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Abstract

Currently, large amounts of Wi-Fi access logs are collected in diverse indoor environments, but cannot be
widely used for fine-grained spatio-temporal analysis due to coarse positioning. We present a Log-based
Differential (D-Log) scheme for post-hoc localization based on differentiated location estimates obtained
from large-scale Access Point (AP) logs of WiFi connectivity traces, which can be used for data analysis
and knowledge discovery of visitor behaviours. Specifically, the location estimates are calculated by utilizing
a combination of Received Signal Strength Indicator (RSSI) records from two neighbouring APs. D-Log
exploits real-world industry WiFi logs where RSSI data sampled at low rates from single AP sources are
recorded in each connectivity trace. The approach is independent of device and network infrastructure type.
D-Log is evaluated using WiFi logs collected from controlled environment as well as real-world uncontrolled
public indoor spaces, which includes discrete single-AP RSSI traces of around 100,000 mobile devices over a
one-year period. The experiment results indicate that, despite of the challenges with the infrequent sampling
rate and the limitations of the data that only records RSSI from single AP sources in each instance, D-
Log performs comparatively well to the state-of-the-art RSSI-based localization methods and presents a
viable alternative for many application areas where high-accuracy positioning infrastructure may not be
cost effective or where positioning applications are considered on legacy information infrastructure.

Keywords: RSSI, WiFi log, localization

1. Introduction1

The use of a RSSI from multiple WiFi APs to estimate the position of mobile devices in a wireless net-2

worked environment is a well established procedure. Three main approaches are commonly used when RSSI3

traces are available: trilateration, scene analysis (WiFi fingerprinting), and proximity-based localization.4

Most of these methods aim to generate an accurate estimate of a mobile device’s position in the networked5

environment. Furthermore, these approaches often demand either that the WiFi networks are configured for6

high sampling rates and continuous monitoring from multiple access points, or require users to install an app7

on their device for data collection. This leads to implementation barriers such as high setup, engineering,8

and calibration cost and the requirements for user participation. Hence, there is a need for approaches9

applicable to low sampling rates and single access point monitoring. Another source of data that has thus10

far been barely examined for enhancing localization: large volumes of WiFi AP logs of non-continuous WiFi11

connectivity traces that are normally stored in an external system, representing timestamped connections12

between a device and a single Access Point, along with the associated RSSI. With such data, a research13
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Figure 1: (a) Coverage areas of two adjacent APs and the cell boundary overlap. The overlapping area is 10 − 20% of a cell’s
area. (b) An experimental illustration of the dependence of the accuracy of the method on the number of available RSSI
observations during handover.

question emerges:14

15

How to perform accurate indoor localization using large-scale logs of discrete single-AP RSSI traces with16

low sampling rate?17

18

This problem opens a new direction for localization research. Specifically, we describe a robust WiFi log-19

based localization scheme which is:20

1. non-intrusive: it expects nothing from the client mobile device, e.g. there is no need to install an app,21

turning-on of sensors other than WiFi;22

2. generic: it is simple to deploy and applicable in anyWiFi installation, which has an overlap between the23

coverage areas of adjacent APs and is capable of recording RSSI values when handovers occur between24

them. Additionally, the knowledge of the relative transmitter output power of the APs should be25

known by the operator;26

3. light-weight: it uses algorithms that are simple to implement and maintain and do not overload existing27

computational infrastructures;28

4. effective: as long as a mobile device connects to the WiFi network, the localization technique can be29

applied; and30

5. accurate: the scheme delivers accuracy that is comparable to scene analysis, and exceeds the classical31

path loss model [1, 2], as demonstrated in the evaluation.32

The D-Log positioning method is an enhancement over existing methods that roughly localize a device33

anywhere in the service area of an AP, by providing an estimate of the distance between the mobile device34

and the connected AP. This allows to further restrict the space in which the device is found. D-Log focuses35

on static localization, not the continuous tracking of people’s movement.36

D-Log works by improving distance estimations from discrete single-AP RSSI traces of a mobile device.37

Specifically, D-Log applies the WiFi path loss model in combination with knowledge of the distance of38

neighbouring APs in a WiFi network and the probability distribution of each logged RSSI record to better39

estimate this distance. The key point is to utilize a combination of RSSI records from two neighbouring40

APs where handovers occur: a location that is known with some certainty [3, 4]. This information can be41

used to reduce errors introduced from the path loss model.42
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D-Log computes an enhanced distance estimate of a mobile device within the region served by a given AP43

for each individual logged RSSI record. D-Log treats these estimates as independent instances drawn from44

the same distribution. Applying probability theory, the average of these measurements allows estimation,45

with greater accuracy, of the distance between the AP and the mobile device. The theoretical analysis is46

provided to show D-Log’s performance in terms of localization accuracy (Section 3.5).47

Consider two neighbouring APs ax and ay and the mobile device at the distance dt, served by AP ax,48

as shown in Fig. 1a. D-Log calculates one estimate of dt by using each logged RSSI value when a handover49

occurred. As there are a large number of WiFi log records for numerous devices, D-Log obtains a large50

number of estimates of dt at handover, and uses them to determine the average estimate as the distance to51

the handover location dt. This allows us to establish the empirical signal strength decay progression around52

an AP, along which any non-handover locations can be interpolated for any observation of RSSI. Thus,53

we use the knowledge of the handover to calibrate the signal strength decay function based on a path loss54

model for each AP. Fig. 1b illustrates the dependence of the accuracy of the D-Log method on the number55

of RSSI observations during handover, based on the experiments discussed later. As the number of logged56

RSSI records increases, the average error of the position estimate decreases (Fig. 1b), converging towards a57

limit value little above 3.0m, achieved at around 300 observations.58

Once a sufficient amount of WiFi AP logs has been recorded, they can be used to train the D-Log59

algorithm. D-Log can then be used in (near) real-time, similar to other existing RSSI-based localization60

methods. The D-Log scheme is, however, primarily meant to be deployed to improve the location estimate61

in mobile device access records collected in a WiFi system in a post-processing step. Note that such logs are62

collected at infrequent sampling rates from a single RSSI source to which the device is connected to. Most63

existing RSSI-based methods are infeasible in such scenarios. Such enhancement of location estimation is64

important for the improvement of indoor context estimation supporting a range of applications exploiting65

indoor behaviour information mining and recommender systems [5, 6], in environments with free and publicly66

available WiFi networks. Potential application areas include retail and advertising (e.g. shopping malls,67

airports), leisure and tourism (e.g. attractions, entertainment areas), rich media consumption (e.g. smart68

displays), teaching and learning support (e.g. in universities), and operational logistics (e.g. in airports,69

transport hubs). Once accurate post-hoc localization of users within indoor spaces is possible, large-scale70

Web activity and connectivity logs from the WiFi systems will enable extensive indoor information behaviour71

mining and long-term prediction of user behaviours [7, 8].72

The remainder of the paper is organized as follows. Section 2 presents the related work. The D-Log73

scheme is detailed in Section 3, where a theoretical analysis is provided to show the performance benefit74

of D-Log. Section 4 presents the data that we experiment with. Section 5 includes the evaluation of the75

proposed method, and Section 6 concludes the paper and discusses possible future research.76

