
Efficient Data Perturbation for Privacy Preserving and Accurate Data
Stream Mining

M.A.P. Chamikaraa,b,∗, P. Bertoka, D. Liub, S. Camtepeb, I. Khalila

aRMIT University, Australia
bCSIRO Data61, Australia

Abstract

The widespread use of the Internet of Things (IoT) has raised many concerns, including the protection

of private information. Existing privacy preservation methods cannot provide a good balance between

data utility and privacy, and also have problems with efficiency and scalability. This paper proposes an

efficient data stream perturbation method (named as P 2RoCAl). P 2RoCAl offers better data utility

than similar methods: classification accuracies of P 2RoCAl perturbed data streams are very close to

those of the original data streams. P 2RoCAl also provides higher resilience against data reconstruction

attacks.

Keywords: Privacy, privacy preserving data mining, data streams, Internet of Things (IoT), Web of

Things (WoT), sensor data streams, big data.

1. Introduction

The Internet of Things (IoT) is becoming widely popular as it connects typical day to day devices

such as kitchen appliances, cars, washing machines, headphones, wearables, etc. to the Internet to al-

low life activities to be more intelligent, efficient and reliable [1]. IoT devices can forward a significant

amount of data in streams from various sensors via long-lasting connections. IoT has revolutionized

many fields including health-care, wellbeing applications, social life, environment monitoring, trans-

portation, and energy. The availability of low-cost pervasive sensing devices has enabled IoT to grow

in an ever-increasing manner, and IoT sensor streams have become a vital source of big data [1, 2].

The vast diversity of IoT devices introduces many challenges [3], among which the most important

ones are (i) effective data collection, (ii) efficient data processing, and (iii) privacy protection and

security [4]. The availability and increased accessibility of IoT sensors often introduce the risk of privacy

∗Corresponding author
Email address: pathumchamikara.mahawagaarachchige@rmit.edu.au (M.A.P. Chamikara )

Preprint submitted to Journal of Pervasive and Mobile Computing June 20, 2018

ar
X

iv
:1

80
6.

06
15

1v
2 

 [
cs

.D
B

] 
 1

9 
Ju

n 
20

18



breach for individuals. Pervasive data collection, such as crowd sensing applications, may involve

sensitive personal information including lifestyle, habits and personal preferences, and accessibility to

such information by a third-party may raise privacy concerns [5]. It is important to share IoT streams

(or big data in general) so that authorized third parties can make valuable decisions, but information

extracted from these streams should not be linkable to individuals.

Disclosure control of microdata refers to the process of applying different privacy-preserving mech-

anisms to the data before releasing them for analysis [6]. Privacy-preserving data mining (PPDM)

has been widely investigated for big data, and similar approaches to IoT streams are now emerging.

Privacy-preserving methods are struggling to achieve higher accuracy [7], and the exponential growth

in IoT-sourced data streams adds another layer of difficulties [8]. The popular PPDM techniques are

either not scalable or not efficient enough to deal with this, and privacy preservation of data streams

is still a significant challenge. Technological advancements in data storage have eased the burden of

storing large chunks of data generated by a variety of sources [9]. In addition to the issues posed by

big data, IoT faces the problem of efficient data processing, as the devices are most often resource con-

strained. Therefore, the efficiency of privacy preservation techniques is essential. The unpredictability

and diversity of data streams form a challenging environment for privacy-preserving algorithms that

want to achieve high accuracy.

Data perturbation is a privacy preservation technique that alters the values of data elements in

a database to maintain individual record confidentiality [10]. Among PPDM techniques, data per-

turbation is relatively simple. Additive perturbation [11], [12], random rotation [13], geometric per-

turbation [14], microaggregation [15] and condensation [16] are some of the existing perturbation

methods. Privacy preservation of IoT data streams presents several additional challenges, as the data

is released incrementally, endlessly, and its fast nature hinders the possibility of using historical in-

formation. Differential privacy (DP) has attracted attention due to the level of privacy guarantee it

provides [17, 18, 19, 20, 21]. DP is a privacy model, similar to k − anonymity [22], l − diversity [23],

which defines a strong privacy guarantee over data. But deploying methods to achieve DP over data

streams is challenging due to the limit of privacy budget offered by it [24]. Prominent attempts of

privacy preservation of data streams include anonymization [25], randomization, microaggregation and

data condensation [7, 26]. However, these methods have not been able to balance privacy and accuracy

effectively: when one is preserved, the other seems to suffer.

The main contribution of this paper is an efficient and secure algorithm that can be used for

2



perturbing high-speed data streams such as those produced by IoT devices. Fast execution with

predictable execution time guarantees the capability of working with continuously growing big data.

The method first conducts homogeneous group formation (based on tuple distances) and uses group

properties to generate a rotation matrix to perform rotation perturbation upon each group. The

efficiency of the proposed method was proven by testing it on generic datasets retrieved from the UCI

data repository 1. Classification accuracy of the perturbed datasets was also proven by using different

classification algorithms. The results indicate that the proposed method is very effective in privacy-

preserving data stream classification. The proposed algorithm’s privacy protection was demonstrated

against several, often-used attack methods, including naive estimation [7], known I/O [7] attacks and

Independent Component Analysis (ICA) [7]. A comparison with random rotation perturbation [13] and

data condensation [14] indicated the proposed method’s superiority in both classification accuracy and

data privacy. Clear advantages of the proposed scheme in efficiency, accuracy and data privacy make it

an excellent solution for data streams demanding on-line processing in resource limited environments.

The remainder of this paper is organized in the following manner. Section 2 provides a literature

review on the existing related methods. Section 3 provides the methodology employed by P 2RoCAl

along with its variations. Section 4 presents the results produced by P 2RoCAl in the sense of classifi-

cation accuracy, attack resilience, time complexity, and scalability. A comprehensive discussion on the

results is provided under Section 5 with some future directions. The paper is concluded in Section 6.

2. Literature Review

IoT enables the interaction of heterogeneous information systems to deliver important, diversified

services to users. IoT devices are used in many domains such as health-care, smart cities, and wear-

ables [1]. The explosive growth of IoT has produced a vulnerable medium that may leak sensitive

data to unwanted third parties. IoT often includes wireless sensor networks to collect and process

data, hence generates incremental data streams that eventually result in big data. IoT often brings up

many security and privacy issues such as confidentiality, authentication and authorization [2]. But, it

is also important that authorized third parties be able to retrieve IoT stream data and big data, e.g.

to generate valuable insights using data mining techniques. Different attempts in the literature tried

to impose privacy on IoT data, such as controlling access over authentication [27], Attribute-Based

1https://archive.ics.uci.edu/ml/index.php

3



Encryption [28], temporal and location-based access control [27] and employing constraint-based pro-

tocols [29] are a few examples of such methods. Yabo Xu et al. have adapted Naive Bayesian Classifier

for private data streams, but their method is not suitable for generic data stream classification [30].

Feifei Li et al. derived a method to efficiently and effectively track the correlation and autocorre-

lation structure of multivariate streams and leverage it to add noise to preserve privacy. However,

the method is vulnerable to principal component analysis-based attacks [31]. Josep Domingo-Ferrer

et al. proposed a method named Steered Microaggregation that can be used to anonymize a data

stream to achieve k-anonymity. But the problem of information leak inherent to k-anonymity over

high dimensional data can be a shortcoming of the method [26]. Aggarwal C.C. et al. proposed a

condensation based privacy-preserving method for data mining. The method is scalable and efficient,

but its ability to maintain a good balance between privacy and utility is questionable. When the

method parameters are set to achieve high accuracy (using small spatial locality), the privacy of the

data often suffers [32]. Condensation can be considered as a descendant of microaggregation which

follows a similar mechanism of homogeneous group formation. Both microaggregation and condensa-

tion use the concept of within-group homogeneity. The main difference between them is that, while

in microaggregation a single central tendency measure is used, condensation uses a covariance matrix

based mechanism [16, 15].

Privacy can have different meanings and definitions. From our perspective, privacy can be consid-

ered as “Controlled Information Release” [33]. The advancements in data mining and dissemination

methods increased the demand for preservation of privacy [34]. As a result, privacy preservation be-

came an important prerequisite of any data mining system, and literature shows many attempts to

address the related issues [35]. Privacy-preserving techniques can be classified as data distribution

scenarios (centralized or distributed), data modification methods (perturbation, encryption, general-

ization, etc.), data mining algorithms, and data or rule hiding methods [34]. Data perturbation comes

under data modification methods, where the data are subjected to modification using different ap-

proaches such as noise addition [11], microaggregation [15] and randomization. Perturbation attracted

attention due to its relative simplicity and efficiency compared to other PPDM methods [35]. Data

perturbation methods can be classified into input perturbation and output perturbation. The latter

is based on the concepts of noise addition and rule hiding while the former is performed either by the

addition of noise [11] or multiplication by noise [36]. Input perturbation can be divided further into

unidimensional perturbation and multidimensional perturbation [37, 38, 36, 39]. Additive perturba-

4



tion [11], randomized response [40], and swapping [41] are types of unidimensional input perturbation;

microaggregation possesses both unidimensional and multidimensional perturbation capabilities [15],

whereas condensation [16], random rotation [13], geometric perturbation [14], random projection [36],

and hybrid perturbation are types of multidimensional perturbation [35].

