other solu-
tions exploit context information (e.g., the history of phys-
ical contacts between nodes, social information about the
users or the presence of communities) to improve forward-
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ing and content dissemination to potentially interested
users (ContentPlace [4], ProfileCast [15], SocialCast [8]
and ICast [26]). They are generally defined as context-
aware forwarding or content dissemination protocols, and
context information generally includes information charac-
terizing the user’s behavior, her interests, generated and
shared contents and the surrounding environment.
Recently researchers have investigated the possibility of us-
ing recommender systems [16] to identify useful contents
also in the opportunistic environment (mainly based on
content filtering and tag expansion) [9, 28, 29, 22]. Rec-
ommender systems perform better than publish/subscribe
mechanisms by mainly relying on information about users’
past actions (e.g., past purchases in e-commerce [17, 20]
or past visualizations of multimedia content in video-on-
demand services [3, 1]). At the same time, they can be
included in the more general definition of context-aware
systems, in which context information is mainly focused
on content characterization and it is directly defined by
users. In fact, through the use of Social Tagging Systems
(STS), mobile users can directly define tags (i.e., labels)
that describe contents from a semantic point of view. The
ensemble of tags generated by users in a certain online sys-
tem is known in the literature as folksonomy [22, 25]. An
important aspect of folksonomies is that, differently from
ontologies, no relationship between the terms is required
a priori (hierarchical or not). On the contrary, these rela-
tionships are automatically built thanks to the tags created
by the users and assigned to contents. Folksonomies have
the ability to quickly adapt to changes in the user’s vo-
cabulary and to represent highly personalized information
about the users’ interests. These aspects fit well mobile
users’ behavior, especially when they define, generate, and
share contents on-the-fly, while participating in an event
or living a particular experience.
The richness of information contained in folksonomies can
be used to improve the identification of interesting con-
tents for each single user, and also to determine relation-
ships and affinity between different users, depending on the
content they generate and share. To this aim, it is essential
to define an algorithm able to efficiently detect interesting
content starting from the local user preferences and a lim-
ited knowledge of what is available on the network. This
represents a context reasoning problem in a distributed
and mobile environment, where each mobile device has a
local representation of context information in the network
(e.g., folksonomy in case of recommender systems). This
local knowledge is a view of the global knowledge of the
information available from the whole network. Nodes can
enrich their local knowledge by sharing it with other nodes
they physically encounter, through opportunistic commu-
nications. They can take decisions about which contents
to download or forward to other nodes using their local
knowledge. In this way, mobile users can identify interest-
ing content locally, without accessing a centralized service.
However, since folksonomies are based on user-defined
tags, they also have some drawbacks. Synonyms,

homonyms, polysemies, and different users’ tagging be-
havior make the reasoning process difficult to perform in
some cases, and undermine the use of simple tag match-
ing [14]. To overcome these limitations, a novel family
of recommender systems, called Tag-based Recommender
Systems [33], have been recently proposed for centralized
infrastructures, where global knowledge is available. To
understand whether a content is interesting for a user,
tag-based recommender systems do not only consider tags
that are directly associated with contents, but also the re-
lations existing between tags, trying to extract a semantic
meaning from the contents. To the best of our knowledge,
currently there is no solution in the literature proposing
the use of tag-based recommender systems in opportunistic
networks. We think that this could substantially change
the way mobile users and services can access contents, es-
pecially in Mobile Social Network scenarios.
We recently proposed a novel tag-based recommender sys-
tem, called PLIERS [2], which outperforms the state-of-
the-art tag-based recommender systems defined for online
social networks and centralized solutions. In this paper,
we present a novel framework that exploits PLIERS prin-
ciples in a completely decentralized environment, relying
only on the exchange of single nodes’ knowledge during
proximity contacts and through D2D communications. We
called it Pervasive PLIERS (p-PLIERS). It represents a
general framework for identifying useful and interesting
contents in the mobile environment, on top of which sev-
eral services can be built – from context-aware forward-
ing protocols, to content dissemination services (e.g., tar-
geted advertising), to content sharing services, etc. We
extensively evaluated the proposed solution through sim-
ulations considering three different application scenarios:
(i) users attending Expo2015 during the World Food Day
(one of the most crowded day of the entire event); (ii) users
attending a scientific conference (ACM KDD 2015); (iii)
users moving around the city of Helsinki during a working
day. For each scenario, we selected appropriate mobility
traces, synthetic or real (when available) and we extracted
real datasets from geo-localized Twitter interactions. The
datasets would reflect the behavior of mobile users, gener-
ating and sharing contents related to a specific event or,
more in general, to their life in a European city.
The rest of the paper is organized as follows. In Section 2,
we present a summary of the use of recommender systems
in opportunistic networks for the identification of interest-
ing contents. In Section 3, we describe PLIERS and we
compare it with existing tag-based recommender systems.
Then, in Section 4, we present p-PLIERS framework in
detail. In Section 5, we provide a general description of
the experimental scenarios that we considered for the eval-
uation of the proposed solution. Specifically, in Section 6,
we present a comparison among existing recommender sys-
tems used in pervasive social networks, showing the ad-
vantages of PLIERS. In Section 7, we present p-PLIERS
performance evaluation through simulations in the three
different scenarios. Finally, we discuss examples of ser-
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vices that can benefit from the framework in Section 8,
and we conclude the paper in Section 9.

2. Related Work

In the last few years, many researchers have used Rec-
ommender Systems for disseminating content in a mobile
and pervasive setting. Most of the approaches in the liter-
ature are based on popular Web Recommender Systems,
conveniently modified for mobile environments – e.g., by
reducing the computational complexity of the algorithms
and limiting the amount of necessary memory.
The most popular and widely implemented system is rep-
resented by the Collaborative Filtering (CF) [13] approach.
The simplest implementation of CF makes recommenda-
tions to a user based on items that other users with similar
interests liked in the past. The similarity in interests be-
tween two users is calculated by a similarity metric (e.g.,
cosine similarity or Pearson correlation) between their re-
spective histories (i.e., the sets of items they liked in the
past). This kind of CF is also known as “user-based CF”,
in contrast to the “item-based CF” which models the pref-
erence of a user for an item based on ratings of similar
items by the same user.
Typically, CF-based systems operate on second-order ten-
sors (or matrices) that represent the relationships between
users and items (or an item-item matrix for the item-based
CF). For this reason, CF systems could suffer from scal-
ability problems depending on the size of the data struc-
tures to be kept in memory and on the sparseness degree
of the matrix. Since the number of items in STS is typ-
ically high and far beyond users’ ability to evaluate even
a small fraction of them, the data representation in a CF
matrix is often highly sparse. Recent research work (e.g.,
[9, 28, 29]) focused on the reduction of the complexity of
CF in order to identify useful content for mobile users in
opportunistic networks and then optimize content dissem-
ination. For example, diffeRS [9] tries to classify users in
two separate classes: mass-like minded and atypical users.
The former set is composed by users whose preferences
are similar to the interests of other users encountered in
the past (i.e., the community). For this kind of users,
the recommendation is simply based on the average of the
community’s preferences. For atypical users (i.e., users
whose preferences differ from those of the community), in-
stead, a user-based CF approach is applied, computed only
among those other atypical users who similarly deviate
from the community. Thereby, nodes exchange only the
contents that CF identifies as attractive to the local users.
MobHinter [28], instead, limits the CF computation to the
most similar users according to a certain similarity mea-
sure, which takes into account different parameters (e.g.,
resources in common, similar behaviors, and so on). More-
over, it proposes different strategies to limit the amount
of information exchanged by nodes every time they meet.
However, even though there has been a complexity reduc-
tion to allow CF to run on mobile devices with limited
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Figure 1: Application of ProbS and HeatS with a bipartite graph.[34]

computational resources, these approaches take into ac-
count just the relations existing between users and their
preferences, while they neglect the nature of the items
shared in the network and do not exploit all the available
information from STS (i.e., the complete folksonomy).
Tag-expansion [22] is the only solution proposed in the lit-
erature to perform folksonomy-based reasoning for content
dissemination in an opportunistic environment. Using this
approach, each node builds a tag co-occurrence matrix to
identify the tags that are most frequently used in conjunc-
tion with other tags (i.e., expanded tags), and it downloads
an item if it is tagged with one of these tags. One of the
main drawbacks is that a node could receive more items
than those really interesting for it because the user may
not be interested in the topics represented by the expanded
tags. In addition, this approach can suffer from scalability
problems depending on the dimension of the data struc-
tures to be kept in memory and on the sparseness of the
matrix. Since the distribution of the popularity of tags
in STS generally follows a long tail distribution [18], the
data representation in a tag co-occurrence matrix could be
often highly sparse.