2. Related Work77

2.1. Indoor localization techniques78

Existing research on indoor localization can be categorized into device-based [9, 10, 11, 12, 13], device-free79

(passive) localization [14, 15], and infrastructure-based localization[16, 17, 18].80

Device-based localization has gained popularity in recent years. This is due to the ability to integrate data81

from multiple smartphone sensors (e.g. [19]) and thus allow for the combination of dead reckoning [12, 20, 21]82

and particle filter estimation methods [22]. Although such a rich combination of signals improves indoor83

localization, this is outside the scope of this paper, which is focused on post-hoc localisation based on84

(sparse) WiFi AP logs of all the registered WiFi users. For device-based localization, it requires on-device85

processing, typically via a mobile app, as well as continuous sampling of data. Given the requirement of86

user participation and uptake with a mobile app, it limits the coverage of indoor monitoring. Full coverage87

is often considered as a major requirement for indoor monitoring by facility owners and operators.88

The most recent, albeit less common technique is device-free (passive) localization [14, 15]. Mobile89

device-free localization does not require a device attached or carried by indoor visitors. But such methods90

require high and continuous sampling rates and substantial post-processing efforts. They operate well91
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only in controlled environments, and multi-user tracking capability is often limited to small numbers of92

simultaneously tracked objects. The most recent device-free (passive) localization method is capable of93

tracking three users simultaneously [23]. Given the challenges with multi-user tracking and the need for94

highly densed monitoring points and RSSI sampling, this is not applicable for tracking users in large-scale95

public indoor spaces.96

Many infrastructure based techniques utilise trilateration, which requires RSSI from multiple nearby APs.97

However, these techniques are expensive to implement, since the WiFi networks have to be deployed with a98

data logging configuration allowing multiple access points to be monitored across each device connection for99

passive localization. This is typically not the case with most indoor environments currently operating WiFi100

networks. As such, the logs acquired cannot be mined for accurate indoor spatial behaviour estimation.101

Some research employs fusion of techniques. In [21], in-device recorded RSSI from a single access point102

is used, however, the technique relies on dead reckoning to provide a perceived triangulation on the device.103

Khan et. al. improved the coverage of localization through active participation of users [24]. Other local-104

ization techniques employ the use of ZigBee networks (e.g. [25, 26]), RFID tags [27], or propagation model105

and autonomous crowdsourcing [28].106

2.2. RSSI use in indoor localization107

With regard to the use of RSSI from WiFi access points in localizing devices of a WiFi network, tradi-108

tionally, there are three main methods that are widely employed: trilateration, scene analysis, and proximity109

analysis [29, 30].110

First is trilateration, which estimates the position of a device by calculating its distance from multiple111

reference points [30]. When RSSI traces from multiple access points are available, the use of this path112

loss based method is a more accurate approach to localize a device, rather than using Time-of-Arrival113

or Time-Difference-of-Arrival calculation [30] to approximate a device location, as the latter two methods114

require a clear Line-Of-Sight (LOS) between the transmitter and the receiver [30]. An example of the use115

of trilateration is in [17], where WiFi RSSI traces from multiple reference (access) points were recorded in116

order to monitor around 18,000 devices in a hospital. They used WiFi signals measured on mobile devices to117

first localize users in the building, extracted the spatial and temporal features from the traces, analyzed the118

flow of people from entrance to exit, and classified their behaviours based on the user roles [17]. However,119

in our study, RSSI from multiple reference points are not available, hence, trilateration is not applicable.120

The second established RSSI-based localization approach is Radio Frequency (RF) based scene analysis,121

a method to use prior-collected features, or fingerprints, of a scene to determine the location [29]. The122

most widely used scene analysis method is RSSI-based fingerprinting [30]. Swangmuang and Krishnamurthy123

presented an analytical model to predict the performance of fingerprinting-based indoor localization systems124

by applying proximity graphs [31]. A WiFi RSSI fingerprint for each location is used to match the monitored125

(indoor) environment for accurate localization of the device [32]. In some cases, fingerprinting at the actual126

site is not feasible, e.g., in a very large shopping mall or airport. Since fingerprinting requires a large amount127

of time and resources and costly system calibration in the beginning [32], the real-world use of this approach128

was difficult. For example, in a highly dynamic environment, where layouts and objects often change,129

RF fingerprints could easily change due to alterations of the indoor environment, hence requires frequent130

fingerprinting [12]. [33] used knowledge about the geometry of the environment and made assumptions131

about continuous indoor movement tracking to address this problem, while [34] collected user feedback to132

improve the fingerprinting process. Want et. al. proposed a combination of subarea fingerprinting and133

gradient descent search to improve localization by probabilistic fitting [35], but this fingerprinting approach134

requires high frequency sampling.135

The third approach is proximity-based localization, which uses RSSI captured on users’ devices to com-136

pute approximate sets of devices that are located in proximity to each other to localize the position of a137

device relative to another device [29]. This method does not apply in our study since we do not use apps or138

device-based approach to localize a user.139

In this paper, we propose the D-Log scheme as a new reference scheme for post-hoc localization, which140

aims to be easy to implement and maintain, is independent of devices and network infrastructure, and is ef-141

fective and reasonably accurate. In Table 1, we compare D-Log with existing schemes, including trilateration,142
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Table 1: Comparison of indoor localization schemes.

Schemes Signal Cost Client
Sensors
/Apps

AP
Place-
ments

RSSI Source
(No. of
APs)

Sampling Rate Comments

Trilateration RSSI Med No Normal At least 3 Low (continuous) Infrastructure-based
Scene analysis RSSI&

Sensors
High Yes Normal Multiple High (continuous) Device-based

Proximity analysis RSSI High Yes Dense Multiple High (continuous) Device-based
Device free RSSI High Yes Dense Multiple High (continuous) Device-free/passive

D-Log RSSI Low No Normal Single Low (discrete) Log-based

scene analysis, proximity analysis and device free approaches in terms of their deployment characteristics.143

The D-Log scheme is low cost, because it only requires infrequent RSSI sampling from single RSSI source,144

rather than continuous RSSI sampling from multiple RSSI sources like others (e.g. scene analysis).145

3. Log-Based Differential Scheme146

In this section, we formulate the targeted research question and present two D-Log algorithms to estimate147

the distance of the mobile device to the AP. Furthermore, the complexities of the D-Log algorithms are148

analysed, and a theoretical analysis is provided to show the performance benefit of the entire proposed149

