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Abstract

The increasing number of users with multiple mobile devices underscores the importance of understanding
how users interact, often simultaneously, with these multiple devices. However, most device based monitoring
studies have focused only on a single device type. In contrast, we study the multidevice usage of a US-based
panel through device based monitoring on panelist’s smartphone and tablet devices. We present a broad
range of results from characterizing individual multidevice sessions to estimating device usage substitution.
For example, we find that for panelists, 50% of all device interaction time can be considered multidevice
usage.
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1. Introduction

Today a growing number of users own multiple mobile devices including, for example, a smartphone,
tablet, and smartwatch. This proliferation of devices can cause significant changes in usage behavior both
in terms of individual sessions and general usage. For example in general, users can shift certain activities
from an existing device (i.e. smartphone) to a new device (i.e. tablet), or the new device can prompt totally
novel usage. While inside single sessions, users can use multiple devices either in combination or simply
simultaneously, and these complex sessions can be described as so called multidevice usage sessions.

Understanding these types of changes is increasingly important for a variety of stakeholders in the
mobile ecosystem. For example, mobile application developers are interested in improving the quality of
activities that start on one device and continue on another device. A concrete implementation is already
seen in web browsers that can sync open web browser tabs across devices1. Whereas mobile advertisers
are interested in understanding how users divide their time between mobile device types to help guide
mobile advertising strategies. For example, advertisers can understand the relative ad inventories (number
of available impressions) between specific device types of users by considering usage times and typical ad
refresh rates.

However, previous studies on mobile device usage have not thoroughly examined this multidevice emer-
gence for a variety of reasons. Many mobile device usage studies primarily tracked only a single device type
(typically a smartphone) and often only captured a single mobile platform (typically Android) [1, 2, 3, 4].
Several studies have captured multidevice usage but have used interview, survey, or diary collection methods
[5, 6, 7, 8, 9] that are susceptible to recall bias [10]. Other studies have captured multidevice usage but only
from a single service provider view point such as multidevice search [11, 12]. Furthermore few studies have
explicitly investigated device type substitution (shifting usage to a new device or novel usage of new device)
and again these studies typically rely on survey or diary methods [13].

In contrast, we examine multidevice (smartphone and tablet) usage of a US based user panel from
February 2015. Our data collection is device based (panelists installed custom device based monitoring
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applications) and multi-platform (Android and iOS). Furthermore, we study device type substitution by
utilizing a supplementary (smartphone only) user panel also from February 2015. To our knowledge, this is
the first study of a multidevice user panel with device based monitoring.

We make the following concrete contributions in this work.

• We present a simple method for grouping app sessions into multidevice usage sessions based on Allen’s
interval algebra.

• We describe the statistical properties of these multidevice sessions on both an overall and per user
level.

• We present and utilize a novel method for studying the diversity of temporal patterns in multidevice
sessions through a matrix representation.

• We examine if users use their smartphones differently during multidevice sessions.

• We examine the usage substitution effects between smartphones and tablets by utilizing a complemen-
tary panel of users without a tablet device.

The remaining sections of the paper are organized as follows. Section 2 discusses related work and introduces
Allen’s interval relations, while Section 3 introduces the panel datasets. Section 4 details the different
session definitions and the aggregation of individual app sessions into usage sessions. Section 5 describes
and discusses the primary results. Section 6 discusses some general implications and the replicability and
generalizability of the results and finally Section 7 presents the conclusions and future work.

2. Background

2.1. Related Work

Related work can be primarily divided into single device usage studies that use a similar device based
monitoring method, multidevice studies that also characterize multidevice usage, and multidevice interaction
enablers and frameworks.

2.1.1. Single Device Usage Studies with Device Based Monitoring

Eagle and Pentland [14] pioneered device based monitoring with mobile phones in their Reality Mining
study, though they did not explicitly focus on studying mobile device usage. Böhmer et al. [1] analyzed
mobile application usage in one of the first large scale mobile usage studies. They used a similar concept of a
mobile app session described by an app moving to the foreground or background of the device. Furthermore,
they extended the concept to describe an app chain (sequential app sessions with a maximum timeout value
between sessions of 30s). These app chains are similar to our concept of single device usage sessions. Soikkeli
et al. [4] had a similar approach to [1] with 1s and 30s maximum timeout values for app chains, or usage
sessions in their terminology. Falaki et al. [2] also based their analysis on foreground application sessions
with an extension to interaction sessions. However, an interaction session was defined as continuous screen-on
time period (essentially a timeout value of 0s). Oliver [3] also studied this type of interaction session.

All the mentioned studies included only smartphone usage, in some cases because tablets were not yet
widespread. Also, the data were usually from only a single platform, such as Android, Windows Mobile,
Symbian, or BlackBerry. In some cases, iOS devices at the time had limitations regarding background
measurements and the release of applications in the app store [1].

2.1.2. Multidevice Usage Studies

Multidevice studies can be further subclassified by the utilized data collection method or methods.
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Interviews and Direct Observation. Many early multidevice studies employed interviews or direct user ob-
servation. These methods are less scalable and accurate than device based monitoring but can provide
contextual information such as why a user switches between devices during specific activities.

Dearman and Pierce [5] examined multidevice usage of a panel of industry and academic users through
semi-structured interviews. They highlighted, for example, that users use multiple devices for a variety
of reasons including differences in device form factor and portability. Though tablet devices were not yet
widely used at the time of the study. Similarly, Oulasvirta and Sumari [15] and Santosa and Wigdor [16] also
performed semi-structured interviews and user observation studies of multidevice users and workflows in the
workplace context. Santosa and Wigdor [16] especially highlighted the inadequacies of current methods for
handing parallelism and data fragmentation in multidevice use cases.

Finally, Matthews et al. [17] performed semi-structured interviews of industry smartphone users and
examined the interplay of smartphone and PC usage. They found that, in contrast to basic cellphones,
smartphones prompt both novel usage and substituted usage from PCs as functionality between smartphones
and PCs partially overlaps. Furthermore, they report that smartphone attributes such as low initial access
time gave smartphones an advantage over PCs for certain tasks in certain contexts (such as checking email).
Thus their results are similar to the device substitution we explore between smartphone and tablet devices
(wherein, for example, significant mobile game usage is substituted to larger screen tablets).

User Completed Electronic Diaries. Other multidevice studies employed user completed electronic diaries in
which a user tracks their own multidevice usage. This method is more scalable than interview or observational
methods but still less accurate than device based monitoring as the approach relies on users, that are
typically susceptible to recall bias [10], to complete the diaries. However, similar to the interview method,
user completed diaries can collect contextual information such as why a user performs a specific task.