2.1. Tag-based Recommender Systems

To overcome the limitations of tag-expansion in oppor-
tunistic networks, we propose to use a new family of recom-
mender systems based on folksonomies: Tag-based Recom-
mender Systems [33]. In the literature, many approaches
for Tag-based Recommender Systems have been proposed,
but – to the best of our knowledge – none of them has
been so far employed in opportunistic networks. Among
different possible tag-based solutions, diffusion-based [33]
algorithms are the most promising ones for our reference
scenario. These algorithms try to overcome the complex-
ity and scalability issues by using graphs as a natural way
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Figure 2: ProbS and HeatS suggestions.

to represent folksonomies. In these cases, nodes of these
graphs represent users, items and/or tags, while their links
represent relationships among nodes. Since nodes are di-
vided into three separate classes, folksonomies are usually
represented as tripartite graphs, or by separate bipartite
graphs for user-item or user-tag relationships in order to
further reduce the computational complexity. These ap-
proaches rely on the diffusion of fictitious resources within
the folksonomy graph, starting from a node representing
a target user (i.e., the target of the recommendation) and
diffusing the resources by following links between nodes.
This permits to identify relevant items (or tags) as those
nodes that are indirectly connected to the target user via
other users with whom she shares one or more connec-
tions. The higher the number of links connecting an item
i to the items of the target user, the higher the score that
i will receive for the recommendation. In this way, the
recommender system exploits the structure of the graph
to identify content relevant for the user. In addition, this
approach gives the opportunity to exploit additional hid-
den information derived from graph-based analysis (e.g.,
community detection [12]), which could be used to further
customize recommendations.
The oldest and most famous diffusion-based solutions are
represented by two algorithms: ProbS (also known asMass
Diffusion) [35, 31] and HeatS [32]. By applying ProbS to
user-item bipartite graphs, a generic resource is assigned
to each item is directly linked to the target user ut of
the recommendation such that its value is 1 if an edge is
present between ut and is, and 0 otherwise. These items
represent the content that the user has created or down-
loaded in the past. The resource is then split (first diffu-
sion step) among the users directly connected to the item
and each user receives the same portion of the resource.
Subsequently, each user splits the portion of the received

resource among the items connected to her (second diffu-
sion step) and each item then receives the same portion of
the resource. The final score of each item ij is given by the
sum of the portions of resources that are assigned to it after
the two diffusion steps. The set of all the scores obtained
in this way is called resource vector and it can be used to
rank the items not directly linked to the target user. The
higher the score obtained by an item, the greater could
be the interest in it for the target user. The mechanism of
HeatS is similar to ProbS, but it is based on opposite rules:
each time a resource (or a portion of it) is redistributed, it
is divided by the number of edges connected to the node
towards which it is heading to. Figure 1 depicts the dif-
fusion steps of the two algorithms, highlighting the dif-
ferences in the two recommendations. Although they may
seem a good way to make recommendations, actually both
of them are biased by the presence of extremely popular
or non-popular items or tags, and they do not take into
account the characteristics of the user’s interests. For this
reason, they present strong limitations if applied to STS.
Specifically, ProbS tends to recommend most popular con-
tents, while HeatS tends to highlight those with minimal
popularity (i.e., with the smallest possible number of users
connected to them). Figure 2 depicts an example of the
described behavior. If we consider a target user interested
in tags with low popularity (u1 in Figure 2a), HeatS will
suggests tags with low popularity (that, however, may be
of limited interest for the target user from a semantic point
of view). On the other hand, ProbS tends to recommend
tags with high popularity, possibly semantically unrelated
with the user’s interests. By contrast, if we consider a
user with popular interests (u6 in Figure 2b), ProbS high-
lights the correct tags and, instead, HeatS still (wrongly)
recommends the less popular tags.
To overcome these limitations, a ProbS+HeatS hybrid ap-
proach (hereafter just Hybrid) [34] has been recently pro-
posed in the literature. This algorithm calculates a linear
combination of the results of ProbS and HeatS with a pa-
rameter λ governing the relative importance of one of the
two original algorithms. However, the problem of Hybrid
(and other recently proposed solutions [23, 21, 30, 24]),
precisely lies in the use of parameters which can vary
greatly depending on the nature of the dataset, and that
are difficult to estimate in real situations.
PLIERS [2] solves the dilemma of the choice between pop-
ular or non-popular items in the network in a more natu-
ral way than the other diffusion-based algorithms, without
requiring any parameters to tune, and ensuring that the
popularity of recommended items is always comparable
with the popularity of items already adopted by the users.
PLIERS assumes that if the user is interested in general
categories of items, with a high number of connected users
(i.e., popular items), the recommendations will be general
as well. On the other hand, if the user is interested in less
popular items, the recommendations will prefer items with
less connected users.
In addition, PLIERS assumes that a very popular item/tag
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Figure 3: Tags popularity for User 1.

can semantically relate to a more “generic” topic com-
pared to a less popular item/tag that, instead, describes
a more “specific” topic. For example, any content related
to the football club Millwall can be tagged with both tags
“Millwall” and “Football” but the opposite is not always
true: all content concerning football will not always be
tagged with “Millwall”. According to this assumption,
we can therefore say that the tag “Football” refers to a
more generic topic than that referred by the tag “Mill-
wall”. Users interested in the Millwall football club, but
not connected to items tagged with “Football”, are clearly
not interested in all the items tagged with the latter tag, as
these could contain information about other football clubs.
PLIERS leverages this assumption to improve the recom-
mendations and to provide more personalized items to the
users. We demonstrated that PLIERS outperforms all the
other diffusion-based approaches applied to Online Social
Networks, both in terms of recommendation accuracy and
personalization [2]. In this paper we present p-PLIERS, a
framework able to merge the knowledge about users, inter-
ests and contents on single mobile devices and to evaluate
the relevance of the available contents for each single user
through PLIERS recommendations. To make the reader
able to completely understand this new solution, we pro-
vide, in the next sections, an extended description of PLI-
ERS notation and algorithm with respect to [2]. Then, in
Section 4, we present p-PLIERS.

3. PLIERS: PopuLarity based ItEm Recom-

mender System

In this section, we present PLIERS working principles on
a simple bipartite graph, and its comparison with ProbS,
HeatS and Hybrid. Then, we describe in detail how PLI-
ERS can be applied to a tripartite graph, which is used
by p-PLIERS to represent knowledge in opportunistic sce-
narios.

Table 1: Ranking for User 1 for PLIERS (PL), ProbS (Pr), HeatS
(He) and Hybrid (Hy).

Tag PL Pr He Hy

orchestra (1) 1 12 1 1
debussy (1) 2 13 2 2
thepianoguys (1) 3 16 3 3
pavarotti (1) 4 19 4 4
nabucco (1) 5 20 5 5
millwall (22) 13 5 14 13
music (24) 15 4 15 14
sherlock (27) 16 3 16 15
sport (41) 19 2 19 18
startrek (44) 22 1 22 19

3.1. Notation

Formally, a folksonomy can be represented with three node
sets: users U = {u1, . . . , un}, items I = {i1, . . . , im} and
tags T = {t1, . . . , tk}. Consequently, each binary relation
between them can be described using adjacency matrices,
AUI , AIT , AUT respectively for user-item, item-tag and
user-tag relations. If the user ul has collected the item is,
we set aUI

l,s = 1, otherwise aUI
l,s = 0. Similarly, we set aITs,q =

1 if is has been tagged with tq and aITs,q = 0 otherwise.
Furthermore, connections between users and tags can be
represented by an adjacency matrix AUT , where aUT

l,q = 1

if ul owns items tagged with tq, and aUT
l,q = 0 otherwise.