D-Log scheme.150

3.1. Problem Formulation151

In this paper, the research question is the estimation of a mobile device location within the coverage152

area of several WiFi APs based on logs of discrete RSSI traces from single APs. We assume that the WiFi153

log includes discrete RSSI measurements relating to a single AP connection at any one time, in contrast154

to the trilateration and scene analysis methods requiring multiple parallel RSSI observations. Single RSSI155

records are recorded in most real-world Wi-Fi system data logs, where non-serving APs and their RSSI are156

not recorded. Although these single-AP RSSI traces are normally discrete and sampled at low frequency,157

the quantity of records obtained from different devices for each WiFi AP is large. For example, the real-158

world WiFi log we examined (as detailed in Section 4), was collected with a 5min sampling rate for each159

registered mobile device; logging only the RSSI values for currently connected APs. This resulted in 480,924160

connections distributed amongst 35 APs, with in average around 13, 000 records per AP. This large volume161

of available records for each AP creates an opportunity to accurately estimate the distance of a mobile device162

from an AP given its RSSI value.163

There are several techniques to calculate dt given an RSSI value rt for a mobile device when associating164

with an AP. The path loss model [1, 2] enables to determine the device distance based on the full set of165

inputs:166

d̂t = 10(
TXpwr−rt−Ltx−Lrx+Gtx+Grx−PL−s

10e
) (1)

where d̂t denotes the estimated distance between the transmitter and the receiver (the client mobile device)167

in meters; TXpwr is the transmitter output power in dB; rt is the detected RSSI in dB; Ltx is the sum of168

all transmitter-side cable and connector losses in dB; Lrx is the sum of all receiver-side cable and connector169

losses in dB; Gtx is the transmitter-side antenna gain in dBi; Grx is the receiver-side antenna gain in dBi;170

PL is the reference path loss in dB for the desired frequency when the receiver-to-transmitter distance is one171

meter; s is the standard deviation associated with the degree of shadow fading present in the environment;172

e denotes the path loss exponent for the environment. Note, although Eq. 1 takes a range of factors into173

consideration, the estimation of d̂t is not accurate, as the RSSI values rt at location px vary and can be174

affected by a large number of external factors, e.g. the people movement through the space, the layout of175

the walls and the materials used in the environment.176

5



a x a y

d t

dm

dofst

h

(a) Theoretically circular shaped coverage

a x a y

d t

dm

dofst

h

(b) Practically irregular-shaped coverage

Figure 2: Illustration of dm, h and dofst in D-Log algorithm with both theoretically circular shaped and practically irregular
shaped coverage of several Wi-Fi APs. Here, the irregular shaped Wi-Fi AP coverage is obtained by following the study of
wireless performance and coverage from Cisco Meraki [36].

Let us consider a general case: given two sets of sample RSSI values Rx and Ry, collected when the177

handover between two adjacent access points ax and ay happens, we denote rix ∈ Rx a sample RSSI178

value observed when a mobile device is disassociating with ax and then immediately associating with ax’s179

topological adjacent AP ay; similarly, each riy ∈ Ry denotes a sample RSSI value observed when a device is180

disassociating with ay and then immediately associating with ax. As there is only one observed RSSI value181

to the connected AP for the mobile device at any time, then other methods that rely on concurrent RSSI182

measurements from multiple APs are not applicable (e.g. trilateration and scene analysis). To address this183

problem, we propose the D-Log scheme to estimate dt from the RSSI records rix ∈ Rx, not from rt directly.184

Specifically, D-Log computes three other distances to interpolate dt: 1) the distance dm of mid-point of the185

overlapping coverage areas between ax and ay; 2) the size, h of the handover area between ax and ay; 3) the186

offset dofst between the mobile device and the handover boundary of ax. As the two RSSI observations at187

handover have a number of inputs identical (assuming the transmitting power of the APs is either known188

or their proportions are known), this differential scheme allows to reduce the number of degrees of freedom189

influencing the distance determination. This indirect estimation enables D-Log to obtain a large number of190

distinct estimates for dm, h and dofst, respectively, because there are a large number of rix ∈ Rx in the log.191

As rix ∈ Rx was collected independently in the log, the estimates from them are thus independent to each192

other. Then, from the aspect of probability theory, these observations can be used to estimate dm, h and193

dofst, respectively. Take dm as an example,194

µ̂(dm) = E(dm|rx) = E(d̂im) =
1

n

n
∑

i=1

dim, (2)

where dim is the estimated distance of dm based on a logged RSSI value rix, and n is the number of log195

records. Moreover, this estimator has large practical application, as large datasets of RSSI logs are common196

and useful for a number of applications. Thus, the final interpolated dt is accurate, and this will be detailed197

in the following sections.198

3.2. D-Log Algorithm199

Here, we propose the basic D-Log algorithm to estimate the location of a mobile device within the200

coverage area of an AP. The D-Log algorithm performs the localization using the following four steps:201

• Step 1: Estimation of the distance dm for the mid-point pm of the overlapping coverage areas of two202

adjacent APs, ax and ay. Given a set of the RSSI values rix ∈ Rx and riy ∈ Ry, obtained when the203
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handover happens between ax and ay, we define that204

d̂m = E(d̂im) =
1

n

n
∑

i=1

d̂im =
1

n

n
∑

i=1

d̂ix − d̂iy +D

2
, (3)

where n denotes the number of sample RSSI values in Rx and Ry , D is the known distance between205

ax and ay, and d̂ix and d̂iy are the estimate distance from rix and riy by using Eq. 1, representing the206

distance from where the handover occurs to ax and ay, respectively.207

• Step 2: Estimation of the size of the handover area of two adjacent APs:208

ĥ = E(ĥi) =
1

n

n
∑

i=1

ĥi =
1

n

n
∑

i=1

(d̂ix + d̂iy −D). (4)

• Step 3: Estimation of the offset between the mobile device at pt and the handover boundary of the209

access point ax.210

d̂ofst = E(d̂iofst) =
1

n

n
∑

i=1

d̂iofst =
1

n

n
∑

i=1

(d̂ix −
˙̂
dt), (5)

where
˙̂
dt denotes the estimate distance from pt to AP ax by Eq. 1.211

• Step 4: Calculation of the distance of the mobile device at pt within the signal coverage area of ax.212

d̂t = d̂m +
ĥ

2
− d̂ofst. (6)

Note, Eq. 6 differentiates the estimate of d̂t from each rix and riy via Eq. 3, 4, and 5 from Step 1, 2 and213

3. Thus, the D-Log algorithm can provide accurate localization of a mobile device within the coverage area214

of ax. Once the distance to the mid point and the interpolation of RSSI values of ax are determined, they215

can be applied to locate the mobile device at any distance from the serving AP as long as they are within216

the range. In addition, Fig. 2 shows an illustration of dm, h and dofst in D-Log algorithm. Specifically,217

Fig. 2a shows these parameters when the Wi-Fi AP coverage shape is considered as circles theoretically,218

while Fig. 2b shows them when the coverage shape is irregular in practice.219

3.3. Weighted D-Log Algorithm220

The WiFi logs can be used to determine the distribution of the RSSI values when the handover happen221

between two adjacent APs ax and ay. Fig. 3 shows the distribution of these RSSI values collected in a real-222

world WiFi infrastructure in a large shopping mall in Australia (detailed in Section 4), and it is observed223

that they do not follow a uniform distribution. Highly frequent observations of the RSSI (here, around 2000224

RSSI observations with r = −70dB) bear higher impact on the final D-Log estimate than the less frequent225

ones (e.g. the 400 observations with r = −90dB). Commercial WiFi networks optimized for coverage often226

set −70dB as a threshold value for received signal strength [37]. Following this, we propose a weighted227

D-Log algorithm by taking the RSSI sample frequency into consideration. Thus, we define the weighted228

version of the simple expectation location estimator (in Eq. 2) as:229

µ̂(dm) = E(dm|rx) = E(d̂im) =
1

∑u

i c
i
x

u
∑

i=1

cixd
i
m, (7)

where cix is the frequency of rix, u denotes the number of unique rix, and
∑u

i c
i
x = n.230
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Figure 3: Distribution of RSSI values when handover happen between two adjacent APs in a real-world WiFi log, discussed in
Section 4