A privacy model should identify the limits of private information protection/disclosure [42]. Earlier

privacy models, such as k−anonymity [22], l−diversity [23], (α, k)−anonymity [43], t−closeness [44]

show vulnerability to different attacks, e.g. minimality [45], composition [46] and foreground knowl-

edge [47] attacks. Later, it was proven that many of these models face challenges in regards to the

curse of dimensionality [48, 25]. For example in the cases of big data and data streams, the methods

that try to satisfy these privacy models tend to have higher privacy leak [48]. Differential privacy (DP)

is another privacy model that provides a strong privacy guarantee. Global differential privacy (GDP)

and local differential privacy (LDP) are the two models that can be used to achieve DP over data.

GDP is based on output perturbation where the method and amount of data perturbation are deter-

mined based on the query outputs. GDP is also called the trusted curator model, where the analyst

would only be able to run queries on the database whereas in local differential privacy (LDP) input

perturbation (e.g. using randomized response [49]) is applied to facilitate full/ partial data release.

In LDP the analysts can run their analysis directly upon the perturbed data [50, 51], e.g. increasing

information content via injection of additional noise to minimize privacy leakage [52]. However, GDP

and LDP show poor performance for small datasets, as accurate estimation of the statistics shows poor

results over heavily noisy data. Furthermore, existing LDP algorithms involve a significant amount

of noise addition/ randomization on input data, resulting in a lower level of utility for data streams.

As the data stream’s lifespan extends, the GDP and LDP processes will have to be restarted when

the privacy budget is reached. This drastically reduces the utility of DP in the perspective of data

streams [24]. Utility and privacy often appear as conflicting factors, and improved privacy is frequently

accompanied by reduced utility [53].

The most relevant to the approach we propose are two perturbation methods: data condensation

and rotation perturbation. In data condensation, the data are divided into multiple homogeneous

groups of predefined size in such a way that the difference between the records in a particular group is

minimal, and a certain level of statistical information about different records is maintained. Then the

sanitized data are generated using the uniform random distribution based on the eigenvectors which are

generated using the eigendecomposition of the characteristic covariance matrices of each homogeneous

5



group [16]. Although condensation is a good contender among privacy preservation algorithms, in

some instances the condensation approach fails to provide enough privacy, especially when the spatial

locality of subgroups are small, which can be a characteristic feature of data streams. On the other

hand, when spatial locality is large, the quality of the dataset drastically reduces [14], and hence the

accuracy decreases. Random rotation perturbation is a matrix multiplicative [54] data perturbation

method, in which the original data matrix is multiplied using a random rotation matrix that has

the properties of an orthogonal matrix. The application of rotation is iterated until the algorithm

converges at the desired privacy level [13]. Due to the isometric nature of transformations, random

rotation perturbation is capable of preserving the distances between the tuples in the original datasets

[13], and therefore it provides high utility towards classification and clustering. However, due to the

recursive nature of random data generation, this method consumes an extensive amount of computer

resources, making it difficult to work with extensively large datasets.

Literature shows many attack methods that can be used to re-identify individuals in a sanitized

database. It has been noted that different methods are vulnerable to different types of attacks. There

are many types of attack methods such as principal component analysis [55], maximum likelihood

estimation [56], known I/O attack [7], ICA attack [57] and known sample attack [7]. These attacks

basically try to regenerate the original dataset. For example, additive perturbation can be attacked

using different data/noise reconstruction algorithms that are based on concepts such as principal com-

ponent analysis [58], maximum likelihood estimation [58]. Multiplicative data perturbation methods

can be exploited using known input/output (I/O) attacks, known sample attacks, and ICA attacks.

Many of the previously proposed privacy preservation methods, including data perturbation, per-

form poorly when high dimensional datasets are introduced. Even when the performance is good

for low dimensional data, as the number of attributes and number of instances increase, the amount

of necessary computer resources increase exponentially [23, 13, 14]. This is often called “the curse of

dimensionality”, and not only makes the perturbation process extensive, it also provides extra informa-

tion to attackers. The higher the dimensions in the datasets, the easier attackers can use background

knowledge to determine the identity of individuals [48].

Literature shows a paucity of efficient privacy preservation methods scalable enough to handle the

exponentially growing databases and data streams such as IoT stream data. It can also be noted that

the existing methods have problems with utility, level of uncertainty, and low level of resilience. A new

data stream perturbation method that is scalable, efficient, and robust would overcome the existing

6



issues of the past PPDM methods and provide a solution towards large-scale privacy-preserving data

stream and big data mining.

3. Method

This section provides a comprehensive description of the proposed method named as P 2RoCAl:

Privacy-Preserving Rotation based Condensation Algorithm. P 2RoCAl is a privacy preservation al-

gorithm for data streams and big data. It uses the properties of data condensation and rotation

perturbation and combines their qualities, the efficiency of condensation and accuracy of rotation per-

turbation. P 2RoCAl is designed to perturb data before the storage phase in the general purpose data

flow of IoT data streams as depicted in Figure 1. That is, the stored data has already gone through

the privacy preservation process of P 2RoCAl.

Figure 1: Application of P 2RoCAl in the general purpose data flow of IoT data streams.

P 2RoCAl initially clusters the data into multiple homogeneous groups (grouping and clustering will

be used interchangeably throughout the paper with the same meaning). Data processing for privacy

preservation is then imposed on the fixed-size data chunks that are dynamically maintained. Next,

the covariance matrix of each group is generated using group statistics. After that, the covariance

matrices are used to generate the corresponding geometric rotational groups. The rotated groups are

then merged, and the tuples are randomly shuffled and released. The main steps of the proposed

algorithm are presented in Figure 2 and Algorithm 2. The initial data grouping process can be

conducted using Algorithm 1. Parameter k (number of groups/clusters) or k′ (number of tuples

in a group/cluster) in Algorithm 1 is accepted as a user input prior to the data grouping process.

After accepting the input dataset D and the initial k or k′, the clustering/grouping of the dataset D is

conducted using Algorithm 1. Here each group/cluster is considered to be a condensed group containing

7



the records {X1, X2, ..., X
′
k}. Next, we generate the covariance matrix C(Gi) that corresponds to each

group/cluster. In order to do so, we need to maintain the following information as characterized by

data condensation [16].

• For each attribute, the sum of corresponding values.

• For each pair of attributes, the sum of the product of corresponding attribute values.

Algorithm 1 Data clustering/grouping process

Inputs :

D ← original dataset with m tuples and n attributes

k ← number of groups/clusters (flag = 1)

or

k′ ← number of tuples/instances in one cluster/group (flag = 0)
Outputs:

G ← homogeneous groups

1: if k > n or k′ < 2 then

2: stop

3: end if

4: if flag == 1 then

5: conduct k-means clustering on the dataset to form the k number of groups (G1, G2, .., Gk)

6: else if flag == 0 then

7: i=1

8: repeat

9: randomly sample a tuple (Xi) from D

10: select the closest k′ − 1 and Xi from D to form a cluster, Gi

11: remove the selected k′ tuples from D

12: i=i+1

13: until D is empty

14: end if

End Algorithm

After generating each covariance matrix, the eigenvectors of each covariance matrix are determined

by decomposing C(Gi) according to Equation 1. Here, the columns of P (Gi) represent the eigenvectors

of covariance matrix C(Gi). Since the matrix is positive semi-definite, the corresponding eigenvectors

form an orthonormal axis system. Hence, the resulting matrix of eigenvectors (P (Gi)) of a particular

covariance matrix, which corresponds to a homogeneous group, has the properties of an orthogonal

matrix where columns and rows are orthonormal. Therefore, P (Gi) preserves the relationship P (Gi)×

P (Gi)
T = P (Gi)

T × P (Gi) = I where P (Gi)
T is the transpose matrix of P (Gi) and I is the identity

matrix. This implies that P (Gi) of a particular homogeneous group has all the properties of a rotation

matrix. It was also proven that the resulting matrix is still an orthonormal matrix, although the order

8



of the rows or the columns of the orthonormal matrix is changed [14]. Hence the column-permuted

matrix of the resulting rotation matrix will also behave as a rotation matrix. This property was next

used to randomize the process of rotation perturbation by generating randomized matrix RP (Gi) by

a random column shuffle of P (Gi).