In the next subsection, we consider user-item bipartite
graphs described by the AUI adjacency matrix.

3.2. The algorithm

PLIERS is inspired by ProbS and shares with it the same
two diffusion steps. In addition, PLIERS normalizes the
value obtained by ProbS when comparing an item ij with
one of the items is of the target user ut. This normalization
is performed by multiplying the recommendation score by
the cardinality of the intersection between the set of users
connected to ij and the set of users connected to is, divided
by k(ij), which is the popularity of ij . In this way, items
with popularity similar to the popularity of the items of
the target user, and that possibly share the same set of
users, are preferred.
The final value of the item ij for the target user ut, in
a graph with n users and m items, is then calculated by
PLIERS with the following formula.

f
pl

j =
n∑

l=1

m∑

s=1

al,j · al,s · at,s

k(ul) · k(is)

|Us ∩ Uj |

k(ij)
j = 1, . . . , m, (1)

Here, Uj is the set of users connected to the item ij , k(ij)
is the popularity degree of the item ij (i.e., the number of
connected users), and ax,y is an element of the AUI matrix.

The higher the value of fpl
j , the more item ij is similar to

the items already owned by ut.
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Figure 4: Tags popularity for User 3.

3.3. Working principles of PLIERS on a simple graph

To describe in detail the mechanism of PLIERS, and to
prove its effectiveness, we manually built a synthetic user-
tag bipartite graph consisting of 64 users, 62 tags and a
total of 612 edges. The graph represents the relation be-
tween a set of users and several tags, which are character-
ized by a variable degree of popularity. A link between a
user and a tag indicates that the user owns that tag (i.e.,
she has already downloaded a content labeled with that
tag).
Figure 5 shows the structure of a synthetic bipartite graph,
highlighting the characteristics of two opposite cases: the
first user (User 1), connected just to non-popular tags
(more specific), and the second one (User 3), connected
to tags with, on average, higher popularity. To clarify the
difference between popular and non-popular tags: the tag
“TV-Series” is far more popular than “SherlockHolmes”
and, since the majority of users connected to the tag “Sher-
lockHolmes” are also connected to “TV-Series” (but the
opposite is not always true), semantically speaking, we
can refer to “TV-Series” as a “superclass” of “Sherlock-
Holmes”.
In the following, we compare the differences in the recom-
mendations lists (i.e., the resource vectors) generated by
PLIERS, ProbS, HeatS and Hybrid for the two considered
users.
User 1 is interested in topics related to classical music
(“Schubert”, “Verdi”, “Rossini”, etc.) that, in our graph,
have a low popularity with mean equal to 1.22. Figure 3
depicts the popularity of each tag connected to User 1 in
terms of number of users connected to that tag.
Table 1 contains the results obtained from the execution of
the four algorithms, considering User 1 as the target. We
reported the top 10 tags common to the rankings of all
the algorithms, together with their position in each rank-
ing, so as to better compare the differences among the
approaches. Next to each tag, its popularity is reported.
PLIERS, HeatS and Hybrid (with λ = 0.5 – the value
generally used when there is no a priori knowledge on the

Table 2: Ranking for User 3 for PLIERS (PL), ProbS (Pr), HeatS
(He) and Hybrid (Hy).

Tag PL Pr He Hy

3g (1) 26 26 5 18
bag (1) 24 24 4 17
carling (1) 23 23 3 16
cpu (1) 22 22 2 15
cricket (1) 25 25 1 14
seriea (19) 1 1 6 1
android (21) 4 8 21 6
googleglass (21) 3 7 20 5
mobile (21) 2 6 19 4
crime (23) 12 4 23 7
pop (23) 8 5 24 8
tv-series (34) 9 3 25 3
sci-fi (37) 5 2 22 2

data) recommend similar tags for the first 12 positions,
highlighting tags with a popularity degree similar to those
already connected to the user, and more semantically re-
lated with them (e.g., “Debussy”, “Orchestra”). On the
contrary, ProbS presents wrong recommendations in the
first positions, by assigning a higher score to uncorrelated
tags (from a semantic point of view), which are charac-
terized with a popularity degree that deviates too much
from that of the tags held by the user (e.g., “StarTrek”,
“Sport”).
By contrast, User 3 is interested in both non-popular tags
(such as “Pavarotti”, “2Cellos”, and “Nabucco”) and par-
ticularly popular (“StarTrek”, “Star Wars”, “Millwall”) or
generic tags (“Sport”, “Music”), which increase the aver-
age popularity of her topics to the value of 15.3 (Figure 4).
In this case, PLIERS adapts its recommendations to the
“generic” nature of the target’s interests, deviating from
HeatS and agreeing with the suggestions made by ProbS
and Hybrid (see Table 2).

Figure 5: Structure of the synthetic user-tag bipartite graph.
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Figure 6: Affinity and similarity indices in a tripartite folksonomy
graph.

3.4. Extension to tripartite graphs

The three adjacency matrices introduced in Section 3.1 can
be represented as a tripartite graph G = (U, I, T, E, F )
where U is the set of users in the folksonomy, I is the set
of items, T is the set of tags, E is the set of links between
users and items, and F is the set of links between items
and tags. If an edge el,s between the user-node ul and the
item-node is exists, we say that the user ul was interested
in the item is (i.e., she created or downloaded it in the
past) and, in a completely analogous way, if the item-node
is is connected to the tag-nodes ti, . . . , tk, we mean that
the item is was tagged with ti, . . . , tk.
Recommender systems based on tripartite rather than bi-
partite graphs exploit all the information available from
social tagging systems, and this can lead to better results
in terms of recommendation accuracy and precision, as we
show in Section 6.
As depicted in Figure 6, in a tripartite graph we can define
two characteristic values:

Affinity index: is the score obtained by PLIERS when
applied on user-item links. This indicates the degree
to which an item is close to the user’s interests and
preferences.

Similarity index: is the score obtained by PLIERS when
applied on tag-item links. This indicates the degree
to which two items are similar in terms of the tags
with which they are labeled.

More formally, we define the affinity index of an item ij
for a target user ut with the following formula:

f
a
j =

n∑

l=1

m∑

s=1

al,j · al,s · at,s

ki(ul) · ku(is)
·
|Us ∩ Uj |

ku(ij)
, (2)

where Uj is the set of users connected to the item ij, ku(ij)
is the popularity degree of the item ij (i.e., the number of
connected users), ki(ul) is the number of items connected
to the user ul, and ax,y is an element of the matrix AUI .

Symmetrically, we define the similarity index of an item
ij with respect to the items already linked to the target
user ut, as

f
s
j =

k∑

z=1

m∑

s=1

az,j · az,s · at,s

ki(tz) · kt(is)
·
|Ts ∩ Tj |

kt(ij)
, (3)

where Tj is the set of tags connected to the item ij, kt(ij)
is the number of tags with which the item ij was marked,
ki(tz) is the number of items connected to the tag tz , and
ax,y is an element of the matrix AIT .
We define the final score of an item ij as the linear com-
bination of the two indices (2) and (3) as follows.

fj = λ · fa
j + (1− λ) · fs

j , (4)

where λ ∈ [0, 1] is a tunable parameter of the algorithm
with which we can weigh the links between users and items
and those between items and tags.