Therefore, the corresponding weighted versions of d̂m, ĥ, d̂ofst and d̂t are defined as:231

d̂′m = E(d̂im) =

u
∑

i=1

wi
x(d̂

i
x − d̂iy +D)

2
, (8)

ĥ′ = E(ĥi) =
u
∑

i=1

wi
x(d̂

i
x + d̂iy −D), (9)

d̂′ofst = E(d̂iofst) =

u
∑

i=1

wi
x(d̂

i
x −

˙̂
dt), (10)

d̂′t = d̂′m +
ĥ′

2
− d̂′ofst, (11)

where wi
x =

cix
∑

cix
, and cix denotes the frequency of sample rix.232

3.4. Complexity Analysis233

One advantage of the proposed D-Log scheme is its low computational complexity. The complexity of234

the D-Log algorithm is O(n), where n denotes the average number of log records per AP; the complexity235

of the weighted D-Log algorithm is O(u), where u denotes the number of unique RSSI values per AP. This236

indicates that D-Log scheme is efficient and only depends on the local log records for neighbouring APs,237

which enables the processing of large volume of records in parallel. In contrast, the complexity of the other238

RSSI based localization methods are often much larger than D-Log. For example, the complexity of machine239

learning based scene analysis (fingerprinting) models, is the same as that of the deployed machine learning240

methods, e.g, the complexity of SVM-based localization method is O(max(na, a) ·min(na, a)2) [38], where241

n is the number of training records, and a is the number of APs.242

3.5. Performance Analysis243

In this section, we provide a theoretical analysis of the performance of the unweighted D-Log algorithm.244

The distance from where each rix is observed to ax can be estimated with Eq. 1, although there is an245

error ε caused by systematic and stochastic factors. For access point ax, we define the estimation from rix246

as247

d̂ix = dix + εix, (12)
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Figure 4: The distribution and (ECDF) CDF of ε and the reference Gaussian distribution

where d̂ix is the distance estimation from rix with Eq. 1, dix is the real distance, and εix is the error for this248

estimation. Then, for access point ay, we obtain249

d̂iy = diy + εiy. (13)

We further assume that the estimation error ε from each sample RSSI value is independent and identically250

distributed (i.i.d), and we adopt the Gaussian distribution for theoretical analysis. This is motivated from251

the experimental results. Specifically, Fig. 4a shows the distribution of ε in our controlled experiment,252

which is detailed in Section 4. The dashed blue line depicts the observation empirical distribution of ε in the253

experiment, and the solid black line depicts the reference Gaussian distribution with the mean and standard254

deviation of ε. Fig. 4b shows the Empirical distribution function (ECDF) of ε (the dashed blue line) and255

the Cumulative Distribution Function(CDF) of the reference Gaussian distribution. It is observed that the256

reference Gaussian distribution fits the observation distribution of ε (with D = 0.0558, p-value = 0.5609 in257

Kolmogorov-Smirnov test), and it is thus a suitable model for the following theoretical analysis.258

Consequently, the Probability Density Function (PDF) of ε is:259

p(ε) ∼ N(µε, σ
2
ε ). (14)

As stated in Eq. 2, we measure d̂ by applying the sample mean as the location estimator, and the distance260

on each observed RSSI can be considered as an observation. In the first step of D-Log algorithm, for the261

calculation of d̂m, according to Eq. 3 and Eq. 14, we obtain262

d̂m = E(dim) =
1

n

n
∑

i=1

d̂ix − d̂iy +D

2
=

1

2
(dx − dy +D) +

1

2n

n
∑

i=1

(εix − εiy), (15)

where dx and dy are the real distances of the handover boundary for ax and ay, respectively. Similarly,263

ĥ = E(ĥi) = (dx + dy −D) +
1

n

n
∑

i=1

(εix + εiy). (16)

For the estimation of the offset between the mobile device at pt and the handover boundary of the access264

point ax, according to Eq. 5 and Eq. 14, we obtain265

d̂ofst = E(d̂iofst) =
1

n

n
∑

i=1

(d̂ix −
˙̂
dt) = (dx − dt) +

1

n

n
∑

i=1

(εix − εt), (17)
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Figure 5: The impact of n on ε
d̂t

and σ
d̂t

where dt is the real distance between the test point pt to ax, and εt is the error when calculating
˙̂
dt.266

Consequently, in the last step of D-Log, according to Eq. 6, Eq. 15, Eq. 16, Eq. 17 and Eq. 14, we obtain:267

d̂t = d̂m +
ĥ

2
− d̂ofst = dt +

1

2n

n
∑

i=1

(εix − εiy) +
1

n

n
∑

i=1

(εix + εiy)−
1

n

n
∑

i=1

(εix − εt). (18)

Thus, according to Eq. 18 and Eq. 14, we obtain the 100(1 − α)% confidence interval CI(d̂t) for the268

estimation of d̂t, which has been widely used to indicate the reliability of an estimation [39],269

CI(d̂t) = dt ± zα
2

√

5σ2
ε

n
, (19)

where zα
2
is a standard normal variate which exceeded with a probability of α

2 . Therefore, the standard270

error of d̂t is:271

σ
d̂t

=

√

5σ2
ε

n
, (20)

where n denotes the sample size.272

Theorem 1. The standard error σ
d̂t

of D-Log scheme is bounded to be no more than
√

5σ2
ε , with equality273

if and only if n = 1.274

PROOF 1. As the sample size n ≥ 1, based on Eq. 20, we obtain:275

σ
d̂t

≤
√

5σ2
ε , (21)

where the equality is satisfied when n = 1.276

Fig. 5 shows the distribution of D-Log’s localization error, ε
d̂t
, and the trend of σ

d̂t
, with various n values277

in our real-world indoor experiment environment, which is detailed in Section 4. Specifically, where n = 1,278

σ
d̂t

meets the worst case with the value of 11.9, as there is only 1 row of RSSI logs available. However, when279

more logs are available as shown in Fig. 5b, σ
d̂t

starts to decrease as n increases. It indicates that 1) as n280

increases, σ
d̂t

decreases; 2) D-Log has a floor level, which is influenced by the localization environment.281
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Table 2: Aggregate statistics of the WiFi log collected in a real-world large indoor retail environment

Number of user devices: 94,396

Number of AP association: 480,924
Number of Visits: 183,745
Number of WiFi APs: 35

Average of AP association per AP : 13,741

4. Data282

In this section, we present the data used for the evaluation of the performance of the proposed D-Log283

scheme. We evaluate the performance of the D-Log scheme in two environments: a controlled environment284

and a real-world large indoor environment. The complexity of the two environments is different, and so is the285

evaluation setup. While in the simulated environment, the mobile devices used in the training and testing286

set of the controlled environment are identical and therefore the variability of the used WiFi is controlled,287

this is not the case in the real-world large indoor environment.288

4.1. Experiment Data289

Here, we describe the experiment data from the two experimental environments: the controlled environ-290

ment and the real-world large indoor environment.291

For the controlled environment, we set up an experimental WLAN with 4 access points in a university292

meeting room (dimension: 7m by 5m). We have partitioned the room into 35 (1m× 1m) square grids, and293

used 16 of them as the test locations. These test locations were located along walls and in locations not294

occupied by furniture. Then, we recorded the RSSI values during handover of the carried mobile device295