C(Gi) = P (Gi)×∆(Gi)× P (Gi)
T (1)

9



Accept the dataset (with m tuples and n attributes) to be sanitized

Accept the input value for k or k′

Conduct the clustering process
according to Algorithm 1

Generate covariance matrices of each group C(Gi)

Determine the eigenvectors of each covariance matrix by decomposing
C(Gi) in the following form: C(Gi) = P (Gi)×∆(Gi)× P (Gi)

T

Generate RP (Gi) using random column shuffle

Multiply the records in each group
using the corresponding RP (Gi) of that group

Merge the rotated groups

Shuffle the tuples of the dataset

Release the final dataset

Figure 2: Perturbation algorithm for a static database

3.1. Algorithm for static datasets

Algorithm 2 and the Figure 2 show how the perturbation is conducted on a static dataset where

the whole dataset is fed to the algorithm once. At the end of the group rotations, the rotated groups

will be merged, and the tuples will be randomly swapped (shuffled) to increase randomness in the final

dataset to improve data privacy. Flag values of Algorithm 2 represent the two configuration selections

10



for the two types of clustering/grouping possible. If the user provides k (number of groups/clusters) as

the input value, flag will be set to 1, and the grouping will be conducted using k −means clustering

as fixed in Algorithm 1. If k′ (number of tuples in a group/cluster) is selected as the input, flag will

be set to 0 (which is the default setting). The grouping is done using the random clustering process as

fixed in Algorithm 1 under the setting of flag = 0. In case of group size of only one tuple, the rotation

will be applied according to the configurations of the closest previous group with more than one tuple.

This step is used to increase the effect of perturbation, as for a group of one tuple, the result can be a

rotation matrix that is equal to the identity matrix I. The multiplication of a vector and the identity

matrix results in the same vector generating zero perturbation effect on the initial vector. This can be

avoided using the perturbation process correction done in line 9 of Algorithm 2 as explained above.

Algorithm 2 P 2RoCAl for Static Datasets

Inputs :

D ← original dataset with m tuples and n attributes

k ← number of groups/clusters (flag = 1)

or

k′ ← number of tuples/instances in one cluster/group (flag = 0)
Outputs:

Dp ← perturbed dataset

1: conduct clustering/grouping on the dataset using Algorithm 1

2: for each group/cluster Gi do

3: generate C(Gi)

4: if ithgroupsize > 1 then

5: C(Gi) = P (Gi)×∆(Gi)× P (Gi)
T

6: generate RP (Gi) using random column shuffle

7: Dp(Gi) = (RP (Gi)×D(Gi)
T )T

8: else

9: choose the last rotation matrix, RP (Gl) of the group

with number of tuples greater than 2

10: Dp(Gi) = (RP (Gl)×D(Gi)
T )T

11: end if

12: end for

13: Dp = merge(Dp(G1), Dp(G2), . . . , Dp(Gn))

14: randomly swap the tuples of Dp

15: release Dp

End Algorithm

3.2. Algorithm for data streams

In the case of data streams, the algorithm accepts a buffer size of l and a threshold (t) for data

release where t is the number of data chunks of size l to be released before the data stream is paused or

11



stopped as denoted in Algorithm 3 and Figure 3. The algorithm assumes that the minimum group size

is two tuples, that is, the constraint of l < 2× k is imposed. This constraint is to avoid the possibility

of ending up with k number of groups where some groups will have one tuple, and some groups will

have none.

Accept the input values k or k′

and t threshold for data release
(t is the number of data chunks of size l to be released)

Accept l number of tuples from the data stream
(l the buffer size where, l > 2× k)

Conduct the clustering process
according to Algorithm 1

Generate covariance matrices of each group C(Gi)

Determine the eigenvectors of each covariance matrix by decomposing
C(Gi) in the following form: C(Gi) = P (Gi)×∆(Gi)× P (Gi)

T

Generate RP (Gi) using random column shuffle

Multiply the records in each group
using the corresponding reordered RP (Gi) of that group

Merge the rotated groups

Shuffle the tuples of the dataset (of size l)

Buffer the perturbed group (of size l)

Release the merged dataset of size t× l when the threshold t is reached

Repeat until the
data stream is

stopped/paused

Figure 3: Perturbation algorithm for a data stream

Data streams often grow ad infinitum incrementally. This makes the process of privacy preservation

12



complex. To reduce the complexity in the dynamic setting, a data buffer of size l is dynamically

maintained, as shown in Algorithm 3. This data buffer of size l enables generating clusters with better

homogeneity (due to the static nature of clustering). As the algorithm executes, it will accept and

buffer l number of tuples and conduct the perturbation of the buffered data. After perturbation, the

buffered perturbed data is released and merged into the current data chunk, and the buffer can accept

the next set of l tuples. Having a threshold of t avoids the possibility of waiting for a data release for

an unlimited amount of time.

13



Algorithm 3 P 2RoCAl for Data Streams

Inputs :

D ← original dataset stream with n attributes

l ← data buffer size

t ← threshold for data release (number of data chunks of size l to be released

before the data stream stops)

k ← number of groups/clusters (flag = 1)

or

k′ ← number of tuples/instances in one cluster/group (flag = 0)
Outputs:

Dp ← perturbed dataset

1: rep=0

2: if l < 2× k then

3: stop

4: end if

5: repeat

6: receive l number of tuples from the data stream

7: rep=rep+1

8: conduct clustering/grouping on the dataset using Algorithm 1

9: for each group/cluster Gi do

10: generate C(Gi)

11: if ithgroupsize > 1 then

12: C(Gi) = P (Gi)×∆(Gi)× P (Gi)
T

13: generate RP (Gi) using random column shuffle

14: Dp(Gi) = (RP (Gi)×D(Gi)
T )T

15: else

16: choose the last rotation matrix, RP (Gl) of the group

with number of tuples greater than 2

17: Dp(Gi) = (RP (Gl)×D(Gi)
T )T

18: end if

19: end for

20: Dp
rep = merge(Dp(G1), Dp(G2), . . . , Dp(Gn))

21: if rep==t then

22: Dp = merge(Dp
1 , D

p
2 , . . . , D

p
t )

23: randomly swap the tuple of Dp

24: release Dp

25: rep=0

26: end if

27: until the data stream is stopped or paused

End Algorithm

3.3. Variations of the proposed algorithm

The proposed algorithm is configurable and allows the use of different settings. Four versions of

the proposed algorithm were derived: two for static datasets (static setting) and two for data streams

(dynamic setting). The version for static data achieves better results than existing schemes. The

14



version for streams offers a solution for a new, emerging problem that has not received sufficient

research interest so far. Brief descriptions of the algorithms are provided in Table 1. The variations

were evaluated and compared for their accuracy and security against privacy attacks (more details are

available in Section 4).

Table 1: Variations/Derivations of the proposed algorithm

Algorithm Description/Application

P 2RoCAl The umbrella concept (Privacy Preserving Rotation based Condensation Algorithm)
which represents all its derivatives, given in the following rows of this table.

k′ − P 2RoCAl k′ − P 2RoCAl algorithm was used for the static data perturbation where k′ represents
the group size, and the grouping is done using Algorithm 1. This algorithm was tested
with different settings under different experiments. Therefore, the corresponding settings
of k′ − P 2RoCAl are provided under each experiment with different settings.

k − P 2RoCAl kmeans k−P 2RoCAl kmeans algorithm was used for the static data perturbation where grouping
is done using the k−means algorithm and k represents the number of groups. During the
experiments, k was increased from 5 to 35 in successive steps of 5.

k′ − P 2RoCAl streams k′ − P 2RoCAl streams algorithm was used for the stream data perturbation where k′

represents the group size. The grouping is done using Algorithm 1. During the experiments,
k′ was increased from 100 to 500 in successive steps of 100 and the buffer size l was fixed
to 1000.

k − P 2RoCAl kmeans streams k−P 2RoCAl kmeans streams algorithm was used for the data stream perturbation where
grouping is done using the k −means algorithm and k represents the number of groups.
During the experiments, k was increased from 5 to 35 in successive steps of 5 and the buffer
size l was fixed to 1000.

4. Results

This section first provides information about the experimental setup and the resources used in

the experiments. Then it describes the experimental results for all the four variations/derivations of

P 2RoCAl explained in Table 1, and then we compare the results with rotation perturbation (RP)

and data condensation (DC). RP and DC were selected for comparison because P 2RoCAl inherits

some properties of RP and DC. More specifically, the RP’s distance (between the tuples) preservation

property and DC’s clustering/grouping and efficient data processing properties were effectively used

in P 2RoCAl.

4.1. Experimental Setup

All features were tested on a Windows 7 (Enterprise 64-bit, Build 7601) computer with an Intel(R)

i7-4790 (4th generation) CPU (8 core, 3.60 GHz) and 8192 MB RAM. The scalability of the proposed

algorithm was tested using a Linux (SUSE Enterprise Server 11 SP4) SGI UV3000 supercomputer, with

64 Intel Haswell 10-core processors, 25MB cache and 8TB of global shared memory connected by SGI’s

NUMAlink interconnect. The algorithm was implemented in MATLAB R2016b. Data classification

15



tests were carried out by using Weka 3.6 [59] which is a collection of machine learning algorithms for

data mining tasks.