Muller et al. [9] analyzed smartphone and tablet usage of a user panel through user completed electronic
usage diaries. Similar to our study, their panel includes users that tracked both their smartphone and tablet
device usage. They also report on the types and frequencies of secondary activities performed during tablet
and smartphone use. Similarly, Google [6] used usage diaries and surveys to study the multidevice usage
of a large US based panel. The research found that over 90% of panelists reported starting a task on one
device and continuing the task on another device. However relatively few panelists (between 3-8% depending
on activity) reported starting an activity on a smartphone and later continuing on a tablet or the reverse
sequence.

Combinations of Methods and Other Methods. Finally, a few studies have used a combination of these
methods or examined multidevice usage from a service provider rather than user centric viewpoint.

Jokela et al. [8] investigated multidevice usage of a small Finland based panel through both electronic
diary and interview methods. They included a broad range of devices including tablets and, for example,
home media centers in their multidevice usage definition. The investigation found the users reported sig-
nificant sequential and parallel related but little parallel non-related multidevice usage, potentially because
users do not easily realize non-related parallel usage. Contrastingly, device based monitoring will always
detect parallel usage but classification into related or non-related categories requires additional information
and analysis. Similarly, Microsoft [7] also used electronic diary and interview methods to study multidevice
usage. The research studied a mix of smartphones, tablets, e-readers, gaming consoles and laptops and
classified so called multi-screening behavior across these devices as sequential, simultaneous or separate.

Montanez et. al [11] and Wang et al. [12] studied cross device search in the context of a major US web
search provider. Wang et al. found, for example, that about 15% of device switching between searching
involves contiguous tasks, in other words sequential multidevice sessions.

Hintze et al. [18] analyzed both smartphone and tablet usage through device based monitoring via the
large and well known Device Analyzer dataset. Device Analyzer [19] is a large scale dataset based on a pop-
ular Android monitoring app. The dataset contains both smartphone and tablet devices however correlating
ownership of smartphone and tablet devices to a single individual is not possible thus limiting multidevice
session analysis. Furthermore individual application names are not available, thus further limiting analysis.
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Figure 1: Allen’s Time Interval Relations

2.1.3. Multidevice Enablers and Frameworks

A logically related and currently very active area of study is the building of enablers and frameworks for
more convenient multidevice usage.

Taivalsaari et al. [20] discuss liquid software as a general manifesto of guidelines that multidevice
interaction should follow. Hamilton and Wigdor [21] present Conductor; a framework for the construction
of multidevice applications, whereas Desrulle and Gielen [22] discuss the high level architectures of such
systems in the context of web applications. Finally, Schreiner et al. [23] present a versatile web based
multidevice app framework that is agnostic to, for example, the underlying device to device communication
method. Relationally, our research looks to help find potentially useful (app) targets for such enablers and
to help describe the current state of multidevice usage so the value of these enablers can be estimated.

2.2. Allen’s Time Interval Relations

Allen’s thirteen basic time interval relations are the building blocks of Allen’s Interval Algebra [24]. The
relations are distinct (a pair of intervals are described by one and only one relation), exhaustive (any pair
of intervals can be described by one of the relations) and qualitative (no numeric time spans are required).
Figure 1 shows all of the thirteen basic relations that two finite time intervals a and b can have. In the
figure, time is expressed from left to right. So, for example, in the first cell interval a starts and ends before
interval b starts. In the second cell interval b starts exactly as interval a ends. Intuitively, six of the relations
can be described as converses of six other relations. For example, the converse of a meets b is b metBy a.

In this paper we often use the notion of a session. In the context of, for example, smartphone usage
an app session can be defined as a period of application usage with a clear start and end time. This type
of session is equivalent to Allen’s notion of a finite time interval and thus we can use Allen’s relations
in defining and examining multidevice usage. The relations formalize the temporal relationships between
(usage) sessions of one or more devices.

This work is the first multidevice paper, as far as we know, to exploit such a formalization and thus to
bring this foundation into the multidevice usage area.

3. Datasets

The two primary datasets are subsets of a large United States based user panel organized by Verto
Analytics2 in February 2015. Panelists were recruited online and were given an initial recruitment survey
that asked about the devices they own. Panelists were instructed to install custom monitoring applications
to all of their applicable devices (in other words, the devices they reported owning including smartphone,
tablet, and PC). The monitoring applications logged events such as an app moving to the foreground or
background of the device. Only panelists that installed the monitoring applications to all their applicable
devices were considered for the panel. All panelists were paid for participation. All analyzed user data was
anonymized with no personally identifying information.

The first dataset (hereafter dataset 1) consists of one month (February 2015) of smartphone and tablet
application usage data from the 65 panelists with both a smartphone and tablet device. Only active panelists
were considered valid and included in the subset. We define a panelist as active if for both of their devices
the length between their first usage of the month and last usage of the month is at least 23 days. The subset

2http://vertoanalytics.com/
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includes panelists with devices from both major mobile platforms: Apple iOS and Google Android. Specif-
ically, 46 panelists had both an Android smartphone and tablet, 10 panelists had both an iOS smartphone
and tablet, 5 panelists had an iOS smartphone and Android tablet, and 4 panelists had Android smartphone
and iOS tablet.

The second dataset (hereafter dataset 2) consists of one month (February 2015) of smartphone application
usage data from 496 panelists with a smartphone but not a tablet device. In other words, these panelists
reported on their panel recruitment survey that they do not own a tablet device. Again only active panelists
were considered valid and included in the subset and the subset includes both major mobile platforms. 402
panelists had Android smartphones and 94 panelists had iOS smartphones.

In terms of representativeness, the large panel was recruited with the purpose of obtaining a nationally
representative panel and thus is relatively diverse. However all opt-in panels inherently use non-probability
sampling and thus representativeness is a concern3. We refer to Hays et al. [25] for further discussion.
Furthermore, as mentioned, the recruitment process utilized a recruitment survey that screened potential
panelists to improve the demographic and technographic match between the accepted panelists and the
population (known as a quota-sampling approach).

For reference we provide a summary of panelist demographic and technographic data for each dataset
along with demographic data for US smartphone users in general in Table 1. The clearest demographic dis-
crepancies are that the datasets over represent females and users with lower household incomes. Thus these
factors should be considered when generalizing the results. We discuss our overall view of generalizability
in panel based studies in Section 6.

In terms of the types of monitored device types, personal computer usage data was also collected from
panel users but considered out of scope for this paper. Though analysis of PC usage in a multidevice context
would also be valuable, a significant issue is that the simple foreground app session definition is not directly
transferable to the personal computer context. For example, PC users often have multiple viewable app
windows open simultaneously. Furthermore, the limited mobility of laptops and desktops means that these
devices often remain continuously connected to an AC socket, thus users can often leave their screens on
even when not interacting with the device (for example by disabling sleep mode). Therefore, more advanced
user activity detection would be needed.