4. Pervasive PLIERS

p-PLIERS implements a framework for the representation
and exchange of context information describing contents
and users among nodes of an opportunistic network. It
exploits PLIERS for the evaluation of the collected knowl-
edge and to provide personalized recommendations to the
users about available interesting contents.
To this aim, p-PLIERS supports the maintenance of a lo-
cal representation of the knowledge about the users, items
and tags in the network and their relations (i.e., a local
knowledge graph - LKG) on each node of the network.
This knowledge is built by merging the information about
contents created or downloaded by each local user, with
the local knowledge of other nodes gathered during phys-
ical contacts. The nodes use this partial knowledge to
evaluate the relevance of items (content) carried by other
nodes in proximity, with respect to the interests of their
local user. The evaluation is performed locally, without re-
quiring centralized control and without the need of having
a global knowledge of the network (i.e., global knowledge
graph - GKG). We represent the LKG of each node as a tri-
partite graph as described in the previous section. When
a node creates a new item, it updates its LKG by inserting
the relation between the user entity that represents it in

Algorithm 1 p-PLIERS: Content discovery and evalua-
tion in opportunistic networks

1: procedure Encounter(node n)
2: Send my LKG to n

3: nLKG ← Receive n’s LKG

4: Update my LKG with nLKG

5: I ← new discovered items
6: for each item i ∈ I do

7: score(i)← evaluate i with PLIERS
8: end for

9: end procedure
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Figure 7: Descriptive statistics of the Twitter dataset used for the WFD@Expo2015 scenario. (a) CCDF of the number of tweets per user,
(b) CCDF of the number of tags per tweet, and (c) Frequency of use of the most used tags.

the graph and the created item, and the relations between
the item and its tags. When a node encounters another
node in the network, the two nodes exchange their LKGs,
and locally integrate them with the received information.
The basic operations of our solution are summarized in
Algorithm 1.
Our solution relies on the fact that, as we will demonstrate
with simulations, using the local knowledge of each node
is sufficient to correctly evaluate the relevance of contents,
and leads to recommendations that are compatible with
the results that one would obtain with a global knowledge
about all the information available in the whole network at
the time of the evaluation. This supports the decentral-
ization of recommendations, and allows us to efficiently
apply recommender systems, and PLIERS in particular,
to dynamic mobile environments.

5. Experimental Evaluation: General Description

As a first set of experiments, we evaluated the accuracy
of PLIERS recommendations with respect to other recom-
mender systems typically used for content dissemination in
opportunistic networks. To do so, we considered a static
user-item-tag graph obtained from Twitter to evaluate the
accuracy of the recommendations given by PLIERS. Then,
we thoroughly evaluated p-PLIERS in three different dy-
namic opportunistic scenarios. In both cases (static and
dynamic), we used graphs derived from real online tagged
contents obtained from Twitter, and we set the parameter
λ in equation 4 to 0.5.

Table 3: Statistics of the Twitter dataset used for the simulations.

Statistic Value

N. of tweets 5,260
N. of users 2,946
N. of unique hashtags 3,292
Average n. of hashtags per tweet 2.12
Max n. of hashtags per tweet 13
Min n. of hashtags per tweet 1

The static scenario allowed us to evaluate the accuracy
of PLIERS using a standard evaluation method (i.e. link
prediction, as detailed in the following). For this scenario,
we downloaded the tweets generated during World Food
Day at Expo 2015 (WFD@Expo2015) in the urban area
of Milan, and we built a tripartite graph composed by
users, tweets, and their hashtags. This represents a realis-
tic folksonomy graph of online tagged contents related to
a popular event.
For the dynamic scenarios, we considered different situa-
tions in which pervasive communication systems may be
used. Specifically, the scenarios are characterized by vari-
able number of people moving with different mobility pat-
terns generated by human mobility models or derived from
real contact traces. Each scenario represents a specific
application use case: (i) a big event (WFD@Expo2015),
(ii) a conference (ACM KDD’15), and (iii) an urban area
(Helsinki city center). We performed a set of simulations
based on these scenarios, where each person is expected
to use a mobile device able to communicate through D2D
communications with other devices in proximity. In addi-
tion, each device allows the users to generate and tag con-
tents over time, and uses p-PLIERS to identify potentially
interesting contents created by others. We think that the
scenarios cover a significant set of cases where pervasive
and mobile systems may be applied, and represent thus
the basis for realistic experimental evaluations.

6. PLIERS Experimental Evaluation in a Static

Scenario

We compared the performances of PLIERS with respect
to the other recommender systems proposed in the litera-
ture for opportunistic networks, namely user-based Col-
laborative Filtering and Tag Expansion. To assess the
accuracy of the recommendations, we performed a link
prediction task on a tripartite graph. This is a standard
way to evaluate and compare recommender systems [16].
In essence, the technique consists in randomly removing
a small portion of links from a folksonomy graph, then
verifying whether the recommendations generated on the
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Figure 8: Precision gain obtained by PLIERS in a complete knowl-
edge scenario.

pruned graph coincide with the removed links. Intuitively,
a good recommender system should be able to identify the
items that were originally connected to the removed links.

6.1. Dataset Description

We downloaded a dataset of 5,260 tweets generated during
World Food Day at Expo 2015 through Twitter Stream-
ing API. To do so, we applied a filter to Twitter API by
indicating a set of hashtags (e.g., #Expo2015, #ExpoMi-
lan2015, and other possible combinations) and we queried
only tweets generated in the area of Milan. We decided to
validate PLIERS using tweets generated in a limited area
during a thematic event such as the WFD@Expo2015 since
we think that the semantic relationships between the rel-
ative folksonomy entities is significant, and we expect to
obtain meaningful and realistic recommendations.
The number of different users that generated the down-
loaded tweets is 2,946. We removed the hashtags that we
used to filter the data (e.g., #Expo2015, #ExpoMilan)
as they are contained in all the tweets, and they are thus
not useful to describe the contents. In Table 3, we report
the statistics of the dataset. Figure 7b and Figure 7a de-
pict the CCDF of the number of tags per tweet and the
number of tweets per user. It is worth noting that both
CCDFs show a long-tailed distribution, a typical result for
social networks. In addition, in Figure 7c, we depict the
frequency of use of the 10 most used tags in the dataset.

6.2. Link Prediction Task

We removed 1 link from each user connected to at least
5 items with popularity greater than 1, and then we ran
PLIERS and the other systems on the updated graph to
generate the recommendation list for each user. Then,
we calculated the percentage of removed links that are in-
cluded in the recommendations of each algorithm (i.e., the
“recovered links”). We selected the links to be removed
in this particular way in order to avoid the complete iso-
lation of the items connected to just a single user. In
fact, in those cases, all the recommender systems would
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Figure 9: Recall gain obtained by PLIERS in a complete knowledge
scenario.

not be able to recover the removed links, reducing the sig-
nificance of the experimental results. The percentage of
links between users and items we deleted from the original
graph is equal to 1.4%. We computed the performances
of each method using the measures of Precision (P) and
Recall (R) [16], defined as follows:

P =
1

|U |

∑

u∈U

1

|T (u)|

∑

t∈T (u)

1

pos(t)
, (5)

R =
1

|U |

∑

u∈U

|L(u) ∩ T (u)|

|T (u)|
, (6)

where U is the set of users for whom we have removed
links, L(u) is the recommendation list for the user u, T (u)
is the set of links removed from the user u, and pos(t) is
the position in which the removed item t appears in the
list of recommended items L(u).

6.3. Results

Figures 8 and 9 depict respectively the Precision gain and
the Recall gain of PLIERS with respect to both CF and
Tag Expansion. The gains are expressed in percentage and
identify the improvement obtained by PLIERS in terms of
precision and recall with respect to the other algorithms.
The parameter k in the figures represents, for CF, the
number of users similar to the target user to be considered
in the calculation, and for Tag Expansion the k tags more
correlated with the tags of the target user to be considered.
Higher values of k should therefore lead to better recom-
mendations. It is worth noting that PLIERS outperforms
the two reference algorithms for both measures, receiving a
precision score up to eight times higher than that obtained
by Tag Expansion and a score 40% higher than CF, even
in case of very high values of k. With regard to the Recall
measure, PLIERS obtains a score around 50% higher than
that received by Tag Expansion and around 30% higher
than that of CF.
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These results indicate that PLIERS, being able to exploit
all the information contained in the folksonomy graph (i.e.,
user-item-tag relationships), obtains better results than
the state-of-the-art solutions used in opportunistic net-
works, which consider only partial user-item or item-tag
relationships.

7. p-PLIERS Experimental Evaluation in Dy-

namic Scenarios

In [11], ElSherief et al. established theoretical limits on
the performance of knowledge sharing in opportunistic so-
cial networks. They calculated how many contacts are
needed to ensure that nodes are able to well approximate
the global knowledge (i.e., all the available information
in the network) for different sharing policies in a scenario
where the global knowledge is static and defined a priori.
We performed an empirical evaluation similar to that car-
ried out in [11], but using more complex and realistic refer-
ence scenarios, where the information is dynamically gen-
erated over time by the nodes. Specifically, in our reference
scenarios, the users are characterized by different mobility
and content generation patterns.