4.1.1. Datasets used for testing and comparison

The datasets used for performance testing have different dimensions and vary from small to large,

and contain only numerical attributes apart from the class attribute. A short description of the seven

datasets used for testing is given in Table 2. The efficiency of the algorithms for the data stream

case (k′ − P 2RoCAl streams and k − P 2RoCAl kmeans streams ) is very closely related to that

of the static case, as we use a buffer size (l) in the case of data streams. To test the performance

of k′ − P 2RoCAl streams and k − P 2RoCAl kmeans streams for the data stream case, the same

datasets which are shown in Table 2 were used with the dynamic settings of Algorithm 3.

Table 2: Short descriptions of the datasets selected for testing

Dataset Abbreviation Number
of
Records

Number
of
Attributes

Number
of
Classes

Winequality2 WQDS 4898 11 7

Page Blocks3 PBDS 5473 11 5

Epileptic Seizure 4 ESDS 11500 179 5

Fried5 FRDS 40769 11 2

Statlog6 SSDS 43501 10 5

Hepmass7 HPDS 3310816 28 2

Higgs8 HIDS 11000000 28 2

4.1.2. Classification algorithms used for testing and comparison

First, the dynamics of classification accuracy of P 2RoCAl were measured and compared with the

results of data condensation (DC) using a k-nearest neighbor (kNN) [59] classification approach (for

k=1). As different classes of classification algorithms employ different classification strategies [60],

the classification accuracy of our methods were tested and compared against four more classification

algorithms, namely: decision table [59], naive Bayes [59], random tree [59] and J48 [61]. Decision

table builds a decision table majority classifier. Naive Bayes is a fast classification algorithm based on

probabilistic classifiers. Random tree constructs a tree that considers K randomly chosen attributes

2https://archive.ics.uci.edu/ml/datasets/Wholesale+customers
3https://archive.ics.uci.edu/ml/datasets/Page+Blocks+Classification
4https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
5https://www.openml.org/d/901
6https://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29
7https://archive.ics.uci.edu/ml/datasets/HEPMASS
8https://archive.ics.uci.edu/ml/datasets/HIGGS

16



at each node while performing no pruning. J48 is an implementation of the decision tree based

classification algorithm [59].

4.2. Performance Evaluation of the Perturbation Algorithm

Performance evaluation was focused on three factors: classification accuracy, attack resilience,

and time consumption. The results were compared with the results obtained from random rotation

perturbation (RP) [13] and data condensation (DC) [16]. Seven datasets (Table 2) were used to test and

compare the proposed algorithm and its derivations (Table 1). The datasets perturbed by P 2RoCAl

were tested for classification accuracy using the k-nearest neighbor (kNN) classification algorithm

where the value of k for kNN was maintained at a constant of 1 throughout all the experiments. kNN

is a non-parametric method used for classification [59]. The original datasets were perturbed using RP

and DC also, and the classification accuracy results were compared. The comparisons were conducted

using the nonparametric statistical comparison test, Friedman’s rank test, which is analogous to a

standard one-way repeated-measures analysis of variance [62]. Friedman’s mean ranks (FMR) and the

statistical significance of the results were recorded.

The resilience of the method was tested against three attack types, to which the proposed method

is most vulnerable. Section 4.2.2 provides a detailed description of the three attack types. P 2RoCAl’s

attack resilience results were compared with RP and DC using Friedman’s rank test, and the results

were presented with the corresponding test statistics.

Runtime complexity of P 2RoCAl was evaluated, and then time consumption experiments were run

on the ESDS dataset to check the effect of the number of tuples and number of attributes on the time

consumption. The ESDS dataset was specially selected for this analysis as it has a high number of

attributes (Table 2). Next, the running times of DC, RP, k′−P 2RoCAl and k−P 2RoCAl kmeans were

measured for the four datasets, PBDS, WQDS, FRDS, and FRDS. The results were then compared

with each other using Friedman’s rank test.

4.2.1. Classification Accuracy

Figure 4 shows the average classification accuracy returned by the kNN classification algorithm

against increasing k′ (the group size) sizes for k′ − P 2RoCAl and DC. Table 3 has the average clas-

sification accuracy values returned by kNN classification algorithm for the original datasets (PBDS,

WQDS, FRDS and SSDS) and the datasets perturbed by k′ − PR2oCAl, RP and DC. The results

were produced with 10-fold cross validation.

17



88.00%

89.00%

90.00%

91.00%

92.00%

93.00%

94.00%

95.00%

96.00%

5 10 15 20 25 30 35 40 45 50

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 

Average Group Size (k') 

original accuracy

condensation

k'-P²RoCAl

(a) PBDS dataset

33.00%

38.00%

43.00%

48.00%

53.00%

58.00%

63.00%

5 10 15 20 25 30 35 40 45 50

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 

Average Group Size (k') 

original accuracy

condensation

k'-P²RoCAl

(b) WQDS dataset

45.00%

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 

Average Group Size (k') 

original accuracy

condensation

k'-P²RoCAl

(c) FRDS dataset

63.00%

68.00%

73.00%

78.00%

83.00%

88.00%

93.00%

98.00%

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 

Average Group Size (k') 

original accuracy

condensation

k'-P²RoCAl

(d) SSDS dataset

Figure 4: Classification accuracy comparison of the perturbed data for large k′ values

The last column in Table 3 has the Friedman’s test ranks (denoted by FMR) returned for each of

the methods. The test statistics of the experiment had a χ2 value of 14.786, degree of freedom of 6

and a p-value of 0.022. The p-value suggests that there is a significant difference between the average

accuracies of the datasets. The original dataset has the highest mean rank, as it has the highest

classification accuracy. The mean ranks prove that P 2RoCAl and its variations provide the highest

classification accuracy. Using kNN classification on the four datasets (as given in Table 3), DC returns

the least accurate results, and k − P 2RoCAl kmeans and k′ − P 2RoCAl streams produce the best

results. The results available in Table 3, are further illustrated using a bar graph in Figure 5.

Table 3: Average accuracy returned by the methods on the datasets

Dataset original
accuracy

DC RP k′ − P 2RoCAl k − P 2RoCAl kmeans k′ − P 2RoCAl streams k − P 2RoCAl kmeans streams

PBDS 95.87% 88.62% 95.27% 95.23% 95.45% 95.60% 95.58%

WQDS 64.54% 37.34% 50.88% 58% 60.35% 88.01% 87%

FRDS 82.46% 55.71% 58.26% 81.26% 81.84% 73.57% 73%

SSDS 99.94% 80.37% 99.85% 99.70% 99.79% 98.59% 99%

FMR 6.5 1 3.25 3.5 4.75 4.75 4.25

18



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

PBDS WQDS FRDS SSDS

Cl
as

si
fic

at
io

n 
Ac

cu
ra

cy

Dataset

original accuracy DC
RP k'-P²RoCAl
k-P²RoCAl_kmeans k'-P²RoCAl_streams
k-P²RoCAl_kmeans_streams

Figure 5: Average accuracy provided by the methods

Experiments were conducted to investigate the dynamics of classification accuracy for data pro-

duced by the three methods: RP, DC and k′−P 2RoCAl. Table 4 contains the classification accuracies

of the data produced by the three methods along with the original data sets for four classification

algorithms: Decision Table, J48, Naive Bayes and Random Tree.

Table 4: Average classification accuracies on different classification algorithms

Dataset Algorithm Decision Table J48 Naive Bayes Random Tree

WQDS

Original 53.27% 59.82% 44.67% 61.70%

RP 45.75% 46.47% 33.83% 46.71%

DC 45.57% 39.93% 37.85% 36.79%

k′ − P 2RoCAl 44.99% 53.00% 40.55% 57.61%

PBDS

Original 95.63% 96.88% 90.85% 96.05%

RP 93.88% 95.16% 78.46% 94.13%

DC 93.21% 92.48% 71.43% 90.30%

k′ − P 2RoCAl 93.48% 94.46% 39.11% 93.90%

FRDS

Original 83.42% 89.41% 86.53% 86.95%

RP 63.27% 63.32% 66.12% 58.25%

DC 61.09% 61.30% 60.97% 56.15%

k′ − P 2RoCAl 72.58% 77.83% 65.71% 76.25%

SSDS

Original 99.72% 99.96% 91.84% 99.96%

RP 98.36% 99.65% 78.54% 99.60%

DC 83.78% 85.38% 74.09% 80.04%

k′ − P 2RoCAl 95.40% 99.49% 75.26% 99.51%

Figure 6 has the box plots for the data in Table 4. It can be noted that the classification accuracy

result for P 2RoCAl is better than the result for DC and very close to the results for RP.