4. Usage session

4.1. Session Definitions

In order to study mobile usage sessions we first define several important concepts we will use throughout
the analysis. The definitions are partly based on Allen’s time interval relations described in section 2.2.
First, we define an app session as a time interval starting with an application moving to the foreground of
the device and ending with the application moving out of the foreground (either replaced by a different app
or screen off). This app session definition has been used in previous literature [1, 2, 4]. Next, we define a
single device usage session as a collection of app sessions on a single device with a maximum timeout value
between two sequential app sessions. This definition has also been used previously [1, 4], but in comparison
to previous work, the Allen’s relations approach we adapt to usage session construction (see section 4.3)
offers a more solid foundation for characterizing usage sessions and their relations, and more importantly
can be easily extended to multidevice usage.

Thus we describe our definitions in terms of Allen’s relations. Since by definition single device app
sessions are sequential, only precedes and meet of Allen’s relations (and their respective converse relations)
are applicable. If two app sessions meet, the sessions will always belong to the same usage session. If
an app session precedes or is precededBy another app session within the maximum timeout, then the
app session will also belong to the same usage session. Henceforth, we denote this relation as precedes
(precededBy) within time-window (abbreviated as precedes (precededBy) within TW). Thus

3We note that in contrast to panels were panelists take surveys, the device based monitoring collection method is not
generally susceptible to, for example, false/fake answers, careless answers, or repeatedly giving the same answer.
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Table 1: Demographic and Technographic Summaries of Datasets

Dataset 1 Dataset 2 US Smartphone Usersa

Mean Age (Years)b 38.53 (11.91) 37.06 (12.63) 41.30 (15.08)
Gender (% Male) 23.08 26.61 50.08
Education (% w/ Some College or Less) 56.92 63.10 53.04
Marital Status (% Married) 44.62 41.33 48.96
Household Income (% <50K USD) 47.69 65.93 40.72
Mean Household Size 2.97 (1.54) 2.95 (1.50) 3.05 (1.61)
Mean Children in Household 0.94 (1.06) 0.93 (1.21) 0.74 (1.27)
Race (% White) 72.31 70.97 71.53

Mean Smartphone Display Size (inches) 4.61 (0.71) 4.58 (0.60) -
Mean Smartphone Display Density (ppi)c 358.00 (72.79) 343.86 (84.67) -

Mean Smartphone Total CPU Frequency (GHz)d 5.57 (3.33) 5.50 (3.20) -
Mean Time Since Smartphone Release (years)e 2.06 (1.11) 1.92 (1.04) -

Mean Tablet Display Size (inches) 8.59 (1.27) - -
Mean Tablet Display Density (ppi)c 203.89 (57.86) - -

Mean Tablet Total CPU Frequency (GHz)d 3.58 (2.04) - -
Mean Time Since Tablet Release (years)e 2.05 (0.86) - -

a US smartphone user demographic data is from Pew Research survey (June-July 2015, subpop with smartphone n=1327)
[26]. The survey utilizes weighting to population parameters of census data to create nationally representative results (refer
to [27]). We note that Verto Analytics also performs its own national surveys, we utilize the Pew Research survey only for
brevity.
b All mean values also include standard deviations
c In pixels per inch
d Total frequency of CPU as number of cores multiplied by frequency per core
e Time from approximate release month of device model until Feb 2015

through a combination of these four relations multiple app sessions can be grouped into single device usage
sessions.

For multiple devices (of a single user in our case) all of Allen’s relations are applicable. As mentioned
precedes and meet (with their respective converse relations) describe sequential usage, while the remaining
relations describe (at least partly) simultaneous usage of the devices. For constructing a multidevice usage
session we follow a two-step process. First, we apply the single device usage session definition separately
for each device. Second, we examine the relations of the usage sessions of the multiple devices. If the single
device usage sessions are (at least partly) simultaneous, meet (are metBy) or precede (are precededBy)
within TW then they belong to the same multidevice usage session. Figure 2 illustrates this process with
smartphone and tablet sessions (two devices).

Finally, we define several descriptive session types that we will use throughout the paper. Specifically,
each single device usage session (and by extension each app session contained within a session) can be
classified along two distinct binary dimensions: device type (smartphone or tablet) and containment in a
multidevice usage session (if contained in a multidevice session then mixed or if not then pure).

4.2. Maximum Timeout Value

In both the single and multidevice cases, the maximum timeout value (used in session construction) is an
important parameter that affects the eventual interpretation of the results. Ideally the timeout value should
be a moderate value that accurately reflects how users psychologically divide their daily device usage.
However, as mentioned in section 2.1, various authors have used different values with no best practice
prevailing, therefore we briefly examine the effects of a range of different timeout values.

Figure 3a details the mean number of different types of usage sessions per user as a function of timeout
value. Interestingly, the mean number of multidevice sessions is relatively stable for timeout values of 1-1000s,
indicating that in this range multidevice sessions are primarily subsuming time-adjacent pure smartphone
and tablet usage sessions. Whereas after 1000s, the significant decrease in multidevice sessions suggests
that time-adjacent multidevice sessions themselves are merged. Figure 3b illustrates the mean app sessions
per usage session per user as a function of timeout value. The increasing number of app sessions per usage
session further supports the previous indications.

In terms of selecting a practical timeout value for analysis purposes, we select a mid-range compromise
value of 60s that preserves a large number of pure smartphone and tablet usage sessions and does not
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Figure 3: a) Mean Usage Sessions Per User by Timeout Window, b) Mean App Sessions Per Usage Session (Per User) by
Timeout Window

indicate significant merging of multidevice sessions. Furthermore, we use the same value for creating both
single device usage sessions and multidevice usage sessions. Though an argument could be made that
switching devices in sequential multidevice sessions might often take longer than 60 seconds and thus a
longer timeout value could be used. However, we leave this analysis for future work.

4.3. Usage Session Construction

In order to analyze smartphone, tablet and multidevice usage on a session level we first construct the
usage sessions. We follow the session definitions of section 4.1. Table 2 details statistics related to the usage
session construction process of dataset 1.

In the single device case one app session can have from zero to two relations: no relation to a preceding
or following app session, a single relation to a preceding or a following app session, or relations to both
preceding and following app sessions. For Table 2 we count all these relations. Table A.12 in Appendix A
details similar statistics for dataset 2.

Table 2 also breaks down the types of Allen’s relations observed between the smartphone and tablet
usage sessions contained in multidevice usage sessions. The relations are written with the smartphone
session preceding the relation and the tablet session following. In other words, we can read the statistics
as follows: smartphone session [relation] tablet session. In the majority of cases (over 61 %) a smartphone
session is enclosedBy a tablet session. The second most frequent case (with 11 %) is that a smartphone
session encloses a tablet session. A majority of the rest of the cases fall relatively evenly between overlaps
and precedes within TW and their converses.
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Table 2: Usage session construction statistics

Smartphone usage Tablet usage Multidevice usage

Number of app sessions 330523 63239 97620
Number of single device usage sessions 78798 12708 18136
Number of multidevice usage sessions - - 4517

Share of Allen’s relations
precedesWithinTW 8.16 % 4.65 % 6.16 %
meets 42.07 % 45.44 % 0.10 %
overlaps - - 8.50 %
finishedBy - - 0.04 %
encloses - - 10.70 %
starts - - 0.12 %
equivalent - - 0.00 %
startedBy - - 0.11 %
enclosedBy - - 61.40 %
finishes - - 0.11 %
overlappedBy - - 7.40 %
metBy 41.60 % 45.26 % 0.11 %
precededByWithinTW 8.16 % 4.65 % 5.27 %

5. Results

In this section, we present and discuss the main results of our analysis and where appropriate compare
these results to prior work.