7.1. p-PLIERS Pervasive Simulator

To simulate the dynamic scenarios, we implemented a
high-level simulator that emulates the execution of p-
PLIERS on a set of mobile nodes that generate contents
over time. The simulator requires in input (i) a set of
traces defining the physical contacts between nodes over
time and (ii) a list of contents generated by the nodes and
marked with a timestamp. Then, it calculates statistics
to evaluate p-PLIERS both in terms of its ability to ap-
proximate the global knowledge from a local perspective,
and the accuracy of the given recommendations. The sim-
ulation process proceeds in discrete steps, each of which
represents 1 minute of simulated time. For each contact
in the simulation steps, indicated by the timestamps in
the contact traces, the involved nodes establish a D2D
communication between each other and they perform the
operations of Algorithm 1.
Note that the simulator is at a higher abstraction level
than other existing network simulators (e.g., generic net-
work simulators such as ns-31 or OMNeT++2, and simula-
tors specific for opportunistic networks such as TheONE3).
Thus, at this level, we do not consider network-related is-
sues, but we assume that, when two nodes are in contact,
the communication channel between them was successfully
established.
To represent the knowledge about the available content in
the simulated mobile network, each node u maintains a
local tripartite graph LKGu that represents its (partial)

1https://www.nsnam.org/
2https://omnetpp.org/
3https://akeranen.github.io/the-one

knowledge about the associations between the contents in
the network and the nodes which created them, and the
associations between the contents and the tags associated
with them.
The LKG of each node is initially empty. Every time a
new item (tweet) i is created by node u, u, i, and each tag
t associated with i are added to LKGu (if not present), as
well as the link connecting u and i (eui) and all the links
connecting i and each of its tags t (fit).
We also maintain GKG, the global tripartite graph that
represents the complete knowledge of all the users, items,
and tags in the network at a certain time.

7.2. Measures

At each time step of the simulation (i.e., every minute),
the simulator calculates the following measures:

a. Average similarity between the LKG of each node
and the GKG.

b. Average similarity between the vector of recommen-
dations generated by PLIERS on the local and global
graphs.

To calculate the similarity between tripartite graphs, we
first flattened the graphs, obtaining two adjacency lists L1

and L2, and then calculated the Jaccard index J on these
lists:

J(L1, L2) =
|L1 ∩ L2|

|L1 ∪ L2|
(7)

In the same way, the similarity of two ranked recommen-
dation vectors R1 and R2 is calculated as J(R1, R2).
Although the Jaccard index is a standard and widely used
measure of similarity, it does not consider possible differ-
ences in terms of position in the rankings given by the rec-
ommendation vectors, but rather considers only the pres-
ence or absence of recommended items in the two vectors.
To account for possible differences in terms of position of
the same elements in the rankings produced either using
local or global knowledge graphs, we also calculated a sim-
ilarity measure based on Spearman’s Footrule [6] defined
as follows:

S(R1, R2) = 1−

∑

x∈R1∩R2
d(x,R1, L2)

max(|R1|, |R2|)
, (8)

where

d(x,R1, R2) =

{

|R1(x) −R2(x)| if x ∈ R1 ∩R2

max(|R1|, |R2|) otherwise,
(9)

where R(x) is the position of object x in the ordered set
R. S is similar to the Jaccard index, but, in addition, it
penalizes possible differences in terms of rankings of the
elements in the resource vectors.
In addition, for each simulation step, we calculated:
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Figure 10: Map of Expo 2015 area with the position of five of the simulated communities. Note that the grid in the figure is only an example
to show how we divided the area for the simulations, but it does not represent the real grid used.

c. Number of contents generated by the nodes over
time.

d. Average number of contacts between nodes over
time.

These measures are used to characterize the contact traces
and the contents used in the different scenarios. We an-
ticipate that the synthetic and the real traces that we
used show similar properties (e.g., the contact traces used
for the WFD@Expo2015 scenario show values compatible
with those used in the conference scenario), thus support-
ing the significance of the synthetic trace.
We also calculated all the measures by considering that the
interests of nodes may be limited in time. To do so, we cal-
culated the measures using only the most recent contents
generated in the network and considering only the infor-
mation about these contents in the folksonomy graphs. In
the simulations, we considered different “expiry date” for
the contents, i.e., 1, 2 or 3 hours.

7.3. Scenario 1 - Big Event: World Food Day @Expo2015

As a first dynamic scenario for the evaluation of p-
PLIERS, we considered a big event attended by a large
number of people in a relatively large area. In this sce-
nario, accessing the Internet from mobile devices may be
problematic and thus obtaining useful content from D2D
communications would provide an important source of in-
formation for the users. We considered the World Food
Day at Expo 2015, organized on October 16, 2015. We as-
sumed that people attending the event were able to create
tagged contents from their mobile devices, and that other
attendees might have been interested in obtaining these
contents through D2D communications.

7.3.1. Mobility Traces

We simulated a set of nodes moving within an area of
300 x 2,000 meters, which coincides with the Expo area
in Milan. Each node represents a person equipped with a
mobile device. The mobility of nodes is simulated through
the HCMM human mobility model [5]. The model gener-
ates contacts between nodes according to a Pareto dis-
tribution, as observed in real traces, and considers the

presence of “communities”, i.e., each node has a higher
probability to meet nodes within its own community than
nodes belonging to different communities. This fits well
with WFD@Expo2015 scenario, as the area was divided
into several pavilions. We can reasonably assume that
the mobility of people inside each pavilion was lower than
the mobility of people moving between pavilions, and that,
consequently, the density of intra-community contacts was
higher than that of inter-community ones. We generated
mobility traces through HCMM for 60 communities, ap-
proximately the number of pavilions at Expo (see Fig-
ure 10 for a graphical representation of a map of the area
of Expo and the communities used in HCMM). We set
a probability of inter-community contacts of 0.1 (this pa-
rameter is called “rewiring” probability in HCMM)4. The
speed of nodes ranges between 0.01 m/s (almost steady
nodes) and 1.86 m/s (nodes representing people walking
relatively fast).
Using HCMM, we simulated the contacts between
nodes for 13 hours, to cover the timespan of the
WFD@Expo2015, from 10am (opening time) till 11pm
(closing time). We considered that each node has a trans-
mission range of 20 meters (the maximum distance to avoid
that nodes in adjacent pavilions are constantly in contact
with each other). When two nodes are in the transmission
range of each other, HCMM generates a contact between
them. We think that HCMM mobility model with these
settings can well approximate the real mobility of people
during WFD@Expo2015.

7.3.2. Content Generation

To have a realistic representation of multimedia contents
generated during the WFD@Expo2015, we downloaded
the tweets generated during the event, using the Twit-
ter Streaming API. To be sure to obtain only information

4We performed the same simulations described in the following
also with rewiring probabilities 0.2 and 0.3 (thus considering more
dynamicity in the movements) and this resulted in a general, al-
though slight, improvement due to a higher inter-community mo-
bility of the nodes. Since the contact traces generated by setting
a rewiring probability of 0.1 represent the worst case scenario, we
present only the results for this parameter.
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Figure 11: Descriptive statistics of the Twitter datasets used for the WFD@Expo2015 dynamic scenarios. (a) CCDF of the number of tweets
per user, (b) CCDF of the number of tags per tweet, and (c) Frequency of use of the most used tags.
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Figure 12: Overall number of contacts between nodes during the
simulation for the Expo 2015 scenario.

related to Expo, we filtered our requests in the same way
as done for the dataset collected for the evaluation in the
static scenario presented in Section 6. With respect to
the dataset used for the static scenario, we downloaded
only tweets generated from 10am till 11pm, to cover the
same span of time of the simulated contact traces. The
obtained dataset contains 4,817 tweets generated by 2,660
users, and contains 3,008 unique hashtags.
We associated each node of the simulated contact traces
with a Twitter user. In this way, the tweets of the Twitter
user associated with each node represent contents that the
node generated during the simulation.