(a smartphone) from one test AP to another. These recordings supply the training RSSI logs for D-Log296

scheme. For testing purposes, we collected around 6000 sample RSSI records (about 360 per location)297

from all detected APs, which will be used to evaluate the performance of D-Log scheme and the compared298

state-of-the-art localization methods.299

Additionally, we have conducted real-world experiments in a large inner-city shopping mall in Sydney,300

Australia, covered by 67 WiFi APs across 90, 000 square meters. We used three levels of the mall to conduct301

our experiments, in an area of around 35, 000 square meters covered by 35 WiFi APs. The WiFi log were302

collected from September 2012 to October 2013, and were stored in an external system. It contains around303

half a million AP access records from around 100, 000 mobile devices. Specifically, the log includes the304

WiFi access point associated with the user’s mobile device sampled at every 5 minutes, and the respective305

RSSI value for each association. These data are used as training data for the D-Log scheme with some306

preprocessing that is detailed in Section 4.2. Table 2 shows the statistics of the log. Note, all user identifiable307

information (registration details and WiFi MAC addresses) were replaced by a hash key in a non-reversible308

way. To examine the localization performance in this real industry environment, we selected 43 test locations309

across the three floors of the mall, and collected around 4000 sample RSSI records (around 100 per location)310

from all detected APs. Fig. 6 shows the floor maps and the test locations. Specifically, we collected 10 test311

locations on the 1st floor, 15 on the 2nd floor, and 18 on the 3rd floor. Moreover, note this real-world RSSI312

log contains much complexities, which may influence all RSSI based localization methods, e.g. the variance313

mobile devices/antenna/Wi-Fi chipsets. There are 694 different mobile models from 53 manufacturers in314

our collected WiFi logs, and Table 3 and 4 show the most common manufacturers and models of the used315

devices in the log, respectively.316

4.2. Pre-processing the WiFi AP Log317

The real-world industry WiFi log we used was sampled at 5 minutes frequency for each user visit, and318

for each device, only the RSSI values for current connected AP were logged. Table 5 shows a sample of the319

log for a specific user.320
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Table 3: Most common manufacturers of used mobile devices

Manufacturer # Manufacturer # Manufacturer #
Apple 66921 Unidentified 187 Xiaomi 22
Samsung 10587 Huawei 114 Toshiba 16
Generic (Android) 9018 Amazon 106 ZTE 13
HTC 1861 Sony 90 Fujitsu 12
RIM 1284 Microsoft 82 Opera 11
SonyEricsson 697 Asus 53 KDDI 11
Nokia 585 Pantech 41 NEC 9
Google 401 Sharp 35 Alcatel 8
LG 347 DoCoMo 32 HP 7
Motorola 240 Acer 26 Lenovo 7

Table 4: Most common models of used mobile devices

Model # Model # Model #
iPhone (Apple) 54873 Galaxy Nexus (Samsung) 420 BlackBerry 9780 (RIM ) 177
iPad (Apple) 7523 GT-I9305 (Samsung) 414 Desire HD (HTC ) 173
iPod Touch (Apple) 4525 GT-I9000 (Samsung) 407 Desire (HTC ) 159
Android 4.1 (Generic) 4173 GT-N7000 (Samsung) 358 PJ83100 (HTC ) 145
GT-I9300 (Samsung) 2791 Fennec (Generic) 291 LT26i (SonyEricsson) 142
GT-I9100 (Samsung) 2602 BlackBerry Bold Touch 9900 (RIM ) 261 BlackBerry 9800 (RIM ) 139
Android (Generic) 1989 Nexus 4 (Google) 231 Nexus S (Google) 130
Android 4.0 (Generic) 1801 GT-S5830 (Samsung) 220 BlackBerry 9700 (RIM ) 127
GT-N7100 (Samsung) 849 GT-I9305T (Samsung) 214 A510 (HTC ) 126
Android 2.3 (Generic) 452 Unidentified (Generic) 199 S710E (HTC ) 124

This infrequent sampling rate from single RSSI source makes it infeasible to apply existing localization321

methods, including trilateration, scene analysis, proximity analysis and device free method. This is because322

all of these existing methods require RSSI traces from multiple sources with frequent continuous sampling.323

So, doing localization based on this sort of data is not trivial. We conducted some data pre-precessing as324

follows: 1) We carry two mobile devices (one IOS iPhone 4 and one Android Sumsung S4) to the mall to325

record the RSSI values when a handover happens between neighbouring APs, and treat these RSSI values326

as the handover boundaries of corresponding APs; then 2) for each AP, we extract all the RSSI values327

that are less than those identified handover boundaries from the real-world WiFi log, so as to estimate the328

distribution of the RSSI values when handovers happen. Finally, these extracted subset of RSSI values are329

used as training samples for the D-Log scheme.330

Table 5: Examples of the WiFi log for user E154GCHIJDESPLMX5KFJC

Hashed MAC address WiFi AP RSSI association time disassociation time Duration (sec)
E154GCHIJDESPLMX5KFJC AP 1 -76 2013-02-04 14:16:24 2013-02-04 14:21:24 300
E154GCHIJDESPLMX5KFJC AP 3 -72 2013-02-04 14:21:24 2013-02-04 14:26:24 300
E154GCHIJDESPLMX5KFJC AP 7 -75 2013-02-04 14:26:24 2013-02-04 14:31:24 300

· · · · · · · · · · · · · · · · · ·
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Figure 6: The floor maps in the mall where the experiments are conducted. The red dots represent the Wi-Fi APs, and the
blue stars denote the test locations where ground-truth RSSI information were collected.

5. Experiment Results331

In this section, we present the experimental configuration and the performance of the proposed D-332

Log scheme in terms of localisation accuracy achieved by D-Log. Note, this localization relates to the333

determination of the distance of the mobile device from the AP and therefore the reported error indicate334

the width of the band in which the mobile device is located.335

5.1. Experiment Baselines336

To examine the performance of D-Log scheme thoroughly, we compare the proposed D-Log scheme with337

two state-of-the-art RSSI-based localization methods: scene analysis methods, and Path Loss model [1, 2].338

There are two reasons we choose these two baselines: 1) By comparing with scene analysis, we demonstrate339

how closely the D-Log scheme performs comparing to the state-of-the-art, because scene analysis is one of340

the most accurate and most popular RSSI-based localization methods; 2) the path loss model is selected341

to perform a fair comparison because it also makes an estimate of the radius of the receiver like the D-342

Log scheme. For the scene analysis methods, we choose two algorithms: SVM-based method [40] and the343

Bayesian Network-based method [30], given that these two are among the state-of-the-art learning techniques344

applied for fingerprint-based indoor localization.345

5.2. Experimental Configuration346

5.2.1. Evaluation Metrics347

The experiments were conducted on a PC running the Windows 7 Operating System with 8 GB RAM348

and Intel Core i7 CPU, and we conducted a 10-fold cross validation and report the results. Note that We349

deployed the well-known LibSVM1 package to perform the SVM-based method, and Weka (Data mining350