5.1. Basic Descriptive Statistics

5.1.1. Dataset Level Statistics

In this section we study the dataset level basic characteristics of the single device and multidevice usage
sessions. In other words, the statistics describe the aggregate of all sessions from all users of dataset 1.
Table 3 details descriptive statistics related to usage session lengths and the number of app sessions per
usage session (for dataset 2 see Table A.13 in Appendix A). We calculate the statistics separately for all
smartphone usage sessions (combined pure and mixed), all tablet usage sessions (combined pure and mixed),
pure smartphone usage sessions, pure tablet usage sessions and multidevice usage sessions.

On general level, we find that tablet usage sessions are significantly longer than smartphone usage sessions
but that the number of app sessions in a single device usage session is similar for both smartphones and
tablets. Whereas, multidevice usage sessions are about 10 times longer and have about 5 times as many app
sessions as compared to the single device usage sessions.

These reported mean and median values are indicative of the differences between sessions types but do
not illustrate the full distributions very well. Figures 4b and 4c show empirical distribution functions of
usage session lengths and number of app sessions per usage session, respectively, for the different types of
usage sessions. In terms of session lengths, the distributions show clear peaks for smartphone and especially
for tablet sessions. A small peak appears at 10s and is associated with certain Samsung devices’ touch user
interface (known as TouchWiz). A larger more noticeable peak appears at around 15-17s and is associated
with iOS applications not properly identified by the monitoring application. The difference in the share of
these particular iOS sessions between pure and mixed tablet sessions is the main reason for the relatively
large difference in session length values between these types. For brevity, we leave the further examination
of these app specific anomalies for future research.

In terms of number of app sessions, only 8% of all multidevice usage sessions have exactly two app
sessions (the minimum for multidevice usage sessions by definition) while half of multidevice usage sessions
have more than 10 app sessions. Thus app and interaction designers likely need to consider complex use
cases of multiple devices well beyond the degenerate case of two simple sequential or simultaneous app
sessions (as these degenerate cases are rare in practice). We further illustrate the wide range of multidevice
app usage patterns in Section 5.2.

Table 3 also shows how the usage is divided among the session types based on different definitions of
usage including number of app sessions, number of usage sessions, and interaction time. Most interestingly
when the division is based on interaction time, multidevice and single device usage divide almost equally
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Table 3: Basic statistics on the whole dataset levela

Smartphone - all
N = 78798

Tablet - all
N = 12708

Smartphone - pure
N = 63930

Tablet - pure
N = 6871

Multidevice
N = 4517

Usage session length (s)
mean 312 1461 245 506 4241
median 61 197 56 114 1147
std. dev. 1509 8154 829 1074 14284
App sessions per usage
session
mean 4.13 4.95 3.96 3.97 21.61
median 2.00 2.00 2.00 2.00 10.00
std. dev. 6.46 7.92 5.90 5.98 45.47
Percentage of all usage
based on app sessions 83.5 % 16.5 % 67.0 % 7.2 % 25.8 %
based on usage sessions 85.9 % 14.1 % 84.9 % 9.1 % 6.0 %
based on interaction time 55.8 % 44.2 % 40.0 % 9.2 % 50.9 %

a N is the number of usage sessions. Smartphone (all) and Tablet (all) indicates all smartphone and tablet
usage or app sessions, whereas Smartphone (pure) and Tablet (pure) indicates only pure smartphone and
tablet usage or app sessions.
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Figure 4: Cumulative distributions (the inter-session time axis is shifted by 60s for readability)

with 50.9% multidevice usage and 49.1% single device usage. In other words, over half of all interaction
time is considered multidevice usage. This reinforces the significant prevalence of multidevice usage for
multidevice users and the potentially large impact of optimizations for multidevice usage.

If we examine the device types carefully, we find that a tablet usage session is much more likely to be part
of a multidevice usage session, when compared to smartphone usage sessions. In fact, over 90% of tablet
interaction time and 93% of tablet usage sessions are associated with multidevice usage. Comparatively,
Google [6] survey results, for example, indicate only 35% of tablet sessions also include smartphone usage.
Similarly, Muller et al. [9] reports device multitasking during tablet usage in only a small fraction (3.4%) of
user reported usage incidents. Though these studies are not fully comparable, the large differences in results
still reinforce the importance of utilizing device monitoring methods in addition to self reporting methods.

Finally, in terms of temporal distributions, Figure 5 shows hourly distributions of the different types of
usage sessions. Smartphone usage is distributed relatively uniformly across the office hours with a small shift
towards the evening. Whereas tablet and multidevice usage is focused in the late evening. These distributions
support the notion of smartphones being the ubiquitous all-day work horses of mobile device usage, while
tablets are related to leisure time and the home context. Furthermore, the distributions also support and
validate previous work based on self reported diaries such as [9] that illustrate similar distributions.

5.1.2. Per User Level Statistics

In the previous section we examined the usage sessions on the entire dataset level, in other words all
sessions of all users were aggregated. Table 4 shows similar statistics, again for dataset 1, but based on a per
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Figure 5: Hourly Distributions

user level (for statistics for dataset 2 see Table A.14 in Appendix A). More specifically, the session lengths
and number of app sessions per usage session are based on per user medians and the usage sessions per day
and interaction time per day are themselves per user statistics.

The per user results reveal considerable diversity across users also in the multidevice usage case. Session
length medians show an order of magnitude difference between users and in the case of app sessions per
usage session from 5 to 10 fold differences. Thus we extend to the multidevice context previous studies, for
example [18], that report significant diversity in usage across users.

In terms of per user interaction time, we find that typically no single device dominates but users spend
considerable time with both their smartphone and tablet. This relatively equitable time distribution suggests
that mobile ad inventories per user will also be roughly equitable depending on ad refresh rates. Thus
informing multidevice mobile advertising strategies.

Furthermore, the overall interaction time with both smartphones and tablets is considerably higher than
previous studies4 (see Table 1 in [18]). These differences are potentially due to increased pervasiveness of
these devices over time, differences in the types of users between studies, or a combination of these factors.
For reference, the dataset from [18] has users from over 175 countries whereas our dataset has only US users.

5.2. Patterns within Multidevice Usage Sessions

In this section, we study the temporal patterns within multidevice usage sessions. In other words, the
configurations of the device usage sessions that form each multidevice usage session.