7.3.3. Simulation Settings

We considered different settings for our simulations in or-
der to analyze the possible impact of different parame-
ters on the results. Specifically, we varied the number
of nodes, simulating 250, 500, and 900 nodes in the con-
sidered area. As the number of users that tweeted during
WFD@Expo2015 was higher than the number of simulated
nodes (900 is the maximum number of nodes supported by
HCMM), we sampled, for each setting, the Twitter users
with a uniform random sampling.
In order to give an idea of the dynamics of content gener-
ation, Figures 11a and Figure 11b depict the CCDF of the
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Figure 13: Number of contents generated by nodes during the simu-
lation for the Expo 2015 scenario.

number of tweets generated by users and the number of
hashtags per tweet respectively, for the samples extracted
for the three settings (250, 500, and 900 nodes). The dis-
tribution of hashtags per tweet are approximately the same
for the three samples: the majority of tweets have just one
or two hashtags associated with them, whereas just few
tweets are linked to more hashtags. Similarly, the number
of users who generated a high number of tweets is low,
when the majority of them has generated just one or two
tweets.
Figure 11c depicts the frequency of use for the 5 most
used tags for each sample. As expected, the most used
tags are related to topics about the Expo2015 exhibition,
the WFD and some special guests (e.g., “mattarella” refers
to Sergio Mattarella, who is the actual President of Italy
and was already in charge during the Expo in 2015, and
he was invited as a special speaker for the WFD event).
Figure 12 depicts the total number of contacts between
nodes for each hour of simulation. It is worth noting that,
for each setting, the number of contacts between nodes
is roughly constant for the entire simulation time, but it
greatly differs from one setting to another, providing thus
significantly different cases in terms of opportunities of
contact between nodes in the simulations.
Similarly, Figure 13 depicts the number of contents
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Figure 14: Results for the WFD@Expo2015 scenario. (a) Average Jaccard similarity between local graphs of the agents and the global graph,
for different number of agents. (b) Average Spearman and (c) Jaccard similarity between the PLIERS resource vectors obtained on the local
graphs of the agents and those obtained from the global graph, for different number of agents.

(tweets) generated by nodes for each hour of simulation.
The distribution is similar for the three settings: during
the lunch break (from 12am till 1pm) there is an increment
in the generation of content, then it remain stable until the
evening hours and decreases closer to the exposition clos-
ing time. It is worth noting that no tweets containing the
selected hashtags have been generated between 10am and
11am, probably due to the low number of visitors in the
very first part of the event.

7.3.4. Results

Figure 14a depicts the average Jaccard index between the
local graphs of the agents and the global graph, for the
different numbers of simulated agents. From the figure,
we can note that, after a certain time, the similarity be-
tween the local graphs and the global graph, on average,
reaches a very high level for all the different settings con-
sidered. After approximately two hours of simulated time,
the similarity reaches ∼80% for the cases with 900 and
500 agents, with slight variations, whereas ∼4 hours are
needed to reach the same level of similarity for the case
with 250 agents. After that, the similarity remains quite
stable until the end of the simulation for all the settings.
This means that even with a small number of nodes (250)
that generate items in a relatively large area (the whole
area of Expo), the opportunities of contact are enough to
have a good approximation of the knowledge about items
and tags generated in the network, even after few hours.
Interestingly enough, the differences between 250 and 900
agents does not have a substantial impact on the curve.
The similarity between the results obtained by PLIERS on
local and global graphs are depicted in Figure 14b and 14c.
Specifically, the former figure depicts the average similar-
ity S (derived from Spearman’s Footrule) for the recom-
mendation vectors of the two cases, while the latter figure
depicts the average Jaccard index on the same recommen-
dation vectors. From the figures, it is worth noting that, on
average, the differences between the results obtained from
local and global graphs are quite small. In addition, the
figures clearly indicate that the results obtained on local

graphs converge to those on the global graph. The pres-
ence of negative peaks in Figure 14b that are not visible in
Figure 14c highlights the higher sensitivity of the similarity
measure S compared to the Jaccard index. These nega-
tive peaks indicate a slight decrease in the performances
of PLIERS, which are nonetheless in the order of ∼15%
maximum, and the curve remains always above 0.6 for all
the settings, at least after 4 hours of simulated time.
Figure 25a depicts the average similarity between the lo-
cal graphs of the agents and the global graph, where only
information generated not more than 1, 2 and 3 hours
(of simulated time) before the calculations is respectively
considered. Note that the figure is related to the simula-
tion with 900 agents. The differences in terms of average
similarity of the curves related to the simulations for 3
and 2 hours are similar to the results obtained without
temporal limitations. This tells us that, nodes can make
accurate recommendations even if they maintain limited
information about past history and purge the older infor-
mation from their memory. The case where only informa-
tion generated in the last hour is considered, the similarity
is slightly lower, but it is still around 75%, which could be
enough for some applications.

7.4. Scenario 2 - Conference: KDD 2015

As a second dynamic scenario, we considered a school cam-
pus during a conference event, where people stay most
of the time within rooms, but they regularly gather at
breaks (e.g., coffee or lunch breaks). This is a typical sce-
nario where pervasive and mobile communications could
improve content delivery services and user experience in
general. We assume that the contents generated during the
conference can be shared by nodes through wireless com-
munication, and we assess the potential impact of PLIERS
in the accuracy of recommendations using only local infor-
mation obtained by mobile nodes from direct interactions
with other nodes, similarly to the previous scenario.

7.4.1. Mobility Traces

For this scenario, we used real contact traces representing
the physical interactions of a group of students, professors,
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Figure 15: Descriptive statistics of the Twitter datasets used for the Conference scenario: (a) CCDF of the number of tweets per user, (b)
CCDF of the number of tags per tweet, and (c) Frequency of use of the most used tags.
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Figure 16: Overall number of contacts between nodes during the
simulation for the conference scenario.

ans staff of an American high school during a typical school
day [27]. These traces were obtained by distributing 789
wireless sensor network motes to all members of the school
and asking them to carry these motes with them for the
entire duration of a school day.

7.4.2. Content Generation

As we do not know the exact location of the American
school where the contact traces have been collected, we
tried to find an event from which to collect tagged online
contents and where people were moving in a similar way
to how students move within the area of a high school in
the US. As American high schools are not organized into
classes as in the EU, but rather around “study tracks”
and students are free to decide which lectures to attend,
we think that their movements can be assimilated to those
of people attending a large conference. For this reason, we
downloaded the tweets generated during a large computer
science conference, namely the 21st ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD),
organized in Sydney from 10 to 13 August 2015.
To download tweets generated during KDD by people who
were physically attending the conference, we used Twitter
REST API with a series of filters, as described in the fol-
lowing. We first downloaded all the tweets generated by
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Figure 17: Number of contents generated by nodes during the simu-
lation for the conference scenario.

@kdd news, the official Twitter account of the conference.
Then, we downloaded all tweets created by people “fol-
lowed” by this account or “following” it and containing
at least one of the set of hashtags generated (in total)
by @kdd news. Furthermore, we downloaded additional
tweets by performing a second round of download con-
sidering the same set of users (followers and followees of
@kdd news) considering the set of hashtags of all the pre-
viously downloaded tweets. In this way, we are not limiting
the download to tweets containing only the hashtags cre-
ated by the official KDD account, but also those created by
other users that co-occur with the former hashtags. This
allowed us to collect also tweets that are semantically re-
lated with the conference. From the set of downloaded
tweets, we kept only those generated during the days of
the conference (10-13 August) and which are within the
temporal span between 7.30am and 4.30pm Sydney time,
coinciding with the intersection between the time window
of the conference and that of the contact traces.
The total number of KDD tweets that we downloaded is
428 (distributed over the three conference days). These
tweets have been created by 117 users, and contain a total
256 unique hashtags.
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Figure 18: Results for the scenario of the KDD conference. (a) Average Jaccard similarity between local graphs of the agents and the global
graph, for different number of agents. (b) Average Spearman and (c) Jaccard similarity between the PLIERS resource vectors obtained on
the local graphs of the agents and those obtained from the global graph, for different number of agents.