Software in Java2) to perform the Bayesian Network-based method; For the proposed D-Log scheme and351

the state-of-the-art Path Loss model, we implemented them in Java.352

1https://www.csie.ntu.edu.tw/∼cjlin/libsvm
2http://www.cs.waikato.ac.nz/ml/weka/
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Following literature [31], we apply the mean precision P (T ) and the mean absolute error (ε, localization353

accuracy) as the measurement metric:354

P (T ) =
|Tc|

|T |
, (22)

ε =

∑

|dt − d̂t|

|T |
, (23)

where T is the test set, |Tc| denotes the number of test locations that are correctly assigned to its true355

location, |T | denotes the size of T , including both correctly assigned and incorrectly assigned test locations,356

dt is the true distance, and the d̂t is the estimated distance. For D-Log and Path Loss model, while357

calculating |Tc|, if dt − σε < d̂t < dt + σε, d̂t is considered as the true location, otherwise false location. For358

SVM-based method [40] and the Bayesian Network-based method [30], they output the labels of each test359

location. While calculating ε, if the output label is the real label of the test location, ε for this test location360

is 0, otherwise the difference between the true distance dt and the distance from the AP to the output label361

location, which is d̂t.362

5.2.2. Parameter Estimation363

Like other localization methods, there are parameters in the proposed D-Log scheme, which are the364

parameters in the path loss model as shown in Eq. 1. Some of these parameters are known (e.g. the365

transmitter output power), or can be measured by site surveying process (e.g. path loss exponent e),366

but some others are hard to measure or measure accurately in practice. For example, in the investigated367

mall, a large variety of different brands and models of receivers (mobile phones) are involved, which makes it368

infeasible to measure the receiver-side related parameters; the presence of obstructions and people movement369

is changing frequently, which makes it hard to accurately measure other parameters, e.g. the path loss370

exponent e and the standard deviation of shadow fading s [2].371

Thus, similar to other localization methods again, some data mining techniques can be applied to es-372

timate these parameters. For example, Durgin et. al. applied linear regression to estimate the path loss373

exponent e and the reference path loss PL at 1m transmitter-receiver separation by using pairwise RSSI374

measurements and log distances [1]. Recently, cross validation has been widely used to estimate parameters375

of indoor localization models, e.g. kernel-based indoor localization algorithms [41], machine learning based376

algorithms [42], and powerline positioning algorithms [43]. Following this, we deploy cross validation to377

estimate the parameters of D-Log scheme by using pairwise RSSI measurements and log distances.378

Specifically, because we used the collected experimental data to both estimate the parameters of the379

models and evaluate them, we deployed a nested cross validation to ensure the final model evaluation is380

unbiased [44]. Note that, there are two disjoint datasets in D-Log scheme, the RSSI logs, and the pairwise381

RSSI records and distances collected at test locations. We call the RSSI logs the training set, and divide382

the pairwise RSSI records and distances collected at test locations into another two disjoint subsets: the383

validation set and the test set. Therefore, the training set, the validation set and the test set are independent384

to each other. Consequently, the learnt parameters will not overfit the data, and the final localization results385

are unbiased [44, 45].386

Although theoretically the nested cross validation strategy can search and estimate the parameters in387

anyway, it is practically helpful to obtain the ranges of these parameters as accurate as possible. To estimate388

the ranges of these parameters accurately and to not disturb the investigated mall’s daily business (running389

7 days), we set up a shopping mall like simulation environment in the RMIT Indoor Positioning Lab.390

Specifically, we set up a Wi-Fi network in the simulation environment with the same configurations of that391

in the investigation mall, e.g. the wireless networking standard 802.11n(2.4GHz) and the model of access392

points; and we used three different phones (one IOS iPhone 4, one Android Sumsung S4 and one HTC ONE)393

with a Java program installed to measure the receiver-side related parameters. Then, an expert, one author394

of this paper, measured the ranges of all parameters, which are used to determine the possible candidate395

values for each parameter. The detailed procedure of the deployed nested cross validation strategy is shown396
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Table 6: Comparison of localization precision in controlled environment. Note, weighted D-Log, D-Log and path loss model
used logs of single-AP traces; SVM-based method and Bayesian Network-Based Method used the RSSI records from multiple
APs.

Weighted D-Log D-Log SVM-Based Bayesian Network-Based Path Loss
P (T ) 61.3% 60.1% 69.1% 66.9% 32.9%
ε (m) 0.93 1.01 0.91 1.03 1.82

in Algorithm 1.397

1 randomly divide the pairwise RSSI records and distances collected at test locations into k equal sized
subsets;

2 for each subset do // outer loop

3 use this subset as test set, and the rest k − 1 subsets as validation set;
4 for each candidate value of the parameters in the measured ranges do // inner loop

5 use this candidate parameter to build D-Log model on the training RSSI Logs;
6 validate the model on the validation set and calculate localization error for each pair of RSSI

records and distances;
7 average the localization error of all pairs to get εvalidation on the validation set;

8 end

9 select parameters that minimize εvalidation;
10 build model with the learnt parameters, and calculate P (T ) and ε on the test set;

11 end

12 average P (T ) and ε on all test set as the final result;

Algorithm 1: Nested cross validation

398

Note that, the training set, the validation set and the test are disjoint to each other. The deployed nested399

cross validation includes two loops: inner loop and outer loop. The inner loop is designed to estimate the400

parameters, which is a loop of a variant leave-one-out cross validation in D-Log scheme due to the following401

two factors: 1) the training set is always the same and is always disjoint with the validation set and the402

test set; 2) εvalidation is obtained by repeating and averaging the calculation of localization error on each403

pair of RSSI records and distances in the validation set with current parameters. The outer loop is used to404

evaluate the performance of the model, which is a standard k-fold cross validation, and we set k = 10 in405

this study.406

5.3. Controlled Environment407

Here, we present the experiment results in the controlled environment, including the localization accuracy408

and the impact of sample size.409

5.3.1. Localization Accuracy410

Table 6 shows the results of localization precision P (T ) and ε in the controlled environment. It is411

obtained that, for P (T ), the chi-squared test shows that there is no statistical significant difference (with412

chi-squared = 0.6735, p-value = 0.7141) between D-Log, SVM-based method, and Bayesian Network-based413

method. This indicates that the D-Log scheme performs well in comparison to the high-cost high-complexity414

scene analysis methods, SVM-based method and Bayesian Network-based method. Furthermore, the D-Log415

scheme performs significantly better than the path loss model. More importantly, D-Log scheme achieves416

similar performance to SVM-based method, Bayesian Network-based method in terms of ε. The weighted417

D-Log algorithm achieves a localization error of 0.93 meters, which is only slightly higher than that of418

the SVM-based method (0.91 meters); at the same time, it outperforms both Bayesian Network-based419

method (1.03 meters) and the Path Loss model (1.82 meters). Overall, D-Log scheme achieves comparable420

localization accuracy to the high-cost high-complexity localization methods.421
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Figure 7: The impact of sample size in the controlled environment

Table 7: Single-floor localization performance in the real-world mall environment. Note, weighted D-Log, D-Log and path loss
model used logs of single-AP traces; SVM-based method and Bayesian Network-Based Method used the RSSI records from
multiple APs.