First, to quantify the temporal similarity between two multidevice usage sessions we need a similarity
metric. We use an interval sequence similarity measure known as Interval-Based Sequence Matching (IBSM)
[28]. The measure is based on representing sequences of finite intervals as matrices. The similarity between
these matrices is then the Frobenius norm of the difference between the matrices. In our case, each matrix
represents a multidevice usage session, each matrix row represents a specific device (in our case always two
rows for smartphone and tablet, with smartphone always the first row and tablet the second) and each
matrix element represents the binary usage state (active or inactive) at a discrete time (a second). In other
words, a multidevice usage session with a smartphone session from t = 1 to t = 4 and a tablet session from
t = 3 to t = 5 would be represented as: [

1 1 1 1 0
0 0 1 1 1

]
In cases where the matrices to be compared are of different lengths then each row of the shorter matrix

is re-sized through linear interpolation.

4For smartphones [18] reports a median daily usage of 82 mins, compared to our median daily usage of 261 mins for dataset
2. For tablets [18] reports a median daily usage of 67 mins, compared to our median daily usage of 115 mins for dataset 1.
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Table 4: Basic statistics on per user levela

Smartphone - all Tablet - all Smartphone - pure Tablet - pure Multidevice

Usage session length (s)
mean 85 463 78 211 2041
median 57 215 54 121 1063
std. dev. 109 623 99 259 2983
App sessions per usage
session
mean 2.28 2.73 2.25 2.15 13.03
median 2.00 2.00 2.00 2.00 11.00
std. dev. 1.04 2.00 1.00 1.42 8.95
Usage sessions per day
mean 44.5 7.15 36.05 3.85 2.59
median 43.13 5.01 34.3 2.82 1.79
std. dev. 22.17 6.78 19.96 4.6 2.38
Interaction time per day
(min)
mean 234.21 174.95 146.69 32.57 184.22
median 213.86 115.01 114.78 19.23 121.80
std. dev. 167.89 188.12 97.95 44.37 206.05

a Usage session length and App sessions per usage session statistics are calculated from the per user medians of
these metrics. Smartphone (all) and Tablet (all) indicates all smartphone and tablet usage sessions, whereas
Smartphone (pure) and Tablet (pure) indicates only pure smartphone and tablet usage sessions.

The IBSM measure is used instead of Allen’s relations because while Allen’s relational algebra is a
fundamental tool for understanding interval relations, the categorical relations are quite strict. In other
words, only a small difference in position of a session relative to another session can result in a totally
different relation, even though the two configurations might be considered in a sense similar.

With the similarity measure, we divide the multidevice usage sessions into groups based on the similarity
of each session’s matrix to well defined artificial prototype matrices. Specifically, we use all 256 configurations
of the size 2 × 4 (row × column) binary matrix as prototypes and each prototype represents a group (thus
we have 256 distinct groups). Importantly since we are representing relatively large matrices, on average
2041 columns, by small matrices, always 4 columns, these prototype groups are rough highly aggregated
approximations. We refer to each group by the integer number represented by the binary of the prototype
matrix when the second row is concatenated after the first.

The choice of 4-column prototype matrices (rather than for example larger or small prototype matrices)
relates to a trade-off over the level of detail that proves useful in understanding common patterns. Specif-
ically, large prototype matrices (for example the same size as the actual matrices) would just represent
every actual matrix by it’s own prototype, whereas, very small prototype matrices (1 column) would just
obfuscate most of the interesting differences between the matrices. Thus the 4-column size represents a good
compromise size that maintains a useful level of detail.

Table 5 details the ten most frequent groups of all multidevice usage sessions. Interestingly, we find that
the top two groups represent primarily usage of a single device over the length of the session along with
sparse usage of a second device. The relatively high frequency of group 15 is expected given that tablet usage
sessions are generally longer and smartphone usage sessions are shorter and burstier. However surprisingly
group 240 (the bit-wise complement of group 15) is also quite frequent.

With regard to device ordering, we find that group 135 (with a starting smartphone session) is found
more as often than the bitwise complement group 30 (with an ending smartphone session). We find similar
relationships for other groups and in general we find that, in terms of all multidevice sessions, smartphone
sessions tend more often to precede tablet sessions than vice versa. Google [6] also identifies smartphones
as the most common starting point for multidevice usage (when considering all sequential mutltidevice
sessions).

In terms of diversity, we find that at least 25 groups (10% of all possible groups) have frequencies of 1%
or greater and 138 groups (54% of all groups) have at least one session thus suggesting significant diversity
in the configuration of multidevice usage sessions. This significant diversity again reinforces the implication
that app and interaction designer should consider a large variety of complex multidevice interactions and
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Table 5: Most Frequent Prototype Groups of Multidevice Usage Sessions (All Sessions and Per User)

All Multidevice Usage Sessions Multidevice Usage Sessions Per User
Group Number Group Matrix Frequency Group Number Group Matrix Frequency

15

[
0 0 0 0
1 1 1 1

]
24.07% 15

[
0 0 0 0
1 1 1 1

]
25.70%

240

[
1 1 1 1
0 0 0 0

]
10.90% 240

[
1 1 1 1
0 0 0 0

]
12.95%

135

[
1 0 0 0
0 1 1 1

]
4.45% 135

[
1 0 0 0
0 1 1 1

]
3.62%

143

[
1 0 0 0
1 1 1 1

]
3.72% 30

[
0 0 0 1
1 1 1 0

]
3.37%

30

[
0 0 0 1
1 1 1 0

]
2.90% 143

[
1 0 0 0
1 1 1 1

]
3.32%

79

[
0 1 0 0
1 1 1 1

]
2.50% 79

[
0 1 0 0
1 1 1 1

]
2.60%

195

[
1 1 0 0
0 0 1 1

]
2.24% 31

[
0 0 0 1
1 1 1 1

]
2.36%

225

[
1 1 1 0
0 0 0 1

]
2.17% 195

[
1 1 0 0
0 0 1 1

]
2.11%

31

[
0 0 0 1
1 1 1 1

]
2.17% 225

[
1 1 1 0
0 0 0 1

]
1.87%

47

[
0 0 1 0
1 1 1 1

]
2.04% 60

[
0 0 1 1
1 1 0 0

]
1.86%

usage in future designs.
To account for differences in the number of multidevice sessions per user, we also calculate the relative

frequency of each group for each user and then average these percentages. Table 5 also details the ten most
frequent groups by this mean frequency per user. Nine of the top ten groups are the same as in overall
analysis. However, we find much smaller differences in device ordering than in the overall analysis. For
example, groups 135 and 30 have almost equal mean frequencies of 3.62% and 3.37% respectively. Thus
suggesting no preference in device ordering on a user level.

Finally we examine the types of apps used within the most frequent group (group 15) and the second
most frequent group (group 240) compared to all other groups. Specifically we calculate the differences in
normalized usage times by app category between group 15 and 240 (hereafter G15 and G240) sessions and
the complements of group 15 and group 240 (hereafter C15 and C240) sessions for both smartphones and
tablets.