7.4.3. Simulation Settings

Since the total number of Twitter users in our dataset is
lower than the number of nodes in the contact traces, we
decided to assign each Twitter user to a random node in
the simulator. The nodes not associated with a Twitter
user do not create any contents, but they are still part
of the simulation and they can diffuse information within
the mobile network. In addition, to maintain a sufficiently
high number of generated contents, we considered that
the tweets were generated on a single day, and we just
considered the creation time of each tweet, and not its
creation date.
Figure 15a and Figure 15b depict respectively the CCDF
of the number of tweets generated per node and that of
the number of tags per tweet considered in the simulation.
The tags appearing with highest frequency during the sim-
ulation are depicted in Figure 15c. The number of contacts
and the number of contents generated hourly during the
simulation are depicted in Figure 16 and Figure 17 respec-
tively. Figure 16. shows a number of contacts of the same
order of magnitude as WFD@Expo15 for a comparable
number of users.

7.4.4. Results

Figure 18a depicts the average similarity between local and
global graphs for the simulation. The high value of simi-
larity indicates that nodes are able, on average, to have a
complete view of the contents around them even after a few
hours of simulated time. In addition, also the similarity
between the recommendations of PLIERS obtained by the
nodes and the optimal recommendations they would have
got using the global knowledge is very high both for the
S measure (see Figure 18b) and for the Jaccard similarity
index (Figure 18c).
The results obtained by limiting information lifetime at
1, 2, and 3 hours for this scenario are reported in Fig-
ure 25b. In this case, the results obtained for the most
restrictive assumptions, considering only information gen-
erated 1 and 2 hours respectively before each step of the
simulation, have a high variation and often go beyond a

similarity of 0.6. The similarity in these cases might be too
low to obtain meaningful recommendations. Nevertheless,
the results obtained for the threshold of 3 hours are very
similar to those obtained without limiting the information
lifetime. This indicates that, for this kind of scenario,
a view of the contents generated within the last 3 hours
could be enough to obtained accurate recommendations
about freshly created information.

7.5. Scenario 3 - City: Helsinki

As a last scenario to test our solution, we chose the urban
environment of the city center of Helsinki, a medium sized
European city. Our choice was motivated by the need to
test PLIERS on a larger scale than the previous scenarios.
We extracted the contact traces of a typical working day
in Helsinki using a realistic human mobility model highly
customized on the considered area. Then, we downloaded
the tweets generated within the same geographic area and
we used them as content generated by nodes during the
simulation.

7.5.1. Mobility Traces

In order to perform a realistic simulation, we extracted
24 hours of contacts between 800 nodes from the mobil-
ity traces generated by the working day mobility model for
Helsinki [10] implemented in TheONE simulator. The mo-
bility model uses several highly customized mobility sub-
models that define nodes behavior during different daily
activities in the area of interest, such as staying at home,
working, and evening activities with friends. The simu-
lation area coincides with Helsinki city center, which was
divided into four main districts, as depicted in Figure 19.
In these districts, nodes live and work in the same ge-
ographic area forming thus four distinct groups. In ad-
dition, the model considers three other groups of nodes
which live and work in different districts, as depicted in
Figure 20. To simulate the movements between home and
work, and between work and possible meeting points for
evening activities, the model defines three additional mo-
bility models: car travel mobility, public transportation
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Figure 19: Graphical representation of the four groups of nodes in the
mobility model of Helsinki which live and work in the same districts
of the city.

mobility, and walking mobility. For a complete descrip-
tion of each of the mobility sub-models included in the
overall mobility model and to understand how they are
combined together, we refer the reader to [10]. For the
parameters of the models, we used the default values pro-
vided by TheONE simulator. Note that the values were
directly derived for the city of Helsinki.

7.5.2. Content Generation

We downloaded the tweets generated in the area of
Helsinki city center through Twitter Streaming API, by
filtering the tweets for their location. We continuously
downloaded tweets from May 27, 2016 to June 20, 2016,
for a total of 24,732 tweets, which were generated by 4,477
users and 16,273 unique hashtags.

7.5.3. Simulation Settings

We performed three simulations using the same contact
traces obtained by the Helsinki mobility model and vary-
ing the number of contents generated by each node. To do
so, we selected, in the first case, only the tweets generated
during a single working day randomly chosen among those
in the collected dataset (May 2, 2016 - which was a typi-
cal working day in Helsinki). The number of Twitter users
who generated contents on this day was 586. We randomly
assigned these users to the 800 nodes of the contact traces.
The remaining nodes do not generate contents, but they
contribute to the forwarding of knowledge in the network.
For the second simulation, we first selected all the users in
the dataset who tweeted for at least two days (not neces-
sarily consecutive days). Then, we randomly selected two
days of tweeting activity for each user (filtering out addi-
tional tweets for the users who tweeted for more than two
days). As the number of users was higher than 800, we
simply randomly assigned each node in the contact traces
to a randomly selected Twitter user. For the third sim-
ulation, we performed the same selection of the previous
case, but for three days of tweeting activity.

E

F

G

Figure 20: Graphical representation of the additional three groups
of nodes in the mobility model of Helsinki which live and work in
different districts of the city.

Figure 21a and Figure 21b depict the CCDF of the number
of tweets generated per node and the CCDF of the number
of tags per tweet for this scenario, considering the three
settings with contents generated over 1, 2, and 3 days.
The tags with highest frequency for the three cases are
depicted in Figure 21c. The number of contacts and the
number of contents generated hourly during the simulation
are depicted in Figure 22 and Figure 23 respectively.

7.5.4. Results

Figure 24a depicts the average similarity between local and
global graphs during the three simulations. In the first
half of the day the similarity is rather low (i.e., less than
20%). This is due to the fact that the agents are mostly
found at home or work, and then they do not have many
opportunities to meet new nodes from which they could get
new information about contents generated in the network.
When the agents stop working approximately at 5:30 p.m.,
the graphs similarity rapidly grows to over the 80%. This
is because most of the agents go to the meeting points
(e.g., shopping center, restaurants, pubs, etc. . . ), which
allow them to encounter nodes from different communities
and then become aware of the content never seen before.
Figures 24b and 24c depict respectively the average Spear-
man and Jaccard similarity between the recommendations
of PLIERS obtained by the nodes and the optimal recom-
mendations they would have got using the global knowl-
edge. It is worth noting that the curves of the recom-
mendations’ similarity accurately reflect the similarity be-
tween the local and global graphs. This proves that the
higher the accuracy of the vision of the local nodes and
the greater will be the accuracy of the recommendations
made by PLIERS.
The results obtained by limiting information lifetime at
different hours for this scenario are reported in Figure 25c.
In this case, the thresholds used in the other scenarios to
limit the knowledge graphs are too restrictive, and the
similarity between the local and global graphs remains be-

16



 0.001

 0.01

 0.1

 1

 1  10  100

P
(X

 >
 x

)

Number of tweets per user

1 day
2 days
3 days

(a)

 0.0001

 0.001

 0.01

 0.1

 1

 1  10

P
(X

 >
 x

)

Number of hashtags per tweet

1 day
2 days
3 days

(b)

 0

 50

 100

 150

 200

 250

 300

ar
ct
ic
15

cy
cl
in
g

em
fu

tis

eu
ro

20
16

fin
la
nd

he
ls
in
ki

ke
sä

ki
er

to
ta

lo
us

lo
ve

bt
s

py
ör

äi
ly

Ban
gt

an
 B

oy
s

F
re

q
u

e
n

c
y

1 day
2 days
3 days

(c)

Figure 21: Descriptive statistics of the Twitter datasets used for the City scenario: (a) CCDF of the number of tweets per user, (b) CCDF
of the number of tags per tweet, and (c) Frequency of use of the most used tags.
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Figure 22: Number of contacts generated by nodes during the simu-
lation.

neath of the 20%. For this reason, we used two higher
threshold values: we considered only the information gen-
erated 5 and 10 hours before each step of the simula-
tion. Considering the information generated during ap-
proximately half of the simulation time (i.e., 10 hours),
the similarity between the local and global graphs consid-
erably increases, and reaches 60%. This result suggests
that, for a realistic urban scenario, at least a half day of
knowledge about the contents generated by nodes is nec-
essary to obtain sufficiently accurate results.