Floor Metric Weighted D-Log D-Log SVM-Based Bayesian Network-based Path Loss
1st P (T ) 92.3% 92.3% 96.1% 91.0% 10.3%

ε (m) 1.53 1.53 0.44 1.46 7.74

2nd P (T ) 81.6% 81.6% 89.5% 81.6% 21.1%
ε (m) 2.93 2.93 1.54 4.09 8.98

3rd P (T ) 74.3% 74.3% 84.4% 77.9% 44.9%
ε (m) 4.07 4.07 3.38 6.24 8.14

5.3.2. Impact of Sample Size422

D-Log scheme uses the RSSI values measured during handover between two neighbouring APs, so it is423

important to examine the impact of the size of these sample RSSI values. Fig. 7 shows the performance of424

the D-Log scheme over the number of RSSI values per AP in terms of both localization precision P (T ) and425

error ε. It is observed that, as the size of training RSSI values increases, P (T ) consistently increases and ε426

consistently decreases. This is as what we have analysed in Eq. 20 in Section 3.5, because the confidence427

interval of D-Log’s estimation is proportional to the size of the sample observations. When only several428

sample observations are available, the performance is inferior, but improves and stabilizes when the sample429

size is greater than 10 observations in the controlled environment.430

5.4. Large Real-World Environment431

Here, we evaluate the proposed D-Log scheme in a real-world large indoor retail environment, an inner-432

city shopping mall in Sydney, Australia, by using the anonymized real-world WiFi log of an opt-in free433

WiFi network operated by the mall owner. Note that this real-world mall environment is different from434

the environment of the department meeting room in the controlled environment, especially in terms of435

environment complexity, which may affect the values of RSSI readings, including brands/models of mobile436

devices, antenna models, Wi-Fi chipsets [46], and people movement [47] etc.437

5.4.1. Localization Accuracy438

Table 7 shows the localization accuracy in both P (T ) and ε within specific single floor. Here, all compared439

algorithms assume the training set is restricted to the data collected on the same floor as the test location,440
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Table 8: Multi-floor localization performance in the real-world mall environment. Note, weighted D-Log, D-Log and path loss
model used logs of single-AP traces; SVM-based method and Bayesian Network-based method used the RSSI records from
multiple APs.

Weighted D-Log D-Log SVM-Based Bayesian Network-Based Path Loss
P (T ) 81.1% 81.1% 84.3% 82.3% 28.4%
ε (m) 3.07 3.07 2.89 4.3 8.34
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Figure 8: The impact of sampling rate in the real-world mall environment

an approaches replicated from a similar experimental environment [48]. For P (T ), it is observed that D-441

log scheme performs comparatively to SVM-based method and Bayesian Network-based method across all442

three tested floors, and the chi-squared test results confirm that there is no significant difference in their443

performance: the 1st floor (chi-squared = 0.1508, p-value = 0.9274), the 2nd floor (chi-squared = 0.4939,444

p-value = 0.7812), the 3rd floor (chi-squared = 0.6645, p-value = 0.7173). For ε, when the complexity of the445

test location increases from the 1st floor to the 3rd floor, D-Log scheme starts outperforming the Bayesian446

Network-based method. This indicates that in the complex environment, some scene analysis methods447

will be limited to the capability of the deployed data mining method. In contrast, D-Log exhibits strong448

robustness in these complex environments.449

Table 8 shows the results of P (T ) and ε across multiple floors. To illustrate the performance of algo-450

rithms in this scenario, following [48], we remove the floor information by projecting the training points451

collected on different floors to a single plane, and execute all the compared algorithms. Again, the D-Log452

scheme significantly outperforms the Path Loss model and Bayesian network-based method, and performs453

comparably well to the SVM-based method.454

Overall, the D-Log scheme performs comparatively to the state-of-the-art localization algorithms while455

utilizing less resources and being computationally less complex. In addition, we observe that in both456

single-floor and multiple-floor environments, weighted D-Log algorithm performs equivalently to the D-Log457

algorithm. This is due to the large size of the WiFi log, enabling the two methods to converge in performance.458

5.4.2. Impact of Sampling Rate459

As analysed in Section 3.5, D-Log scheme can provide accurate localization accuracy by utilizing large460

RSSI logs, and it is independent of the sampling rate when logging the WiFi RSSI traces. Fig. 8 shows the461

sample size and the P (T ) and ε performance of D-Log algorithm when the sampling rate of our real-world462

WiFi logs varies from 5 minutes to 3 hours. The sample size is presented as the fraction of the sampling463

17



10
−2

10
−1

10
0

10
1

10
2

3

4

5

6

7

8

9

% of sample RSSI per AP

er
ro

r 
(m

)

 

 

10
−2

10
−1

10
0

10
1

10
2
30%

40%

50%

60%

70%

80%

pr
ec

is
io

n

error
precision

Figure 9: The impact of sample size in the real-world environment.

Table 9: Comparison of possible handover RSSI values

Pre-processing Average Fixed −70dB [37] 30% of least RSSIs Path Loss
P (T ) 81.1% 61.9% 59.5% 63.1% 28.4%
ε (m) 3.07 4.21 4.41 4.23 8.34

rate at the default 5 minutes. While the sampling rate drops from 5 minutes to 3 hours, P (T ) drops from464

81.1% to 75.0%, and ε increases from 3.07 meters to 3.78 meters. In other words, while the sampling rate465

drops 18 times, there is no corresponding reduction in P (T ) and ε. This indicates that the sampling rate of466

the WiFi logs has little impact on the performance of D-Log scheme.467

The small decrease of localization accuracy when sampling rate drops is caused by the drop of corre-468

sponding sample sizes. Specifically, when sampling rate varies from 5 minutes to 3 hours, the size of the469

corresponding RSSI samples drops by 75.4%. A detailed discussion of the impact of sample size in this470

real-world environment is discussed in the following section.471

5.4.3. Impact of Sample Size in Real-World Environment472

In the real-world environment, the collected Wi-Fi logs capture heterogeneous mobile devices, thus473

impacting on localization. We therefore examine the impact of this noisy training sample on the performance474

of the D-Log scheme. Fig. 9 shows the P (T ) and ε performance of D-Log in function of the training sample475

proportion used in the D-Log scheme, where each result in the figure is executed 10 times and then averaged.476

We observe that P (T ) increases proportionally with number of training samples, while ε decreases, which477

is consistent with the findings from the controlled environment in Section 5.3. Specifically, the first several478

samples can largely boost the performance of the D-Log algorithm, and makes it outperform the classic479

path loss model; the elbow-point is achieved at around 2% of training samples, which is around 250 training480

samples. This indicates that in large complex environments, D-Log scheme is also robust to the noises of481

the training data, and can achieve accuracy comparable with competing methods with a limited number of482

training samples. Recall that the accuracy of the positioning relates to the determination of the distance of483

the mobile device from the AP, not to an exact point in 2D space.484

5.4.4. Impact of Handover RSSI485

To accurately estimate the distance between a mobile device and the servicing AP, D-Log scheme requires486

the RSSI values when handover happens between adjacent APs in the WiFi network. However, in some487
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Figure 10: The impact of possible handover RSSI values

existing logs the RSSI values may be collected at very coarse frequency, e.g. the 5 minutes sampling interval488

in the WiFi log we experimented with. To test the applicability of such a coarsely sampled log, we have489

collected the accurate RSSI values at exact handover moments as a baseline (see Sec 4.2), and compared it to490

the subset of records estimated to have happened at, or close to, the handover. Here, we discuss the impact491

of the uncertainty of the handover identification on the calibration of the D-Log scheme. The baseline D-Log492

accuracy achieved based on the pre-processed input is compared to the following three methods:493