For G15, as expected, we find the sparse usage of smartphones to be related to app categories with
frequent notifications such as news or social networking (83% and 41% more usage in G15) rather than app
categories such as video or entertainment (280% and 87% less usage). Interestingly tough, we find that
the usage of tablets in G15 to be related more with gaming (33% more usage) rather than video (77% less
usage). Thus game developers should be especially aware that tablet users might often need to interrupt
games for frequent smartphone notifications.

For G240, we find the sparse usage of tablets to be related to app categories such as productivity (email
and web browsing) (60% more usage in G240) rather than app categories such as games or video (160% and
580% less usage). Whereas, we find that the usage of smartphones in G240 to be related to categories such
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as photos and gallery, maps and navigation, or video (85%, 70%, and 62% more usage) rather than app
categories such as camera, gaming, or social networking (252%, 76%, and 36% less usage).

Thus we find that although G15 and G240 can be illustrated as inverses, the types of apps commonly used
in these sessions are different. In other words, the app categories that are commonly used on smartphones
in G15 are not necessarily commonly used on Tablets in G240 and vice versa. Therefore, understanding the
dominant device of a multidevice session is likely to be useful in, for example, inferring the types of apps
used in that session. This type of inference is useful in cases where app sessions themselves might be inferred
from other sources and thus no direct app type information is available.

5.3. Smartphone Usage with and without Simultaneous Tablet Usage

Beyond the interplay within single multidevice usage sessions, we study the diversity of a user’s smart-
phone usage behavior across different types of usage sessions. Specifically we study whether multidevice
users use their smartphones differently when they are also using a tablet device in the same usage session5.
We can formalize this question as comparing smartphone usage behavior between smartphone pure usage
sessions vs. smartphone mixed usage sessions.

In practice, our comparison consists of testing for statistically significant differences in normalized usage
times6 of both app categories and individual apps between the session types. In addition, since differences
in app usage times are affected by the time of day and different session types are more prevalent during
certain times, we limit the analysis to the typical evening period between 17:00 and 24:00.7

The examined app categories are custom categories that unify the category differences between appli-
cation stores of different platforms (iOS and Android). In the analysis we only test app categories that at
least 50% of users used. This threshold keeps the sample sizes from becoming too small, thus rendering
the tests unreliable. These custom categories are listed in Table 6. The individual apps are a collection of
popular apps (again that at least 50% of users used). The apps are listed in Table 7. Refer to Table A.11
in Appendix A for general usage statistics for the app categories and individual apps.

To test for significant differences, we use a percentile bootstrap method for paired data that compares
difference scores8 of the 20% trimmed mean (section 5.9.12 in [29]). The percentile bootstrap method is
selected because the method is robust under non-normality and heterogeneity of variances. Furthermore, we
use the 20% trimmed mean as the location measure of the tests because the distributions have significant
outliers. Thus the null hypothesis is that the 20% trimmed mean of the distribution of the difference
scores of the groups is equal to zero. All tests are performed in R with the bootdpci command from
[29]. Furthermore, for significant results (p < 0.05) we report a robust effect size measure, ξ, based on a
generalization of explanatory power [30]. We interpret effect sizes ξ > 0.15, 0.35, 0.50 as small, medium and
large effects respectively, as suggested in section 5.3.4 in [29] and we report the absolute value of effect sizes.
All effect sizes were found in R with the yuenv2 command from [29].

In terms of application categories, column C1 in Table 6 details the tests results. We find significant
differences in the normalized usage time of several app categories. In all cases we find higher usage time in
the smartphone pure sessions. In the cases of Camera, Photo and Gallery, and Video the reduced usage in
mixed sessions can be explained by users preferring the larger tablet screen, which is typically optimized for
viewing high resolution images. All three categories also have large effect sizes. In terms of individual app
usage, column C2 in Table 7 details the tests results. We find significant differences in the usage time of
Web Browsers, Email, and Messengers. Again, we find higher usage among the smartphone pure sessions.

Overall, the results suggest that users do use their smartphone differently when they are also using a
tablet device in the same usage session. However the usage differences vary significantly for both application
categories and individual apps. These differences suggest that platform or app developers could optimize

5We note that multidevice users’ tablet usage behavior in different situations is also interesting but not as easily studied
because certain session types, for example tablet pure usage sessions, are relatively rare in practice. Thus we omit such analysis.

6The times must be normalized because the total usage times for these two sessions types are not equal.
7We also performed the analysis without this constraint and found similar results.
8This difference score approach, as opposed to a marginal distributions approach, tells about the typical differences for a

randomly selected user. Refer to section 5.9.9 in [29]
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Table 6: Smartphone Usage across Session Types - App Category
Tests Results

Category Name C1 P-valuesa

Other 0.776 PS>MS
Shopping 0.036* PS>MS (0.66)
Health -b

Productivity 0.122 PS>MS
Maps and Navigation -
Entertainment and Sports 0.670 PS>MS
Camera 0.000*** PS>MS (0.71)
Weather 0.004** PS>MS (0.38)
Photos and Gallery 0.000*** PS>MS (0.81)
E-Books -
Games 0.432 PS>MS
Finance 0.152 PS>MS
Social Networking 0.066 PS>MS
Music and Audio -
Video 0.026* PS>MS (0.66)
News -

a For significant results the significance level, relationship be-
tween trimmed means, and robust effect size are also reported.
b Indicates that not enough users of the category to reach
threshold of at least 50% usage.

Table 7: Smartphone Usage across Session Types - In-
dividual App Tests Results

App Name C2 P-valuesa

Other 0.000*** MS>PS (0.16)
Web Browsers 0.040* PS>MS (0.19)
YouTube -b

Email Apps 0.002** PS>MS (0.41)
Facebook 0.088 PS>MS
Messenger Apps 0.008** PS>MS (0.12)

a For significant results the significance level, rela-
tionship between trimmed means, and robust effect
size are also reported.
b Indicates that not enough users of the app to
reach threshold of at least 50% usage.

the user experience in cases where, for example, the smartphone can detect or infer whether a tablet is
being used simultaneously. Such optimizations would be an logical extension of already existing contextual
optimizations (such as detecting significant location like home or work) to the case of using multiple devices.
For example, when viewing gallery photos on a smartphone with a nearby tablet device, the smartphone
can suggest that the tablet be automatically woken up with the same photo in the gallery loaded so the
larger screen tablet can be utilized for viewing.

5.4. Smartphone and Tablet Usage Substitution

In this section we study the potential substitution effects between smartphones and tablets. More
specifically, we study whether tablet usage is primarily usage shifted from smartphones (thus substituting
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Table 8: Smartphone and Tablet Substitution - Total App Time Tests Results

C3 P-valuesa C4 P-valuesa

Total App Time 0.001*** MD>NMD (0.33) 0.015* NMD>MD (0.22)

a For significant results the significance level, relationship between trimmed means, and
robust effect size are also reported.

the tablet for the smartphone), truly novel usage, or a combination of both. Furthermore, we study which
specific activities are part of any shifted usage or novel usage.