19



Algorithm
Original RP DC k'-P²RoCAl

Cl
as

sif
ica

tio
n A

cc
ur

ac
y

30%

40%

50%

60%

70%

80%

90%

100%

DecisionTable
J48
Naïve Bayes
RandomTree

Figure 6: Box plots on the data available in Table 4

4.2.2. Attack Resistance

The literature shows different probable attack types against matrix multiplicative data perturbation

[63]. The main purpose of these attacks is to restore the original data from the perturbed data. The

larger the difference between original data and perturbed data, the more difficult the attack becomes.

Figure 7 shows the variation of STD(D−Dp) against increasing k′ for P 2RoCAl and DC. This captures

the variation of the standard deviation of the difference between the original and perturbed data, and

indicates how secure the methods are when using different group sizes (k′).

20



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30 35 40 45 50

M
in

im
um

 S
TD

(D
-D

p )

Average Group Size (k')

condensation
k'-P²RoCAl

(a) PBDS dataset minimum STD(D-Dp)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10

Av
er

ag
e 

ST
D

(D
-D

p )

Average Group Size (k')

condensation
k'-P²RoCAl

(b) PBDS dataset average STD(D-Dp)

0

0.2

0.4

0.6

0.8

1

1.2

M
in

im
um

 S
TD

(D
-D

p )

Average Group Size (k')

condensation
k'-P²RoCAl

(c) SSDS dataset minimum STD(D-Dp)

0

0.2

0.4

0.6

0.8

1

Av
er

ag
e 

ST
D(

D
-D

p )

Average Group Size (k')

condensation
k'-P²RoCAl

(d) SSDS dataset average STD(D-Dp)

Figure 7: Dynamics of STD(D-Dp) against increasing k′ values

P 2RoCAl is based on matrix multiplication, and it was tested against three types of attacks: naive

estimation, accessible/known I/O (assuming 10% of the original data is known to the adversary) and

ICA based attacks. To check the resilience of the proposed algorithm against ICA based attacks, the

procedure described in [13] was employed, and the FastICA package [64] was used to evaluate the

effectiveness of ICA-based reconstruction of the perturbed data. The attack resilience experiments

were inspired by those described in [13, 14], and the results are presented in Table 5. For naive

inference attacks, the standard deviation of the difference between the original data and the perturbed

data (both normalized) was calculated. For ICA and IO, the standard deviation of the difference

between the original and reconstructed data (both normalized) was used. The results returned by RP

were generated using 10 number of iterations with a noise factor (sigma) of 0.3 (the default setting).

The minimum (“min”) values under each test indicate the minimum guarantee of resilience while the

21



average (“avg”) values give an impression of overall resilience.

Table 5: Results of the attack resilience experiments

Dataset Algorithm NImin NIavg ICAmin ICAavg IOmin IOavg

PBDS

DC 0.0940 0.1975 0.5595 0.6937 0.2507 0.5278

RP 0.1022 0.3214 0.5883 0.7444 0.0002 0.1446

k′ − P 2RoCAl 0.7977 0.9550 0.7009 0.7075 0.6892 0.7046

k − P 2RoCAl kmeans 0.3901 0.6182 0.7006 0.7071 0.6961 0.7052

k′ − P 2RoCAl streams 0.5436 0.7633 0.6873 0.7067 0.6702 0.7008

k − P 2RoCAl kmeans streams 0.6509 0.8052 0.6938 0.7076 0.6848 0.7016

WQDS

DC 0.0278 0.0652 0.5640 0.6938 0.1077 0.5762

RP 0.0338 0.1090 0.6272 0.6840 0.0057 0.4063

k′ − P 2RoCAl 0.4030 0.8199 0.6993 0.7072 0.6914 0.7038

k − P 2RoCAl kmeans 0.4030 0.8199 0.6993 0.7072 0.6914 0.7038

k′ − P 2RoCAl streams 0.4083 0.7928 0.6734 0.7074 0.6319 0.6945

k − P 2RoCAl kmeans streams 0.4808 0.8921 0.6867 0.7038 0.6598 0.6972

SSDS

DC 0.2493 0.4116 0.6374 0.7243 0.3895 0.5709

RP 0.1994 0.3904 0.4781 0.7116 0.0019 0.0357

k′ − P 2RoCAl 0.7076 0.9250 0.7047 0.7070 0.7023 0.7062

k − P 2RoCAl kmeans 0.4961 0.7221 0.7040 0.7067 0.7032 0.7063

k′ − P 2RoCAl streams 0.8386 0.9615 0.7035 0.7065 0.7017 0.7056

k − P 2RoCAl kmeans streams 0.8391 0.9837 0.7054 0.7071 0.7006 0.7053

FRDS

DC 0.9434 1.0966 0.6181 0.7041 0.5686 0.6167

RP 0.9309 1.0093 0.4847 0.6948 0.3956 0.5076

k′ − P 2RoCAl 1.1761 1.2963 0.7049 0.7072 0.7016 0.7063

k − P 2RoCAl kmeans 1.1895 1.3131 0.7051 0.7074 0.7015 0.7062

k′ − P 2RoCAl streams 1.2897 1.3375 0.7043 0.7071 0.7011 0.7059

k − P 2RoCAl kmeans streams 1.3153 1.3368 0.7046 0.7072 0.7012 0.7062

The mean ranks produced by Friedman’s rank test on the data available in Table 5 are presented in

Table 6, with the test statistics: a χ2 value of 47.5694, a degree of freedom of 5 and a p-value of 4.3485e-

09. Table 5 includes the standard deviation of the difference between original data and reconstructed

data, except for naive inference, where the difference between original data and perturbed data is used.

Here, a higher rank indicates better resilience. According to the p-value, the attack resilience rank

averages of the six methods are significantly different. The mean ranks suggest that all the variations

of the new method provide comparatively higher security against the privacy attacks and that DC

provides the lowest level of resilience against the investigated attack methods.

22



Table 6: Friedman test ranks on the attack resilience data

Method Mean Rank

DC 10.7917

RP 9.3333

k′ − P 2RoCAl 24.4167

k − P 2RoCAl kmeans 21.5417

k′ − P 2RoCAl streams 21.7917

k − P 2RoCAl Kmeans streams 23.1250

4.2.3. Time complexity

Algorithm 2 has three main components that affect computational complexity: (i) clustering/-

grouping process (line 1, Algorithm 2), (ii) generating a rotation matrix for the rotation perturbation

(line 5, Algorithm 2), and (iii) rotation perturbation on the groups (line 7 or 10, Algorithm 2). The

first component has two ways to achieve the grouping, which is demonstrated in Algorithm 1. If the

grouping is done using the k-means algorithm, the complexity would be O(k ×m× n× I) where I is

the number of iterations. If the user chooses k′ as the option, then the clustering complexity would

be O(k′ × m × (m/k′) × n) = O(m2 × n) as the algorithm tries to select the closest k′ − 1 tuples

per each randomly sampled tuple (Xi) from the dataset D for m/k′ number of iterations. For the

second component, the algorithm first needs to conduct the eigenvalue decomposition, which has a

computation complexity of O(n3). Next, the algorithm conducts the rotation perturbation, which has

a computational complexity of O(m × n3). Figure 8 shows the time consumption of k′ − P 2RoCAl

and k−P 2RoCAl kmeans against changing the number of tuples and attributes of the ESDS dataset;

when one was changing, the other was kept constant. During the time consumption analysis, k′ was

maintained as constant at 1000 while k was set to 10. As shown in Figure 8a and 8c, when the number

of tuples is increased while the number of attributes is kept constant, the runtime complexity is gov-

erned by clustering. Hence the complexity is O(k×m×I) if the user’s choice is k, while the complexity

is O(m2) when the user’s choice of k′. When the number of tuples is maintained as constant, the worst

case complexity of the algorithm becomes O(n3), but the plots Figure 8b and 8d still show a pattern

close to linear. This suggests that the effect of attributes is considerably low since m >>> n. Hence,

the overall complexity is mainly governed by the number of tuples.

Table 7 shows the time consumption of DC, RP, k′−P 2RoCAl and k−P 2RoCAl kmeans for the

perturbation of the four datasets: PBDS, WQDS, FRDS, and SSDS. The mean ranks produced by

23



0.00

0.20

0.40

0.60

0.80

1.00

1.20

500 1500 2500 3500 4500 5500 6500 7500 8500 9500 10500 11500

Ti
m

e
/s

Number of tuples

(a) k′ − P 2RoCAl changing the number of tuples

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

8 24 40 56 72 88 104 120 136 152 168 178

Ti
m

e
/s

Number of attributes

(b) k′ − P 2RoCAl changing the number of attributes

0.00

2.00

4.00

6.00

8.00

10.00

12.00

500 1500 2500 3500 4500 5500 6500 7500 8500 9500 10500 11500

Ti
m

e
/s

Number of tuples 

(c) k − P 2RoCAl kmeans changing the number of tuples

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

8 24 40 56 72 88 104 120 136 152 168 178

Ti
m

e
/s

Number of attributes 

(d) k − P 2RoCAl kmeans changing the number of at-
tributes

Figure 8: Time consumption patterns of P 2RoCAl

Friedman’s rank test on the data in Table 7 are presented in the last row. The experiment returns the

test statistics: a (χ2 value) of 8.4, a degree of freedom of 3 and a p-value of 0.038. Here, lower ranks

suggest that the time consumption of the corresponding method is low compared to other methods.