• Average: uses the average of RSSI values of each AP in the log as the handover threshold;494

• Fixed −70dB: applies a fixed value of −70dB as the handover threshold. This RSSI value is commonly495

suggested by commercial WiFi network installation manuals, e.g. Cisco [37];496

• Least RSSI: for this method, it is assumed that the potential handovers happened when the disasso-497

ciation time of ax is the same as the association time of ay, which is ax’s adjacent AP in the WiFi498

network (recall, that our logs have a sampling frequency of 5mins). Then, a limited fraction of the499

least of these RSSI values is used to select records assumed to relate to handover RSSIs. Fig. 10 shows500

the performance of this method as a function of the fraction of least RSSI values. Initially, when only501

a small proportion (no more than 30%) of the least RSSI values are selected, the performance increases502

steeply; beyond 30%, the performance deteriorates.503

Table 9 shows the performance of these methods in terms of P (T ) and ε. We observe that: 1) the D-Log504

scheme with the proposed pre-processing steps in Sec 4.2 achieves the best performance; 2) D-Log scheme505

with possible handover RSSIs, including Average, Fixed −70dB [37] and 30% of least RSSI, outperforms506

significantly the path loss model. This indicates that even when accurate handover RSSIs are not available,507

D-Log scheme still outperforms the state-of-the-art path loss model. Furthermore, with minimal environment508

fingerprinting that is substantially simpler than fingerprinting required by other methods, D-Log is able to509

achieve very good performance.510

5.5. Discussion511

The proposed D-Log scheme fulfils the five requirements introduced in the introduction of the paper:512

1. non-intrusive: D-Log scheme works on the logs of discrete single-AP RSSI traces collected on the AP513

side, and does not need any information related with the client mobile devices, e.g. no need to install514

apps, or turning-on of phone sensors;515
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2. generic: as long as there is an overlap between the signal coverage areas of two adjacent APs, a valid516

localization can be performed. Note this is generally a priority in WiFi network design. Similarly, the517

transmitting power of all APs is typically standard and identical for large-scale deployments and can518

be found in manufacturer’s manuals [37];519

3. light-weight: the proposed D-Log scheme is composed of simple computational components with only520

basic computational requirements;521

4. effective: as long as a mobile device connects to the WiFi network, its RSSI value can be identified.522

Thus, D-Log can make a valid estimate of the radius to the connected AP;523

5. accurate: the accuracy of the D-Log scheme is comparable to other state-of-the-art RSSI-based local-524

ization methods as shown by our analysis in Section 3.5, with values sufficient for applications requiring525

an estimate of the immediate spatial context of the user.526

One limitation of the D-Log scheme is that it builds on the Path Loss model which requires certain527

parameters of the WiFi network to be known, as shown in Eq. 1. These parameters are known or can be528

measured by site surveying process, or can be learnt by using cross validation as shown in Section 5.2.2.529

Due to the above discussed characteristics, D-Log can be applied in a range of applications, e.g. fine-530

grained spatio-temporal analysis, spatial data management and indoor behaviour analysis [8]. For example,531

Fig. 11 shows how D-Log scheme can help when only discrete single AP-traces are available. Specifically,532

the figure on the left shows the D-Log’s positioning of two particular mobile devices (the two purple stars).533

Namely, for each mobile device, the red line denotes the mean of the distribution of the estimated distance534

between the mobile device and its serving AP, and the pink region corresponds to the standard deviation535

around the estimated distance. Note that theoretically both the red line and the corresponding pink region536

are circular rings, but in practice this region’s geometry may not resemble a circle due to some reasons,537

e.g. the varying signal strength distribution. The path loss model can also position the device in a similar538

way, but with much worse accuracy than that of D-Log, which is theoretically analysed in Section 3.5. The539

application of D-Log is highlighted in inset (right), showing localization improvement (the dark cyan line540

and the corresponding light cyan region) over simple service area positioning approximated by a Voronoi541

polygon [49] (thick blue line) and adjusted Voronoi regions (orange line), each centered on a single AP, that542

encompass all the points that are closest to that AP and accessible to the visitors based on the floorplan543

layout data [50]. Specifically, take the test mobile device near the bottom as an example. The corresponding544

adjusted Voronoi region covers around 319 m2, and D-Log positions it in a circular region of approximately545

57 m2. By overlapping the D-Log positioning results with the adjusted Voronoi region, the localization546

of the device is improved to a more accurate region of approximately 33 m2 as shown in Fig. 11 (right).547

The computational cost of determining this enhanced region is only linearly proportional to the number of548

locations considered.549

Finally, like other RSSI based localization methods, the layouts of the environment or the configurations550

of APs affect the proposed D-Log scheme. If they change, new AP logs need to be collected before positioning.551

However, the layout does not change frequently, hence data collection and model re-training will occur only552

as required.553

6. Conclusions554

In this paper, we investigated the following problem: How to perform accurate indoor localization using555

large-scale logs of discrete single-AP RSSI traces with low sampling rate? We have provided a novel means556

of post-hoc localization scheme, which is based on WiFi logs only, named the D-Log scheme, and proposed557

two algorithms: the D-Log algorithm and the weighted D-Log algorithm, with D-Log focusing on accuracy558

and weighted D-Log focusing on efficiency. While D-Log does not allow for the exact computation of559

the coordinates of the user’s position, our contribution is to enhance the position estimation of post-hoc560

localization based on logs of single-AP traces with infrequent sampling rates. D-Log emerges as a novel means561

of localization enhancement which is simple and allows for improved estimation of the spatial context of the562

device in an indoor environment. In addition, high absolute accuracy is not always necessary. Approaches563

enabling contextual reasoning based on topological relationships of objects with approximate boundaries,564
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Figure 11: Illustration of the aim of D-Log (left), and how D-Log can help in reasoning about the tracked device location in
spatial data management (right). The band around the ring indicates the accuracy of the D-Log positioning.

such as the egg-yolk model [51, 52] can be used to improve the estimate of the spatial context in which a user565

is active. We suggest that, by analysing spatial relations of vague regions [53], we can improve our estimates566

of spatial indoor behaviour of users and thus improve our estimates and predictions of indoor information567

needs [54, 5]. Coupled with detailed knowledge of the environmental layout, D-Log enables a substantially568

improved estimation of the likely space in which a user may be located. Together with other signal about569

the users behaviour (movement history, web browsing logs), D-Log enables sophisticated reasoning about570

the users’ location. Accurate estimates of the indoor context (e.g., proximity to a specific shopping mall)571

are critical for the improvement of indoor services and have great economical potential in the near future.572

In the future, we plan to combine D-Log scheme with trilateration to get better localization performance.573
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