Undoubtedly, the most sound approach to study such substitution effects would be to compare smart-
phone usage before and after the acquisition of a new tablet. However given a one month panel, relatively
few users acquire a tablet during the observation period. Thus, we instead use an indirect approach to mea-
suring these effects. Specifically, we compare the usage behavior of multidevice users (dataset 1, hereafter
MD users) and non-multidevice users (dataset 2, hereafter NMD users). Thus under the assumption that
these users are relatively similar, we can identify the tablet usage of MD users as purely novel usage, usage
where a tablet was substituted for a smartphone, or a combination of both. We perform this identification by
studying two distinct issues. First we study whether MD users have significantly more overall usage (across
all devices) compared to NMD users (thus indicating novel usage). Second, we study whether MD users
have significantly less smartphone usage than NMD users (thus indicating substitution). Furthermore, we
make these comparisons first with regard to all usage, and then for individual app categories and individual
apps. We use the same threshold for including app categories and individual apps as in Section 5.3.

In practical terms, performing both of these comparisons is again reducible to testing for significant
differences between usage distributions. To perform these tests, we use a percentile bootstrap method that
compares the 20% trimmed means (section 5.4 in [29]). Again we use the 20% trimmed mean as the location
measure because of significant outliers. Thus the null hypothesis is equality of the 20% trimmed means
between the groups. All tests are performed in R with the trimpb2 command from [29]. And again, for
significant results (p < 0.05) we also report a robust effect size measure.

First, we compare the overall usage distributions (all usage across all devices) of the groups, Column
C3 in Table 8 details the test result. We find that group MD has significantly higher trimmed mean usage
time, 244.64 compared to 172.81 minutes per day. Second, we compare the smartphone usage distributions
of the groups (all usage from smartphones), column C4 in Table 8 details the test result. We find group
NMD has significantly higher trimmed mean usage time, 172.81 compared to 138.00 minutes per day. Thus
these results suggest an overall combination of substitution and novel usage. Specifically, the results suggest
that of the mean 71.83 minutes per day of tablet usage about 48% is substitution and 52% is novel usage.
Finally, in terms of magnitude, the robust effect sizes suggest weak to moderate effects. This combination of
substitution and novel usage have been previously observed in the case of smartphone and PC users where
usage information was collected through semi-structured interviews [17].

Next, we perform the same comparisons but with regard to app usage within app categories rather than
overall usage. Column C5 in Table 9 details the tests results for app categories across all devices. Whereas
column C6 in Table 9 details the tests results for app categories from smartphones.

Interestingly, we find relatively few categories with significant novel usage or substitution, only the
productivity and video categories indicate potential novel usage while only the games category indicates
substitution. The substitution of a tablet for smartphone while playing games is unsurprising given that
many games require touch based gestures and interaction that is more easily performed on the larger tablet
display. Interestingly though, the productivity and video categories together only account for about 38%
of the total novel usage and games only accounts for about 20% of total substituted usage. Thus other
categories are likely also affected though not to a statistically significant level. Also we note that in all
results from this comparison the effect sizes are relatively small.

Finally, we perform the comparisons with regard to app usage of a collection of individual apps. Column
C7 in Table 10 details the tests results for individual apps across all devices and column C8 in Table 10
details the tests results for individual apps from smartphones. The results indicate web browsers and email
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Table 9: Smartphone and Tablet Substitution - App Category Tests Results

Category Name C5 P-valuesa C6 P-valuesa

Other 0.013* MD>NMD (0.26) 0.443 NMD>MD
Shopping 0.490 MD>NMD 0.337 NMD>MD
Health 0.054 MD>NMD 0.050 MD>NMD
Productivity 0.016* MD>NMD (0.20) 0.083 NMD>MD
Maps and Navigation 0.449 MD>NMD 0.835 NMD>MD
Entertainment and Sports 0.115 MD>NMD 0.202 NMD>MD
Camera 0.190 MD>NMD 0.331 MD>NMD
Weather 0.348 MD>NMD 0.634 MD>NMD
Photos and Gallery 0.164 MD>NMD 0.315 MD>NMD
E-Books 0.061 MD>NMD 0.520 NMD>MD
Games 0.216 MD>NMD 0.004*** NMD>MD (0.29)
Finance 0.103 MD>NMD 0.880 MD>NMD
Social Networking 0.334 MD>NMD 0.850 MD>NMD
Music and Audio 0.359 NMD>MD 0.057 NMD>MD
Video 0.011* MD>NMD (0.28) 0.201 NMD>MD
News 0.173 MD>NMD 0.877 NMD>MD

a For significant results the significance level, relationship between trimmed means, and robust effect
size are also reported.

Table 10: Smartphone and Tablet Substitution - Individual App Tests Results

App Name C7 P-valuesa C8 P-valuesa

Other 0.005** MD>NMD (0.27) 0.002** NMD>MD (0.27)
Web Browsers 0.003** MD>NMD (0.25) 0.057 NMD>MD
YouTube 0.140 MD>NMD 0.148 NMD>MD
Email Apps 0.029* MD>NMD (0.19) 0.781 MD>NMD
Facebook 0.133 MD>NMD 0.772 NMD>MD
Messenger Apps 0.969 NMD>MD 0.913 NMD>MD

a For significant results the significance level, relationship between trimmed means, and
robust effect size are also reported.

apps as novel usage which is expected given that they are both classified as productivity apps. However, the
most surprising result is that the YouTube app is not significant despite the significance of the larger video
category. This might be in part due to the typically shorter and lower resolution clips on YouTube that do
not benefit as much from a larger tablet display, as compared to other applications in the video category
such as Netflix, Flixter, and Google Play Movies.

Importantly, our analysis of substitution effects relies on the assumption that the users of the two groups
are relatively similar. This assumption is certainly not strictly true since certain types of users (basic,
advanced, etc.) are both more likely to acquire a tablet device and to, for example, use certain applications
more often. However, the differences in user types are unlikely to be large enough to cause all of the
observed effects. We find that only household income is statistically significantly different (p < 0.05) in the
demographics and smartphone technographics described in Table 1 between the groups. Furthermore, we
look to address these concerns in future work (refer to Section 7).

6. Discussion

We briefly reiterate a few implications of the analysis results for two different mobile ecosystem players
and we discuss our views on replicability and generalizability.
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For developers and designers of mobile apps, our results have implications in terms of illustrating both
the ubiquity of and diversity within multidevice mobile interaction. For example, our results indicate that,
for our panelists, over 50% of mobile device usage time can be considered multidevice usage. This ubiquity
implies that developers and designers should already be thinking and designing in terms of multidevice mobile
sessions. Towards this end, developers and designers can formalize their thinking through the application
of already available multidevice interaction frameworks such as the 4C framework [31].