Table 7: Runtime analysis of the perturbation process consumed by the algorithms

Dataset DC/s RP/s k′ − P 2RoCAl/s k − P 2RoCAl kmeans/s

PBDS 0.3421 1590.7000 0.3800 0.7462

WQDS 0.3022 217.0409 0.3439 0.9744

FRDS 2.4543 1807.6000 2.5760 1.1300

SSDS 2.7134 1269.6000 2.6830 4.2508

FMR 1.50 4.00 2.00 2.50

24



According to the Friedman’s rank test, it can be noted that DC consumes the lowest amount of

time while RP consumes the highest amount of time for perturbation. But, the values in Table 7

further suggest that DC and k′ − P 2RoCAl lie close to each other in terms of time consumption by

the perturbation process.

4.3. Scalability

The scalability analysis was conducted using an SGI UV3000 supercomputer (see details in section

4.1). The results of scalability experiments with two extremely large datasets (HPDS and HIDS) are

given in Table 8. The times to perturb these datasets, having more than 3 million and 11 million

records respectively, are shown in the table. As can be seen, RP didn’t converge even after 100 hours.

Table 8: Scalability results (in seconds) of the three methods for high dimensional data

Dataset RP DC (k=1000) DC (k=10000) k′ − P 2RoCAl (k′=1000) k′ − P 2RoCAl (k′=10000)

HPDS NC within 100h 5.34E+03 526.1168 4.61E+03 657.7576

HIDS NC within 100h 6.95E+04 6.42E+03 1.36E+05 7.28E+03

9NC: Did not converge

5. Discussion

In this paper a new data perturbation method (P 2RoCAl) was introduced which can be used for

both static data and stream data privacy preservation. The proposed method, P 2RoCAl is mainly

based on two data perturbation methods: data condensation (DC) and rotation perturbation (RP).

Though DC can be used for both static data and stream data processing, RP can only be used for

static data processing. Due to RP preserving the distance between tuples, it often provides good

accuracy in data clustering and classification. However, RP is not cost-effective in terms of computer

processing. DC, on the other hand, is a fast privacy preservation algorithm which is capable of efficient

data stream processing, but its synthetic data generation often decreases the quality of data when it is

configured to provide high data privacy. If DC is used under its settings to provide high data privacy

(with a larger spatial locality), it often ends up in generating datasets with reduced accuracy. A better

method for both static and stream data processing, P 2RoCAl combines the advantages of DC and

RP: high efficiency and high accuracy.

It was noticeable that P 2RoCAl shows increasing accuracy while DC shows decreasing accuracy

against an increasing k′ value. Especially when the datasets are large (i.e. larger group/cluster

sizes and larger spatial locality), we cannot expect good classification accuracy from DC. To have no

25



substantial loss of accuracy, DC assumes that the data is uniformly distributed and has small spacial

locality. This leads to reduced privacy, as the distribution of the condensed data is very close to

that of original data. As shown in Figure 4 and Figure 7, it is noticeable that with increasing k′

the accuracy of DC decreases while the std(D − Dp) increases. So, it is clear that for small group

sizes, DC provides a higher accuracy while providing lower privacy which is evident from the further

analysis on attack resilience, as shown in Table 5. In fact, the results available in Table 5 and Table 6

further prove that all four derivations of P 2RoCAl provide higher attack resilience than both DC and

RP. This proves that DC cannot maintain the balance between privacy and utility on an acceptable

level under a single point of convergence. P 2RoCAl shows the opposite effect, where for smaller k′

values, it provides higher privacy while providing an accuracy greater than that of DC. This is due

to the fact that, as the group size gets smaller, it forms a large number of groups. Therefore, the

effect of rotation perturbation with the result of many different angles is greater on the dataset. Since

rotation does not distort the distances between tuples, accuracy is not affected. As a result, P 2RoCAl

provides better classification accuracy while providing a higher level of deviation of perturbed data

from the original data (refer to Figure 4 and Figure 7). This feature of P 2RoCAl is essential for data

stream perturbation since we have to perform on-demand data perturbation of infinite streams. When

perturbing data streams, the resulting number of groups can become unlimited, yet the privacy and

accuracy is well preserved by P 2RoCAl.

From Table 3 and Figure 5 it is apparent that introducing the k-means algorithm for clustering

improves the accuracy of the perturbed dataset. At the same time, k-means decreases the efficiency

slightly (see Table 7), and resilience suffers (refer Tables 5 and 6). This is due to the fact that k-means

algorithm improves the homogeneity of the clusters which results in better accuracy. Since the cluster

sizes are different (e.g. some may have even one tuple), perturbation tends to have slightly less effect.

According to Table 3 and Figure 5, the derivations of P 2RoCAl provide better accuracy than

both DC and RP as reflected in the FMR values shown in the last column of Table 3. So we can

say that P 2RoCAl provides better accuracy for both static and stream cases, than DC and RP. It

can be observed that in the static case of data perturbation, k′ − P 2RoCAl kmeans provides better

accuracy compared to that of k′ − P 2RoCAl. This is because of the increased homogeneity of the

groups, which results from k−P 2RoCAl kmeans. In k−P 2RoCAl kmeans, the number of resulting

groups is controlled by the parameter k. The size of a particular group is not constant; it uses

k − means clustering for grouping. This can result in groups with different sizes, but with higher

26



homogeneity. In k′ − P 2RoCAl, we control the parameter k′, i.e., the group size so that all groups

will have a constant number of tuples. Therefore, the groups produced in k′ − P 2RoCAl, might not

be as homogeneous as in k − P 2RoCAl kmeans. As a result of that, k − P 2RoCAl kmeans tends to

provide better accuracy. When the method is applied to streams, both k′ − P 2RoCAl streams and

k − P 2RoCAl kmeans streams seem to provide similar accuracy. This is due to the fact that initial

clustering is performed upon the buffered data chunks that are small in size when compared to the

main dataset D. The small changes in homogeneity will not make a significant impact in changing the

accuracy of the final dataset.

Table 4 and Figure 6 show the dynamics of classification accuracy for different classification algo-

rithms and different datasets. According to Figure 6, k′ − P 2RoCAl provides better accuracy than

DC in most cases. It can also be noted that the accuracy provided by k′ − P 2RoCAl is less than that

of RP. This is how k′ − P 2RoCAl’s multiple rotation perturbations affect the dataset, whereas RP

imposes a single perturbation on the whole dataset. As RP is not capable of data stream perturbation,

P 2RoCAl can be considered a superior solution.

The time complexity analysis of the proposed algorithm shows that P 2RoCAl’s computational

complexity is governed by the clustering component. As the number of attributes and tuples increase,

the time complexity of the perturbation algorithm will also increase. Conventionally a data stream

grows incrementally where new tuples are rapidly added to the dataset while the number of attributes

remains constant. Therefore, we can consider an inequality between m and n as m >>> n where n is

small compared to an extremely larger number of m. This suggests that the number of tuples has a

higher contribution to the time complexity. But, the empirical data on time consumption show that

PR2CAl consumes reasonably low amounts of time and the plots (refer Figure 8) on time consumption

show patterns close to linear. The very low time consumption of the perturbation process compared

to RP was shown in Table 7. This further underlines the suitability of P 2RoCAl for fast data streams.

Scalability results available in Table 8 prove that the proposed algorithm is capable of perturbing big

datasets that have extreme dimensions.

5.1. Selecting values for k/k′

We can apply logical reasoning for the selection of suitable values for k/k′ by looking at the results

of P 2RoCAl on different datasets. There is a relative dependency between l and k/k′. The selection

of these two input parameters is highly dependent on the speed of a particular data stream. The faster

the data stream (e.g. 4000 tuples per second) , the lower the l value (e.g. 1000). Hence k′ needs to

27



be higher (e.g. 200) (or k needs to be lower (e.g. 5)). When the speed of the data stream is relatively

slower (60 tuples per second), the vice-versa of the above scenario applies, where l can be relatively

higher (e.g. 4000) while k′=100 (or k=40). But, the selection of specific values for these parameters

will not have an extensive effect on the privacy and utility of P 2RoCAl (which is evident in Figures 4

and 7), rather, it will affect the efficiency of the method.

5.2. Real life application of P 2RoCAl: Application Vs. Constraints

Application of privacy-preserving methods in real-world scenarios involves specific constraints.

Most of the applications need attention to particular adaptations. For example, Marcelo Luiz Bro-

cardo et al. discuss how privacy can be imposed over a real world application: a positive credit system.

They propose a cryptographic protocol to share private information about customers and companies to

produce credit profiles [65]. The proposed version of P 2RoCAl is designed to perturb only numerical

data, and real-life applications of P 2RoCAl are limited to numerical big data sets and data streams.