7.6. Discussion

The results for the three dynamic scenarios show that p-
PLIERS is able to adapt to several types of realistic perva-
sive social networks and always provides accurate content
recommendations.
We performed an additional analysis to verify that the re-
sults are not trivially related to the number of contacts
between nodes and the number of contents generated over
time. To do so, we calculated the correlation between the
delta in terms of similarity at each step of the simula-
tions with respect to the previous step and the number
contacts and the number of contents at each step. The
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Figure 23: Number of contents between nodes during the simulation.

results of this correlation analysis are reported in Table 4
in the third and fourth columns. In particular, the two
columns report the correlation values between the similar-
ity delta (Y ) and the number of generated contents (X1)
and the number of contacts between agents (X2) respec-
tively. The second column of the table reports the value
for the coefficient of determination (R2) of the linear re-
gression analysis between the three measures, following the
equation Y = β1X1+β2X2. It is worth noting that, for all
scenarios, the correlation and the R2 values are rather low.
This indicates that a simple analysis of the time series of
the number of contacts and contents over time, alone, is
not sufficient to describe the results of our simulations.
From Table 4, we note that the impact of the number of
contents generated is negatively correlated with the simi-
larity of local and global graphs for the WFD@Expo2015
scenario. This is perhaps not too surprising, as a higher
number of contents requires more contacts to disseminate
the generated knowledge. Interestingly enough, the effect
is the opposite for KDD and Helsinki, where there is a pos-
itive correlation between the similarity delta and the num-
ber of contents. This might be a combined effect of the
increasing number of contacts in the hours of the day when
people have a higher activity on Twitter, as they probably
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Figure 24: Results for the scenario of the city center of Helsinki. (a) Average Jaccard similarity between local graphs of the agents and the
global graph, for different number of agents. (b) Average Spearman and (c) Jaccard similarity between the PLIERS resource vectors obtained
on the local graphs of the agents and those obtained from the global graph, for different number of agents.
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Figure 25: Average Jaccard similarity between local and global graphs, limiting the knowledge to different time windows in the past for the
(a) Expo2015, (b) Conference, and (c) Helsinki scenarios.

coincide with the end of the working activity. Neverthe-
less, the linear regression based on the combination of the
number of contact and contents is able to explain the vari-
ations in terms of similarity. This confirms once again that
the dynamics of the considered scenarios cannot be simply
described from aggregated measures, and the simulations
were necessary for the complete evaluation of p-PLIERS.
It is worth noting that p-PLIERS performs well even when
knowledge is limited to a very short time window in the
past, at least for scenarios where a relatively small ge-
ographic area is considered (WFD@Expo2015 and KDD
scenarios). In fact, nodes do not need much time for un-
derstanding what is happening around them in these sce-
narios, and they can efficiently take decisions about cur-
rently available contents. This is particularly relevant for
opportunistic networking scenarios, where nodes have very
limited resources. For the urban scenario of Helsinki, in
which the considered area is much larger than that of the
other scenarios and the density of nodes is lower, the re-
sults indicate that a larger time window is required for a
good approximation of the global knowledge about con-
tents in the network. With a view to smart cities, a possi-
ble solution to improve the diffusion of knowledge and the
accuracy of p-PLIERS in this type of scenario could be
to exploit the public transportation system’s nodes (e.g.,
buses, trams, or taxis) as additional information carriers.

8. Possible Applications

The algorithm proposed in this paper can represent a gen-
eral framework for the development of opportunistic net-
working applications in several domains. From a high level
perspective, we identified two separate cases where the al-
gorithm could be useful for mobile applications in oppor-
tunistic settings. The former involves autonomous content
dissemination by the nodes, whereas the latter requires the
manual interaction of the user to explicitly download items
in specific services.

8.1. Automatic Download for Content Dissemination and
Routing

In this case, the algorithm could be used as part of an au-
tonomous decision system for improving content dissemi-
nation services or routing algorithms in opportunistic net-
work settings. Specifically, each node could use our algo-
rithm to automatically decide which items are interesting
for it or for other nodes in the network. Then, it can
take decisions on the data to download or on the route
that the messages must follow based on the calculated
recommendations to improve opportunistic routing algo-
rithms. Of course, these decisions could be improved by
using information about physical contacts between nodes,
as previously proposed by Lo Giusto et al. [22], and also
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Table 4: Relation between graph similarity (Y ) and (i) number of
items generated at each simulation step (X1), (ii) number of contacts
at each step (X2).

Scenario R2 for fitting rY X1
rY X2

Y = β1X1 + β2X2

Expo - 250 agents 0.011 -0.017 0.117
Expo - 500 agents 0.075 -0.187 0.049
Expo - 900 agents 0.012 -0.074 0.057
KDD 0.011 0.057 -0.089
Helsinki - 1 day 0.032 0.175 0.072
Helsinki - 2 days 0.036 0.183 0.070
Helsinki - 3 days 0.050 0.218 0.047

additional context information not necessarily related to
the folksonomies used in this work.
Note that the score calculated by recommender systems
gives only a relative weight to each item, but does not
provide an absolute importance to them, apart from ex-
cluding those items that receive a weight equal to 0. For
this reason, in order to evaluate new items encountered in
the network, it could be useful for the nodes to maintain
a history of the scores received by other items seen in the
past, or to compare the scores of new items with those of
already downloaded items. An application based on this
mechanism could evaluate the average importance of the
items seen in the past, considering a fixed time window,
and it can decide to download, for example, only the items
that exceed this average. Other possible variations of this
scheme may be considered, of course. For example, the
node could download only the items exceeding a percentile
of the distribution of the scores of the items seen in the
past window. Alternatively, an application based on our
algorithm may decide to download the items as soon as it
finds them from its neighbors, without requiring to “scan”
the network for a certain time before being able to decide
which items are interesting and which ones are not. This
could nonetheless require a buffer of items with limited
size, which is possibly updated each time a new neighbor
is encountered. The buffer is initially filled in with all the
encountered items, but when the maximum size is reached,
items are replaced by new items with higher recommenda-
tion scores.

8.2. Manual Download for File Sharing and Recommen-
dation Services

Other possible application scenarios may require the users
to directly interact with the algorithm to decide whether
they want to download the recommended items or not.
For example, the algorithm could be used by applications
that search for multimedia files (e.g., songs or videos)
from other peers, and use item recommendations to de-
cide which of these files may be interesting for the users.
The data download, in this case, could be performed by
the user directly. The history of downloaded items may
be used to update the interests of the users in the folkson-
omy graphs. More specifically, each time a user manually
downloads an item, we are sure that the item is interesting

for her, and we can thus add a link between the node rep-
resenting the user in the folksonomy graph and the node
representing the downloaded item, allowing more person-
alized recommendations in the future, based not only on
the list of created items, but also on the history of down-
loaded items.

9. Conclusion

In this work, we presented p-PLIERS, a novel distributed
algorithm implementing the PLIERS tag-based recom-
mender system, which selects highly personalized contents
of interest for mobile users in opportunistic networking sce-
narios. The algorithm is able to adapt to heterogeneous
interest profiles of different users, and effectively operates
also when limited knowledge about the system is main-
tained. It performs more accurate recommendations than
other solutions proposed in literature in terms of person-
alization with respect to the interests of various users.
We validated the applicability of our proposal in real per-
vasive environments, by simulating the use of PLIERS
for content dissemination in three realistic scenarios, a
big event (WFD@Expo2015), a large conference (ACM
KDD’15), and a working day in a city center (Helsinki). In
these scenarios, contents are dynamically generated follow-
ing the tweets created during the simulated time, and each
node knows only part of the whole dataset, namely, the
local information and the knowledge gathered from other
nodes encountered while moving. Furthermore, nodes have
limited memory from which old knowledge is purged. Also
in this case, p-PLIERS proves to be able to provide effec-
tive recommendations, comparable to those achievable if
global knowledge were accessible to nodes.
Future work consists in investigating other mechanisms to
limit the knowledge held and exchanged by nodes – while
preserving recommendations accuracy – such as the use of
learning policies allowing nodes to discern and just main-
tain the most significant information to compute appropri-
ate suggestions. In addition, we are currently working on
the implementation of a prototypical application for con-
tent dissemination in opportunistic networks, which will
allow us to evaluate the algorithm proposed in this paper
in a real scenario.
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