Whereas the diversity within multidevice interaction suggests that multidevice solutions should adapt
to a particular user’s usage patterns (as less adaptive solutions would not be able to handle this diversity).
Relatedly this diversity will likely grow as the number of device types increases and new device types continue
to fill small under-served niches (the smartwatch [32] being a clear example).

Additionally for mobile developers and designers, we also provide potential targets for improved mobile
interaction design such as certain smartphone usage sessions where simultaneous usage of a tablet device can
be inferred (as we illustrated based on smartphone app usage). For example, a user might start watching a
video on their smartphone and the smartphone can suggest that the video be played directly on the tablet
if simultaneous tablet usage is inferred. Such contextual inference can be viewed as helping users exploit
the strengths and weaknesses of different device types without the need for the user to consciously consider,
for example, device switches (as is the current case with systems such as Apple airplay).

Finally, in relation to related work, given our device based data approach, our work can be viewed
as complimentary to expert survey based studies of design and development challenges for multidevice
interaction such as [33] and [34]. For example, [33] specifically identified “unverified assumptions about
multidevice use” as a challenge in multidevice experience design. They detail that one expert believed that
users seldom access multiple mobile platforms (for example Android smartphone and iOS tablet). However
we found that 14% of panelists had different platforms on their smartphones compared to their tablets.
Though as we mention later, we have to be cautious with generalizations.

Whereas for advertisers, our results have implications in terms of understanding in-app advertising in
the smartphone and tablet multidevice context. For example advertisers can understand the relative ad
inventories between specific device types of users. Additionally we show that, given fixed ad refresh rates
(in short timescales) and the effect of impression time on ad recognition and recall [35], the differences
in smartphone and tablet session characteristics (length and frequency) suggest simple metrics such as
number of ad impressions might need to be complemented with more complex metrics such as multidevice
ad impression time.

Finally, we also discuss our views on replicability and generalizability. Replicability and generalizability
are important concerns in panel based studies in general. Furthermore, given the rapidly changing nature
of mobile devices, these concerns are especially relevant for mobile device based panels and we attempt to
alleviate some of these concerns by having a relatively diverse multi-platform panel. However, overall we
agree with Church et al. [36] that these studies are mainly about the panel populations themselves and the
value is primarily in allowing researchers and the community to compare and contrast different experiences
with different user populations to build a comprehensive understanding of the variety of mobile users and
their unique behaviors. In this sense our multidevice usage study provides an initial benchmark that we
hope spurs further investigations.

7. Conclusions and Future Work

In this paper, we provided a first look at multidevice usage by examining the smartphone and tablet
usage of a US-based user panel from February 2015. Our contributions include both a descriptive analysis
of the panel’s multidevice usage and novel methods for examining multidevice usage in general.

We present a basic method for aggregating app sessions into multidevice usage sessions through well
known Allen’s interval relations.

Then we provide extensive descriptive statistics of both the multidevice and single device usage sessions.
The statistics indicate, for example, that about 50% of total device usage time is multidevice usage, 40%
smartphone only usage, and 10% tablet only usage.
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We describe and apply a novel method to study diversity in temporal patterns in multidevice sessions.
The results indicate that about 35% of multidevice sessions are dominated by a single device with only
sparse usage of the second device. However, we also find significant diversity with 25 different temporal
patterns having at least 1% share of multidevice sessions.

We compare the smartphone usage of users inside and outside multidevice sessions. Paired statistical
tests indicate that in general users do use their smartphones differently during multidevice sessions compared
to single device sessions. However the magnitude of the differences depends on the specific applications used.

Finally, we study usage substitution between smartphone and tablet devices by comparing the usage of
the multidevice panel and a supplementary panel of users without tablet devices. The results indicate that
tablet usage is likely a combination of usage shifted from a smartphone (thus substituting the tablet for the
smartphone) and truly novel usage. Quantitatively, the results suggest that tablet usage is about equally
divided between these cases, 48% and 52% respectively. Furthermore, we find that productivity apps such
as web browsing and email and video apps account for a significant portion of novel usage, while game apps
account for a significant portion of shifted usage.

In terms of general future research, a natural direction would be to expand the multidevice analysis
to include personal computer usage. Personal computer usage data was collected from panel users but
considered out of scope for this paper. As mentioned in Section 3, a difficulty in such an expansion is that
the simple foreground app session definition is not directly transferable to the personal computer context.
Though we plan to examine this difficulty in future work.

For future research in device substitution effects, the demographic information might allow a propensity
score matching [37] approach to user group comparison. Such an approach would strengthen resulting
conclusions. Furthermore since the panels are continuously ongoing, eventually the gold standard comparison
of usage before and after device acquisition might be feasible.
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Appendix A.

Table A.11: Shares of app category and app usage timea

Dataset 1 Dataset 2

Category Name Smartphone Tablet Smartphone
Other 37.97 % 42.84 % 42.70 %
Social Networking 31.62 % 5.77 % 20.61 %
Games 8.09 % 27.81 % 13.22 %
Video 6.06 % 12.27 % 3.93 %
Productivity 4.21 % 2.09 % 3.20 %
Shopping 3.72 % 1.30 % 3.57 %
Photos and Gallery 1.55 % 0.18 % 0.70 %
E-Books 1.47 % 0.62 % 1.81 %
Entertainment and sports 1.25 % 3.03 % 6.07 %
Music and Audio 1.08 % 0.40 % 1.48 %
Maps and Navigation 0.67 % 0.11 % 0.60 %
Camera 0.55 % 0.08 % 0.41 %
Health 0.54 % 0.03 % 0.40 %
News 0.48 % 3.16 % 0.49 %
Finance 0.38 % 0.16 % 0.47 %
Weather 0.36 % 0.15 % 0.33 %
App Name
Other 49.69 % 62.04 % 59.63 %
Facebook 16.43 % 4.60 % 10.57 %
Messenger Apps 15.19 % 1.17 % 10.04 %
Web Browsers 12.59 % 18.33 % 13.51 %
Email Apps 4.16 % 2.03 % 3.19 %
YouTube 1.94 % 11.83 % 3.06 %

a The values are calculated over the whole datasets

Table A.12: Usage session construction statistics for dataset 2

Smartphone usage

Number of app sessions 2917208
Number of single device usage sessions 629471
Share of Allen’s relations
precedesWithinTW 8.23 %
meets 41.95 %
metBy 41.60 %
precededByWithinTW 8.23 %

Table A.13: Basic statistics on the whole dataset level for dataset 2

Usage session length (s) App sessions per usage session

mean 382 4.61
median 62 2.00
std. dev. 2156 8.44

Table A.14: Basic statistics on per user level for dataset 2a

Usage session
length (s)

App sessions per
usage session

Usage sessions
per day

Interaction time
per day (min)

mean 171 2.57 47.12 298.87
median 66 3.00 42.06 261.09
std. dev. 839 1.33 27.76 205.64

a Usage session length and app sessions per usage session statistics are calculated
from the per user medians of these metrics.
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