Most of the existing IoT sensors (e.g. temperature sensors, proximity sensors, pressure sensors, chem-

ical sensors, IR sensors, etc.) produce numerical data resulting in numerical big data. This enables

P 2RoCAl to be applied to many applications, including, but not limited to, healthcare, financial, social

networking, weather, marketing. Some real-world IoT stream examples that P 2RoCAl is applicable

to, include Sense your City (CITY) and NYC Taxi cab (TAXI) [66]. Sense your City (CITY) is an

urban environmental monitoring project that has used crowd-sourcing to deploy sensors at 7 cities

across 3 continents in 2015, with about 12 sensors per city, emits 7000 messages/ sec. NYC Taxi

cab (TAXI) offers a stream of smart transportation messages that arrive from 2M trips taken in 2013

on 20, 355 New York city taxis equipped with GPS emits 4000 messages/ sec. Empirical analysis of

P 2RoCAl shows that the perturbation explicitly preserves the classification properties of the original

data. Therefore, the proposed method is best utilized for privacy-preserving data classification.

5.3. Future directions

The proposed algorithm can be configured via different permutations of settings. Part of the

algorithm configuration was explained in Section 3.3. P 2RoCAl configuration can also be changed

with the two other factors: the distance measure for homogeneous clustering and the method used for

the matrix decomposition (Equation 1). We have the possibility of using several distance measurements

for the random data grouping method as well as for k−means clustering. As the proposed algorithm

can be used for any numerical dataset, we should avoid using binary distance measurements such

28



as ”hamming distance” [67]. The results provided in this paper are based on P 2RoCAl that uses

Euclidean distance [68] as the distance measure. Some other distance measurements that can be

effectively used with P 2RoCAl are City block distance [68], Cosine distance [68] and Correlation [68].

P 2RoCAl uses eigenvalue decomposition of the covariance matrix generated by each group. Other

decomposition methods, such as singular value decomposition, polar decomposition, etc. can also be

used to generate the rotation matrix of a particular group, as long as the decomposition generates a

sub-matrix that has the properties of a rotational matrix. Further studies on increasing the efficiency

of P 2RoCAl using sampling techniques and parallel implementations can be investigated. This would

allow P 2RoCAl to work with high-speed data streams.

6. Conclusion

A new data stream perturbation algorithm (P 2RoCAl) was introduced. It provides higher accuracy,

efficiency and attack resilience than similar methods. It was shown that the runtime complexity is

governed by clustering when the number of attributes is kept constant. The algorithm shows a worst-

case runtime complexity of O(n3) when the number of tuples is maintained as a constant. As the

number of attributes is very low compared to the number of tuples in many cases, e.g. in data

streams, P 2RoCAl exhibited a considerably lower time consumption during the empirical analyses.

This makes it possible to work with continuously growing data streams and big data. The proposed

method P 2RoCAl showed better classification accuracies than its contenders. P 2RoCAl also shows

higher resilience against the attacks such as naive estimation, I/O attacks, and ICA attacks, compared

to rotation perturbation and data condensation.

In summary, this paper proposed P 2RoCAl, an effective perturbation method for data streams

and big data. One potential application of P 2RoCAl might be the precision health domain where a

large number of IoT devices are or will be used to monitor a persons body, activities, and behaviors.

P 2RoCAl can be used effectively to perturb continuous streams of data generated by sensors moni-

toring an individual or group of individuals before the data is transmitted to cloud systems for further

analysis.

References

[1] G. De Francisci Morales, A. Bifet, L. Khan, J. Gama, W. Fan, Iot big data stream mining, in:

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

29



Data Mining, ACM, 2016, pp. 2119–2120.

[2] E. Balandina, S. Balandin, Y. Koucheryavy, D. Mouromtsev, Iot use cases in healthcare and

tourism, in: Business Informatics (CBI), 2015 IEEE 17th Conference on, Vol. 2, IEEE, 2015, pp.

37–44.

[3] V. Gazis, M. Goertz, M. Huber, A. Leonardi, K. Mathioudakis, A. Wiesmaier, F. Zeiger, Short

paper: Iot: Challenges, projects, architectures, in: Intelligence in Next Generation Networks

(ICIN), 2015 18th International Conference on, IEEE, 2015, pp. 145–147.

[4] W. Shang, Y. Yu, R. Droms, L. Zhang, Challenges in iot networking via tcp/ip architecture, Tech.

rep., NDN Project, Tech. Rep. NDN-0038 (2016).

[5] S. U. Rehman, I. U. Khan, M. Moiz, S. Hasan, et al., Security and privacy issues in iot, Interna-

tional Journal of Communication Networks and Information Security 8 (3) (2016) 147.

[6] J. G. Bethlehem, W. J. Keller, J. Pannekoek, Disclosure control of microdata, Journal of the

American Statistical Association 85 (409) (1990) 38–45.

[7] C. C. Aggarwal, S. Y. Philip, A general survey of privacy-preserving data mining models and

algorithms, in: Privacy-preserving data mining, Springer, 2008, pp. 11–52.

[8] R. Lu, H. Zhu, X. Liu, J. K. Liu, J. Shao, Toward efficient and privacy-preserving computing in

big data era, IEEE Network 28 (4) (2014) 46–50.

[9] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, S. U. Khan, The rise of big data

on cloud computing: Review and open research issues, Information Systems 47 (2015) 98–115.

[10] H. Kargupta, S. Datta, Q. Wang, K. Sivakumar, On the privacy preserving properties of random

data perturbation techniques, in: Data Mining, 2003. ICDM 2003. Third IEEE International

Conference on, IEEE, 2003, pp. 99–106.

[11] K. Muralidhar, R. Parsa, R. Sarathy, A general additive data perturbation method for database

security, management science 45 (10) (1999) 1399–1415.

[12] S. P. Reiss, Practical data-swapping: The first steps, in: Security and Privacy, 1980 IEEE Sym-

posium on, IEEE, 1980, pp. 38–45.

30



[13] K. Chen, L. Liu, A random rotation perturbation approach to privacy preserving data classifica-

tion.

[14] K. Chen, L. Liu, Geometric data perturbation for privacy preserving outsourced data mining,

Knowledge and Information Systems 29 (3) (2011) 657–695.

[15] J. Domingo-Ferrer, J. M. Mateo-Sanz, Practical data-oriented microaggregation for statistical

disclosure control, IEEE Transactions on Knowledge and data Engineering 14 (1) (2002) 189–201.

[16] C. C. Aggarwal, P. S. Yu, A condensation approach to privacy preserving data mining, in: EDBT,

Vol. 4, Springer, 2004, pp. 183–199.

[17] C. Dwork, F. McSherry, K. Nissim, A. Smith, Calibrating noise to sensitivity in private data

analysis, in: Theory of Cryptography Conference, Springer, 2006, pp. 265–284.

[18] C. Dwork, The differential privacy frontier, in: Theory of Cryptography Conference, Springer,

2009, pp. 496–502.

[19] N. Mohammed, R. Chen, B. Fung, P. S. Yu, Differentially private data release for data mining,

in: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and

data mining, ACM, 2011, pp. 493–501.

[20] A. Friedman, A. Schuster, Data mining with differential privacy, in: Proceedings of the 16th

ACM SIGKDD international conference on Knowledge discovery and data mining, ACM, 2010,

pp. 493–502.

[21] J. Soria-Comas, J. Domingo-Ferrer, D. Sánchez, D. Meǵıas, Individual differential privacy: A

utility-preserving formulation of differential privacy guarantees, IEEE Transactions on Informa-

tion Forensics and Security 12 (6) (2017) 1418–1429.

[22] B. Niu, Q. Li, X. Zhu, G. Cao, H. Li, Achieving k-anonymity in privacy-aware location-based

services, in: INFOCOM, 2014 Proceedings IEEE, IEEE, 2014, pp. 754–762.

[23] A. Machanavajjhala, J. Gehrke, D. Kifer, M. Venkitasubramaniam, l-diversity: Privacy beyond

k-anonymity, in: Data Engineering, 2006. ICDE’06. Proceedings of the 22nd International Con-

ference on, IEEE, 2006, pp. 24–24.

31



[24] Y. Yang, Z. Zhang, G. Miklau, M. Winslett, X. Xiao, Differential privacy in data publication and

analysis, in: Proceedings of the 2012 ACM SIGMOD International Conference on Management

of Data, ACM, 2012, pp. 601–606.

[25] J. Cao, B. Carminati, E. Ferrari, K.-L. Tan, Castle: Continuously anonymizing data streams,

IEEE Transactions on Dependable and Secure Computing 8 (3) (2011) 337–352.

[26] J. Domingo-Ferrer, J. Soria-Comas, Steered microaggregation: A unified primitive for anonymiza-

tion of data sets and data streams, in: Data Mining Workshops (ICDMW), 2017 IEEE Interna-

tional Conference on, IEEE, 2017, pp. 995–1002.

[27] E. Bertino, Data privacy for iot systems: concepts, approaches, and research directions, in: Big

Data (Big Data), 2016 IEEE International Conference on, IEEE, 2016, pp. 3645–3647.

[28] X. Wang, J. Zhang, E. M. Schooler, M. Ion, Performance evaluation of attribute-based encryption:

Toward data privacy in the iot, in: Communications (ICC), 2014 IEEE International Conference

on, IEEE, 2014, pp. 725–730.

[29] T. Kirkham, A. Sinha, N. Parlavantzas, B. Kryza, P. Fremantle, K. Kritikos, B. Aziz, Privacy

aware on-demand resource provisioning for iot data processing, in: International Internet of Things

Summit, Springer, 2015, pp. 87–95.

[30] Y. Xu, K. Wang, A. W.-C. Fu, R. She, J. Pei, Privacy-preserving data stream classification,

Privacy-Preserving Data Mining (2008) 487–510.

[31] F. Li, J. Sun, S. Papadimitriou, G. A. Mihaila, I. Stanoi, Hiding in the crowd: Privacy preservation

on evolving streams through correlation tracking, in: Data Engineering, 2007. ICDE 2007. IEEE

23rd International Conference on, IEEE, 2007, pp. 686–695.

[32] C. C. Aggarwal, P. S. Yu, On static and dynamic methods for condensation-based privacy-

preserving data mining, ACM Transactions on Database Systems (TODS) 33 (1) (2008) 2.

[33] E. Bertino, D. Lin, W. Jiang, A survey of quantification of privacy preserving data mining algo-

rithms, in: Privacy-preserving data mining, Springer, 2008, pp. 183–205.

[34] V. S. Verykios, E. Bertino, I. N. Fovino, L. P. Provenza, Y. Saygin, Y. Theodoridis, State-of-the-

art in privacy preserving data mining, ACM Sigmod Record 33 (1) (2004) 50–57.

32



[35] Y. A. A. S. Aldeen, M. Salleh, M. A. Razzaque, A comprehensive review on privacy preserving

data mining, SpringerPlus 4 (1) (2015) 694.

[36] K. Liu, H. Kargupta, J. Ryan, Random projection-based multiplicative data perturbation for pri-

vacy preserving distributed data mining, IEEE Transactions on knowledge and Data Engineering

18 (1) (2006) 92–106.

[37] R. Agrawal, R. Srikant, Privacy-preserving data mining, in: ACM Sigmod Record, Vol. 29, ACM,

2000, pp. 439–450.

[38] S. Datta, On random additive perturbation for privacy preserving data mining, Ph.D. thesis,

University of Maryland, Baltimore County (2004).

[39] J. Zhong, V. Mirchandani, P. Bertok, J. Harland, µ-fractal based data perturbation algorithm for

privacy protection., in: PACIS, 2012, p. 148.

[40] W. Du, Z. Zhan, Using randomized response techniques for privacy-preserving data mining, in:

Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and

data mining, ACM, 2003, pp. 505–510.

[41] V. Estivill-Castro, L. Brankovic, Data swapping: Balancing privacy against precision in mining

for logic rules, in: DaWaK, Vol. 99, Springer, 1999, pp. 389–398.

[42] A. Machanavajjhala, D. Kifer, Designing statistical privacy for your data, Communications of the

ACM 58 (3) (2015) 58–67.

[43] R. C.-W. Wong, J. Li, A. W.-C. Fu, K. Wang, (α, k)-anonymity: an enhanced k-anonymity model

for privacy preserving data publishing, in: Proceedings of the 12th ACM SIGKDD international

conference on Knowledge discovery and data mining, ACM, 2006, pp. 754–759.

[44] N. Li, T. Li, S. Venkatasubramanian, t-closeness: Privacy beyond k-anonymity and l-diversity,

in: Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, IEEE, 2007, pp.

106–115.

[45] L. Zhang, S. Jajodia, A. Brodsky, Information disclosure under realistic assumptions: Privacy

versus optimality, in: Proceedings of the 14th ACM conference on Computer and communications

security, ACM, 2007, pp. 573–583.

33



[46] S. R. Ganta, S. P. Kasiviswanathan, A. Smith, Composition attacks and auxiliary information in

data privacy, in: Proceedings of the 14th ACM SIGKDD international conference on Knowledge

discovery and data mining, ACM, 2008, pp. 265–273.

[47] R. C.-W. Wong, A. W.-C. Fu, K. Wang, P. S. Yu, J. Pei, Can the utility of anonymized data be

used for privacy breaches?, ACM Transactions on Knowledge Discovery from Data (TKDD) 5 (3)

(2011) 16.

[48] C. C. Aggarwal, On k-anonymity and the curse of dimensionality, in: Proceedings of the 31st

international conference on Very large data bases, VLDB Endowment, 2005, pp. 901–909.

[49] J. A. Fox, Randomized response and related methods: Surveying Sensitive Data, Vol. 58, SAGE

Publications, 2015.

[50] C. Dwork, Differential privacy: A survey of results, in: International Conference on Theory and

Applications of Models of Computation, Springer, 2008, pp. 1–19.

[51] P. Kairouz, S. Oh, P. Viswanath, Extremal mechanisms for local differential privacy, in: Advances

in neural information processing systems, 2014, pp. 2879–2887.

[52] J. Tang, A. Korolova, X. Bai, X. Wang, X. Wang, Privacy loss in apple’s implementation of

differential privacy on macos 10.12, arXiv preprint arXiv:1709.02753.

[53] K. Mivule, C. Turner, A comparative analysis of data privacy and utility parameter adjustment,

using machine learning classification as a gauge, Procedia Computer Science 20 (2013) 414–419.

[54] K. Liu, Multiplicative data perturbation for privacy preserving data mining, Ph.D. thesis, Uni-

versity of Maryland, Baltimore County (2007).

[55] S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemometrics and intelligent

laboratory systems 2 (1-3) (1987) 37–52.

[56] F. Scholz, Maximum likelihood estimation, Encyclopedia of statistical sciences.

[57] K. Chen, L. Liu, Privacy preserving data classification with rotation perturbation, in: Data

Mining, Fifth IEEE International Conference on, IEEE, 2005, pp. 1–4.

[58] Z. Huang, W. Du, B. Chen, Deriving private information from randomized data, in: Proceedings

of the 2005 ACM SIGMOD international conference on Management of data, ACM, 2005, pp.

37–48.

34



[59] I. H. Witten, E. Frank, M. A. Hall, C. J. Pal, Data Mining: Practical machine learning tools and

techniques, Morgan Kaufmann, 2016.

[60] S. Lessmann, B. Baesens, H.-V. Seow, L. C. Thomas, Benchmarking state-of-the-art classification

algorithms for credit scoring: An update of research, European Journal of Operational Research

247 (1) (2015) 124–136.

[61] J. R. Quinlan, C4. 5: Programming for machine learning, Morgan Kauffmann 38.

[62] D. C. Howell, Fundamental statistics for the behavioral sciences, Nelson Education, 2016.

[63] B. D. Okkalioglu, M. Okkalioglu, M. Koc, H. Polat, A survey: deriving private information from

perturbed data, Artificial Intelligence Review 44 (4) (2015) 547–569.

[64] H. Gävert, J. Hurri, J. Särelä, A. Hyvärinen, The fastica package for matlab, Lab Comput Inf Sci

Helsinki Univ. Technol.

[65] M. L. Brocardo, C. R. D. Rolt, J. D. S. Dias, R. F. Custodio, I. Traore, Privacy information in a

positive credit system, International Journal of Grid and Utility Computing 8 (1) (2017) 61–69.

[66] A. Shukla, Y. Simmhan, Benchmarking distributed stream processing platforms for iot applica-

tions, in: Technology Conference on Performance Evaluation and Benchmarking, Springer, 2016,

pp. 90–106.

[67] H. Banka, S. Dara, A hamming distance based binary particle swarm optimization (hdbpso)

algorithm for high dimensional feature selection, classification and validation, Pattern Recognition

Letters 52 (2015) 94–100.

[68] S.-H. Cha, Comprehensive survey on distance/similarity measures between probability density

functions, City 1 (2) (2007) 1.

35


	1 Introduction
	2 Literature Review
	3 Method
	3.1 Algorithm for static datasets
	3.2 Algorithm for data streams
	3.3 Variations of the proposed algorithm

	4 Results
	4.1 Experimental Setup
	4.1.1 Datasets used for testing and comparison
	4.1.2 Classification algorithms used for testing and comparison

	4.2 Performance Evaluation of the Perturbation Algorithm
	4.2.1 Classification Accuracy
	4.2.2 Attack Resistance
	4.2.3 Time complexity

	4.3 Scalability

	5 Discussion
	5.1 Selecting values for k/k'
	5.2 Real life application of P2RoCAl: Application Vs. Constraints
	5.3 Future directions

	6 Conclusion

